
Balanced Large Scale Knowledge Matching
Using LSH Forest

Michael Cochez1, Vagan Terziyan1, and Vadim Ermolayev2

1 University of Jyvaskyla,
Department of Mathematical Information Technology

P.O. Box 35 (Agora),
FI-40014 University of Jyväskylä, Finland

michael.cochez@jyu.fi, vagan.terziyan@jyu.fi
2 Zaporozhye National University,

Department of IT
66, Zhukovskogo st.,

UA-69063, Zaporozhye, Ukraine
vadim@ermolayev.com

Abstract. Evolving Knowledge Ecosystems were proposed recently to
approach the Big Data challenge, following the hypothesis that knowl-
edge evolves in a way similar to biological systems. Therefore, the inner
working of the knowledge ecosystem can be spotted from natural evolu-
tion. An evolving knowledge ecosystem consists of Knowledge Organisms,
which form a representation of the knowledge, and the environment in
which they reside. The environment consists of contexts, which are com-
posed of so-called knowledge tokens. These tokens are ontological frag-
ments extracted from information tokens, in turn, which originate from
the streams of information flowing into the ecosystem. In this article we
investigate the use of LSH Forest (a self-tuning indexing schema based on
locality-sensitive hashing) for solving the problem of placing new knowl-
edge tokens in the right contexts of the environment. We argue and show
experimentally that LSH Forest possesses required properties and could
be used for large distributed set-ups.

Keywords: Evolving Knowledge Ecosystems, Locality-sensitive Hash-
ing, LSH Forest, Big Data

1 Introduction

Perhaps, one of the biggest problems in making the Semantic Web a reality is
that knowledge it represents is not evolving in line with the world it describes.
This problem becomes even more challenging given the explosion in the vol-
umes, complexity, variety of the information available about the world, and the
velocity of its change. Recently a conceptual approach to attack this challenging
problem has been proposed [1]. The core of that proposal is the understanding
that the mechanisms of knowledge evolution could be spotted from evolutionary
biology. These mechanisms are enabled in an Evolving Knowledge Ecosystem



(EKE) populated with Knowledge Organisms (KO). Individual KOs carry their
fragments of knowledge — similarly to different people having their individual
and potentially dissimilar perceptions and understanding of their environment.
The population of KOs, like a human society, possesses the entire knowledge
representation of the world, or more realistically — a subject domain. Infor-
mation tokens flow into such an ecosystem, are further transformed into the
knowledge tokens, and finally sown there. The KOs collect the available knowl-
edge tokens and consume these as nutrition. Remarkably, the constitution of
an EKE, allows natural scaling in a straightforward way. Indeed, the fragment
of knowledge owned by an individual KO and the knowledge tokens consumed
by KOs are small. Therefore, a well scalable method of sowing the knowledge
tokens is under demand to complete a scalable knowledge feeding pipeline into
the ecosystem. This paper reports on the implementation and evaluation of our
knowledge token sowing solution based on the use of LSH Forest [2]. We demon-
strate that: (i) the method scales very well for the volumes characteristic to big
data processing scenarios; and (ii) yields results with sufficiently good precision
and recall. The rest of the paper is structured as follows. Section 2 sketches out
the concept of EKE and also explains how knowledge tokens are sown in the en-
vironments. Section 3 presents the basic formalism of Locality Sensitive hashing
(LSH) and LSH Forest. Finally, it outlines our arguments for using LSH Forest
as an appropriate method. Section 4 describes the settings for our computational
experiments whose results are presented in section 5. The paper is concluded and
plans for future work are outlined in section 6.

2 Big Knowledge — Evolving Knowledge Ecosystems

Humans make different decisions in similar situations, thus taking different
courses in their lives. This is largely due to the differences in their knowledge.
So, the evolution of conscious beings noticeably depends on the knowledge they
possess. On the other hand, making a choice triggers the emergence of new
knowledge. Therefore, it is natural to assume that knowledge evolves because of
the evolution of humans, their decision-making needs, their value systems, and
the decisions made. Hence, knowledge evolves to support the intellectual activity
of its owners, e.g., to interpret the information generated in event observations
— handling the diversity and complexity of such information. Consequently, Er-
molayev et al. [1] hypothesize that the mechanisms of knowledge evolution are
very similar to (and could be spotted from) the mechanisms of the evolution
of humans. Apart from the societal aspects, these are appropriately described
using the metaphor of biological evolution.

