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Abstract

We consider a structured multi-label prediction problem where the labels are orga-
nized under implication and mutual exclusion constraints. A major concern is to
produce predictions that are logically consistent with these constraints. To do so, we
formulate this problem as an embedding inference problem where the constraints
are imposed onto the embeddings of labels by geometric construction. Particu-
larly, we consider a hyperbolic Poincaré ball model in which we encode labels as
Poincaré hyperplanes that work as linear decision boundaries. The hyperplanes are
interpreted as convex regions such that the logical relationships (implication and
exclusion) are geometrically encoded using insideness and disjointedness of these
regions, respectively. We show theoretical groundings of the method for preserving
logical relationships in the embedding space. Extensive experiments on 12 datasets
show 1) significant improvements in mean average precision; 2) lower number of
constraint violations; 3) an order of magnitude fewer dimensions than baselines.

1 Introduction

Structured multi-label prediction is a task aiming to associate every object with multiple labels that are
semantically constrained in a structured manner (e.g., by implication and exclusion constraints). This
task is of growing importance in many applications such as image annotation [[1} 2], text categorization
[3l 4] and functional genomics [5}16]. One of the central concerns of the task is to produce predictions
that are logically consistent with the constraints of the labels. For example, a protein must be labeled
to have the function nucleic acid binding if it is already labeled to have the function RNA binding
(i.e., implication) and must not have the function drug binding (i.e., mutual exclusion).

Various works have been proposed to improve the prediction consistency [[7, 18, (9,10, [11]. One line
of work called label embedding aims to represent labels as low-dimensional vectors [12,[13]]. A key
disadvantage of the vector-based representations is that they only capture weak forms of correlation
or “similarity’ between labels, but do not strongly enforce the logical relationships. Another line
of work [7, 19} [14} 8] imposes these logical constraints directly to the losses of neural networks.
However, they do not explicitly learn the representations of labels and typically require a complete
label taxonomy, which is not always available in and scalable to real-world settings [[L1].
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Figure 1: (a) A HEX graph describing the logical relationships (implication and exclusion) between different
labels; (b) The learned label embeddings (linear decision boundaries) in the Poincaré ball, where all constraints
in the HEX graph are respected; (c) The prediction scores of a given instance of mother respect all constraints in
the HEX graph, where each score is calculated as the confidence of the instance embedding being a member of
the convex region of the corresponding label embedding.

Embedding-based inference [[15]], which imposes logical constraints directly to the label embeddings,
is able to inductively infer the underlying label relationships from incomplete labelings [[16]. Once all
embeddings are adhering to the constraints, each label can be predicted independently without access-
ing the label relationships, which significantly reduces the computation cost during inference [[15].
The key idea, which is inspired by the Venn diagram [[16} [17] or set-theoretic semantics [18]], is to
represent each label as a convex region [[15]. A prominent example is the multi-label box model
(MBM) [[11] that models label implications as box containments. However, MBM learns box-like
decision boundaries, which are typically not compatible with standard classifiers (i.e., hyperplane
margin-based models such as logistic regression [19]]). Besides, box models suffer from a theoretical
limitation, i.e., lower-way intersections enforce higher-way interactions [20]]. Finally, current methods
ignore the importance of constraining mutual exclusion, which is essential as otherwise, a model
could trivially obtain zero implication violation by assigning the same score to all labels.

In this paper, we consider a structured multi-label prediction problem with implication and mutual
exclusion constraints that are jointly described by a hierarchy and exclusion (HEX) graph (see
Figure[I|(a) for an example). The key idea of our method is to transform the logical constraints into
soft geometric constraints in the embedding space. In particular, we consider a hyperbolic Poincaré
ball model that has demonstrated advantages in representing hierarchies and assign each label a
Poincaré hyperplane that has several favorable theoretical properties in classification. Each Poincaré
hyperplane can be interpreted as a convex region such that the implication and mutual exclusion are
modeled by geometric insideness and disjointness between the corresponding regions, respectively.
In this way, a multi-label classifier can be defined by measuring the confidence of an instance having
a label as geometric membership. Unlike other hyperbolic region-based models such as hyperbolic
cones [21]] and hyperbolic disks [22]], Poincaré hyperplane works as a linear decision boundary
and can be seamlessly integrated into existing margin-based classifiers such as hyperbolic logistic
regression [19]. Figure[I{b) shows an example of the learned label representations that respect all
the constraints given in Figure [[(a). We show theoretical groundings of the proposed method on
modeling implication and mutual exclusion. Extensive experiments on 12 multi-label classification
tasks show the model’s capability to improve the mean average precision significantly while keeping
the number of constraint violations low and requiring an order of magnitude fewer dimensions.

2 Preliminaries

Poincaré ball model The Poincaré ball (]D)”, gD) is one of the models of hyperbolic geometry
that is very suitable for representing hierarchies due to its exponentially growing volume [23]]. The
Poincaré ball is defined as an open n-ball D™ = {x € R™ : ||x|| < 1} equipped with a Riemannian
metric g° = A2 g¥, where A\, = ﬁ g¥ =1, is the Euclidean metric tensor, A\ is the conformal

factor, and || - |* denotes the L? norm in Euclidean space. The distance between two points x,y € D"

— xX— 2
can be defined by dp(x,y) = cosh™* (1 + 2%)



Structured multi-label prediction Let X C R™ denote an n-dimensional instance space and £ =
{l1,12,...},|L£] > 2 denote the finite set of possible labels. Given a set of NV training examples D =
{(zs,L;) |1 <i < N,x; € X,L; C L}, multi-label prediction aims to learn a labeling function
f: X — 2% mapping from the instance space to the powerset of the label space, f(z) C L.

