
Open Environment for Collaborative Cloud Ecosystems

Oleksiy Khriyenko

Industrial Ontologies Group, MIT Department

University of Jyväskylä, P.O. Box 35(Agora)

Jyväskylä, Finland

oleksiy.khriyenko@jyu.fi

Michael Cochez

Industrial Ontologies Group, MIT Department

University of Jyväskylä, P.O. Box 35(Agora)

Jyväskylä, Finland

michael.s.l.cochez@jyu.fi

Abstract — Cloud computing can be defined as accessing and

utilizing third party software, services and resources and

paying as per usage. It facilitates scalability and virtualized

resources over the Internet as a service; providing cost

effective and scalable solution to customers. There are two

emerging methodologies for constructing infrastructure:

“Cloudcenters” and “Infrastructure Web Services”.

Cloudcenters can be regarded as a virtualized data center.

Infrastructure Web Services are more analogous to Service-

Oriented-Architectures (SOA), require significant

programming skills and are much more comfortable for

software developers. It is a robust ecosystem of services which

you can use in order to build your application, getting the

traditional benefits of Cloud Computing such as self-service,

pay-as-you-go, and massive scalability. Unfortunately, talking

about openness and interoperability in cloud computing, cloud

providers still operate very much in their own silos and

private-cloud APIs drift further and further apart. Most data

center vendors do not offer users complete vertically integrated

cloud stacks. However, they are often providing solutions

which imply a strong vendor lock-in. A lot of activities are

currently aimed at the development of various Cloud

computing environments and software engineering practices

for the management of distributed applications, services and

other resources. We are thinking about a future vision of a

network of clouds. It should be an open market for

components (applications, services, data sources, etc.) and

composed ecosystem infrastructure services that facilitate

appropriate collaboration for personalized needs. In this paper

we would like to slightly modify the original cloud stack

towards the development of an open environment for task-

oriented personalized cloud ecosystems and apply a resource

integration platform for this ecosystem elaboration.

Keywords-collaborative clouds; cloud interoperability;

component-based ecosystem infrastructure; semantic integration

I. INTRODUCTION

Cloud Computing refers to both the applications
delivered as services over the Internet and the hardware and
system software in the data centers which provide these
services. ‗Cloud Computing, the long-held dream of
computing as a utility, has the potential to transform a large
part of the IT industry by making software as a service even
more attractive and shaping the way IT hardware is designed
and purchased. Developers with innovative ideas for new
Internet services no longer require the large capital outlays in

hardware to deploy their service or the human expense to
operate it.‘ [1].

Clouds have emerged as a computing infrastructure that
enables rapid delivery of computing resources as a utility in a
dynamically scalable and virtualized manner. The
advantages of cloud computing over traditional computing
include: agility, lower entry cost, device independence,
location independence, and scalability. There are two
emerging methodologies for constructing infrastructure:
―Cloudcenters‖ and ―Infrastructure Web Services‖.
Cloudcenters provide the same kinds of tools that data center
and server operators are already accustomed to, but with all
the advantages of cloud (i.e., self-service, pay-as-you-go and
scalability). Instead of creating completely new paradigms,
cloudcenters are a methodology by which you, the customer,
can have a virtual data center hosted in the ―sky‖. It allows
the use of the same tools, paradigms and standards that are
deployed in an industry standard data center today.
Cloudcenters provide a direct equivalent to traditional data
centers including all of the regular components you expect
such as hardware firewalls, hardware load balancers,
network storage, virtualized servers, dedicated networks, and
the option for physical servers for workloads that should not
be virtualized. Thus they are usually more desirable for IT
staff, systems operators, and other data center specialists.
Infrastructure Web Services on the other hand are more
analogous to Service Oriented Architecture (SOA), require
significant programming skills, and are much more
comfortable for software developers. In this case, the
infrastructure provides a number of different services
(Object-based file storage, Servers on demand, Distributed
database functionality, Content distribution, Messaging &
queuing, Payment processing, etc.) that can be consumed
individually or together to facilitate different kinds of
applications. This is a robust ecosystem of services which
you can use in order to build your application.