A biological habitat is in fact an ecosystem that frames out and enables
the evolution of individual organisms, including humans. Similarly, a knowledge
ecosystem has to be introduced for enabling and managing the evolution of
knowledge. As proposed in [1], such EKE should scale adequately to cope with
realistic and increasing characteristics of data/information to be processed and



balance the efficiency and effectiveness while extracting knowledge from infor-
mation and triggering the changes in the available knowledge.

2.1 Efficiency Versus Effectiveness

Effectiveness and efficiency are the important keys for big data processing and
for the big knowledge extraction. Extracting knowledge out of big data would be
effective only if: (i) not a single important fact is left unattended (completeness);
and (ii) these facts are faceted adequately for further inference (expressiveness
and granularity). Efficiency in this context may be interpreted as the ratio of
the utility of the result to the effort spent.

In big knowledge extraction, efficiency could be naturally mapped to time-
liness. If a result is not timely the utility of the resulting knowledge will drop.
Further, it is apparent that increasing effectiveness means incrementing the ef-
fort spent on extracting knowledge, which negatively affects efficiency. In other
words, if we would like to make a deeper analysis of the data we will have a less
efficient system.

Finding a solution, which is balanced regarding these clashes, is challenging.
In this paper we use a highly scalable method to collect the increments of incom-
ing knowledge using a 3F+3Co approach, which stand for Focusing, Filtering,
and Forgetting + Contextualizing, Compressing, and Connecting (c.f. [1] and
section 3.2).

2.2 Evolving Knowledge Ecosystems

An environmental context for a KO could be thought of as its habitat. Such a
context needs to provide nutrition that is “healthy” for particular KO species —
i.e. matching their genome noticeably. The nutrition is provided by Knowledge
Extraction and Contextualization functionality of the ecosystem [1] in a form of
knowledge tokens. Hence, several and possibly overlapping environmental con-
texts need to be regarded in a hierarchy which corresponds to several subject
domains of interest and a foundational knowledge layer. Environmental contexts
are sowed with knowledge tokens that correspond to their subject domains. It
is useful to limit the lifetime of a knowledge token in an environment – those
which are not consumed dissolve finally when their lifetime ends. KOs use their
perceptive ability to find and consume knowledge tokens for nutrition. Knowl-
edge tokens that only partially match KOs’ genome may cause both KO body
and genome changes and are thought of as mutagens. Mutagens in fact deliver
the information about the changes in the world to the environment. Knowledge
tokens are extracted from the information tokens either in a stream window, or
from the updates of the persistent data storage and further sown in the appro-
priate environmental context. The context for placing a newly coming knowledge
token is chosen by the contextualization functionality. In this paper we present
a scalable solution for sowing these knowledge tokens in the appropriate envi-
ronmental contexts.



3 Locality-Sensitive Hashing

The algorithms for finding nearest neighbors in a dataset were advanced in
the work by Indyk and Motwani, who presented the seminal work on Locality-
sensitive hashing (LSH) [3]. They relaxed the notion of a nearest neighbor to
that of an approximate one, allowing for a manageable error in the found neigh-
bors. Thanks to this relaxation, they were able to design a method which can
handle queries in sub-linear time. To use LSH, one has to create a database
containing outcomes of specific hash functions. These hash functions have to
be independent and likely to give the same outcome when hashed objects are
similar and likely to give different outcomes when they are dissimilar. Once this
database is built one can query for nearest neighbors of a given query point by
hashing it with the same hash functions. The points returned as approximate
near neighbors are the objects in the database which got hashed to the same
buckets as the query point. [4] If false positives are not acceptable, one can still
filter these points.

Formally, to apply LSH we construct a family H of hash functions which map
from a space D to a universe U .

Let d1 < d2 be distances according to a distance measure d on a space D.
The family H is (d1, d2, p1, p2)-sensitive if for any two points p, q ∈ D and h ∈ H:

– if d (p, q) ≤ d1 then Pr [h (p) = h (q)] ≥ p1
– if d (p, q) ≥ d2 then Pr [h (p) = h (q)] ≤ p2

where p1 > p2.