Structured multi-label prediction additionally imposes a set of prior-known logical constraints over
the labels, namely, the predictions must be logically consistent with these constraints. Analogous
to Mirzazadeh et al. [[15]], we consider two forms of logical constraints between labels: implication
and mutual exclusion. Specifically, an implication of the form [, = [; imposes the constraint that
whenever an instance is labeled as [/, then it must also be labeled as [y, i.e., [, = [ is a shorthand
notation for Vo € X,l, € f(z) = I, € f(x). Mutual exclusions are constraints of the form
=i, V —lp, implying that an instance cannot be simultaneously labeled as [, and [, i.e., =, V =}
is a shorthand notation for Vo € X1, ¢ f(x) Vi, ¢ f(x). We can concisely represent a set of
implication and exclusion constraints with a hierarchy and exclusion (HEX) graph [2].

Definition 1 (HEX graph [217_]). A HEX graph G = (V, Ey, E.) is a graph consisting of a set of
nodes V.= {v1,...,v,}, directed (hierarchy) edges E,, CV x V, and undirected (exclusion) edges
E. CV x V, such that the subgraph Gy, = (V, Ey,) is a DAG and the subgraph G. = (V, E,) has
no self loop. Each node v; € V represents the label ;. A directed edge (v;,v;) € E}, represents the
implication l; = 1, and an undirected edge (v;,v;) € E, represents the exclusion —l; \/ —l;.

Note that an arbitrary HEX graph may contain redundant edges. A hierarchy edge (v;, v;) is redundant
when there is a path in G}, from v; to v; which does not contain the edge (v;,v;). Similarly, an
exclusion edge (v;, v;) is redundant when there is another exclusion edge connecting their ancestors
(or connecting one node’s ancestor to the other node). We can transform a HEX graph into an
equivalent HEX graph by adding or removing redundant edges. In this paper, we only consider HEX
graphs that have a minimal number of edges, we call such HEX graph a minimal sparse HEX graph
(see Fig.[T[(a) for an example). Given a minimal sparse HEX graph, we define the HEX-property as

Definition 2 (HEX-property). A labeling function f has the HEX property with respect to a HEX
graph G if for all x € X, f(z) respects all constraints represented by G.

We also call such function f logically consistent w.r.t G. Given the HEX graph and the HEX-property,
structured multi-label prediction is formally defined as a constrained optimization problem.

Definition 3 (Structured multi-label prediction). The structured multi-label prediction task with
respect to a training set D = {(z;, L;) | 1 <4 < N,z; € X, L; C L}, minimal HEX graph G =
(V, Ep, E.), and multi-label prediction function f, is the task of learning f such that the function f
minimizes Z(@ L)eD loss(f(x;), L;), with loss a predefined function, while attempting to maintain
the HEX-property with respect to G.

Note that this definition allows for a soft interpretation of the constraints, meaning that the goal is
to adhere to all of them, but we do allow for loosening some if necessary. For example, a mutual
exclusion constraint is allowed to loosen when an instance (e.g., image), though rarely happens, is
simultaneously labeled as two mutual exclusive labels (e.g., dog and cat).

3 Hyperbolic embedding inference

We consider learning a real-valued ranking function h : X x £ — [0, 1], where the output is
interpreted as the confidence of an instance z € X" having a label [ € L. Afterward, a binary
multi-label classifier f : X — 2% can be simply obtained by thresholding the ranking function with a
threshold ¢, i.e., f(z) = {l | h(x,1) > t,VI € L}. The objective of h is to assign higher scores to
positive instance-label pairs than that of negative instance-label pairs.

3.1 Geometric construction

Given an n-dimensional Poincaré ball D", we associate each instance x; € X with a point in the
Poincaré ball and associate each label /; € £ with a Poincaré hyperplane, such that its corresponding
positive and negative instances are correctly separated by the hyperplane.

Deng et al. [2] use subsumption, which is the inverse relation of implication that we use here.



Poincaré hyperplanes Let B™ denote the set of n-balls in R™ whose boundaries 0B intersect the
Poincaré ball D™ perpendicularly. Poincaré hyperplanes are defined by OB™ N D™ (see Fig.[2(a)) plus
all linear subspaces going through the origin. For the former cases, a Poincaré hyperplane can be
uniquely defined by its center point that has a minimal distance to the origin.

Definition 4. Given a (center) point ¢ € D™ where ¢ # 0, the Poincaré hyperplane is defined as
H, = {pE]D)" : g” (log, (p) , €) :0} (1)

where c is the center point and € € T, D" E]is the normal vector passing through the origin 0.

Intuitively, this corresponds to the union of all geodesics passing through ¢ while orthogonal to the
normal vector € € T.ID". In the case where c is the center of the hyperplane, ¢ must simultaneously
pass through c and the origin. Hence, € can be simply taken as ¢ without loss of generality. For
the special case where ¢ = 0, the Poincaré hyperplanes are all linear subspaces (Euclidean planes)
passing through the origin. In this paper, we exclude these special cases by assuming ¢ # 0.

