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ABSTRACT
Knowledge Graphs have been recognized as a valuable source
for background information in many data mining, information
retrieval, natural language processing, and knowledge extraction
tasks. However, obtaining a suitable feature vector representation
from RDF graphs is a challenging task. In this paper, we extend the
RDF2Vec approach, which leverages language modeling techniques
for unsupervised feature extraction from sequences of entities. We
generate sequences by exploiting local information from graph sub-
structures, harvested by graph walks, and learn latent numerical
representations of entities in RDF graphs. We extend the way we
compute feature vector representations by comparing twelve di�er-
ent edge weighting functions for performing biased walks on the
RDF graph, in order to generate higher quality graph embeddings.
We evaluate our approach using di�erent machine learning, as well
as entity and document modeling benchmark data sets, and show
that the naive RDF2Vec approach can be improved by exploiting
Biased Graph Walks.

CCS CONCEPTS
•Information systems→Datamining; Semantic web description
languages; •Computingmethodologies→Unsupervised learning;
•�eory of computation→ Graph algorithms analysis;
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1 INTRODUCTION
Linked Open Data (LOD) [40], and in particular large-scale, cross-
domain knowledge graphs such as DBpedia [17], have been rec-
ognized as a valuable source of background knowledge in many
data mining tasks and knowledge discovery in general [37]. Aug-
menting a dataset with features taken from knowledge graphs can,
in many cases, improve the results of a data mining problem at
hand, while externalizing the cost of maintaining that background
knowledge [28, 37].

Most data mining algorithms work with a propositional feature
vector representation of the data, i.e., each instance is represented
as a vector of features 〈f1, f2, ..., fn〉, where the features are either
binary (i.e., fi ∈ {true, f alse}), numerical (i.e., fi ∈ R), or nominal
(i.e., fi ∈ S , where S is a �nite set of symbols). Knowledge graphs,
however, are graphs by nature, connecting resources with types
and relations, backed by a schema or ontology.

�us, for accessing knowledge graphs with existing data mining
tools and algorithms, transformations have to be performed, which
create propositional features from the graphs, i.e., a process called
propositionalization [15]. Usually, binary features (e.g., true if a
type or relation exists, false otherwise) or numerical features (e.g.,
counting the number of relations of a certain type) are used [30, 35].
Other variants, e.g., counting di�erent graph sub-structures are
possible [6], which are not suitable for large datasets or graphs, as
they produce a large number of features.
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In [36], we have introduced RDF2Vec, a generic method for em-
bedding entities in knowledge graphs into lower-dimensional vec-
tor spaces. �e approach adapts neural language modeling tech-
niques, speci�cally word2vec, which takes sequences of words to
embed words into vector spaces [20, 21]. We have shown that it
is possible to compute and reuse such embeddings for large-scale
knowledge graphs.

For adapting word2vec for knowledge graphs, the �rst step is to
extract meaningful sequences of entities from a knowledge graph,
which capture the surrounding knowledge of each entity. Our
results in [36] have shown that random walks are a feasible and, in
contrast to other techniques such as kernels, also a well scalable
approach for extracting sequences.

In this paper, we examine methods to direct the random walks in
more meaningful ways, i.e., being able to capture more important
information about each entity in the graph. We test a dozen weight-
ing schemes which in�uence the walks and, thus, the resulting
sequences. �e experiments show that the choice of weights has a
crucial in�uence on the utility of the resulting embeddings.

�e rest of this paper is structured as follows. In Section 2, we
give an overview of related work. In Section 3, we provide a short
introduction to neural language models. In Section 4, we introduce
our approach, followed by an evaluation in Section 5. We conclude
with a summary and an outlook on future work.

2 RELATEDWORK
In the recent past, a few approaches for generating data mining
features from Linked Open Data have been proposed. Many of
those approaches are supervised, i.e., they let the user formulate
SPARQL queries, and a fully automatic feature generation is not
possible. LiDDM [13] allows the users to declare SPARQL queries
for retrieving features from LOD that can be used in di�erent ma-
chine learning techniques. Similarly, Cheng et al. [3] propose an
approach for feature generation which requires the user to specify
SPARQL queries. A similar approach has been used in the Rapid-
Miner1 semweb plugin [14], which preprocesses RDF data in a
way that it can be further processed directly in RapidMiner. My-
narz et al. [23] have considered using user speci�ed SPARQL queries
in combination with SPARQL aggregates.

FeGeLOD [30] and its successor, the RapidMiner Linked Open
Data Extension [33], have been the �rst fully automatic unsuper-
vised approach for enriching data with features that are derived
from LOD. �e approach uses six di�erent unsupervised feature
generation strategies, exploring speci�c or generic relations. It has
been shown that such feature generation strategies can be used in
many data mining tasks [31, 33].

A similar problem is handled by Kernel functions, which compute
the distance between two data instances by counting common
substructures in the graphs of the instances, i.e. walks, paths, and
trees. In the past, many graph kernels have been proposed that
are tailored towards speci�c applications [12], or towards speci�c
semantic representations [9]. Only a few approaches are general
enough to be applied on any given RDF data, regardless the data
mining task. Lösch et al. [19] introduce two general RDF graph
kernels, based on intersection graphs and intersection trees. Later,

1h�p://www.rapidminer.com/

the intersection tree path kernel was simpli�ed by de Vries et al. [5].
In another work, de Vries et al. [4, 6] introduce an approximation
of the state-of-the-art Weisfeiler-Lehman graph kernel algorithm
aimed at improving the computational time of the kernel when
applied to RDF. Furthermore, the kernel implementation allows
for explicit calculation of the instances’ feature vectors, instead of
pairwise similarities.