For all the talk about openness and interoperability in
cloud computing, both public-cloud and private-cloud
providers still operate very much in their own silos [2]. The
cloud ecosystem is challenged by the fact that cloud service
providers provide their own ways on how users or cloud
applications interact with their cloud, resulting in vendor
lock-in, non-portability and inability to use the cloud
services provided by multiple vendors. This often includes
the inability to use an organization‘s own existing data center
resources seamlessly with the offered infrastructure. Cloud

computing is gaining popularity and IT giants such as
Google, Amazon, Microsoft and IBM have started their
cloud computing infrastructure. All of them are doing
wonderful things — but they are doing so largely within
their own environments. ‗And while (most) data center
vendors don‘t offer users complete vertically integrated
cloud stacks, they are more than happy to lock users into
their product lines as much as possible and form strong
partnerships in areas they don‘t play.‘[2]. Golden [3] states
that current cloud implementations do not allow enterprise
applications to be migrated conveniently; imply legal,
regulatory, and business risks; are difficult to maintain ; lack
service level agreements and do often not give a cost
advantage.

 Nowadays, activities are mainly aimed at the
development of various Cloud computing environments and
software engineering practices for management of
distributed applications, services and other resources.
However, development is still focused on enterprise level
clouds, which may result in the creation of architectures with
the drawback of heterogeneity, non-interoperability of
components, and inability of the systems to be
reconfigurable on demand. Effort is already done in order to
make providers‘ offers interchangeable. One such example is
the Open Virtualization Format (OVF). ‗The OVF
specification is a hypervisor-neutral, efficient, extensible,
and open specification for the packaging and distribution of
virtual appliances composed of one or more VMs. It aims to
facilitate the automated, secure management not only of
virtual machines but the appliance as a functional unit.‘ [4].
The same source states however that ‗For the OVF format to
succeed it must be developed and endorsed by ISVs, virtual
appliance vendors, operating system vendors, as well as
virtual platform vendors, and must be developed within a
standards-based framework.‘ This requirement might show
to be to strong in reality.

We think that it is time to start thinking about a future
vision of a network of clouds. It should be an open market
for components (applications, services, data sources, etc.)
and composed ecosystem infrastructure services that
facilitate appropriate collaboration for personalized needs.
Such ecosystem-based environment allows the collection and
management of applications and the composition of mash-
ups based on them. The applications used to compose mash-
ups can be found from the users own private pool of
components and services or from the open marketplace
provided by different cloud service providers. Furthermore,
the ecosystem-based environment allows enterprises and
individuals to choose what kind of ecosystem infrastructure
services to utilize for the service collaboration and
personalized user experience. Such architecture allows us to
create personalized abstract clouds. An abstract cloud is a
description of infrastructure, platforms and software which
does not have to mention all concrete components. These
concrete components can later on be selected, even on the
fly, by the user of the abstract cloud. Abstract clouds can be
made available through the open marketplace to be used as
application oriented infrastructure or as a sub-cloud for own
personalized infrastructure cloud composition. In this paper

we would like to slightly modify the original cloud stack
towards the development of an open environment for task-
oriented personalized cloud ecosystems. We will apply a
resource integration platform for this ecosystem elaboration.

II. SMART RESOURCE INTEROPERABILITY

A. Technologies Towards Intelligent Interoperability

With the presence of numerous vendors, the need for
interoperability between clouds emerges. The goal is to make
complex and developed business applications in the cloud
interoperable. To achieve the vision of ubiquitous
knowledge, the next generation of integration systems might
need different technologies as the ones currently used.
Technologies such as Semantic Web [5][6], Web Services
[7][8], Agent Technologies [9], and Mobility[10]. Semantic
technologies are viewed today as a key technology to resolve
the problems of interoperability and integration within the
heterogeneous world of ubiquitously interconnected objects
and systems. Still, aspects of proactivity of these resources
are quite in demand nowadays and should be considered
more comprehensively.

