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Abstract—Exact methods for Agglomerative Hierarchical
Clustering (AHC) with average linkage do not scale well when
the number of items to be clustered is large. The best known
algorithms are characterized by quadratic complexity. This is a
generally accepted fact and cannot be improved without using
specifics of certain metric spaces. Twister tries is an algorithm
that produces a dendrogram (i.e, outcome of a hierarchical
clustering) which resembles the one produced by AHC, while
only needing linear space and time. However, twister tries are
sensitive to rare, but still possible, hash evaluations. These might
have a disastrous effect on the final outcome. We propose the
use of a metaheuristic algorithm to overcome this sensitivity
and show how approximate computations of dendrogram quality
can help to evaluate the heuristic within reasonable time. The
proposed metaheuristic is based on an evolutionary framework
and integrates a surrogate model of the fitness within it to enhance
the algorithmic performance in terms of computational time.

I. INTRODUCTION

Clustering is used in a wide variety of domains and is often
one of the first unsupervised learning tasks introduced in many
data mining courses. The overall task is to place items into
clusters such that items which are similar are placed in the same
cluster, while items which have a low similarity are placed in
different clusters. One way to perform this task is so-called
hierarchical clustering. As opposed to others, the outcome will
not just be a partition of the items, but a dendrogram (see
fig. 1), showing a nested clustering.

The drawback of hierarchical clustering is that most
algorithm scale poorly in the number of items clustered. Hence,
for the increasing data sizes of today’s application domains,
more scalable algorithms are needed. The scalable approach
which we will enhance further in this paper is called twister
tries, which was proposed by Cochez and Mou [1]. This
algorithm produces an approximate dendrogram and poses
linear time and space requirements.

Fig. 1. An example of a dendrogram.

In the core of twister tries there is a collection of tries.
Encoded in these tries are the outcomes of specific locality-
sensitive [2] hash functions. After this hashing stage, there
is the twisting stage in which the information in the tries is
converted into a dendrogram, which is the final outcome of
the algorithm. The locality-sensitive hash functions are chosen
such that they will usually improve the quality of the final
dendrogram. However, in a rare occasion it can happen that the
outcomes of some of these functions has a devastating effect
on the clustering.

In this paper we explore the idea of solving this issue after
the fact. We first perform the hashing step of the twister tries
algorithm and then attempt to find out which hash outcomes to
ignore in order to improve the quality of the dendrogram. Note
that it is important that this a posteriori correction is performed
fast and with low space requirements. If the correction would
be slow or consume much memory, it would be better not to
use an approximation in the first place and tackle the whole
clustering problem exactly.

The main contributions of this paper are: 1) Introduction
and comparison of approximate ways to evaluate a dendrogram
(see section IV-C and tables I and II); 2) A better clustering of
two datasets, demonstrating an improvement over the existing
twister tries algorithm with reasonable time and space overhead
(see section VI and in particular figs. 3 and 4). A further
minor point of interest is theorem 1 about the computational
complexity of the Joining Distance Ratio which was introduced
by Kull and Vilo [3].

The article is structured as follows: in the next sections we
introduce agglomerative hierarchical clustering and the twister
tries algorithm. Then we propose approximate methods for
measuring the quality of dendrograms. These will then be used
in the metaheuristic proposed in section V to result in the main
algorithm developed in this paper. In section VI the results of
our experimentation are shown. We end the paper with a short
conclusion and an outlook on future research.

II. BACKGROUND: HIERARCHICAL CLUSTERING

Clustering is a well-known, unsupervised learning task
which has the objective of grouping similar items together.
These groups are called clusters and they are to be discovered
in the dataset. This is as opposed to classification where the
classes into which the items have to be placed are predetermined.
The clusters formed should be such that the similarities between
the items in the same cluster are high, while the similarities
between items in different clusters are relatively low.978-1-4799-7560-0/15/$31 c©2015 IEEE



A specific type of clustering algorithms are the hierarchical
ones. These do not just produce a partition of the items, but a
dendrogram (see fig. 1). One interpretation of such dendrogram
is that it shows partitions of sizes ranging from one until the
number of items to be clustered. These partitions are obtained
by slicing the dendrogram at a given height. This is useful in
application were the number of clusters to be obtained is not
known beforehand. Some clustering approaches will determine
the number of clusters automatically using a heuristic, but users
might not trust these or it might be difficult to find a suitable
one. Hierarchical approaches further allow the user to browse
trough the produced hierarchy, which might give them a deeper
insight in the structure of the data.