�e RDF2Vec approach is closely related to the approaches Deep-
Walk [32] and Deep Graph Kernels [45]. DeepWalk uses language
modeling approaches to learn social representations of vertices of
graphs by modeling short random-walks on large social graphs, like
BlogCatalog, Flickr, and YouTube. �e Deep Graph Kernel approach
extends the DeepWalk approach, by modeling graph substructures,
like graphlets, instead of graph walks. In this paper, we pursue and
deepen the idea of random and biased walks since those, unlike
other transformation approaches, such as graph kernels, walks have
proven to be scalable even to large RDF graphs. Node2vec [10] is
another approach very similar to DeepWalk, which uses second
order random walks to preserve the network neighborhood of the
nodes.

Furthermore, multiple approaches for knowledge graph embed-
dings for the task of link prediction have been proposed [25]. �ese
could also be considered as approaches for generating propositional
features from graphs. RESCAL [26] is one of the earliest approaches,
which is based on factorization of a three-way tensor. �e approach
is later extended into Neural Tensor Networks (NTN) [41] which
can be used for the same purpose. One of the most successful ap-
proaches is the model based on translating embeddings, TransE [1].
�is model builds entity and relation embeddings by regarding a re-
lation as a translation from head entity to tail entity. �is approach
assumes some relationships between words could be computed by
their vector di�erence in the embedding space. However, this ap-
proach cannot deal with re�exive, one-to-many, many-to-one, and
many-to-many relations. �is problem was resolved in the TransH
model [44], which models a relation as a hyperplane together with
a translation operation on it. More precisely, each relation is char-
acterized by two vectors, the norm vector of the hyperplane, and
the translation vector on the hyperplane. While both TransE and
TransH, embed the relations and the entities in the same semantic
space, the TransR model [18] builds entity and relation embeddings
in separate entity space and multiple relation spaces. �is approach
is able to model entities that have multiple aspects, and various
relations that focus on di�erent aspects of entities.

3 PRELIMINARIES
Neural language models have been developed in the NLP �eld as
an alternative to represent texts as a bag of words, and hence, a
binary feature vector, where each vector index represents one word.
While such approaches are simple and robust, they su�er from sev-
eral drawbacks, e.g., high dimensionality and severe data sparsity,
which limits the performance of such techniques. To overcome such
limitations, neural language models have been proposed, inducing
low-dimensional, distributed embeddings of words by means of
neural networks. �e goal of such approaches is to estimate the
likelihood of a speci�c sequence of words appearing in a corpus,

http://www.rapidminer.com/
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explicitly modeling the assumption that closer words in the word
sequence are statistically more dependent.

While some of the initially proposed approaches su�ered from
ine�cient training of the neural network models, with the re-
cent advancements in the �eld several e�cient approaches has
been proposed. One of the most popular and widely used is the
word2vec neural language model [20, 21]. Word2vec is a partic-
ularly computationally-e�cient two-layer neural net model for
learning word embeddings from raw text. �ere are two di�erent
algorithms, the Continuous Bag-of-Words model (CBOW) and the
Skip-Gram model. We will introduce both brie�y. A more elabo-
rated discussion can be found from the original RDF2Vec paper [36].

3.1 Continuous Bag-of-Words Model
�e CBOW model predicts target words from context words within
a given window. �e model architecture is shown in �g. 1. �e
input layer comprises all the surrounding words for which the input
vectors are retrieved from the input weight matrix, averaged, and
projected in the projection layer. �en, using the weights from the
output weight matrix, a score for each word in the vocabulary is
computed, which is the probability of the word being a target word.
Formally, given a sequence of training words w1,w2,w3, ...,wT ,
and a context window c , the objective of the CBOW model is to
maximize the average log probability:

1
T

T∑
t=1

loд p(wt |wt−c ...wt+c ), (1)

where the probability p(wt |wt−c ...wt+c ) is calculated using the
so�max function:

p(wt |wt−c ...wt+c ) =
exp(v̄Tv ′wt

)∑ |V |
w=1 exp(v̄Tv

′
w )
, (2)

where v ′w is the output vector of the word w , V is the complete
vocabulary of words, and v̄ is the averaged input vector of all the
context words:

v̄ =
1
2c

∑
−c≤j≤c, j,0

vwt+j (3)

3.2 Skip-Gram Model
�e skip-gram model does the inverse of the CBOW model and tries
to predict the context words from the target words (Fig. 2). More
formally, given a sequence of training words w1,w2,w3, ...,wT ,
and a context window c , the objective of the skip-gram model is to
maximize the following average log probability:

1
T

T∑
t=1

∑
−c≤j≤c, j,0

loд p(wt+j |wt ), (4)

where the probability p(wt+j |wt ) is calculated using the so�max
function:

p(wo |wi ) =
exp(v ′Twovwi )∑ |V |
w=1 exp(v

′T
w vwi )

, (5)

where vw and v ′w are the input and the output vector of the word
w , and V is the complete vocabulary of words.

In both cases, calculating the so�max function is computationally
ine�cient, as the cost for computing is proportional to the size of

Figure 1: CBOW architecture

Figure 2: Skip-gram architecture

the vocabulary. �erefore, two optimization techniques have been
proposed, i.e., hierarchical so�max and negative sampling [21].
Empirical studies have shown that in most cases negative sampling
leads to a be�er performance than hierarchical so�max, which
depends on the selected negative samples, but it has higher runtime.