Geometric intuition Essentially, the Poincaré hyperplane works as a linear decision boundary
that separates the embedding space into two regions)*| where the smaller region (i.e., convex hull) is
interpreted as the space of positive samples while the other one is interpreted as the space of negative
samples. Two reasons motivate us to model labels as Poincaré hyperplanes: 1) Modeling labels as
hyperplanes has several desired theoretical advantages in margin-based classifiers. Our model shares
the same philosophy as existing learning frameworks such as hyperbolic logistic regression [19] and
hyperbolic SVM [24]; 2) More importantly, unlike Euclidean space that is flat, hyperbolic Poincaré
ball is a curved space in which there are infinitely many non-parallel hyperplanes which do not
intersect, implying that linear decision boundaries in hyperbolic space can capture more complicated
set-theoretic interactions, such as implication and mutual exclusion.

Enclosing balls Given a Poincaré hyperplane H., we call the corresponding n-ball By that en-
closes H, its enclosing n-ball. Formally, an enclosing n-ball B" (o, r) is defined by B (o,7) =
{p: ||p — o] <}, where o € R™ and r are the center point and the radius, respectively. Given He,
we have the following closed-form representation of BZ .

Proposition 1. Given a Poincaré hyperplane H. where ¢ # 0, there exists an n-ball BZ (oc, rc)
such that He C BY (0¢,7c), i.e., He is a subset of BY (0¢, 7). BY is uniquely given by
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Proof sketch. The key idea is to solve a quadratic equation given by the fact that the radius of B, the
radius of D™, and the distance from the center of D™ to the center of B? must satisfy the Pythagorean
theorem [25]]. Full proof is in the supplementary material.

3.2 Geometric interpretation

Our main idea is to transform the logical relationships between labels into geometric relationships
between their corresponding enclosing n-balls. In particular, the implication is modeled by the
geometric insideness while the mutual exclusion is modeled by the geometric disjointness.

Implication The logical implication between two labels is interpreted as geometric relations
between n-balls, i.e., n-ball insideness illustrated in Fig. b). In particular, an n-ball By, (0w, 'w)
contains By, (0y, ry) if and only if |0y — Ow|| + 7w < 7w, and thus we can create an insideness loss
defined by

Linside (Bu, Bw) = max{0, |0y — Ow|| + 7a — 7w }- 3)
Clearly, the insideness loss term satisfies the properties of correctness and transitivity
Lemma 1 (Correctness). By, is inside of By, if and only if Liysize(Bu, Bw) = 0.
Lemma 2 (Transitivity). If Lipsidze(Bu, Bw) = 0 and Linsize(Bw, By) = 0, we have Lipsige(By, By ) <
Einside (Bua IBw) + ‘Cinside (]BW7 Bv) < Einside (BW7 IBv) =0
3In this paper, we distinguish normal vectors from regular points by adding an arrow on top of its letters.
“Note that by using the metric in the Poincaré ball, each region has infinite (exponentially growing) volume.




Figure 2: (a) A Poincaré hyperplane is defined as the intersection between the Poincaré ball ID and the boundary
of an n-ball B.. The Poincaré hyperplane is uniquely parameterized by a center point c, and the corresponding
n-ball (its radius and center) can be uniquely determined by Proposition|l} (b) Label implication is interpreted
as n-ball insideness. (c) Mutual exclusion is interpreted as n-ball disjointedness.

Mutual exclusion Similarly, we interpret mutual exclusion as geometric disconnectedness between

n-balls illustrated in Fig. c). B, disconnecting from By, can be measured by subtracting the

distance between their center points from the sum of their radii. Inversely, the corresponding loss is
Edisjoint<Bua IB3w) = maX{Oa Tw + Tu — ||0u - Ow”} (4)

Again, the disjointedness loss term satisfies the correctness property

Lemma 3 (Correctness). By, disconnects from By, if and only if Lisjoins(Bu, Bw) = 0.

3.3 Classification and learning

Given the embeddings of instances and labels, an instance can be classified by measuring the
geometric membership, i.e., the confidence of a point p € D™ being inside the enclosing ball B.

Membership and non-membership Formally, given an instance embedding p € D™ and a label
embedding associated with an enclosing n-ball B.. The confidence of an instance p being inside the
enclosing n-ball B, can be measured by subtracting the distance between the center point of B, and
p from the radius of B.. The corresponding loss is defined as the inverse of the measure, given by

Emembership (poc (Oca Tc)) = HlaX{(), ||0c - p” - Tc}- (5)

Symmetrically, for negative instance-label relations, the loss of non-membership can be defined as

Lnon-membership (P; Be (0c,7c)) = max{0, re — [|oc — pll}- (6)
Clearly, we have the following properties that follow directly from the definitions.
Lemma 4. A point p is a member of B if and only if Lyempership (P, Be) = 0.
Lemma 5. A point p is not a member of B if and only if Lon-membership (P, Be) = 0.

Lemma 1-2, Lemma 3, Lemma 4-5 immediately follow the definitions of geometric insideness,
disjointedness, and membership, respectively.

We aim to learn an encoder Ejy (i.e., a hyperbolic neural network whose designs depend on the
datasets), where @ is the trainable parameter, and a function C which maps labels to the center points
of the corresponding Poincaré hyperplanes in the Poincaré ball.