There are two major approaches to hierarchical clustering.
First there are the divisive ones, where the items to be clustered
are observed as a whole and split in two parts or sub-clusters.
Each of these parts is then recursively split in ever smaller
sub-clusters until each item is inside its own cluster. The other
group of approaches are called agglomerative. The reason is
that these algorithms perform the clustering by first placing
each item in its own cluster and then repeatedly merging (or
agglomerating) two clusters together to form a new one. This
process stops when only one cluster is left. In this paper we
will be dealing with the later group of approaches (i.e., the
agglomerative ones).

The agglomerative algorithm is know by many names
such as Globally Closest Pair (GCP) clustering [4], Sequential
Agglomerative Hierarchical Non-overlapping (SAHN) cluster-
ing [5], [6], or the term which we will adopt Agglomerative
Hierarchical Clustering (AHC) [1], [3], [7]. As mentioned, the
algorithm works by repeatedly merging two clusters together
into a larger one. The algorithm always merges the closest
clusters in terms of a predefined linkage. This linkage defines
the distance between clusters of items. Examples include
single linkage (the shortest distance between any of the items),
complete linkage (the longest distance between any of the
items), average linkage (the average distance between the items),
etc. (see also [8]). In this paper average linkage is used as the
measure for cluster similarity.

The most naive approach for AHC is show in algorithm 1.
The code is a direct application of what was described above.
Since there are O(n) iterations with each O(n2) iterations
inside, the computational complexity of this algorithm is O(n3).
The memory overhead is, however, constant (if we ignore
the dendrogram produced). Note that the distances between
clusters which are not involved in the merge do not change.
Therefore, a better approach would be to not re-compute these
distances after each merge, but only update the ones which have
actually changed. Using this fact was, for instance, done in
what Müllner [8] called the primitive AHC algorithm. However,
despite a practical speedup, the algorithm still requires O(n3)
time. Some gain can still be made by, for instance, using a
priority queue to store the closest items, but in order to get
closer to the optimal boundaries, more advanced algorithms
are needed. The work by Eppstein [9] is exemplary for exact
approaches which are at the theoretical efficiency boundary for
generic distance metrics. His algorithm performs a clustering
in O(n2) time with a space requirement of O(n2). A less
space consuming approach is described by the same author
(posing linear memory requirements) but the time complexity

Algorithm 1 Naive AHC algorithm
1: procedure NAIVE AHC(C, dc)
2: while size(C) > 1 do
3: dmin ←∞
4: for c1 ∈ C do
5: for c2 ∈ C \ {c1} do
6: distance← dc(c1, c2)
7: if distance < dmin then
8: dmin, cL, cR ← distance, c1, c2
9: end if

10: end for
11: end for
12: C ← C \ {cL, cR}
13: cnew ← merge (cL, cR)
14: add merger of cL and cR to den
15: C ← C ∪ {cnew}
16: end while
17: return den
18: end procedure

C is the set of all clusters, where initially each item
is put into a singleton cluster. dc is the distance measure
for clusters of items like, for instance, the average distance.
den is the resulting dendrogram.

of this algorithm rises to O(n2 log2 n). In our experimental
evaluation below we used the fastcluster implementation by
Müllner [6].

All in all, despite the efforts done to improve exact AHC,
the algorithms do not scale well in terms of the number of
items. Therefore, besides the work on exact approaches, several
authors have focused on producing a clustering which resembles
the correct one closely, but consuming less resources. In some
works heuristics, exploitation of specific properties of given
metrics, or predefined parameters have been used to limit the
number of distance calculations required [3], [5], [10]. Other
works exploited some form of quantization of the space. One
example is the work by Gilpin et al. [7] who proposed the
use of angular quantization for approximate AHC. Several
authors have exploited locality-sensitive hashing [2] to speed
up the clustering task, for example Koga et al. [11] for single
linkage and Cochez and Mou [1] for average linkage. In the
next section we will summarize the work of the later article and
in the rest of this paper we will present an improved version
of the algorithm. For a more elaborated review on recent work
related to AHC, see the Related Work section in [1].

III. PROBLEM FORMULATION: IMPROVING THE QUALITY
OF THE DENDROGRAM PRODUCED BY TWISTER TRIES

Twister tries were proposed as an algorithm which can
overcome the scalability bottleneck of AHC with as a trade-
off the production of an approximate dendrogram. [1] The
algorithm works for average linkage and at least cosine, Jaccard
and Hamming distance can be used. Further, linear time and
space guarantees are provided. In this section, we will not
present every detail of the algorithm, instead we will focus on
the parts related to this paper. Readers interested in the details
of the algorithm are referred to the original paper.