Once the training is �nished, all words (or, in our case, entities
from the knowledge base) are projected into a lower-dimensional
feature space, and semantically similar words are positioned close
to each other.

4 APPROACH
In our approach, we adapt neural language models for RDF graph
embeddings. Such approaches take advantage of the word order
in text documents, explicitly modeling the assumption that closer
words in the word sequences are statistically more dependent. In
the case of RDF graphs, we consider entities and relations between
entities instead of word sequences. �us, in order to apply such
approaches on RDF graph data, we �rst have to transform the
graph data into sequences of entities, which can be considered as
sentences. Using those sequences, we can train the same neural
language models to represent each entity in the RDF graph as a
vector of numerical values in a latent feature space.

We use graph walks for converting graphs into a set of se-
quences of entities. An example of an entity sequence extracted
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using graph walks from DBpedia would be: dbr : Trent Reznor →
dbo : associatedBand → dbr : Nine Inch
Nails → dbo : дenre → dbr : Industrial Rock . To perform these

walks on RDF graphs, we represent the graph as a set of vertices
(the entities in the RDF graph) and a set of directed edges (the
relations between the entities).

�e objective of the walk functions is for each vertex v ∈ V
to generate a set of sequences Sv , where the �rst token of each
sequence s ∈ Sv is the vertex v followed by a sequence of tokens,
which might be the labels of edges, vertices, or any substructure
extracted from the RDF graph, in an order that re�ects the relations
between the vertex v and the rest of the tokens, as well as among
those tokens.

What we want to achieve is a biasing of these walks to make them
more meaningful, i.e., being able to capture the most important
information about the observed entities. �erefore, we augment
the edges to not only have a label, but also a weight. We apply
twelve di�erent strategies for assigning these weights to the edges
of the graph. �ese weights will then in turn bias the random walks
on the graph. In particular, when a walk arrives in a vertex v with
out edges vo1, . . .vod , then the walk will follow edge vol with a
probability computed by

Pr[follow edge vol ] =
weiдht(vol )∑d
i=1weiдht(voi )

In other words, the normalized edge weights are directly interpreted
as the probability to follow a particular edge.

To obtain these edge weights, we make use of di�erent statis-
tics computed on the RDF data. �e statistics computed are the
following:
Predicate Frequency for each RDF predicate (i.e., label on the

edges) in the dataset, we count the number of times the
predicate occurs (only occurrences as a predicate are counted).

Object Frequency for each resource in the dataset, we count the
number of times it occurs as the object of an RDF triple
(i.e., is the target of an edge).

Predicate-Object frequency for each pair of a predicate and an
object in the dataset, we count the number of times there
is a statement with this predicate and object (i.e., we count
pairs of edge labels and the label of its target node).

Besides these statistics, we also use PageRank [2] computed
for the entities in the knowledge graph [42]. �is PageRank is
computed based on links between the Wikipedia articles represent-
ing the respective entities. When using the PageRank computed
for DBpedia, not each node has a value assigned, as only enti-
ties which have a corresponding Wikipedia page are accounted
for in the PageRank computation. Examples of nodes which do
not have a PageRank include DBpedia types or categories, like
h�p://dbpedia.org/ontology/Place and h�p://dbpedia.org/resource/
Category:Central Europe. �erefore, we assigned a �xed PageRank
to all nodes which are not entities. We chose a value of 0.2, which
is roughly the median PageRank [43], in the non-normalized page
rank values we used.

Note that there are essentially two types of metrics, those as-
signed to nodes, and those assigned to edges. �e predicate fre-
quency and predicate-object frequency, as well as the inverses of

these, can be directly used as weights for edges. �erefore, we call
these weighting methods edge-centric. In the case of predicate fre-
quency each predicate edge with that label is assigned the weight in
question. In the case of predicate-object frequency, each predicate
edge which ends in a given object gets assigned the predicate-object
frequency. When computing the inverse metrics, not the absolute
frequency is assigned, but its multiplicative inverse.

In contrast, the object frequency, and also the used PageRank
metric, assign a numeric score to each node in the graph. �erefore,
we call weighting approaches based on them node-centric. To obtain
a weight for the edges, we either push the number down or split the
number down to all in edges. By pushing down, we mean that the
number assigned to a node is used as the weight of all in edges. By
spli�ing down, we mean that the weight is divided by the number
of in edges and then assigned to all edges. �en, these weights
can be normalized as described above. If split is not mentioned
explicitly in node centric weighting strategies, then it is a push
down strategy.

In total, we inspected twelve di�erent approaches for weighting
edges using the metrics de�ned above.

Note that uniform weights are equivalent to using object fre-
quency with spli�ing the weights. To see why this holds true, we
have to follow the steps which will be taken. First, each node gets
assigned the amount of times it is used as an object. �is number is
equal to the number of in edges to the node. �en, this number is
split over the in edges, i.e., each in edge gets assigned the number
1. Finally, this weight is normalized, assigning to each out link
a uniform weight. Hence, this strategy would result in the same
walks as using unbiased random walks over the graph.

So, even if we add unbiased random walks to the list of weighting
strategies, we retain 12 unique ones, each with their own charac-
teristics. �ese strategies are:
Uniform approach:

(1) UniformWeight = Object Frequency SplitWeight – �is is the
most straight forward approach, also taken by the standard
RDF2Vec models. At �rst glance, it also looks like the most
neutral strategy. However, the input graph does not have
a regular structure in the sense that some entities have a
(much) higher in degree as others and hence they are more
likely to be visited. �us, more strongly connected entities
will have a higher in�uence on the resulting embeddings.