Now, we define h(x,1) = 0 (Lnon-membership (£ (), C(1)) — Lmembership (Eo(x), C(1))), as our rank-
ing function, where o is the sigmoid function. The final classification function is then defined by
flz) ={l]h(x,1) > 0.5}. We call our classifier hyperbolic multi-label embedding inference (HMI).
Given a HEX graph, HMI has the following guarantee.

Proposition 2 (HEX-property). The classification function f of HMI has the HEX property with
respect to G if for any constraint in G, the corresponding loss term is 0.

Learning with soft constraints Let Dt = {(z;,1,)|(z;, L;) € D, 1,, € L;} be the set of positive
instance-label pairs and D~ = {(z;,1,)|(x;, L) € D,l,, € L,l,, ¢ L;} be the set of negative
instance-label pairs. By combining the loss functions of membership, non-membership, insideness
and disjointedness, the learning objective can be formulated as
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The first two terms are losses for positive and negative samples while the last two terms are
implication and exclusion constraints, respectively, with A being the penalty weight of the constraints.

The following corollary shows that our model has a strong inductive bias for preserving consistency.

Corollary 1. Given a HEX graph G of labels, if the loss terms Ly siqe and Lgisjoint are 0, then the
learned prediction function is logically consistent.

Classification via hyperbolic logistic regression A key advantage of our method is that the losses
of constraints are compatible with other (margin-based) hyperbolic classifiers such as hyperbolic
logistic regression (HLR) [[19]] and hyperbolic support vector machine (HSVM) [24]]. In our experi-
ment we explore HLR, which formulates the logits as the distances from an instance to a Poincaré
hyperplane of a label. That is, h(z,1) = d (Fy (), Hc (1)). d(p, Hc) has the following closed form:

o 2[((=c) @ p, 0
d(p,H.) = sinh ™" (
‘ (1 =[l(=c) @ pl?)
where @ is the Mgbius addition [19]]. The classifier is defined by f(z) = {l| o (h (z,1)) > 0.5,V] €
L} where ¢ is the sigmoid function. We dub such classifier combined with HMI as HMI+HLR.

(®)

4 Evaluation

4.1 Experiment setup

Datasets We consider 12 datasets that have been used for evaluating multi-label prediction meth-
ods [[11} 8 [10]. These consist of 8 functional genomic datasets [26], 3 image annotation datasets
[27,[28]], and 1 text classification dataset [29]]. All input features are pre-processed in the same way as
described by Patel et al. [11]. For all datasets, the implication constraints (label taxonomy) are given.
Following Mirzazadeh et al. [[15] we add exclusion constraints between sibling nodes whenever this
does not create a contradiction (i.e., they share no common descendant nodes). We also explore other
strategies for deriving exclusions, but no significant difference was observed (see the supplement
for an analysis). Similar to MBM [11]] and its baselines, we sample 30% of the implications and
exclusions constraints for training the model.

Hyperbolic encoder We adopt a simple hyperbolic linear layer as the instance encoder for
all datasets. A single-layer hyperbolic fully-forward linear layer is defined by fo—w p}(x) =

tanh® (W ® x @ b), with ® being Mobius matrix-vector multiplication defined by M ® x =
tanh (”Mx“ tanh*1(||x||)) Mx_ where W € R™*? s a trainable matrix and x is a point x €

[E]] [EZEN
N s o (20 Iyl x+(1-[1x)1?)y ®
D", Mx # 0. & denotes Mobius addition given by x &y = T2y TIRE T . tanh

denotes an Mébius version of pointwise non-linearity given by tanh® (x) = exp, (tanh (logy(x))),
with exp,, and log,, being the exponential and logarithmic maps, see [[19] for more details.

Baselines We compare our approach with both classical vector-based and state-of-the-art region-
based embedding methods. In particular, we consider two vector-based models: 1) The multi-label
vector model (MVM) [30], which encodes both inputs and labels as Euclidean vectors; 2) the multi-
label hyperbolic model (MHM) used by Chen et al. [13]], which represents inputs and labels as
hyperbolic points; and two box models: 3) the non-probabilistic box model (BoxE) [31] and 4) the
probabilistic multi-label box model (MBM) [[L1]] that encodes both instances and labels as axis-parallel
hyper-rectangles. Besides, we compare with 5) hyperbolic logistic regression (HLR) [[19] since it also
encodes labels as Poincaré hyperplanes (but does not use geometric constraints). Furthermore, we



Table 1: Comparison of performance and consistency on 12 datasets, where underline indicates the best results
over embedding-based methods, and boldface indicates the best results over all methods. We implemented HMI,
HLR and HMI+HLR. Other results are taken from Patel et al. [11]. All metrics are averaged across 10 runs with
random seeds (standard deviations are relatively small (in range [2 X 1074,2.3 x 1073]) and are hence omitted).