The probabilities p1 and p2 might be close to each other and hence only one
function from H giving an equal result for two pints might not be sufficient to
trust that these points are similar. Amplification is used to remedy this problem.
This is achieved by creating b functions gj , each consisting of r hash functions
chosen uniformly at random from H. The function gj is the concatenation of r
independent basic hash functions. The symbols b and r stand for bands and rows.
These terms come from the representation of data. One could collect all outcomes
of the hash functions in a two-dimensional table. This table can be divided in b
bands containing r rows each. (See also [5].) The concatenated hash function gj
maps points p and q to the same bucket if all hash functions it is constructed from
hashes the points to the same buckets. If for any j, the function gj maps p and
q to the same bucket, p and q are considered close. The amplification creates

a new locality sensitive family which is
(
d1, d2, 1− (1− p1

r)
b
, 1− (1− p2

r)
b
)

sensitive.

3.1 LSH Forest

The standard LSH algorithm is somewhat wasteful with regards to the amount
of memory is uses. Objects always get hashed to a fixed length band, even if that
is not strictly needed to decide whether points are approximate near neighbors.



LSH Forest (introduced by Bawa et al. [2]) introduces variable length bands and
stores the outcomes of the hashing in a prefix tree data structure.

The length of the band is reduced by only computing the hash functions if
there is more than one point which is hashed to the same values. Put another
way, in LSH the function gj maps two points to the same bucket if all functions
it is constructed from do so as well. LSH Forest potentially reduces the number
of evaluations by only computing that much of gj as needed to distinct between
the different objects. Alternatively, one can view this as assigning a unique label
with a dynamic length to each point. In the prefix tree the labels on the edges
are the values of the sub-hash functions of gj .

Hashing and quantization techniques have a limitation when considering very
close points. If points are arbitrarily close to each other, then there is no number
of hash functions which can tell them apart. This limitation applies to both
traditional LSH and the Forest variant. Therefore, LSH assumes a minimum
distance between any two points and LSH Forest defines a maximum label length
equal to the maximum height of the tree (indicated as km).

3.2 Sowing Knowledge Tokens Using LSH Forest

The first requirement for knowledge token sowing is that similar tokens get
sown close to each other. This is achieved by adding knowledge tokens to the
forest. Similar ones will get placed such that they are more likely to show up
when the trees are queried for such tokens. Further requirements come from the
3F+3Co [1] aspects. When using LSH Forest:

Focusing is achieved by avoiding deep analysis when there are no similar ele-
ments added to the trees.

Filtering is done by just not adding certain data to the tree.
Forgetting is achieved by removing data from the tree. Removal is supported

by the Forest and is an efficient operation.
Contextualizing happens when different parts of the token are spread over the

trees. A token may therefore belong to several contexts simultaneously.
Compressing the tree compresses data in two different ways. Firstly, it only

stores the hashes computed from the original data and, secondly, common
prefixes are not duplicated but re-used. Note that it is possible to store the
actual data on a secondary storage and keep only the index in memory.

Connecting the Forest is a body which grows incrementally. Since representa-
tions of different tokens can reside together in disparate parts of the trees,
they can be considered connected. However, the real connection of these
parts will be the task of the KOs which will consume the knowledge tokens
which are sown in a tree.

In the next section we will introduce our experiments. In the first experiment
series we show that the Forest is able to fulfill the focusing requirement. The
second one shows that the forest is able to aid the KO to connect concepts
together. Finally, the last series shows that the data structure has desirable
spacial and temporal properties, demonstrating that the tree is able to compress
data meanwhile offering an appropriate efficiency — effectiveness trade-off.



4 Evaluation

The experiments are designed so that we start from a fairly simple set-up and
more complexity is added in each following experiment. In the first series of
experiments, we feed knowledge tokens created from three different data sources
into an LSH tree and present measure how they are spread over the tree. In
the following series, we use two and later three data sources and measure how
the LSH Forest classifies the tokens and how it is capable of connecting the
knowledge tokens. Finally, in the third series we add dynamism to the experiment
by sampling the knowledge tokens in different ways and measure how the memory
usage and processing time evolve.