Edge-centric approaches:
(2) Predicate Frequency Weight – With this strategy, edges

with predicates which are commonly used in the dataset
are more o�en followed. �e e�ect of this is that many un-
common predicates are never followed in our experiments
and, as a result of that, many entities are also never visited
in the walks. On the other hand,there are a few entities
which have a very high in degree, and which thus a�ract a
lot of walks towards them.

(3) Inverse Predicate Frequency Weight – �is strategy has at
�rst sight a similar e�ect as the previous, but for other
nodes. �ose predicates which are rare will be followed
o�en. However, predicates follow a long-tail distribution,
and there are more predicates which are rare than common,
thus, the diversity of predicates occurring in the walks is

 http://dbpedia.org/ontology/Place
http://dbpedia.org/resource/Category:Central_Europe
http://dbpedia.org/resource/Category:Central_Europe
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higher. Moreover, despite having a low probability, also
edges with a common predicate are followed once in a
while as they occur so o�en in the dataset.

(4) Predicate-Object Frequency Weight – �is is similar to the
Predicate Frequency Weight, but di�erentiates between the
objects as well. If we have for example an outgoing link
with label rdf:type with object owl:Thing, then this link
will be followed more o�en than, e.g., the same predicate
with object dbpedia:AdministrativeRegion.

(5) Inverse Predicate-Object Frequency Weight – �e inverse
of the previous, with similar features to Inverse Predicate
Frequency Weight. We measured that this approach results
in walks in which nodes occur most uniformly.

Node-centric object freq. approaches (See also strategy 1):
(6) Object Frequency Weight – �is weighting does essentially

ignore the predicate altogether and just ensures that en-
tities which have a high in degree get visited even more
o�en.

(7) Inverse Object Frequency Weight – �is approach also ig-
nores the predicate, but makes the probability for nodes
to be visited more equally distributed. Hence, according
to our measurements entities occur nearly as uniformly in
walks as for Inverse Predicate-Object Frequency Weight.

(8) Inverse Object Frequency Split Weight – �e general statis-
tics for these walks look surprisingly similar to the non
inverted strategy.

Node-centric PageRank approaches:
(9) PageRank Weight – Similar to Object Frequency Weight,

this strategy makes some nodes more important and hence
there will be resources which are more frequent in the
walks as others.

(10) Inverse PageRank Weight – One would expect that this
approach would have a similar e�ect as Inverse Object
Frequency Weight, however, our measurements show that
the inversion does not cause more uniform occurrence of
entities as strongly as that strategy.

(11) PageRank Split Weight – Both this approach and the next
one are somewhat di�cult to predict as they do not only
depend on the structure on the graph. Our analysis of
the walks show that nodes are fairly uniformly used in
these walks. Furthermore, these strategies result in a high
uniformity in the absolute frequency of predicates.

(12) Inverse PageRank Split Weight – �e generated walks have
similar statistics as PageRank Split Weight. �e expecta-
tion is, however, that in this metric tends to include more
unimportant nodes in the walks.

For each set of the twelve sets of sequences created using those
metrics, we build one CBOW and one skip-gram model, as described
in Section 3. Hence, we compare a total of 24 di�erent embeddings.

5 EVALUATION
First, we evaluate the di�erent weighting strategies on a number of
classi�cation and regression tasks, comparing the results of di�er-
ent feature extraction strategies combined with di�erent learning
algorithms. Second, we evaluate the weighting strategies on entity

and document modeling tasks, i.e., entity relatedness and document
similarity.

To build the neural language models, we generate 250 walks
per entity with depths of 2,4,6, and 8 for each of the twelve edge
weighting strategies. A depth of eight means four hops in the graph,
as each hop adds two elements to the sequence (i.e., the predicate
and the object). Since, the entity which is the source of the walk is
also include in the path, the corresponding path lengths are 3,5,7,
and 9. When the walk reaches a “dead end”, i.e., a node without any
outgoing edges, the walk ends in that node, even if the maximum
depth is not reached.

We use the corpora of sequences to build both CBOW and Skip-
Gram models with the following parameters: window size = 5;
number of iterations = 5; negative sampling for optimization; neg-
ative samples = 25; dimensions = 200; with average input vector
for CBOW. �e parameters are selected based on recommendations
from the literature. All the models, as well as the code, are publicly
available2.

5.1 Machine Learning Tasks
Linking entities in a machine learning task to those in the LOD cloud
helps generating additional features, which may help improving
the overall learning outcome [37]. For example, when learning a
predictive model for the success of a movie, adding knowledge from
the LOD cloud (such as the movie’s budget, director, genre, etc.)
can lead to a more accurate model. In this case, for each entity in
the dataset, we use the correposing entity’s embedded vector from
the knowledge base as a feature vector.

5.1.1 Datasets. We evaluate our approach on DBpedia [17]. We
use the English version of the 2016-04 DBpedia dataset, which
contains 4, 678, 230 instances and 1, 379 mapping-based properties.
In our evaluation we only consider object properties, and ignore
datatype properties and literals.

We use the entity embeddings on �ve di�erent datasets from
di�erent domains, for the tasks of classi�cation and regression [34].
�ose �ve datasets are used to provide classi�cation/regression
targets for the large RDF datasets (see Table 1).

• �e Cities dataset contains a list of cities and their quality
of living, as captured by Mercer3. We use the dataset both
for regression and classi�cation.