Dataset Metric Ours Embeddings Non-embedding
HMI HMI+HLR | MVM MHM BoxE MBM HLR C-HMCNN
mAP 1 | 38.53 38.50 3794 3190 3730 3842 3798 38.41
ExprFUN CmAP 1 | 38.72 38.62 37.41 3202 3792 38.67 37.44 38.41
HCV ] | 092 1.07 1.97 1.92 479 1.87 217 0
mAP 1 | 34.82 34.84 31.61 2874 3196 3461 34.05 34.35
CellcycleFUN  CmAP 1 | 34.90 35.00 31.33  28.89 32770 3478 34.11 34.35
HCV | | 130 1.32 3.45 1.78  4.02 1.35 2.30 0
mAP 1 | 36.71 36.71 2416 2440 26.66 28.71 26.65 28.19
DerisiFUN CmAP 1 | 36.94 36.89 2435 2452 2696 28.88 26.83 28.19
HCV | | 0.73 0.87 4.01 0.85 2.27 1.43 2.30 0
mAP 1 | 36.47 36.44 2421 2657 2797 29.62 28.29 29.18
SpoFUN CmAP 1 | 36.43 36.54 2455 2679 2838 29.78 2831 29.18
HCV | | 0.92 1.05 4.73 1.69 2.75 1.53 1.98 0
mAP 1 | 48.63 48.50 4497 4052 46.75 4845 48.65 48.61
ExprGO CmAP 1 | 48.68 48.61 41.84 40.70 47.28 48.56 48.65 48.61
HCV | 1.37 1.45 7.05 5.19 5.74 191 135 0
mAP 1T | 45.58 45.51 44.19  39.74 43.08 4493 40.28 45.61
CellcycleGO ~ CmAP 1 | 45.58 45.53 41.02 39.76 43.79 45.01 4030 45.61
HCV | 1.19 1.12 3.03 2.49 506 216  3.26 0
mAP 1 | 42.31 42.12 41.13  40.10 4044 42.02 4033 4224
DerisiGO CmAP T | 42.38 42.28 3821 4020 40.73 42.12  40.35 42.24
HCV | | 0.86 0.99 3.46 2.02 3.16 1.13 2.31 0
mAP 1T | 42.70 42.74 4220 3970 40.88 41.74 39.22 42.77
SpoGO CmAP 1 | 42.76 42.77 39.04 3977 4127 4154 39.26 42.77
HCV ] | 0.95 1.20 2.717 190 3.89 1.80 233 0
mAP 1 | 80.43 80.43 73.68 75.62 80.44 80.06 78.87 80.04
Enron CmAP 1 | 80.50 80.47 66.87 75.68 80.46 80.05 78.94 80.04
HCV | 0 0 2.53 0.36 020 0.03 0.04 0
mAP 1 | 79.19 79.10 72.65 56.86 4371 79.14 77.90 76.23
Diatoms CmAP T | 79.40 79.36 72.18 56.07 45.16 79.23 78.07 76.23
HCV] | 0.17 0.18 1920  5.55 639 034 636 0
mAP 1 | 90.67 89.60 7822 6530 8371 69.26 88.33 90.26
Imclef07a CmAP 1 | 90.89 89.71 7746 66.01 8473 6948 88.45 90.26
HCV | | 0.20 0.19 2286 475 1273 240 1.77 0
mAP 1 | 89.19 89.20 88.59 7569 8795 89.56 8891 89.22
ImclefO7d CmAP 1 | 90.00 90.02 86.87 7695 88.93 90.07 87.38 89.22
HCV | | 037 0.36 11.02 756 1193 566  6.88 0
mAP 1.75 2.42 6.33 7.58 5.75 3.5 5.25 3.08
Avg. Rank | CmAP | 1.58 2.08 7.16 7.41 5.25 358 541 3.33
HCV 2.25 2.75 7.42 5.25 725  4.25 5.58 1.00

compare with 6) C-HMCNN, a state-of-the-art non-embedding based method that injects hierarchy
constraints directly into the loss function without embedding labels. A notable difference is that
C-HMCNN needs the full hierarchy constraints as its input. Finally, we also implement HMI+HLR,
a combination of our proposed constraints with HLR for an ablation study.

Implementation details We implement HMI, HLR and HMC-HLR using PyTorch [32] and train
the models on NVIDIA A100 with 40GB memory. We train HMI, HLR and HMI+HLR using
Riemannian Adam [33]] optimizer implemented by the Geoopt library [34] with a batch size of 4.
We also explore some larger batch sizes but it does not yield better results, which is also observed
in Wehrmann et al.[14]. We set the dropout rate to 0.6 suggested by [[14] to avoid the case that the
model overfits the small training sets. We employ an early-stopping strategy with patience 20 to save
training time. The results of other baselines are as reported by Patel et al.[11] that we closely follow.
The learning rate is searched from {le — 4, be — 4, 1le — 3, 5e — 3, 1e — 2}. The penalty weight of the
violation is searched from {le — 5, 5e — 4, le — 4, 5e — 3, 1le — 2} and we also show its impact in an
ablation. The best dimension per dataset is searched from {32, 64, 128, 256}, which is one order of
magnitude lower than that used by Patel et al. [L1]] ({250, 500, 1000, 1750}). All methods have been
run 10 times with random seeds and the average results are reported. We omit the standard deviations
since they are in a very small range ([2 x 107%,2.3 x 1073]). Our code is open available atﬂ

>https://github.com/xiongbo010/HMI
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Figure 3: Critical diagrams of the post-hoc Nemenyi test across all 12 datasets.

Evaluation protocols In line with Patel et al. [[11]], we consider Mean Average Precision (mAP )E]
which summarizes the information of precisions and recalls with varied thresholds. We also report
two metrics that additionally take the constraints into account: 1) Constrained mAP (CmAP) is a
variant of mAP that replaces the score of each label with the maximum scores of its descendant labels
in the hierarchy [[11]. 2) Hierarchy Constraint Violation (HCV) [[L1]] measures the extent to which
the label scores violate the implication constraints regardless of true labels for the instances. HCV
is computed as HCV = m ZLli‘l Z(l“lj)eEh 1(nf - h"; > 0), where h; means the prediction

score of label ;. Clearly, a lower value of HCV implies higher consistency in the predictions.