In recent years, the complexity of computing
environments has grown beyond the limits of human system
administrators‘ management capabilities. With the advent of
service-oriented computing (SOC), computing environments
have become open and distributed, and components are no
longer under a single organization‘s control. Moreover, the
typical enterprise computing environment is a
heterogeneous, irregular, multivendor pastiche which is
difficult to configure, maintain, and trouble-shoot.
Autonomic computing systems are expected to free system
administrators to focus on higher-level goals [11]. Self-
configuration (systems configuring themselves automatically
when computing resources are added or removed), self-
healing (discovering when, where and why systems are
ailing and performing the appropriate self-repair and fault-
correction operations), self-optimization (monitoring and
controlling resources to ensure optimal functioning with
respect to defined requirements, as well as optimizing
performance and efficiency by reconfiguring themselves)
can be performed by autonomic computing systems without
human intervention. Autonomic computing systems can
perform these functions at both the infrastructure and
application levels. As such, autonomic computing systems
strongly resemble multi-agent systems (MAS). MAS, in turn,
interact with services, as designed and developed within
SOC. When it comes to developing complex, distributed
software based systems; the agent based approach is
advocated in Jennings [12]. The vision of autonomic
computing emphasizes that the run-time self-manageability
of a complex system requires its components to be, to a
certain degree autonomous themselves. From the
implementation point of view, agents are the next step in the
evolution of software engineering approaches and
programming languages, a step following the trend towards
increasing degrees of localization and encapsulation in the
basic building blocks of programming models [13].

Developing and maintaining large-scale, distributed
applications is a complex task. Middleware has traditionally
been used to simplify application development by hiding
low-level details and by offering generic services that can be
reused and configured by application developers. However,
middleware technology has not kept up with the growing
demands that emerge in the digital society: the scale of
distributed applications is rapidly increasing, the range of
users that compose and configure applications has expanded
significantly, and the increased scope of distributed
applications has also resulted in more advanced application
composition scenarios.

B. UBIWARE Platform: Integration Infrastructure for

Heterogeneous Distributed Components

As a basis for our research towards open environment for
personalized task/domain oriented cloud ecosystems we use
the UBIWARE platform [14]. This platform follows the
GUN vision described in [15]. The UBIWARE platform is a
development framework for creating multi-agent systems. It
is built on top of the Java Agent Development Framework
JADE [16], which is a Java implementation of IEEE FIPA
specifications. The name of the platform comes from the
name of the research project, in which it was developed. The
UBIWARE project introduced a new paradigm in software
engineering and elaborated an approach towards creation of
semantically enhanced agent-based integration middleware
that makes heterogeneous resources proactive, goal-driven
and able to interoperate with each other in collaborative
environment [17]. In this project, a multi-agent system was
seen, first of all, as a middleware providing interoperability
of heterogeneous resources and making them proactive and
in a way smart.

The core of the platform gives every resource a
possibility to be smart by connecting a software agent to it.
This agent enables the component to proactively sense,
monitor and control its own state and communicate with
other components which are also represented by agents in the
system. Furthermore, the component can compose and utilize
internal and external experiences and functionality for self-
diagnostics and self-maintenance. UBIWARE enables the
resources to automatically discover each other and to
configure a system with complex functionality based on the
atomic functionalities of the resources. It ensures a
predictable and systematic operation of the components and
the system as a whole by enforcing that the smart resources
act as prescribed by their organizational roles and by
maintaining the ―global‖ ontological understanding among
the resources [18]. The main goal of the platform is to
provide interoperability between heterogeneous resources
(applications and systems in our case) through semantic
adaptation and the proactive agent assigned to each of the
resources. All communication, resource discovery and use of
resources (e.g., application and systems) are performed
trough its corresponding agent. The platform has inter-
platform communication mechanisms and allows integration,
orchestration and choreography of resources registered and
located on different platforms. UBIWARE is not an
application like an operating system, word processing

software or Internet browser. It is a set of tools that helps
people develop software. With respect to cloud-based
integration environment interoperability, we consider the
UBIWARE platform as a tool that enables automatic
discovery, orchestration, choreography, invocation and
execution of different Business Intelligence services.