Finding a suitable dataset for the experiment is not obvious. What we need
are small pieces of information (i.e., the knowledge tokens) about which we
know how they should be connected (i.e., a gold standard). Further, the dataset
should be sufficiently large to conduct the experiments. We solved this issue
by selecting three large ontologies for which a so-called alignment [6] has been
created. These particular ontologies are large and have a fairly simple structure.
Further,by using only the labels of the ontology a reasonable alignment can be
found [7]. Therefore, we extract the labels from these ontologies and use them
as knowledge tokens. This is a relaxation of the knowledge token concept. In the
earlier work [1] a knowledge token has an internal structure. Finally, similar to
the earlier work, we use the Jaccard distance for sets (d (A,B) = 1−sim (A,B))
to measure the distance between sets of words created from the labels. The LSH
function used is Minhash from Broder [8].

Datasets The Large Biomed Track of the Ontology Alignment Evaluation ini-
tiative3 is the source of the datasets used in our evaluation. The FMA ontology4,
which contains 78,989 classes is the first dataset. The FMA ontology only con-
tains classes and non-hierarchical datatype properties, i.e., no object or datatype
properties nor instances. Secondly, there is the NCI ontology5 containing 66,724
classes, and finally a fragment of 122,464 classes of the SNOMED ontology6.
The NCI ontology contains classes, non-hierarchical datatype and hierarchical
object properties. The classes of all ontologies are structured in a tree using
owl:SubClassOf relations. The UMLS-based reference alignments as prepared
for OAEI 7 are used as a gold standard. From these reference alignments we
only retain the equal correspondences, with the confidence levels set to one.

Preprocessing We preprocess the ontologies by computing as many represen-
tations for each class as it has labels in the ontology. The preprocessing is very
similar to the second strategy proposed in [7]. According to this strategy, for each
label of each class, a set of strings is created as follows: the label is converted

3http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2013/
4http://sig.biostr.washington.edu/projects/fm/
5http://www.obofoundry.org/cgi-bin/detail.cgi?id=ncithesaurus
6http://www.ihtsdo.org/index.php?id=545
7http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2013/oaei2013_umls_

reference.html



to lowercase and then split in strings using all the whitespace and punctuation
marks as a delimiter. If this splitting created strings of 1 character, they are
concatenated with the string that came before it. In addition to these steps, we
also removed possessive suffixes from the substrings and removed the 20 most
common English language words according to the Oxford English Dictionary8.
This preprocessing results in 133628, 175698, and 122505 knowledge tokens, i.e.,
sets of strings for the FMA, NCI, and SNOMED ontology, respectively.

Implementation The implementation of our evaluation code heavily uses par-
allelism to speed up the computation. From the description of the LSH algorithm,
it can be noticed that the hashing of the objects happens independent of each
other. Therefore they can be computed in parallel using a multi-core system.

Inspired by Rajaraman and Ullman [5], ‘normal’ uniform hashing was used
several times to speed up computations or save storage space. One important
saving is due to using random (non locality-sensitive) hash functions, which map
each original index to a target index, instead of creating real permutations. This
hashing is performed using Rabin fingerprints as described by Broder [9]. An
improvement over the earlier work [7] where Rabin hashing was also used is due
to the fact that we invert the bits of the input to the hashing function. We noticed
that small inputs gave a fairly high number of collisions using the functions
normally, while the inverted versions do hardly cause any. The experiments are
performed on hardware with two Intel Xeon E5-2670 processors (totaling 16
hyper-threaded cores) and limited to use a maximum of 16 GB RAM.

4.1 Single data source — Single Tree

In this series of experiments, we use only one LSH tree and knowledge tokens
from a single dataset. First, the ontology is parsed and all its concepts are
tokenized as described above. The resulting knowledge tokens are then fed into
the LSH tree. We then analyze the distribution of the knowledge tokens in the
tree by looking at how deep they are located in the tree and how many siblings
the leaves in the tree have. Further, we investigate chains of nodes which are
only there because of a low number of tokens at the bottom of the tree.