4.2 Main results

As Table[T] shows, our method HMI either achieves the best (7-8/12 datasets) or competitive (4-5/12
datasets) performance (mAP and CmAP) over all compared methods. HMI outperforms all methods
w.r.t the average ranking of mAP/CmAP, showcasing the advantages of HMI. We observed that the
CmAP is close to mAP, indicating that the model is adhering to the label constraints [11]. In terms of
predictive consistency (HCV), HMI consistently achieves the best or the second-best results. Note
that C-HMCNN always gets zero HCV because it exploits the complete hierarchy. HMI achieves
competitive HCV, despite only using 30% of the hierarchy.

Statistical  significance Follow-

ing Patel et al. [11] and Giunchiglia Table 2: Results of Wilcoxon test over HMI against baselines.
and Lukasiewicz [8]], we test the

statistical significance of the perfor- Method mAP CmAP Cv
HMI vs C-HMCNN | 5.8 x 1077 4.4 x 10~% 5.0 x 1073

mance across a}l datasets. First, we HMI ve MBM 33%10-4 24%10-% 4.9 10-4
perform the Friedman test [35] and HMIvs HMI+HLR | 2.3 x 1072 3.8 x 10~2 9.7 x 10~
show that there exists a significant
difference w.r.t. all metrics with
p-values < 0.05. Next, we conduct the post-hoc Nemenyi test to verify the statistical differences
of the average ranking. The critical diagram w.r.t the average ranking of mAP/CmAP is shown
in Fig. 3| in which the methods that have no significant differences (significance level 0.05) are
connected by a horizontal line. As shown in the diagrams, it is clear to conclude that there is a
statistically significant difference w.r.t mAPs/CmAPs of HMI and HMI+HLR against MVM, BoxE,
MHM, and HLR but not the two strong baselines (MBM and C-HMCNN). We further perform the
Wilcoxon test that considers not only the differences in rankings but also the numerical differences in
the performance. The Wilcoxon test results show that there is a statistically significant difference
between the mAPs/CmAPs of HMI and the two strong baselines with p-value < 0.05. In terms
of HCV, our statistical significance test in Figure [3] and Table [2] shows that HMI and HMI+HLR
significantly outperform MVM, BoxE, MHM, HLR, and MBM but not C-HMCNN since it has zero
HCV. However, we observed that the predictive performance (mAP, CmAP) is not fully proportional
to the HCV, e.g., HMI outperforms C-HMCNN w.r.t. mAP/CmAP on many of the datasets even
though C-HMCNN has zero CV.

Shttps://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
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Classification via hyperbolic logistic regression To validate whether our proposed geometric
constraints are able to improve hyperbolic logistic regression (HLR) [[19], we implement HMI+HLR,
a combination of our proposed constraints with HLR as described in Section [3.3] Table[I]show that
HMI+HLR outperforms HLR with statistical confidence, showcasing that HMI is able to improve the
predictive performance and consistency of HLR. However, there is no significant difference (with
p-value larger than 0.05 in Table[2) between the two variants of our method (HMI and HMI+HLR).

4.3 Ablation studies & parameter sensitivity.

For further ablation, we introduce one additional metric. Exclusion Constraint Violation (ECV)
measures, analogous to HCV, the fraction of the exclusion constraints violated by the predictions
ie, ECV = m Z‘kp:'l Z(li,lj)eEe 1(fEA fJ’-“). We introduce this because HCV can be made
zero trivially by associating all labels with the same score. Hence, in the ablation study, we will
show how the exclusion constraints (the results of ECV) complement HCV and influence the overall

performance.

Impact of penalty weight Ta-
ble [3] shows the results of HMI  Taple 3: Impact of violation penalty weight A on CellcycleFUN and
on "CellcycleFUN" and "Cellcy- CellcycleGO dataset.

cleGO" dataset. We observed that

Dataset Metric A=00 X=0.001 X=0.005 A=001 X=0.1

with different penalty weights, the mAP 3387 3478 3482 3476 328
obtained resu.lts are slightly differ- CelleycleFUN Cl_ln(lz/?/P 324.3033 3148873 314.39(? 3145345 303.7755
ent. Even without penalty (A = ECV 433 377 210 167 132
0), the model already achieves ac- mAP 4026 4147 4558 3556 4128
ce table results in articular lt . CmAP 39.87 42.05 45.58 45.60 40.75

P f MVM pMHM d CelleyeleGO "oy 208 157 1.19 099 086
outpertorms , » an ECV 398 327 217 1.71 1.34

BoxE, indicating that our hyper-
bolic model, to some extent, is ca-
pable of capturing label hierarchies without any explicit constraints. However, as Table (3| shows,
a proper A = 0.001, A = 0.005 and A = 0.01 indeed improves the performance and consistency.
Finally, we observed that increasing A to 0.1, though further improves consistency (HCV and ECV),
does not further improve mAP and CmAP. We conjecture that this is because a large A would
encourage the model to "overfit" the given constraints while "underfitting" the classification loss.