III. OPEN ENVIRONMENT FOR COLLABORATIVE CLOUD

ECOSYSTEM

A. Cloud Stack for Collaborative Cloud Ecosystem

Most of the current cloud implementations are built on
top of data centers. According to NIST [19] cloud computing
incorporates Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS), and
provide these services as utilities. Data centers are a
foundation of cloud computing which provides the hardware
clouds run on. IaaS is built on top of the data centers and
virtualizes the computing power, storage and network
connectivity of the data centers, and offers them as
provisioned services to consumers. In other words,
consumers have the possibility to configure a virtual
computer, where he can select a configuration of CPU,
memory and storage that is suitable for the intended
application. The whole cloud infrastructure (i.e., servers,
routers, hardware based load-balancing, firewalls, storage,
and other network equipment) are provided by the IaaS
provider. The customer buys these resources as a service as
needed. Examples of this layer include the Amazon EC2
service [20] and Microsoft‘s Windows Azure platform [21].
PaaS provides a development platform with a set of services
to assist application design, development, testing,
deployment and monitoring, hosted on the cloud. It is
sometimes referred to as cloudware. Google App Engine,
Microsoft Azure, Amazon Map Reduce/Simple Storage
Service, etc are among examples of services residing in this
layer. In SaaS, Software is presented to the end users as
services on demand, usually in a web browser. It saves the
users from the troubles of the software deployment and
maintenance. The software is often shared by multiple
tenants, automatically updated from the cloud, and no
additional license needs to be purchased. Because of its
service characteristics, SaaS can often be integrated easily
with other mashup applications. One example of SaaS is
Google Maps and its mashups across the Internet. However,
the separation in IaaS, Paas and Saas is mainly a service
model. Components and features of one layer can in practice
also be implemented on another layer and the upper layer
does not have to be built on top of its immediate lower layer.

In the cloud computing environment, everything can be
implemented and treated as a service. Software development
"in the cloud" has been one of the really interesting
developments to come out of the cloud computing market so
far. Regarding PaaS, more and more cloud providers
enhance their platforms with specific services that simplify
application development for their customers and, in such a
way, bind the customers to their platforms. There are
services like payment systems, information search systems,
GEO-systems, specific data bases, etc. One example of this

kind of services is the datasets provided by Amazon [22].
Together with private specific services from cloud providers
there are quite many freely open sources and commercial
services provided by third parties. To generalize the concept
of this kind of services, and take into account that users of
such services are not human, but other applications and
services, we name them as a SaaS for Software (SaaS4S) or
SaaS for SaaS (SaaS4SaaS).

In the proposed solution, a service (be it infrastructure,
platform or software) should be registered (connected
through adapter) to the integration environment UBIWARE
and be semantically annotated according to common
ontology in order to enable the environment to discover and
orchestrate them. Any service can have access restrictions.
This gives an opportunity to use own capabilities together
with, or instead of, others when security and privacy of
processed data is crucial. Using the UBIWARE platform as a
tool for application and service integration, we may create an
open environment for the components across different
clouds.

Figure 1 shows the proposed extended cloud stack which
allows us to organize collaboration between services and
applications located in different clouds. As in the original
cloud stack, there are Application Development Tools that
users of the PaaS layer use to develop and run their
applications.

SaaS4SaaS

IaaS

Platform Services Application Development Tools

PaaS

EIaaS

SaaS

UBIWARE Platform based

SaaS

Ecosystem Infrastructures

SaaS4SaaS

IaaS

Platform Services Application Development Tools

PaaS

EIaaS

SaaS

UBIWARE Platform based

SaaS

Ecosystem Infrastructures

SaaS4SaaS

IaaS

Platform Services Application Development Tools

PaaS

EIaaS
SaaS

UBIWARE Platform
based

SaaS

Ecosystem Infrastructures

Applications and Services

Figure 1. Cloud Stack for Collaborative Cloud Ecosystem.