• �eMetacriticMovies dataset is retrieved from Metacritic.com4,
which contains an average rating of all time reviews for
a list of movies [38]. �e initial dataset contained around
10, 000 movies, from which we selected 1, 000 movies from
the top of the list, and 1, 000 movies from the bo�om of
the list. We use the dataset both for regression and classi�-
cation.

• Similarly, the Metacritic Albums dataset is retrieved from
Metacritic.com5, which contains an average rating of all
time reviews for a list of albums [39].

• �e AAUP (American Association of University Profes-
sors) dataset contains a list of universities, including eight

2h�p://data.dws.informatik.uni-mannheim.de/rdf2vec/
3h�ps://www.imercer.com/content/mobility/quality-of-living-city-rankings.html
4h�p://www.metacritic.com/browse/movies/score/metascore/all
5h�p://www.metacritic.com/browse/albums/score/metascore/all

http://data.dws.informatik.uni-mannheim.de/rdf2vec/
https://www.imercer.com/content/mobility/quality-of-living-city-rankings.html
http://www.metacritic.com/browse/movies/score/metascore/all
http://www.metacritic.com/browse/albums/score/metascore/all
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Table 1: Classi�cation and regression datasets overview. For
each dataset, we depict the number of instances, the ma-
chine learning tasks in which the dataset is used (C stands
for classi�cation, andR stands for regression) and the source
of the dataset.

Dataset #Instances ML Task Original Source
Cities 212 R/C (c=3) Mercer

Metacritic Albums 1600 R/C (c=2) Metacritic
Metacritic Movies 2000 R/C (c=2) Metacritic

AAUP 960 R/C (c=3) JSE
Forbes 1585 R/C (c=3) Forbes

target variables describing the salary of di�erent sta� at
the universities6. We use the average salary as a target
variable both for regression and classi�cation, discretizing
the target variable into “high”, “medium” and “low”, using
equal frequency binning.

• �e Forbes dataset contains a list of companies including
several features of the companies, which was generated
from the Forbes list of leading companies 20157. �e target
is to predict the company’s market value as a regression
task. To use it for the task of classi�cation we discretize
the target variable into “high”, “medium”, and “low”, using
equal frequency binning.

5.1.2 Experimental Setup. As in [36], we compare our approach
to several baselines. For generating the data mining features, we
use three strategies that take into account the direct relations to
other resources in the graph [30], and two strategies for features
derived from graph sub-structures [6]:

• Features derived from speci�c relations. In the experiments
we use the relations rdf:type (types), and dcterms:subject
(categories).
• Features derived from generic relations, i.e., we generate a

feature for each incoming (rel in) or outgoing relation (rel
out) of an entity, ignoring the value or target entity of the
relation.

• Features derived from generic relations-values, i.e, we gen-
erate feature for each incoming (rel-vals in) or outgoing
relation (rel-vals out) of an entity including the value of
the relation.

• Kernels that count substructures in the RDF graph around
the instance node. �ese substructures are explicitly gen-
erated and represented as sparse feature vectors.
– �e Weisfeiler-Lehman (WL) graph kernel for RDF [6]

counts full subtrees in the subgraph around the in-
stance node. �is kernel has two parameters, the sub-
graph depth d and the number of iterations h (which
determines the depth of the subtrees). We use two
pairs of se�ings, d = 1,h = 2 and d = 2,h = 3.

– �e Intersection Tree Path kernel for RDF [6] counts
the walks in the subtree that spans from the instance
node. Only the walks that go through the instance
node are considered. We will therefore refer to it as

6h�p://www.amstat.org/publications/jse/jse data archive.htm
7h�p://www.forbes.com/global2000/list/

the root Walk Count (WC) kernel. �e root WC kernel
has one parameter: the length of the paths l , for which
we test 2 and 3.

Furthermore, we compare the results to the state-of-the art graph
embeddings approaches: TransE, TransH and TransR. We use an
existing implementation and build models on the the DBpedia data
with the default parameters.8

We perform two learning tasks, i.e., classi�cation and regression.
For classi�cation tasks, we use Naive Bayes, k-Nearest Neighbors
(k=3), C4.5 decision tree, and Support Vector Machines. For the
SVM classi�er we optimize the parameter C in the range {10−3,
10−2, 0.1, 1, 10, 102, 103}. For regression, we use Linear Regression,
M5Rules, and k-Nearest Neighbors (k=3). �e results are calculated
using strati�ed 10-fold cross validation.

�e strategies for creating propositional features from Linked
Open Data are implemented in the RapidMiner LOD extension9 [31,
33]. �e experiments, including the feature generation and the
evaluation, were performed using the RapidMiner data analytics
platform.10 �e RapidMiner processes and the complete results can
be found online.11

For comparing the approaches, we follow the approach intro-
duced by Demšar [7]. �e approach proposes to �rst rank the
strategies for each dataset in isolation, and then to compute a sig-
ni�cance level for the di�erence of ranks using a Friedman test.
While the Friedman test only determines whether there is a signi�-
cant di�erence between any of the compared approaches, pairwise
signi�cance levels are computed with a post-hoc Nemenyi test [24].
�e results of the post-hoc test allows for concluding if one ap-
proach signi�cantly outperforms another one. For the Friedman
test we select a signi�cance level of α = 0.10, and for the post-hoc
Nemenyi test we use critical values q = 0.05. We carry out the test
on each learning method separately.