In order to understand the inner workings of the twister
tries algorithm, we first need to introduce the notion of a



proportionally sensitive hash function.

Definition 1 (Proportionally sensitive family). Let H be a
family of hash functions mapping from D to some universe U
and d be a distance metric defined on D. Then, given k > 0, H
is called k-proportionally sensitive with respect to the distance
metric d if for every two p, q ∈ D and every h ∈ H

Pr [h (p) = h (q)] = 1− kd(p, q)

This means that a hash function is proportionally sensitive
if the probability that it hashes points p and q at distance
d(p, q) to the same value is equal to 1 − kd(p, q), with k
a predetermined constant. Several examples of proportionally
sensitive hash functions (i.e., for cosine, Jaccard, and Hamming
distance) were shown in the original twister tries paper. For this
work we will be using random hyperplane hashing (RHH) [12]
for the cosine distance and minhash [13] for Jaccard distance.

The main data structure used in twister tries is a forest
consisting of tries (also called prefix trees). To create one such
trie of height kmax, one needs to select kmax proportionally
sensitive hash functions, at random. Then, the data items are
inserted into the trie, such that the labels encountered on the arcs
when following the path from the root node to the corresponding
leafs are the outcomes of the hash function evaluations.

Once this structure is in place, the twister trie algorithm
works somewhat similar to the naive AHC algorithm. The leafs
of the tries represent the items inserted in the forest, these are
now interpreted as one item clusters. Then the following steps
are repeated: a) the lowest point where any of the tries split
is located, b) two clusters connected to this node are removed
from the tries, c) these clusters are merged by taking their
union (recorded in the dendrogram), and d) the merged cluster
is re-inserted into the forest using the same hash functions, but
applied on items randomly selected from the merged cluster.

It has been proven that that selecting items randomly still
provides certain guarantees of correctness. However, twister
tries are still sensitive to unlikely hash outcomes. These unlikely,
but possible, outcomes could affect the final dendrogram
produced in a disastrous way. In practice, this would mean that
a trie contains a pair of clusters which splits much lower than
it should, which will affect the quality of the whole clustering
negatively. It might also happen (although with a much lower
probability) that a pair of clusters does not branch low enough
in any of the tries, causing their clustering to happen too late.

It seems unfeasible to see directly from a trie that this
type of issues exists, in a reasonable amount of time (i.e., less
time than it would take to perform an exact clustering of the
data). Moreover, if we would discover a trie which looks bad
in isolation, it might still contribute positively in the overall
clustering because of the effects of other tries. What we will
do instead of looking inside the tries, is treating each trie as
a black box. Then, we attempt to find the combination of
tries which produces the dendrogram with the best quality. In
the next section we will develop a way to decide the quality
of a dendrogram. In the section after that we will propose a
metaheuristic which allows us to find a good combination of
tries within reasonable time.

IV. SIDESTEP: MEASURING THE QUALITY OF A
DENDROGRAM

As discussed in the previous section, we need a way to
determine the quality of a dendrogram. To be more precise,
for the execution of the proposed algorithm we need to be
able to assess the quality of dendrograms without knowing
a dendrogram produced by an exact algorithm, whereas to
evaluate the performance, we will also need to compare
the quality of the approximate dendrograms with an exact
one. Furthermore, since we are working with fairly large
dendrograms, the methods used have to be scalable.

Traditional ways of assessing a hierarchical clustering
algorithm work by comparing its outcome to a gold standard
or to the dendrogram produced by a known (exact) algorithm.
Comparing to a gold standard (i.e., a natural clustering of
the data made by a specialist) is not appropriate in what we
try to achieve. Doing this type of analysis would show that
the clustering approach is suitable to express the semantic
meaning of specific datasets. However, it would not show that
the approach which we propose is able to closely resemble what
AHC with average linkage offers. In practice, this would mean
that if it is known that AHC with average linkage works for a
given problem, there would be no guarantee whatsoever that
our method can be used. For the comparison with the outcome
produced by a known algorithm there are several options. A
thorough approach is the measure developed by Fowlkes and
Mallows [14]. However, the interpretation of produced results
is hard to be performed automatically. Furthermore, the use of
this measure for any larger evaluation is infeasible due to its
computational complexity. The high computational cost is due
to the calculation of an exact dendrogram, as well as due to the
computation of the metric itself (whose complexity is O(n3)).
The issue of scaling metrics for dendrogram comparison is
discussed in depth in the original twister tries paper [1].