There are services and functionalities that many of cloud
providers supply with their platforms to facilitate users
application development. Using the UBIWARE platform as
one of the applications run on top of PaaS layer we may:

 transform applications that are presented for humans
on the SaaS layer to services available for other
software (SaaS4SaaS);

 support the users of the PaaS layer to develop and
register applications directly for SaaS4SaaS layer;

 make specific platform services available for use on
the SaaS4SaaS layer.

The UBIWARE platform allows semantic adaptation of
different data sources and makes them accessible as services
for other services and applications that operate through the
platform. With correspondent tools (provided by the
UBIWARE platform) users may create and define task and
domain specific Personalized Ecosystem Infrastructures
(PEIs) as compositions of services (addressed by ecosystem
Infrastructure Modules) and data sources. They can then use
them as services on demand – Ecosystem Infrastructure as a
Service (EIaaS). Thus, on the EIaaS layer, the UBIWARE
platform provides a possibility to create new services on top
of cross-cloud semantic orchestration and choreography of
distributed components.

B. Personalized Context-Aware and Self-Configurable

Cloud Ecosystem

A component-based approach for the Cloud Ecosystem
development provides us a flexible way to elaborate an
ecosystem through the composition of different
(heterogeneous) modules on the level of Ecosystem
Infrastructure and on the level of Application composition
(Figure. 2). We utilize the same approach of component-
based system development on both levels and provide an
interoperability of heterogeneous components (modules)
developed by various providers in an open collaborative
environment. As a foundation for a collaborative ecosystem
environment, we consider a network of platforms that
provide cross-platform communication, interoperability of
heterogeneous components and a toolbox for their
composition. The UBIWARE platform is developed as a
smart semantic middleware for ubiquitous computing and is
based on integration of several technologies: semantic web,
distributed artificial intelligence, agent technologies,
ubiquitous computing, SOA, Web X.0 and related concepts.
We regard this platform as our basis and intend to extend its
functionality towards the needs of this Cloud Ecosystem
elaboration.

The Core Ecosystem Engine is an engine which provides
a mechanism for a component-based Ecosystem
Infrastructure composition. On the Ecosystem Infrastructure
development level we have a pool of components –
Ecosystem Infrastructure Modules (EIMs). These EIMs can
be used for Personalized Ecosystem Infrastructure (PEI)
creation where only relevant EIMs are composed. With
respect to openness of our collaborative environment, such
PEI can itself be published to the public zone and be used as
sub-PEI in other personalized ecosystem infrastructures.

C
o

re
 E

co
sy

st
e

m
 E

n
gi

n
e

C
o

re
 E

co
sy

st
em

 E
n

gi
n

e

C
o

re
 E

co
sy

st
e

m
 E

n
gi

n
e

Personalized Ecosystem Infrastructures (PEI). Personalized
clouds that contain Infrastructure Modules as well as other
PEIs (sub-PEIs) as a component from private and public zone.

Private Infrastructure Module (PIM). Ecosystem Infrastructure
Module from private zone of Ecosystem that provides certain
functionality and used as a component of PEI.

Ecosystem Engine Modules (EEM):
functional components of the
platform.

Application/Service that utilize other
Applications/Services from private and
public zone as a components. Can be
published to private and/or public zone to
be used as a component.

Private Application
or Service that can be
used as a component
by other applications.

Publicly available Application/Services, Infrastructure Modules and Personalized Ecosystem Infrastructures that can be connected by Core Ecosystem Engine on a phase of
Ecosystem Infrastructure composition and a phase of Application/Service creation.

Figure 2. Open environment for collaborative component-based Ecosystems.

In the same way, the Core Ecosystem Engine of the
platform provides a mechanism for component-based service
composition on top of the selected Personalized Ecosystem
Infrastructure. The user may have a private zone containing
the set of available applications and services on the platform.
At the same time, the platform allows the connection of
publicly available services, published to the public zone of
the environment. Semantic policy-based control of the
platform brings security aspects to the system. This policy
based control allows users to distinguish between public and
private components and guarantees protection of sensitive
data.