Impact of implication & exclu-
Sio?‘ To study th? roles Of.impli— Table 4: Impact of implication and exclusion constraints on Cellcycle-
cation and exclusion. We imple- FUN and CellcycleGO dataset.

mented three variants of HMI by

. ither i li . Dataset Metric  HMI  w/o implication ~ w/o0 exclusion non constraints
removing either implication orex- =~~~ " mAP 3482 34770 3474 3387
clusion, or removing both of them. ¥ CmAP  34.90 34.75 34.82 34.03

. HCV 130 2.34 1.45 233
Table M dep}cts the results of'thes.e BV 270 Se7 i3 s
variants. It is clear that both impli- CellcycleGo  MAP 4558 4256 4450 40.26
cation and exclusion constraints CmAP  45.58 42.56 4531 39.87
. HCV  1.19 2.16 173 2.28
improve the base model that has ECV 217 368 3.07 3.08

no constraints. When implica-

tion and exclusion are jointly con-

strained, the performance is significantly improved again. We also observed that implication and
exclusion constraints, to some extent, do complement each other, e.g., by only using implication
(resp. exclusion), the model archives lower ECV (resp. HCV). Finally, we observed that even without
exclusion, our model still slightly outperforms MBM, showcasing the advantages of hyperbolic space
for modeling hierarchies.

Impact of sampling ratio To study whether our method is able to preserve logical constraints
from incomplete label constraints we compare the performance of HMI with different ratios for
sampling the training constraints. As Figure [[a) depicts, with zero sampling ratio, our method
already achieves acceptable results. We conjecture that this is because some constraints can be
learned from the data. However, Figure f{a) clearly shows that including constraints indeed helps to
improve the performance. Making the sampling ratio larger than 30-40% does not lead to a significant



performance gain. We conjecture that this is because certain ratio of training constraints is sufficient
for inferring the full set of constraints.

Impact of embedding
dimensionality We study

how the choice of dimen- 467 = ji P
. . ~44 /:r’ —_ -
Slona.hty affects performance. £ 4214 —=— mAP (CellcycleFUN) 2 421"~ map (Cellcyclerun)
As Elgure Ekb) depicts, HMI S 40f — CmAP (CelicycleFUN) S 40 —+— CmAP (CellcycleFUN)
achieves acceptable results = --=- mAP (CellcycleGO) S 38 --a-- mAP (CellcycleGO)
even in a very low dimension < 381 - CcmaAP (CelcycleGO) < —*- CmAP) (CelicycleGO)

. . € 36 £ 36
(n < 100). When increasing 34

. . 34

the dimension an order of 0 20 40 60 80 100 10! 102 103
magnitude (n = 1000), the Sampling ratio Dimensionality
performance grows only @ ®

slightly. Note that all reported  Figure 4: (a) The variation of performance w.r.t the sampling ratio. (b) The
baselines achieved acceptable  variation of performance w.r.t the embedding dimensions.

results with  dimensions

in  [500,1000,1750] (see

hyperparameter settings in the Appendix of Patel et al. [[L1]). We conjecture that the reason we can
achieve good performance with fewer dimensions is that the hyperbolic hyperplane is more suitable
for representing hierarchical decision boundaries.

Comparison with MBM with only implication or without any constraint To faithfully study
the advantages of hyperbolic hyperplane on modeling label relations than that of the box model
(MBM), we also implement two versions of HMI by considering only (30%) implication constraints
and without any constraint (sampling ratio= 0), respectively. Our Wilcoxon test in Table [5|shows
that HMI with only implication and HMI without any constraint still outperform their corresponding
counterparts of MBM on CmAP and HCV (with p-value < 0.05) while achieving comparable results
on mAP (i.e., with better average ranks but without statistical significance, we believe this is because
mAP is less sensitive to the constraints than CmAP).

Table 5: Results of Wilcoxon test on HMI against MBM in the settings where only implications are available
and without any constraint. — means no statistical difference between the compared methods.

Method mAP CmAP [6\Y
HMI (impl.) vs MBM (impl.) — 24x107% 12x10°
HMI (no conts.) vs MBM (no conts.) — 1.3x1072 6.1x1073

5 Conclusion

In this paper, we focus on a structured multi-label prediction task whose output is supposed to
respect the implication and exclusion constraints. We show that such a problem can be formulated
in a hyperbolic Poincaré ball space whose linear decision boundaries (Poincaré hyperplanes) can
be interpreted as convex regions. The implication and exclusion constraints are geometrically
interpreted as insideness and disjointedness, respectively. Experiments on 12 datasets show significant
improvements in mean average precision and lower constraint violations, even with an order of
magnitude fewer dimensions than baselines.
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A Proof of theorems

Proposition 1. Given a Poincaré hyperplane H. where ¢ # 0, there exists an n-ball B (0¢,7c)
such that He C B (0, 7c), i-e., He is a subset of B (0c, 7¢). Be is uniquely given by

(L+llel®)  1— |
¢ < 2|lc| 2|e]

Proof. Since c is the center point of the Poincaré hyperplane, the vector ¢ must be a normal vector
of the tangent space T.B" of B™ at c. Let ¢ be one of the point that the Poincaré hyperplane and the
Poincaré ball intersect at. Then, the radius of B (0, 7¢), the radius of D", and the distance from the
centers of D™ to the center of B (0c, 7c) must satisfy the Pythagorean theorem [23], i.e., the three
Euclidean distances d(0, ¢), d(g, 0c) and d(o., 0) must satisfy

d(0,q)° + d(q, 0¢)* = d(0c,0)* = (d(0,¢) +d (¢, 0c))". (10)
Since we have d(c,0.) = d(q,0.) = 7, by solving this quadratic equation, we have
c 2
re = % Since o, = c(l + ﬁ), we have o, = % Thus, B, =
_ el 1
B(OC—C el 2o = el ) =

Proposition 2 (HEX-property). The classification function f has the HEX property with respect to
G if and only if for any constraint in G, the corresponding loss term is 0.