4.2 Connecting Knowledge Tokens using LSH Forest, i.e. Matching

The objective of our the first experiment in this second series is to show how
the ontology matching using LSH Forest compares to standard LSH. Besides the
change in data structure we use the experimental set-up similar to what was
used for testing standard LSH in our earlier research work [7]. In that work the
best result for matching the SNOMED and NCI ontologies was obtained using 1
band of 480 rows which corresponds to 1 tree of maximum height km = 480. To
keep the results comparable, we also do not use the reduced collision effect from
inverting before hashing (see Implementation above). It needs to be noted,
however, that we use a slightly different approach for selecting near neighbors

8http://www.oxforddictionaries.com/words/the-oec-facts-about-the-language



compared to the standard LSH Forest approximate nearest neighbor querying.
Since we are not interested in neighbors if they are to far away, we only take the
siblings of each leaf into account when searching for related concepts. Further,
we ignore concepts if they their similarity is less than 0.8. Next to the traditional
ontology matching measures of precision, recall, and F-measure, the potential
memory and processing power savings are evaluated.

In the second part of this series we use our improved version, applying the
inversion before hashing, and the knowledge from the previous experiments to
test how LSH Forest can perform when connecting knowledge tokens using a
shorter tree. We measure both runtime performance and quality metrics for
different number of trees.

In the last part we use the fact that there is no reason to limit ourselves to
only using two data sources. Hence, we demonstrate scalability of the system by
feeding all knowledge tokens created for all three datasets. We also analyze the
time saving compared to performing three separate alignment tasks when pairs
of datasets are used.

4.3 Adding Dynamics

In the final series of experiments we observe how the tree reacts to dynamic
insertion of concepts. In the basic case, we select 106 knowledge tokens (from
the three sets) using a uniform distribution. These are then one by one inserted
into the tree. After every 104 insertions we measure number of hash operations
used to measure the time complexity. The cumulative memory consumption is
measured as the number of edges used in the trees. We also measure the real
elapsed time after the insertion of every 105 knowledge tokens.

On an average system some knowledge tokens will be added much more fre-
quently than others. This is due to the fact that the information or queries
which the system processes are somehow focused on a certain domain. This also
means that the tokens would not arrive according to a uniform distribution. A
more plausible scenario is that certain concepts are very likely to occur, while
others do hardly occur at all. We model this phenomena by using a so-called
Zipf distribution with exponent 1 which causes few concepts to be inserted fre-
quently while most are inserted seldom. Using this set-up we perform the same
measurements as made for the uniform distribution.

It has to be noted that we need to make a minor change to the way our
trees process the tokens. When a token already exists at a node, the standard
implementation would build a chain which can only end at km. This is related
to our above remark about the minimal distance between any two points. To
solve this problem, the lowest internal nodes check whether the newly added
representation is already existing and if so, it will ignore the representation. We
shortly analyzed the effect of this change using the same set-up as in the second
experiment series and noticed that this check does hardly affect runtime perfor-
mance. The main effect is visible in the number of edges and hash operations
which both drop by about 30 %. Further, a marginal decrease of the precision
and a marginal increase of the recall is observable.



5 Results

5.1 Single data source — Single Tree

After feeding the knowledge tokens of each set into a single LSH Tree with
km = 80, we find clusters of leaves as shown in fig. 1. The figure shows how often
a group of n siblings occurs as a function of the depth in the tree.

(a) FMA ontology (b) NCI ontology

(c) SNOMED ontology

Fig. 1: Frequency of sibling groups of a given size at a given level in one LSH
Tree. Note the logarithmic scale.

What we notice in the figures is that most of the concepts are fairly high
up in the tree. After roughly 30 levels all the concepts, except these residing at
the bottom of the tree, are placed. It is also visible that most knowledge tokens
are located in the leaves which either have very few siblings or are located high
up in the tree. This indicates that the tree is able to distinguish between the
representations fairly fast. In both the FMA and NCI ontologies, we notice a high
amount of knowledge tokens at the bottom of the tree, i.e., at level km = 80. We
noticed that the same amount of concepts end up at the bottom of the tree even
if km is chosen to be 1000, which indicates that hashing might be incapable to
distinguish between the representations, i.e., they are so close that their hashes
virtually always look the same. After further investigation, we found that the
Jaccard similarities between the sibling concepts at the bottom of the tree are all
equal to 1. This means that there are concepts in the ontology which have very
similar labels, i.e., labels which (often because of our preprocessing steps) get



reduced to exactly the same set of tokens. One problem with this phenomenon
is that the tree contains long chains of nodes, which are created exclusively for
these few siblings. We define an exclusive chain as the chain of nodes between
an internal node at one level above the bottom of the tree, and another (higher)
node which has more than one child. The lengths of these exclusive chains are
illustrated in fig. 2a.