In order to make a valuable step towards intelligent
services, we should not to limit ourselves to the creation of
specific services. We have to think about more flexible
solutions that allow us to create new services through
orchestration of reusable collaborative intelligence and about
a supportive integration environment that gives us the
possibility to create new context-aware services through the
integration of various data sources and intelligent capabilities
with a flexible semantic process. To increase the flexibility
and reliability of the applications and the services created on
top of Ecosystem Infrastructures, we consider a semantic
definition of Abstract Infrastructure. According to the
semantic web vision, not only programs and data are

distinguishable, but also components of more complex
systems are considered as separate modules. These
components may be replaced by components which are
semantically similar and more suitable in the current context.

Applying a semantic web approach for the Ecosystem
Infrastructure creation, the user may define a so called
Abstract cloud, which will be on-the-fly transformed into
concrete appropriate Infrastructure based on the available
components from different Clouds depending on the
correspondent context. Providing interoperability of
heterogeneous components, Ecosystems should be flexible
and at certain level intelligent. Utilizing the semantic web
approach, the UBIWARE platform makes the Ecosystem
proactive and able to configure itself on-the-fly depending on
context and user needs. The platform provides a possibility
for the user to define a process with preferences and
constrains and executes it as an on-the-fly orchestration of
available capabilities and available data, based on their
semantic descriptions, through semantic matching and
discovery mechanisms (Figure 3).

Although we have a complex network of heterogeneous
services, applications and data sources distributed among
different clouds, users of EIaaS layer see the Ecosystem as
one common entity accessible through the common
UBIWARE interface. Figure 4 shows us the general structure

of the Ecosystem. The UBIWARE platform provides
corresponding tools for the Ecosystem Users (the providers
and users of personalized Ecosystem Infrastructures) and
transparency for collaboration of distributed components.
Through interoperability between other UBIWARE
platforms this automatically organizes an open market place
of publicly available ecosystem infrastructures and services
keeping the possibility of private zones for sensitive
information.

C. Case Scenario: Creation of Personalized Ecosystem

Infrastructure and Launching Self-configurable

Application as a Set of Composed Services

This is a joint use case with two players that shows
nested utilization of the ecosystem platform on two layers. It
can also be regarded as two separate scenarios.

Player 1 is an ecosystem infrastructure provider who has
a set of own components - infrastructure modules. The
player would like to create a Personalized Ecosystem
Infrastructure (PEI) as a set of (a) own modules, (b) some
publicly available modules shared in the open marketplace of
the components and (c) specific services provided by his
cloud provider. To achieve that goal, Player 1 has to:

 register his own components locally to the platform's
private zone (through the registration tool of the
platform) and connect them via semantic adapters;

 find other necessary components from the open
shared space provided by third parties;

 provide a semantic description of the abstract
components that will be on-the-fly transformed
(discovered and invoked) to appropriate ones for the
current context;

 create appropriate adapters to make cloud-specific
services available through them;

 Provide a semantic annotation of the created
Ecosystem Infrastructure.

Thus, using features of the platform such as: adapter-
based connection of components (data sources and services),
component discovery (based on their semantic specification),
browsing of available resources based on their semantic
description and the tool for semantic annotation of resources,
Player 1 may create a PEI, annotate it and publish it to the
marketplace.
Player 2 is a user of the PEI (provided by Player 1 or any
other EI provider) and a service provider at the same time.
The player would like to find an appropriate ecosystem
infrastructure to create and launch his own application on top
of it, as a publicly available service. An application is meant
to be a dynamic self- configurable composition of several
services. The way the application should work is context
dependant. Among the relevant context variables are service
availability, reliability, cost, and user and service location.

Semantic

Data Source

Semantically
annotated

Capabilities

Semantic Abstract

Business Process

Semantic Business Process Editor

Executable Business Process Engine

Ontology

Ontology

Figure 3. Semantic Abstract Business Process of UBIWARE.