Given these issues with most metrics, we investigated the
use of the metric proposed by Kull and Vilo [3], since it seems
computable and can be adapted for the computation of the
quality of a dendrogram in isolation (i.e., without an exact
dendrogram available). In the next subsection we introduce
this metric, analyze its computational properties, and propose
computationally more attractive alternatives.

A. Joining Distance Ratio

At each step of the naive AHC algorithm, the pair of clusters
with the smallest distance is merged. This implies that an
exact dendrogram minimizes the sum of these distances. If we
now obtain an approximate dendrogram, we can evaluate its
performance by measuring how closely the sum of its joining
distances resembles the sum obtained for the exact dendrogram.
Based on this idea, the joining distance ratio [3] is defined as
follows:

Definition 2 (Joining distance ratio (JDR)). The joining
distance ratio (JDR) is the proportion of the sum of the distance
at each step of the standard AHC dendrogram and the sum of
the distances of the approximate algorithm.

JDR =

∑
I,J∈AHC dendrogram

dA(I, J)∑
I,J∈approximate dendrogram

dA(I, J)



The AHC is expected to be below 1 for an approximate
dendrogram. This is because a non-optimal merging decision
might have been taken and hence the sum of the distances
will be larger than in the optimal case. Note, however, that a
result larger than 1 is possible if the exact algorithm performs
a clustering at a lower level forcing it to make a unfavorable
clustering at a higher level. This might, for instance, happen if
two clusters are at the same distance and the exact algorithm
can choose among them. However, a benefit of this metric is
that it is indifferent regarding insignificant re-orderings of the
dendrogram. This means that if a re-ordering occurs which
does not change the shape of the dendrogram, then the JDR
will produce the same outcome.

From the original JDR, we derive a metric which we will
call the Joining Distance (JD). The JD is defined as

Definition 3 (Joining Distance). The joining distance (JD) is
the sum of the distances between the clusters at each merging
step of the dendrogram. JD =

∑
I,J∈dendrogram

dA(I, J)

It is easily seen that the JDR is obtained by dividing the
JD of the exact dendrogram by the JD of the approximation.
Note that the JD measure does only make sense in the context
of a specific clustering task. In other words, it does not make
sense to compare the JD computed from a dendrogram for one
clustering task and compare it to the JD obtained from another
one. Moreover, it is important that the JD is only computed
for complete dendrograms. When comparing two JD values,
the dendrogram which resulted in the lowest value is better
than the one with the higher value. In the next subsection we
analyze the complexity of this metric.

B. Complexity

It is clear that the computation of the JD does only require
a constant amount of memory. However, it is not immediately
obvious what the computational complexity is. The JD is the
sum of n−1 terms, since the hierarchical clustering of n items
will always have n− 1 clustering steps. However, the analysis
gets complicated because the computation of each of these
terms involves the items which are in the left and right sub-
cluster of the mergers. In the next theorem, and accompanying
proof, we show that the total number of distance calculations
needed will always be n(n−1)

2 and how this leads to a time
complexity of O(n2) for both JD and JDR.

Theorem 1. If the computation of the distance between two
items can be performed in a constant time, then the computation
of the joining distance for average distance is in O(n2) (with
n the number of items or leaf nodes in the dendrogram).

Proof: We will show by induction on the number of items
n that the computation of JD for a dendrogram under average
distance involves n(n−1)

2 individual distance computations.

Base case: calculating the JD of a dendrogram with two
leafs (and hence one merging step) needs n∗(n−1)

2 = 1 step.

Induction: Let n > 2 and suppose the hypothesis is true
for all k < n. Call the number of elements in the left sub-
dendrogram of the root l and in the right one r. Note that,
n = l + r, l < n, and r < n. The JD of the whole tree is the

sum of the JD of the left and right sub-dendrogram and the
average distance measured at the root itself. Hence, calculating
the JD requires l∗(l−1)

2 + r∗(r−1)
2 + l ∗ r distance calculations.

This is equal to l2−l+r2−r+2rl
2 = (l+r)(l+r−1)

2 = n(n−1)
2 .

Conclusion: By the principle of strong induction, it follows
that the hypothesis is true for all n.

Now, to compute the JD we need these distance compu-
tations and the addition of n − 1 terms. Hence, altogether
(n+2)(n−1)

2 constant time operations are needed, which implies
that the joining distance is computed in O(n2).