0 10 20 30 40 50 60 70 80 90
0

1000

2000

3000

4000

5000

6000

7000

8000

FMA
NCI
SNOMED

Chain length

F
re

qu
en

cy

(a) Frequency of a given exclusive chain
length for nodes at km

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.1

1

10

100

1000

10000

100000

Number of classes

F
re

qu
en

cy

(b) Frequency of a given number of classes
represented in a leaf at level km for each
ontology. Note the log scale.

Fig. 2: Analysis for the leaf nodes

We notice that mainly the NCI ontology causes long exclusive chains. The
most plausible cause for this is that NCI has a higher average number of repre-
sentations per concept (2.6) than the other two ontologies (1.7 — FMA and 1.0
— SNOMED). To investigate this further, we plot the number of classes which
the siblings at the lowest level represent. The result of analyzing the number of
classes represented by the leaves in each sibling cluster can be found in fig. 2b

From the figure we notice that, indeed, very often there is a low number of
classes represented by the siblings of the final nodes. We also notice that the
NCI ontology has the most severe representation clashes.

5.2 Connecting Knowledge Tokens using LSH Forest, i.e. Matching

When matching the SNOMED and NCI ontologies using a single tree of height
480, we obtain the precision of 0.838, recall of 0.547, and hence F-measure of
0.662. These results are similar to the results of the standard LSH algorithm
which attained the precission of 0.842, recall of 0.535, and F-measure of 0.654.

The LSH Forest algorithm, however, uses only 30 % of the amount of hash
function evaluations compared to the standard LSH algorithm. Furthermore, the
Forest saves around 90 % of the memory used for storing the result of the hash
evaluations. This is because the tree saves a lot of resources by only computing
and storing the part of the label which is needed. Further, a result is stored only
once if the same outcome is obtained from the evaluation of a given hash function
for different representations. It should, however, be noted that using LSH Forest



also implies a memory overhead for representing the tree structure, while the
standard algorithm can place all hash function evaluations in an efficient two
dimensional table.

The speed of the two algorithms with the same set-up is very similar. Using
the Forest, the alignment is done in 20.6 seconds, while the standard algorithm
completes in 21.5 seconds.

As can be seen in the distribution of the ontologies over the tree in our
previous experiment series (fig. 1) non-similar concepts remain fairly high up
in the tree. Hence, when using the improved Rabin hashing technique described
above, we can reduce the maximum height of the tree. Based on this information,
we now choose the maximum height of the tree to be 30. We also use 10 as the
highest level of interest and ignore all representations which are unable to get
a lower positions in the tree. We vary the number of trees used between 1 and
10 and show the impact on the precision, recall and F-measure in fig. 3a and
timing in fig. 3b.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Precision
Recall
F-measure

Number of trees

(a) Quality measurements

0 1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

Runtime

Number of trees

tim
e 

(m
s)

(b) Runtime

Fig. 3: Quality measurements and runtime behavior for an ontology matching
task using different number of trees.

From the quality measurements, we see that the number of trees has little
effect. It is hard to see from the figure, but the precision lowers ever so slightly
when more trees are used. Concretely, it goes from 0.836947 when using one tree
to 0.831957 with 10 trees. The recall has the opposite behavior growing from
0.546824 to 0.550616. The net effect of these two on the F-measure is a slight
increase when more trees are used, namely from 0.661472 to 0.662662. It needs
to be noted that also these results are in the same range as the measures in the
previous experiment. Hence, we can conclude that constraining the height of a
tree does not affect the quality much, if at all. However, as can be seen in the
timing chart, the tree works much faster when its height is reduced. When only
one tree is used, roughly 3 seconds are needed to obtain results. Increasing the
number of trees to 10 only doubles the time, most likely because the system is
better able to use multiple threads or the virtual machine might do a better
just-in-time compilation. In any case, we note that using the forest and better
hashing, we can create a system which is roughly 7 times faster and produces
results of similar quality.