Player 2 enters the platform and selects or finds (via the
corresponding tools of the platform) an appropriate
Ecosystem Infrastructure which fits the requirements of the
player depending on task and domain specifics of the
planned service. Utilizing the infrastructure components of
the corresponding ecosystem and the abstract process
definition tool of the platform, Player 2 defines a partially
abstract process. Components are described through their
semantic annotations and will at run-time be selected among
appropriate available components, depending on the context.
Thus, concrete instances of the composed service will be
built on-the-fly and executed by the platform engine. After
Player 2 has published his/her application, it can be used by
service users on the web.

IV. CONCLUSIONS

Within this paper we aimed at showing possible steps on
how openness and interoperability of cloud ecosystems can
potentially be achieved. To achieve this goal, we utilized the
UBIWARE platform as a tool for proactive interoperability
of distributed heterogeneous components. We presented an
open environment for collaborative ecosystems with
personalized cloud architecture in a sense of task- and
domain-specific application development. We extend the
cloud stack which allows us to organize collaboration
between services and applications located in different clouds.
All the components that can be considered as task and
domain-specific are put to the Ecosystem Infrastructure layer
(EIaaS). To increase flexibility and reliability of the
applications and services created on top of PEI, we
considered a semantic definition of Abstract Infrastructure.
This way, it becomes possible to define context-dependent
Data and services to be used by applications and services.
Utilizing semantic web and multi-agent system approaches,
the UBIWARE platform makes the ecosystem proactive and
able to configure itself on-the-fly. This configuration
happens depending on context and user needs, using the
advantage of semantically adapted data, intelligent
capabilities, and semantic abstract business process
definition techniques.

Application User Interface

Application/Service

Personalized Ecosystem Infrastructure

Pu
bl

ic
 z

on
e

U
B

IW
A

R
E

Pl
at

fo
rm

A
pp

lic
at

io
ns

an

d
Se

rv
ic

es

In
fr

as
tr

uc
tu

re

m
od

ul
es

 a
nd

su

b-
PE

Is

Application USER

Ec
os

ys
te

m
 U

SE
R

Co
re

 E
co

sy
st

em
 E

ng
in

e

M
od

ul
es

Private Ecosystem Infrastructure
Modules

Private Applications/Services

Figure 4. General structure of the Ecosystem.

ACKNOWLEDGMENT

This research is based on activities of the project under
the Cloud Software program in TIVIT SHOK (funded by
TEKES and consortium of industrial partners) and the
cCloud project (Academy of Finland) in the Department of
Mathematical Information Technology (University of
Jyvaskyla, Finland). We are very grateful to the members of
the Industrial Ontologies Group for a fruitful cooperation
within this research topic.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A.
Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, ―Above the Clouds: A Berkeley View of Cloud Computing‖.
Technical Report No. UCB/EECS-2009-28. EECS Department,
University of California, Berkeley. February 10, 2009.

[2] D. Herris, ―For Open Cloud Computing, Look Inside Your Data
Center‖, 2010 [Online] URL: http://gigaom.com/2010/03/28/for-
open-cloud-computing-look-inside-your-data-center/ [Accessed 30
June 2011]

[3] Bernard Golden. (2009, January) Computer World. [Online]. URL:
http://www.computerworld.com/s/article/9126620/The_case_against_
cloud_computing_part_one [Accessed 30 June 2011]

[4] Distributed Management Task Force, (2009, June) ―Open
Virtualization Format White Paper‖, Version 1.0.0, DSP2017.

[5] Semantic Web, 2001. [Online] URL: http://www.w3.org/2001/sw/
[Accessed 30 June 2011]

[6] T. Berners-Lee, J. Hendler and O. Lassila, ―The Semantic Web‖,
Scientific American 284(5), 2001, pp. 34-43.