5.1.3 Results. �e results for the task of classi�cation on the
�ve di�erent datasets using four di�erent learning methods are
given in Table 2. For each of the datasets and for each learning
method, we select the best performing results of all the baselines,
and report it under Best baseline. Using the Friedman test, the
null hypothesis was rejected for the performances of the strategies
when using Naive Bayes and KNN, meaning there is a signi�cant
performance di�erence between the strategies.

�e results for the task of regression on the �ve di�erent datasets
using four di�erent learning methods are given in Table 3. Using
the Friedman test, the null hypothesis was rejected for the perfor-
mances of the strategies when using Linear Regression, meaning
there is a signi�cant performance di�erence between the strategies.

From the results for both tasks we can conclude that the RDF2Vec
approach outperforms the baseline approaches and also outper-
forms the state-of-the art graph embeddings models. Furthermore,
Inverse PageRank Weight and PageRank Split Weight strategies per-
form well for di�erent learning methods. Overall, the skip-gram
models outperform the corresponding CBOW models for most of

8h�ps://github.com/thunlp/KB2E/
9h�p://dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension
10h�ps://rapidminer.com/
11h�p://data.dws.informatik.uni-mannheim.de/rmlod/LOD ML Datasets/

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.forbes.com/global2000/list/
https://github.com/thunlp/KB2E/
http://dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension
https://rapidminer.com/
http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_Datasets/
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Table 2: Classi�cation average rank results. �e best ranked results for each method are marked in bold. �e learning models
for which the strategies were shown to have signi�cant di�erence based on the Friedman test with α < 0.05 are marked with
*. �e single values marked with ∗mean that are signi�cantly worse than the best strategy at signi�cance level q = 0.05

Method NB* KNN* SVM C4.5
Uniform Weight CBOW 14.4 9.7 12.8 9.4

SG 6.4 3.3 10.0 6.6
Edge-centric approaches

Predicate Frequency Weight CBOW 14.0 11.3 12.6 14.0
SG 11.6 11.1 10.4 12.8

Inverse Predicate Frequency Weight CBOW 24.6* 25.6* 22.5 19.8
SG 23.0 19.4 15.8 18.2

Predicate Object Frequency Weight CBOW 20.5 20.9 17.9 20.8
SG 20.4 20.3 16.7 20.6

Inverse Predicate Object Frequency Weight CBOW 19.0 16.8 15.3 15.4
SG 17.2 15.6 10.6 12.2

Node-centric object freq. approaches

Object Frequency Weight CBOW 19.1 20.2 17.9 21.0
SG 17.8 14.6 14.0 15.8

Inverse Object Frequency Weight CBOW 7.0 10.6 10.2 7.6
SG 19.6 19.4 15.7 21.0

Inverse Object Frequency Split Weight CBOW 18.8 16.7 16.0 13.4
SG 7.4 10.9 13.1 14.2

Node-centric PageRank approaches

PageRank Weight CBOW 25.2* 22.6 20.9 19.0
SG 14.2 9.8 9.8 13.0

Inverse PageRank Weight CBOW 8.2 14.8 12.4 10.6
SG 4.8 10.0 9.8 9.0

PageRank Split Weight CBOW 23.4 10.9 17.0 15.2
SG 4.4 4.7 6.7 8.4

Inverse PageRank Split Weight CBOW 13.4 11.3 17.9 15.6
SG 7.4 8.9 11.6 10.6

Baseline and related approaches
Best Baseline 12.0 15.0 19.0 7.8

TransE 10.0 16.7 16.8 16.6
TransH 9.8 15.8 16.3 17.2
TransR 12.4 19.1 16.3 20.2

the strategies. Unexpectedly, the Uniform Weight strategy also
yields competitive results.

However, for the variety of tasks at hand, there is no universal
approach, i.e., embedding model and a machine learning method,
that consistently outperforms the others.

5.2 Entity and Document Modeling
Calculating entity relatedness and similarity are fundamental prob-
lems in numerous tasks in information retrieval, natural language
processing, and Web-based knowledge extractions. While similarity
only considers subsumption relations to assess how two objects are
alike, relatedness takes into account a broader range of relations,
i.e., the notion of relatedness is wider than that of similarity. For
example, “Facebook” and “Google” are both entities of the class
company, and they have high similarity and relatedness score. On
the other hand, “Facebook” and “Mark Zuckerberg” are not similar

at all, but are highly related. While “Google” and “Mark Zuckerberg”
are not similar at all, and have low relatedness value.

As previously mentioned, in the RDF2Vec feature embedding
space (see Section 4) semantically similar entities appear close to
each other in the feature space. �erefore, the problem of calculat-
ing the similarity between two instances is a ma�er of calculating
the distance between two instances in the given feature space. To
do so, we use the standard cosine similarity measure, which is ap-
plied on the vectors of the entities. Formally, the similarity between
two entities e1 and e2, with vectors V1 and V2, is calculated as the
cosine similarity between the vectors V1 and V2:

sim(e1, e2) =
V1 ·V2
| |V1 | | · | |V2 | |

(6)

We use the entity similarity approach in the task of calculating
semantic document similarity. We follow similar approach as the
one presented in [27], where two documents are considered to be
similar if many entities of the one document are similar to at least
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Table 3: Regression average rank results. �e best ranked results for each method are marked in bold. �e learning models
for which the strategies were shown to have signi�cant di�erence based on the Friedman test with α < 0.05 are marked with *.
�e single values marked with ∗ are signi�cantly worse than the best strategy at signi�cance level q = 0.05