The consequence of this analysis is that the JDR is also
computable in O(n2) and somewhat scalable. Therefore we will
use it for analyzing the quality of the produced dendrograms
of moderate sizes. However, if we want to use a metric for
improving the quality of the clustering, we will need a faster
alternative. The reason is that if O(n2) operations are needed
for the evaluation of one dendrogram, it is better to use this
computational power to compute the exact dendrogram directly.
Therefore, we will propose several approximations for the JD
in the next section. These approximations have a lower practical
or theoretical complexity.

C. A Computationally More Attractive Alternative

We established in the previous subsection that the JD is
reasonably computable for moderate datasets. Unfortunately,
within the context of optimization algorithms, a quadratic
growth of the complexity (O(n2)) can lead to very demanding
tasks when large scale cases are taken into consideration. In
the latter case the computational time to achieve an optimal
solution can be unacceptable.

Therefore, we developed alternatives which are computa-
tionally less demanding but still preserve the properties required
to find a satisfactory solution. These functions, which we
will call surrogates or approximations, work well if they are
able to assign a larger value to a dendrogram with a larger
joining distance. Or, in other words, the values produced by
the surrogate should allow an ordering of the dendrograms
which is the same as (or at least similar to) the order of the
dendrograms by joining distance. The quality of the surrogates
is measured as the fraction of dendrogram pairs the surrogate
manages to order correctly.

Definition 4 (Surrogate quality). Given a surrogate function
JDs (which computes an approximated value for the JD) and
a set of dendrograms D, if we indicate with K =

(D
2

)
, the

quality Q(JDs,D) of the surrogate with respect to this set is
given by 1-the normalized Kendal Tau distance [15]:

∑
(a,b)∈K


1 : JD(a) ≤ JD(b) ∨ JDs(a) ≤ JDs(b)

1 : JD(a) > JD(b) ∨ JDs(a) > JDs(b)

0 : otherwise

|K|

Note that the closer the JD of the dendrograms in D to each
other, the more difficult it will be to obtain a good quality. The
reason is that that when the dendrograms are close, the surrogate
becomes more likely to make mistakes in the ordering.



We propose several options for approximating quality and
evaluate their performance. The main target is to limit the
number of pairwise distances computed in the process by
estimating the average distance for each merge by a lower
number of individual distance calculations.

We propose the following approximations:

fix b For each merge step, we have a fixed budget b of distance
calculations. Meaning that to estimate the average distance
we sample b pairs and calculate their average.

sqrt Instead of a fixed budget, we use sample√
number of pairs pairs to make an estimate.

sub At each internal node, we create pairs by pairing all items
from the smallest subtree with a randomly selected item
from the largest subtree. The result is the average of their
distances.

w b At each merge step we select b pairs by traversing the
dendrogram downwards and at each branching, continue
to the left or right with equal probability. Then, in the
average distance computation we weigh the pairs. The
weight of a pair is the product of the depths in the sub-
dendrograms. The rationale behind this choice is that if an
item is deeply nested in the dendrogram, then it is likely
that a) there are many other ones which are close to this
item and b) items in this dense cluster are unlikely to be
chosen randomly.

In our evaluation we compare the performance of the above
approximations in practice, thus obtaining a fitness modified
objective function which we indicate with f̃ . In the next section
we discuss a metaheurisic which uses the approximations
developed in this subsection.

V. A METAHEURISTIC APPROACH: A TAILORED
EVOLUTIONARY ALGORITHM

Modern technologies often impose the solution of complex
and multivariate optimization problems also when an explicit
representation of the objective function is not available, see
e.g. [16]–[18]. Whenever derivatives cannot be calculated, or
due to other reasons such as a high problem dimensionality, the
application of a metaheuristic approach is the only viable option.
This is the case of the present work where the result depends
on the result of a simulation process. As a further complication,
a well-known fact within the optimization community is that,
as a consequence of the No Free Lunch Theorem, a universal
optimizer does not exist, see [19]. On the contrary, a high
performance in optimization is achieved by designing an
optimizer around the problem features, see [20]–[23].

Thus, although optimization is not the focus of this paper,
we have attempted an algorithmic design tailored to the problem.
The binary nature of the problem, the active/inactive trie
associated to a certain index, allows a natural binary encoding
of the information. For example, the binary representation
[0, 1, 1] corresponds to the first trie being disabled, the second
and third one active (see also fig. 2). In order to evaluate a
candidate solution, the quality of the corresponding dendrogram
is evaluated according to one of the procedures described in
section IV.