[7] Ankolekar, A., Burstein, M., Hobbs, J. R., Lassila, O., Martin, D. L.,
McDermott, D., McIlraith, S. A., Narayanan, S., Paolucci, M., Payne,
T. R. and Sycara, K. (2002) DAML-S: Web Service Description for
the Semantic Web. In: International Semantic Web Conference
(ISWC), June 9th - 12th, Sardinia, Italy. pp. 348-363.

[8] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara. 2002.
―Importing the Semantic Web in UDDI.‖ In Revised Papers from the
International Workshop on Web Services, E-Business, and the
Semantic Web (CAiSE '02/ WES '02), Christoph Bussler, Richard
Hull, Sheila A. McIlraith, Maria E. Orlowska, Barbara Pernici, and
Jian Yang (Eds.). Springer-Verlag, London, UK, UK, 225-236.

[9] FIPA, ―FIPA Interaction Protocol Library Specification
Specification‖, FIPA00025, 2001. URL:
http://www.fipa.org/specs/fipa00025/ [Accessed 30 June 2011]

[10] F. Curbera, M. Dufler, R. Khalaf, W. Nagy, N. Mukhi and S.
Weerawarana, ―Unraveling the Web Services Web: An introduction
to SOAP, WSDL and UDDI‖, Internet computing, 2002.

[11] F.M.T.Brazier, J.O. Kephart, H. Parunak and M.N. Huhns, "Agents
and Service-Oriented Computing for Autonomic Computing: A
Research Agenda," IEEE Internet Computing, vol. 13, no. 3, pp. 82-
87, May/June 2009, doi:10.1109/MIC.2009.51

[12] N. Jennings, ―An agent-based approach for building complex
software systems‖. Communications of the ACM 44, 4, 2001, pp. 35–
41.

[13] N. Jennings, ―On agent-based software engineering‖, Artificial
Intelligence 117(2), 2000, pp. 277–296

[14] UBIWARE Project [Online] URL:
http://www.cs.jyu.fi/ai/OntoGroup/UBIWARE_details.htm [Accessed
30 June 2011]

[15] O. Kaykova, O. Khriyenko, D. Kovtun, A. Naumenko, V. Terziyan
and A. Zharko, ‖General Adaption Framework: Enabling
Interoperability for Industrial Web Resources‖, In: International
Journal on Semantic Web and Information Systems, Idea Group,
ISSN: 1552-6283, Vol. 1, No. 3, July-September 2005, pp.31-63.

[16] F. Bellifemine, G. Caire, A. Poggi and G. Rimassa, ―Jade, A White
Paper‖ [Online]

URL: http://jade.tilab.com/papers/2003/WhitePaperJADEEXP.pdf
[Accessed 30 June 2011]

[17] A. Katasonov and V.Terziyan, ―SmartResource Platform and
Semantic Agent Programming Language (S-APL)‖, In: P. Petta et al.
(Eds.), Proceedings of the 5-th German Conference on Multi-Agent
System Technologies (MATES‘07), 24-26 September, 2007, Leipzig,
Germany, Springer, LNAI 4687 pp. 25-36.

[18] O. Khriyenko, S. Nikitin and V. Terziyan, ―Context-Policy-
Configuration: Paradigm of Intelligent Autonomous System
Creation‖, In: Joaquim Filipe and Jose Cordeiro (Eds.), Proceedings
of the 12th International Conference on Enterprise Information
Systems (ICEIS-2010), 8-12 June, 2010, Funchal, Madeira - Portugal,
ISBN: 978-989-8425-05-8, pp. 198-205.

[19] P. Mell, T. Grance, ―The NIST Definition of Cloud Computing
(Draft)‖ Special Publication 800-145, January 2011.

[20] Amazon EC2, [Online] URL: http://aws.amazon.com/ec2/ [Accessed
30 June 2011]

[21] Microsoft Windows Azure [Online]

URL: http://www.microsoft.com/windowsazure/ [Accessed 30 June
2011]

[22] Amazon EC2 Publicly available datasets [Online]
http://aws.amazon.com/publicdatasets/ [Accessed 30 June 2011]