To try whether we can also use the tree for bigger datasets, we now feed all
knowledge tokens created from all three ontologies into the system and present
similar measurements in fig. 4.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Precision
Recall
F-measure

Number of trees

(a) Quality measurements

0 1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

Runtime

Number of trees

tim
e 

(m
s)

(b) Runtime

Fig. 4: Quality measurements and runtime behavior for a three way ontology
matching task using different number of trees.

Now, we notice the effect on the precision and recall more profoundly. Also
the runtime increases faster when the input is larger. We do however see only
a three-fold increase when the number of trees is ten-folded. When comparing
these results to our earlier work [7] we can see the speed-up of using LSH Forest
and performing multiple alignments at once. In our previous work we used 45.5
seconds for doing three 2-way alignment tasks. Using the LSH Forest we can
perform the 3-way alignment in less than 10 seconds. When using a single tree,
we measured a time of 3.2 seconds yielding roughly a ten-fold speed-up.

5.3 Adding Dynamics

The results of adding knowledge tokens according to a uniform distribution are
in fig. 5. From the figures we note that the number of edges needed grows sub-
linear. This is as expected since both the fact that certain knowledge tokens
will be selected more than once and the reuse of edges decreases the number
of new edges needed. The number of hashes shows an initial ramp-up and then
starts growing linear. We also note that the time used for adding is growing,
but the growth slows down when more concepts are added. Moreover, if we try
to fit a linear curve trough the cumulative runtime measurements, we notice
that we can obtain a Pearson product-moment correlation coefficient of 0.9976,
indicating that the increase is actually very close to linear.

When choosing the representations using a Zipf distribution instead, we ob-
tain the results as depicted in fig. 6. When comparing the charts for insertion
using the normal and Zipf distribution, we notice that the later puts much less
of a burden upon the system. This is a desirable effect since it means that the
system is likely to work well with more organic loads. Also here, we can fit a lin-
ear curve trough the cumulative runtime measurements with a high correlation
coefficient of 0.9968.



0 100 200 300 400 500 600 700 800 900 1000
0

200000

400000

600000

800000

1000000

1200000

1400000

Inserted representations (*1000)

U
se

d 
ed

ge
s

(a) Edges

0 100 200 300 400 500 600 700 800 900 1000
0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

Inserted representations (*1000)

C
om

pu
te

d 
ha

sh
es

(b) Hashes

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

Inserted representations (*1000)

T
im

e 
(m

s)

(c) Time needed to insert the previous 100000 concepts

Fig. 5: Cumulative number of edges and hashes; and time needed for uniform
adding of knowledge tokens

0 100 200 300 400 500 600 700 800 900 1000
0

200000

400000

600000

800000

1000000

1200000

1400000

Inserted representations (*1000)

U
se

d 
ed

ge
s

(a) Edges

0 100 200 300 400 500 600 700 800 900 1000
0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

Inserted representations (*1000)

C
om

pu
te

d 
ha

sh
es

(b) Hashes

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

Inserted representations (*1000)

T
im

e 
(m

s)

(c) Time needed to insert the previous 100000 concepts

Fig. 6: Cumulative number of edges and hashes; and time needed for adding of
knowledge tokens according to a Zipf distribution



6 Conclusions and Outlook

When trying to understand and follow what is happening around us, we have to
be able to connect different pieces of information together. Moreover, the amount
of information which we perceive does not allow us to look at each detail, instead
we need to focus on specific parts and ignore the rest. When we want to built
a system capable of embodying evolution in knowledge, similar challenges have
to be tackled. In this paper we investigated one of the first steps needed for this
type of system, namely bringing related pieces of knowledge together.

The system we envision is an Evolving Knowledge Ecosystem in which Knowl-
edge Organisms are able to consume Knowledge Tokens, i.e., pieces of knowledge,
which have been sown in the environment. In this paper we looked at the appli-
cation of LSH Forest to dynamically sow knowledge tokens in the environmental
contexts.

We found out that LSH Forest is a suitable approach because it is able to
balance well between efficiency and effectiveness. This can be observed from the
fact that the method scales well, both from a space and runtime perspective;
and from the fact that the quality measures are sufficiently high. Further, the
Forest makes it possible to focus on these parts which need further investigation
and it allows for connecting between the knowledge tokens.