The chosen algorithmic structure is that of an Evolutionary
Algorithm (EA), see [24] because the long and discontinuous

binary structure requires a high diversity which can be achieved
by using a population based system, see [25]. The algorithmic
features are listed in the following. At the beginning of the
optimization process n binary strings are sampled at random.
The length is the same as the number of tries. Twenty tries
are used on the basis of the experiments shown in the original
twister trie article [1]. The population size n has been set equal
to 25. We have chosen this setting in order to have a fairly
exploitative behavior without having an excessively high risk
to converge prematurely (as it would be for a population size
of very few individuals).

At each generation, parents are selected by means of
proportionate fitness selection with a roulette wheel. This choice
can be justified by the large size of the decision space (the
total amount of possible combinations) and the time constraints
due to the simulator (each fitness evaluation requires up till
10 seconds, or more for certain approximations applied on
large dendrograms). In other words, in order to quickly achieve
an improvement, a high selection pressure has been applied
although this choice might result into a premature convergence.

To enhance the diversity and on the basis of a set of
preliminary results, a three parent crossover approach which
generates one offspring has been designed for this problem.
For each bit (gene), the value that occurs more often in the
parent solutions is copied into the offspring. This approach
is obviously highly exploitative and is counterbalanced by
a mutation operation occurring after the generation of the
offspring solution. The chosen mutation scheme is the biased
mutation reported in [26]. In this mutation scheme the likelihood
that a bit gets flipped from zero to one is higher than the
opposite direction. The rationale behind this type of mutation is
purely problem based: the chance that adding (moderately) more
tries to a solution is likely to improve the result. This mutation
can be seen as a shallow local search that makes use of problem
information, see e.g. [27]. Finally, parent and offspring solutions
are merged for survivor selection. The survivor selection occurs,
in the fashion of a plus strategy of Evolution Strategies, by
retaining those n individuals which display the highest fitness.
For this study, since a clear convergence criterion was hard
to find we ran the algorithm for 15 minutes and report the
evolution of the real quality of the dendrogram corresponding
to the most fit individual as reported by the surrogate.

Algorithm 2 describes, in greater details, the implementation
of the proposed metaheuristic approach. An overview of the
way the fitness function works can be found in fig. 2. First the
tries which have a zero bit in the vector are inactivated. Then,
the twister tries algorithm is used to generate an approximate
dendrogram. Finally, this dendrogram is evaluated using a
dendrogram quality function, which produces a result which
resembles the joining distance.

VI. EXPERIMENTS

To get a deeper insight into the approximations of the
joining distance and to evaluate our algorithm we performed
two series of experiments. In the first series we investigate how
useful the proposed approximations are by applying them on
realistic dendrograms and comparing their outcome with the
one obtained using the exact joining distance. We also discuss
the execution times and select reasonable ones for the second



Algorithm 2 The proposed metaheuristic optimization algo-
rithm

1: procedure FIND BEST DENDROGRAM(forest, b, f, n)
2: pop← n random vectors of length b
3: for individual in pop do
4: fitness[individual]← f(individual, forest)
5: end for
6: best← maxindividual fitness[individual]
7: while budget condition do
8: matingPool← select n individuals
9: newPop← 3-parent cross over (matingpool)

10: biased mutate(newPop)
11: for i in newPop do
12: fitness[i]← f(i, forest)
13: end for
14: best← maxindividual fitness[individual]
15: pop← n fittest from pop ∪ newPop
16: end while
17: return best
18: end procedure
The procedure has four parameters: forest which is the
collection of tries containing the hash outcomes, b is the number
of tries in the forest, f which is the function to be optimized
(i.e., the approximation of the quality), and n the population
size.

Dendrogram quality function

Fitness

111 0[ ]

Fig. 2. Overview of the proposed a posteriori trie removal.

series of experiments. In the second series of experiments we
look at the overall performance of the proposed algorithm. We
cluster various portions of data selected form two different
datasets. Then, we observe how the real joining distance of the
best individual (according to the used surrogate) evolves.

The server used in our experiments has two Intel Xeon
E5-2670 processors. Except for exact clustering (using Python,
numpy, and fastcluster) all evaluations are performed using an
OpenJDK 8 64-bit Server VM limited to use a maximum of
120 GB RAM.

A. Datasets

To allow comparison with the original twister tries paper we
obtained the same datasets for our evaluation. The first dataset
is the cifar-10 dataset1. This dataset contains 60,000 32x32
pixel images, resulting in 60,000 vectors of 3,072 integers.
The distance between images is defined by the cosine distance
between their vectors. The second dataset is a collection of
newspaper articles called TRC2. This set consists of 1.8 million
articles which we preprocessed by splitting on whitespace,
removing punctuation, converting to lowercase, and applying
Porter2 stemming. Then, stop words, single characters, and
numbers were removed. This procedure resulted in 1.68 million
sets of words. The distance between two articles is defined as
the Jaccard distance between these sets.