Method LR* KNN M5
Uniform Weight CBOW 8.0 7.4 9.0

SG 4.4 7.6 8.8
Edge-centric approaches

Predicate Frequency Weight CBOW 10.8 13.4 10.8
SG 15.0 11.6 16.4

Inverse Predicate Frequency Weight CBOW 22.0 16.8 21.6
SG 13.0 15.4 17.2

Predicate Object Frequency Weight CBOW 24.6* 22.4 24.2
SG 24.8* 23.6 24.8

Inverse Predicate Object Frequency Weight CBOW 12.6 14.0 13.4
SG 6.2 10.6 8.2

Node-centric object freq. approaches

Object Frequency Weight CBOW 22.8 22.2 21.6
SG 10.8 15.0 14.6

Inverse Object Frequency Weight CBOW 6.8 10.0 9.4
SG 26.0* 22.8 23.8

Inverse Object Frequency Split Weight CBOW 21.0 20.2 19.0
SG 13.2 15.6 13.2

Node-centric PageRank approaches

PageRank Weight CBOW 25.8* 18.0 25.6
SG 7.0 15.4 7.8

Inverse PageRank Weight CBOW 11.4 8.8 13.0
SG 7.4 6.8 6.2

PageRank Split Weight CBOW 17.6 12.2 17.8
SG 8.6 10.2 8.4

Inverse PageRank Split Weight CBOW 17.6 18.2 17.8
SG 9.4 11.2 7.2

Baseline and related approaches
Best Baseline 17.4 9.6 9.6

TransE 12.8 16.7 13.0
TransH 12.8 14.1 12.4
TransR 16.2 16.2 11.2

one entity in the other document. More precisely, we try to identify
the most similar pairs of entities in both documents, ignoring the
similarity of all the other 1-1 similarities values.

Given two documents d1 and d2, the similarity between the
documents sim(d1,d2) is calculated as follows:

(1) Extract the sets of entities E1 and E2 in the documents d1
and d2.

(2) Calculate the similarity score sim(e1i , e2j ) for each pair of
entities in documentd1 andd2, where e1i ∈ E1 and e2j ∈ E2

(3) For each entity e1i in d1 identify the maximum similarity
to an entity in d2 max sim(e1i , e2j ∈ E2), and vice versa.

(4) Calculate the similarity score between the documents d1
and d2 as:

sim(d1,d2) =
∑ |E1 |
i=1 max sim(e1i , e2j ∈ E2) +

∑ |E2 |
j=1 max sim(e2j , e1i ∈ E1)

|E1 | + |E2 |
(7)

For entity similarity, we assume that two entities are related if
they o�en appear in the same context. For example, “Facebook”
and “Mark Zuckerberg”, which are highly related, are o�en used in
the same context in many sentences. To calculate the probability of
two entities being in the same context, we make use of the RDF2Vec
models and the set of sequences of entities generated as described
in Section 4. Given an RDF2Vec model and a set of sequences of
entities, we calculate the relatedness between two entities e1 and
e2, as the probability p(e1 |e2) calculated using the so�max function.
In the case of a CBOW model, the probability is calculated as:

p(e1 |e2) =
exp(vTe2v

′
e1 )∑V

e=1 exp(vTe2v
′
e )
,

where v ′e is the output vector of the entity e , and V is the complete
vocabulary of entities.
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In the case of a skip-gram model, the probability is calculated as:

p(e1 |e2) =
exp(v ′Te1 ve2 )∑V
e=1 exp(v ′Te ve2 )

, (8)

where ve and v ′e are the input and the output vector of the entity e ,
and V is the complete vocabulary of entities.

5.2.1 Datasets. For both tasks of determining entity relatedness
and document similarity, benchmark datasets exist. We use those
datasets to compare the use of RDF2Vec models against state of the
art approaches.

For evaluating the entity relatedness approach, we use the KORE
dataset [11]. �e dataset consists of 21 main entities, whose relat-
edness to the other 20 entities each has been manually assessed,
leading to 420 rated entity pairs. We use the Spearman’s rank
correlation as an evaluation metric.

To evaluate the document similarity approach, we use the LP50
dataset [16], namely a collection of 50 news articles from the Aus-
tralian Broadcasting Corporation (ABC), which were pairwise anno-
tated with similarity rating on a Likert scale from 1 (very di�erent)
to 5 (very similar) by 8 to 12 di�erent human annotators. To obtain
the �nal similarity judgments, the scores are averaged for each pair
the scores of all annotators. As a evaluation metrics we use Pear-
son’s linear correlation coe�cient and Spearman’s rank correlation
plus their harmonic mean.

5.2.2 Results. In this section we evaluate the di�erent weighting
strategies and compare them to the state of the art graph embedding
approaches TransE, TransH and TransR, on the entity relatedness
and document similarity tasks.

�e results for the entity relatedness task are shown in Table 4.
We can observe that the translating embeddings models perform
rather poor, becuase we use the simple cosine similarity between
the entitites to calculate the similarity. �e best results are achieved
when using the PageRank Split Weight strategy, using skip-gram
model.

�e results for the document similarity task are shown in Table 5.
Again, the RDF2Vec models outperform the translating embeddings
models. As for the entity relatedness task, the best results are
obtained using the PageRank Split Weight strategy.