Proof. Note that the loss term of the constraint being 0 implies that the corresponding constraint
is respected. Our loss terms clearly connect the HEX property. That is, for any point p € D"
and a pair of enclosing n-balls (B, B,), Lmembership (P Bw) > Lmembership (P, By,) for all (B, B.,)
where £inside (Bw; Bu) = 0 and _“cmembership (p7 Bw) \ _“Cmembership (p7 Bu) for all (Bun Bu) where
Lisjoint (B, Byy) = 0. According to the definition of HEX-property, f has the HEX property with
respect to G if and only if the corresponding loss term of the corresponding constraint is 0. [

Corollary 1. Given a HEX graph G of labels and if the loss of the embeddings is 0, then the learned
prediction function is logically consistent with respect to G.

Proof. Note that the loss terms Linside; Ldisjoint; Lmemberships Lnon-membership N Eq.7 are all non-negative.
Hence, the loss being 0 implies that all losses are zeros (all constraints are satisfied). According to
the definition of consistency, the prediction function is consistent.

B Supplementary experiments and details

Datasets and pre-processing The functional genomic datasets (Expr, Spo, Derisi, Cellcycle) are
available at|’| The image datasets (Imclef07a, Imclef07d, Diatoms) and text dataset (Enron) are all
available at[’| All licenses of the datasets can be found in the corresponding links and references.
The number of labels, types of features, the number of instances vary significantly. The diversity
of these datasets makes them suitable for evaluating the multi-label classification task. The input
features are pre-processed in the same way as described in [11} 8, [10]]. In particular, all categorical
features were transformed using one-hot encoding. The missing values were replaced by the mean
value (for numeric features) or zero-valued vector (for categorical features). All continuous features
were standardized before feeding into the encoder. The labels of the root nodes are removed from
training and evaluation.

"https://dtai.cs.kuleuven.be/clus/hmcdatasets/
8http://kt.ijs.si/DragiKocev/PhD/resources/doku.php?id=hmc_classification
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Table 6: Statistical information of the datasets used in experiments. Number of features (F), number of classes
(L), and number of instances for each dataset split.

Dataset Domain Feature Label #Label #Train #Val #Test
ExprFUN Genomics Continuous  Forest 500 1636 849 1288
CellcycleFUN  Genomics Continuous Forest 500 1628 848 1281
DerisiFUN Genomics Continuous Forest 500 1608 842 1275
SpoFUN Genomics Continuous Forest 500 1600 837 1266
ExprGO Genomics Continuous DAG 4132 1636 849 1288
CellcycleGO  Genomics Continuous  DAG 4126 1625 848 1278
DerisiGO Genomics Continuous DAG 4120 1605 842 1272
SpoGO Genomics Continuous DAG 4120 1597 837 1263

Diatoms Image Continuous  Tree 399 1500 565 1054
Imclef07a Image Continuous  Tree 97 7000 3000 1006
Imclef07d Image Continuous  Tree 47 7000 3000 1006

Enron Text Binary Tree 57 650 338 600

Table 7: The number of exclusion edges derived from the label taxonomy (A) and the label co-occurrence (B).
Dataset A B

ExprFun 110958 110941

CellcycleFUN 110959 110942

DerisiFUN 111009 110992

SpoFUN 111008 110991
ExprGO 8305590 8310506
CellcycleGO 8305590 8310506

SpoGO 8257458 8262341

Diatoms 78793 78799
Enron 965 965
ImCLEF07A 4417 4425
ImCLEF07D 979 985

Deriving mutual exclusion In real-world applications, exclusion relations could be annotated
by human experts by exploiting domain knowledge. In this paper, we explore various strategies to
generate possible exclusion relations: 1) Deriving exclusion from the label taxonomy. Following the
"exclusive whenever possible" assumption [1l], we add mutual exclusion edges between two nodes
whenever they do not share any descendant nodes (i.e., it does not create a contradiction). 2) Deriving
exclusion from the label co-occurrence. We add mutual exclusion edges between two labels whenever
there is no instance in the training set simultaneously belonging to them. Clearly, strategy 1 generates
all possible exclusion edges entailed by the label taxonomy, while strategy 2 generates exclusion
edges that are reflected by the dataset itself. Strategy 1 might create false positive exclusions (i.e.,
exclusions that violate the label co-occurrence in the datasets), while strategy 2 might suffer from
the noisy labeled data (e.g., an instance might be incorrectly or incompletely labeled). However,
Table[7]shows that there is no statistical difference between the generated exclusions from these two
methods. Hence, we may conclude that the "exclusive whenever possible" assumption almost holds.
One common problem of these two methods is that there are many redundant edges generated. To
efficiently exploit the constraints, we only generate exclusions between sibling nodes whenever it
does not create contradiction [[15].
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