B. Evaluation of surrogates

To find out whether the proposed surrogates resemble the
actual joining distance we performed two large experiments.
The experiments differ in the dataset and the number of items
used. In the first experiment, we used 20 dendrograms (190
pairs) representing the clustering of 10,000 images from the
cifar-10 dataset. While in the second experiment, we used
20 dendrograms for 30,000 newspaper articles. The moderate
number of items used in these experiments is due to the fact that
we need to compare the findings to exactly computed joining
distances. The dendrograms created for these experiments are
such that their joining distances are pairwise close to each other.
(This is achieved by using the original twister tries algorithm
with different seeding.) For each of the surrogates proposed
above, and for several possible settings of their parameters, we
measure the quality as defined in section IV-C. Further, we
measure the (average) time needed to evaluate the surrogate
function. The results of these experiments are in tables I and II.

TABLE I. QUALITY AND RUNTIME OF SURROGATES FOR
DENDROGRAMS CREATED FROM 10,000 IMAGES. ALL COMPUTATIONS ARE

PERFORMED SERIALLY TO AVOID MEASUREMENTS BIAS IN THE TIMINGS.

measure quality time (ms) measure quality time (ms)

exact 100 291740

fix 1 90 44 w 1 81 51

fix 2 91 73 w 2 86 100

fix 3 94 100 w 3 91 124

fix 4 94 131 w 4 88 119

fix 5 93 154 w 5 89 151

fix 7 95 212 w 7 90 204

fix 10 96 294 w 10 91 275

fix 20 97 562 w 20 92 545

fix 50 97 1377 w 50 91 1317

sub 89 198 sqrt 95 403

What we observe from these experiments is that overall
the surrogates perform fairly well, while using much less time
than the exact computation. Further, the fixed and weighted
computations use time linear in the number of samples
performed and, with a few exceptions, the quality raises when
more samples are taken. The exceptions are most likely due to

1http://www.cs.toronto.edu/∼kriz/cifar.html
2http://tartarus.org/martin/PorterStemmer/



TABLE II. QUALITY AND RUNTIME OF SURROGATES FOR
DENDROGRAMS CREATED FROM 30,000 IMAGES. ALL COMPUTATIONS ARE

PERFORMED SERIALLY TO AVOID MEASUREMENTS BIAS IN THE TIMINGS.

measure quality time (ms) measure quality time (ms)

exact 100 3416174

fix 1 94 292 w 1 92 260

fix 2 96 498 w 2 95 461

fix 3 96 698 w 3 95 655

fix 4 98 893 w 4 95 845

fix 5 97 1088 w 5 96 1034

fix 7 97 1463 w 7 94 1403

fix 10 98 2023 w 10 97 1951

fix 20 98 3865 w 20 96 3739

fix 50 98 9324 w 50 96 9015

sub 96 1564 sqrt 97 3432

random behavior. From a quality perspective, the sub and
sampling the square root of the number of pairs samples
surrogates perform poorly. They need more time than other
surrogates which produce results with better quality.

C. Evaluation of the overall algorithm

We evaluated the overall algorithm with several surrogates
selected based on the experiments above. The selection consists
of fix 1, fix 3, fix 50 and w 10. The reason to select these is that
they span a broad range of quality and timing values. Now, using
these surrogates we run the metaheuristic optimization using
the same portions of data as used in the previous experiment.

During the experiment, we use 20 tries of height 20 and 30
for the TRC2 and cifar-10 dataset, respectively. In addition to
these (to observe the effect of the trie removal) we introduce
a possible, but unlikely trie into the forest about which we
know that it has unfavorable properties. The trie we introduced
has the same hash function at each level and, as a result,
many splitpoints will be lower than desired. We measure how
the (real) quality of the best individual, as reported by the
surrogate, evolves over time. Further, we contrast this to the
joining distance of the dendrogram produced by the standard
twister tries and exact algorithm and the time needed for the
exact algorithm. The result of these experiments can be found
from figs. 3 and 4. Note that the budget for the metaheuristic
was a runtime of 15 minutes.