There are still several aspects of using LSH Forest which could be further
investigated. First, the problem caused by exclusive chains could be mitigated
by measuring the distance between knowledge tokens when they reach a certain
depth in the tree. Only when the concepts are different enough, there is a need
to continue; this however requires to parametrize the inequality. Another option
to reduce at least the amount of used memory and pointer traversals is using
PATRICIA trees as proposed by Bawa et al. [2].

Secondly, we noted that the LSH tree allows for removal of concepts and that
this operation is efficient. Future research is needed to see how this would work
in an evolving knowledge ecosystem. Besides, as described in [1], the knowledge
tokens do not disappear at once from an environmental context. Instead, they
might dissolve slowly, which could be thought of as a decreasing fuzzy member-
ship in the context. One straightforward method for achieving this would be to
use a sliding window which has an exponential decay, similar to what is proposed
in [10]. Also more complex ideas could be investigated, perhaps even providing a
bonus for concepts which are queried often or using hierarchical clustering tech-
niques to remove tokens from areas which are densely populated [11]. This would
mean that some tokens remain in the system even when other (less popular or
more common) concepts with similar insertion characteristics get removed.

Lastly, it would be interesting to see how the Forest would react when the
input data becomes that big that it is impossible to keep the tree in the physical
memory available. Then, using a distributed setting, ways should be found to
minimize the overhead when concepts are added and removed from the tree. One
promising idea is the use of consistent hashing for the distribution of knowledge
tokens as proposed in [12].



7 Acknowledgments

The authors would like to thank the department of Mathematical Information
Technology of the University of Jyväskylä for financially supporting this re-
search. This research is also in part financed by the N4S SHOK organized by
Digile Oy and financially supported by TEKES. The authors would further like
to thank Steeri Oy for supporting the research and the members of the Industrial
Ontologies Group (IOG) of the University of Jyväskylä for their support in the
research. Further, it has to be mentioned that the implementation of the software
was greatly simplified by the Guava library by Google, the Apache Commons
MathTM library, and the Rabin hash library by Bill Dwyer and Ian Brandt.

References

1. Ermolayev, V., Akerkar, R., Terziyan, V., Cochez, M.: Towards Evolving Knowl-
edge Ecosystems for Big Data Understanding. In: Big Data Computing. Taylor &
Francis group - Chapman and Hall/CRC (2014) 3–55

2. Bawa, M., Condie, T., Ganesan, P.: LSH forest: self-tuning indexes for similarity
search. In: Proceedings of the 14th international conference on World Wide Web,
ACM (2005) 651–660

3. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the thirtieth annual ACM symposium
on Theory of computing, ACM (1998) 604–613

4. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM 51(1) (January 2008) 117–122

5. Rajaraman, A., Ullman, J.D.: 3. Finding Similar Items. In: Mining of massive
datasets. Cambridge University Press (2012) 71–128

6. Ermolayev, V., Davidovsky, M.: Agent-based ontology alignment: Basics, appli-
cations, theoretical foundations, and demonstration. In: Proceedings of the 2Nd
International Conference on Web Intelligence, Mining and Semantics. WIMS’12,
New York, NY, USA, ACM (2012) 3:1–3:12

7. Cochez, M.: Locality-sensitive hashing for massive string-based ontology match-
ing. In: Proceedings of IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT). (2014) (accpeted)

8. Broder, A.Z.: On the resemblance and containment of documents. In: Compression
and Complexity of Sequences 1997. Proceedings, IEEE (1997) 21–29

9. Broder, A.: Some applications of rabin’s fingerprinting method. In Capocelli, R.,
Santis, A., Vaccaro, U., eds.: Sequences II. Springer New York (1993) 143–152

10. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over
sliding windows. SIAM Journal on Computing 31(6) (2002) 1794–1813

11. Cochez, M., Mou, H.: Twister tries: Approximate hierarchical agglomerative clus-
tering for average distance in linear time. In: Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data, ACM (2015) 505–517

12. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the world wide web. In: Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing. STOC ’97, New York, NY, USA, ACM
(1997) 654–663