5.3 Walk statistics
As we already partially discussed in section 4, each strategy results
in di�erent characteristics for the random walks. In particular, the
walks can have di�erent lengths, since each strategy has a di�erent
likelihood to steer the walks into “dead ends”, i.e., nodes with no
outgoing edges, more quickly. �us, for the DBpedia dataset which
we used, we further analyzed the length of the walks generated
using the di�erent strategies. �e histograms for the walk lengths
for each of the strategies are plo�ed together in �g. 3. We can
observe that the uniform weight, predicate frequency weight, object
frequency weight and predicate object frequency weight strategies
result in a lot of short walks. �ese are exactly the strategies which
give extra weight to edges going into speci�c popular nodes. It
appears that these entities are then o�en also end points of the
walk, i.e, there are no out edges from these nodes. We observe that

Table 4: Entity relatedness Spearman’s rank correlation re-
sults

Method ρ

Uniform Weight CBOW 0.384
SG 0.564

Edge-centric approaches

Predicate Frequency Weight CBOW -0.058
SG -0.123

Inverse Predicate Frequency Weight CBOW 0.468
SG 0.584

Predicate Object Frequency Weight CBOW 0.076
SG -0.043

Inverse Predicate Object Frequency CBOW 0.578
SG 0.610

Node-centric object freq. approaches

Object Frequency Weight CBOW -0.096
SG -0.102

Inverse Object Frequency Weight CBOW 0.429
SG 0.554

Inverse Object Frequency Split Weight CBOW 0.447
SG 0.489

Node-centric PageRank approaches

PageRank Weight CBOW 0.378
SG 0.456

Inverse PageRank Weight CBOW 0.411
SG 0.426

PageRank Split Weight CBOW 0.621
SG 0.634

Inverse PageRank Split Weight CBOW 0.462
SG 0.487

Related approaches
TransE 0.091
TransH 0.050
TransR 0.058

the other strategies produce walks of maximum length most of the
time.

However, we cannot derive that longer or shorter paths are bet-
ter, as the three best performing approaches, i.e., uniform, inverse
page rank, and page rank split, have very di�erent behaviors: the
�rst favors shorter sequences, the second produces an equal distri-
bution of sequences of di�erent lengths, and the third favors longer
sequences.

6 CONCLUSION
Vector space embeddings for RDF graphs have been proven a high
utility and powerful approach for transforming RDF data and knowl-
edge graphs to propositional forms. �e RDF2Vec approach, �rst
introduced in [36], leverages random walks for transforming RDF
graphs to token sequences, which is a necessary approach to be
able to apply standard vector space embeddings techniques like
CBOW and Skip-Gram.

In this paper, we have examined the in�uence of edge weights
and transition probabilities to guide the walks, i.e., to make them
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Table 5: Document similarity results - Pearson’s linear correlation coe�cient (r) Spearman’s rank correlation (ρ) and their
harmonic mean µ

Method r ρ µ

Uniform Weight CBOW 0.562 0.480 0.518
SG 0.608 0.448 0.516

Edge-centric approaches

Predicate Frequency Weight CBOW 0.547 0.454 0.496
SG 0.355 0.284 0.316

Inverse Predicate Frequency Weight CBOW 0.560 0.395 0.463
SG 0.653 0.487 0.558

Predicate Object Frequency Weight CBOW 0.339 0.302 0.319
SG 0.238 0.183 0.207

Inverse Predicate Object Frequency Weight CBOW 0.549 0.473 0.508
SG 0.628 0.491 0.551

Node-centric object freq. approaches

Object Frequency Weight CBOW 0.372 0.317 0.342
SG 0.255 0.190 0.218

Inverse Object Frequency Weight CBOW 0.552 0.455 0.499
SG 0.585 0.452 0.510

Inverse Object Frequency Split Weight CBOW 0.501 0.405 0.448
SG 0.469 0.335 0.391

Node-centric PageRank approaches

PageRank Weight CBOW 0.530 0.303 0.386
SG 0.589 0.384 0.465

Inverse PageRank Weight CBOW 0.588 0.491 0.535
SG 0.467 0.390 0.425

PageRank Split Weight CBOW 0.578 0.426 0.490
SG 0.658 0.476 0.552

Inverse PageRank Split Weight CBOW 0.525 0.419 0.466
SG 0.369 0.292 0.326

Related approaches
TransE 0.550 0.430 0.483
TransH 0.517 0.414 0.460
TransR 0.568 0.431 0.490

less uniformly random. We have shown that introducing biases
to the walks can lead to signi�cant improvements. In particular,
the PageRank split and the inverse PageRank weighting schemes
provide good results.

So far, we have based our evaluations on machine learning and
document modeling tasks. For future work, we will also study
the e�ect on other tasks in which knowledge graph embeddings
have been applied successfully, such as content-based recommender
systems [8], as well as link prediction, type prediction, or graph
completion and error detection in knowledge graphs [29], as dis-
cussed in [22, 25].

In our experiments, we have also experienced that there is not
a one-size-�ts-all solution for the weighting schemes. Although
there are some trends that can be observed, the performance of the
weighting schemes is hard to predict in individual cases. Among
others, we assume that one crucial factor is the popularity of entities:
for example, for very popular entities, the PageRank heuristic is as-
sumed to work well, because it extracts more sequences containing

popular entities, while for tail entities, the inverse PageRank heuris-
tic will lead to be�er results. Future evaluations should examine
those e�ects more deeply.

Summarizing, RDF and knowledge graph embeddings are a use-
ful approach for leveraging background knowledge in those sources.
With this paper, we have explored one crucial factor which in�u-
ences the utility of those embeddings. We believe that this work
will be a helpful milestone towards exploiting the full power of RDF
graph embeddings.
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Figure 3: Distribution of walk lengths per strategy.
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