What we notice from the graphs is that the a posteriori
trie removal is not only able to remove the bad trie from the
forest; it also improves beyond the result of the standard twister
tries algorithm. This means that the metaheuristic also removes
other tries (which were not intentionally bad, but just created
randomly) from the forest and improves the result further. As
was noted by Cochez and Mou [1], once the quality is at a
certain level making a small improvement requires a lot more
and higher tries, or in other words resources. Hence, these
improvements are significant.

When looking at the performance of the different surrogates,
we notice that fix 50 is slow, but always results in a monotoni-
cally decreasing joining distance. Fix 1 on the other hand gives
fast results, but seems slightly less reliable. This can be seen
from the cifar-10 figure around 300 seconds: the surrogate

Fig. 3. Evolution of the real quality of the best individual as reported by
metaheuristic using the surrogate. Results are for 10,000 images of the cifar-
10 dataset. For comparison: the computation of the distance matrix took about
14.3 hours (using Python/numpy). From this matrix the exact dendrogram is
computed in a couple of seconds, resulting in a joining distance of 4130.61.
This exact computation only used one core. Normal twister tries would produce
a JD of 5991.87. When the bad trie is taken away manually the result becomes
5217.85.

Fig. 4. Evolution of the real quality of the best individual as reported by
metaheuristic using the surrogate. Results are for 30,000 articles of the TRC2
dataset. For comparison: the computation of the distance matrix took about
half an hour. From this matrix the exact dendrogram is computed in about 10
seconds, resulting in a joining distance of 11814.27. This exact computation
only used one core. Normal twister tries would produce a JD of 20040.32.
When the bad trie is taken away manually the result becomes 13668.78.

orders the individuals wrongly and the (real) quality of the best
individual reported lowers. However, fix 1 is able to perform
many more evaluations than fix 50 and overcomes the slightly
lower performance in ordering results. Broader experiments
would be needed to give support for a general recommendation,
but our experiments suggest that using a cheap, but reasonably
good surrogate (e.g., fix 1) is more beneficial than using a slow
but more accurate one (e.g., fix 50).

VII. CONCLUSION

Twister tries usually produce reasonable approximate den-
drograms for average linkage. However, since it is a probabilis-
tic algorithm, there is a possibility that the randomly chosen
hash functions result into tries with unwanted properties. In
effect, these tries will cause the overall algorithm to produce
a dendrogram with low quality. We proposed a metaheuristic
which is capable of identifying bad tries. In order to make this
metaheuristic useful, we first proposed and evaluated several
surrogates which give a fast, but rough estimation of the
dendrogram quality. Then we evaluated the metaheuristic and
noticed (in a controlled experiment) that it is able to disable
the trie and produce a better result than normal twister tries
would. Moreover, not only the metaheuristic could disable the
artificially inserted trie, but also was able to further improve
the performance of twister tries by disabling specific other
(random) tries which had a slightly negative effect on the final
dendrogram. In conclusion, we recommend to always use some
form of a posteriori trie removal in order to improve the quality



of the dendrogram. We noticed in our experiments that the use
of a simple surrogate (which produces reasonable outcomes) is
more beneficial than a slower one (which delivers even better
accuracy). Future work could attempt to combine multiple
surrogates in the process by somehow determining that running
a more expensive surrogate is worthwhile to make an important
decision. Another path for further exploration is that the current
approach is in some sense an all or nothing approach. Either a
trie is enabled or disabled, even if this is only due to a couple
of hash functions which cause the trie to be bad. It might be
possible to save the good hash values if it would be possible to
somehow find out which hash functions have a bad influence
and then ignore these outcomes.
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for making this work possible. This research was also financed
in part by the TEKES N4S SHOK in collaboration with Steeri
Oy. For the experiments, we used the ”Thomson Reuters Text
Research Collection (TRC2)”.

REFERENCES

[1] M. Cochez and H. Mou, “Twister tries: Approximate hierarchical agglom-
erative clustering for average distance in linear time,” in Proceedings of
the 2015 ACM SIGMOD international conference on Management of
data, ser. SIGMOD ’15. New York, NY, USA: ACM, 2015.

[2] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” Commun. ACM,
vol. 51, no. 1, pp. 117–122, Jan. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1327452.1327494

[3] M. Kull and J. Vilo, “Fast approximate hierarchical clustering using
similarity heuristics,” BioData mining, vol. 1, no. 1, p. 9, 2008.

[4] I. Gronau and S. Moran, “Optimal implementations of UPGMA and
other common clustering algorithms,” Information Processing Letters,
vol. 104, no. 6, pp. 205–210, 2007.

[5] N. Kriege, P. Mutzel, and T. Schäfer, “SAHN clustering in
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