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Abstract. The exponential growth in the ability to generate, capture,
and store high dimensional data has driven sophisticated machine learn-
ing applications. However, high dimensionality often poses a challenge
for analysts to e�ectively identify and extract relevant features from
datasets. Though many feature selection methods have shown good re-
sults in supervised learning, the major challenge lies in the area of unsu-
pervised feature selection. For example, in the domain of data visualiza-
tion, high-dimensional data is di�cult to visualize and interpret due to
the limitations of the screen, resulting in visual clutter. Visualizations are
more interpretable when visualized in a low dimensional feature space.
To mitigate these challenges, we present an approach to perform unsu-
pervised feature clustering and selection using our novel graph clustering
algorithm based on Clique-Cover Theory. We implemented our approach
in an interactive data exploration tool which facilitates the exploration of
relationships between features and generates interpretable visualizations.

1 Introduction

The ability to collect and generate a wide variety of complex, high-dimensional
datasets continues to grow in the era of Big Data. Increasing dimensionality and
the growing volume of data pose a challenge to the current data exploration
systems to unfold hidden information in high dimensional data. For example,
in the �eld of data visualization human cognition limits the number of data di-
mensions that can be visually interpreted. The potential amount of overlapping
data points projected on to a two-dimensional display hinders the interpreta-
tion of meaningful patterns in the data. Though dimensionality reduction has
proved to be a promising solution to this problem, there exists the risk of dis-
carding interesting properties of the data. There are two prominent approaches
for dimensionality reduction: Feature Extraction and Feature Selection. Feature
extraction strategies such as Principle Component Analysis (PCA), Linear Dis-
criminant Analysis (LDA), or Multidimensional Scaling (MDS), try to mitigate
the e�ect by projecting a high-dimensional feature space into a lower dimen-
sional space which in turn results in information loss due to the transformation
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of the locally relevant dimensions. Hence, these methods are often not suitable
for data exploration tasks, especially when the user is interested to explore the
local structure of the data. On the other hand, feature selection focuses on �nding
meaningful dimensions, thereby removing irrelevant and redundant features [13],
while maintaining the underlying structure. Feature selection methods can be
classi�ed as supervised and unsupervised; the latter has gained popularity in
recent years.

In this paper, we propose a novel graph clustering approach for unsupervised
feature selection using the concept of "Clique-Cover" as an underlying founda-
tion. A clique, for an undirected graph, is a subgraph where any two vertices of
the subgraph are adjacent to each other. To enumerate such a graph in order to
�nd the largest clique (a clique with most vertices) is termed as the maximal-
clique problem in graph theory. The maximal-clique model has been studied
extensively to detect clusters in large graphs and has found its application in
varied domains such as information retrieval [4] or pattern recognition [15].

The contributions of this paper are (i) the integration of Clique-Cover theory
in an advanced feature selection pipeline, and (ii) a detailed evaluation of the
approach with various experiments using real-world datasets. In our approach,
we transform the problem space into a complete graph where the features are
nodes and the edge weights denote the degree of correlation between the fea-
tures. Then, we apply our proposed maximal-clique based algorithm for non-
overlapping cluster detection. Finally, we select highly relevant features from
the detected clusters using graph-centrality measures. The algorithm is embed-
ded in a novel Feature Selection Pipeline to select features from datasets lacking
class labels. This main contribution of the paper is presented in section 3, after
we introduced the basics of Clique-Cover theory and discussed related work in
section 2.

To verify the e�ciency of our approach, we performed experiments to com-
pare our results with that of the existing approaches using real-world datasets.
Our experiments presented in section 4 demonstrate that the proposed method
performs better than baseline approaches in terms of clustering and classi�cation
accuracy. Furthermore, by evaluating our model in terms of computational e�-
ciency and robustness we report the scalability of our model towards increasing
dimensionality.

2 Background and Related Work

Clique-Cover is a graph clustering approach based on the underlying notion
of maximal cliques [8]. A Clique for an undirected graph G = (V,E) is de�ned
as the set of vertices C such that each of the distinct pair of vertices in C is
adjacent (i.e, there exists an edge connecting the pairs). A Clique, which is not
a subset of a larger clique, is known as a maximal clique. Thus, given a graph G,
a subgraph H of a graph G is a maximal clique if H is isomorphic to a complete
graph, and there is no vertex v ∈ V (G) such that v is adjacent to each vertex
of H. In other words, a subgraph H of a graph G is a maximal clique if H is a
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clique, and there is no vertex in G that sends an edge to every vertex of H. In
this work, we have extended the concept of maximal cliques to the edge-weighted
cliques. A maximal clique having the maximum sum of edge-weights highlights
the notion of a cluster. The recursive process of determining such cliques leads to
the generation of clusters of di�erent sizes. In terms of graph theory, a cluster can
be termed as a cover on the respective nodes of the graph such that the subset
of nodes is strongly connected within the cover. Thus a Clique-Cover is formally
de�ned as follows: Let G be a graph. A clique of a graph G is a nonempty subset
S of V (G) where S is a complete graph. A set ϑ of cliques in G is a clique cover
of G if for every u ∈ V (G) there exists S ∈ ϑ such that u ∈ S.

Feature Clustering algorithms localize the search for relevant features and
attempt to �nd clusters that exist in multiple overlapping subspaces. There are
two major branches of feature clustering: (i) The bottom-up algorithms �nd
dense regions in low dimensional spaces and combine them to form clusters.
(ii) The top-down algorithms start with the full set of dimensions as the initial
cluster and evaluate the subspaces of each cluster, iteratively improving the
results. Clustering in Quest(CLIQUE) [2] is a bottom-up approach that uses a
static grid size to determine the clusters within the subspace of the dataset. It
combines density and grid-based clustering and uses an a-priori-style technique
to identify clusters in subspaces. Tuning the parameters for grid size and the
density threshold is di�cult in CLIQUE. PROjected CLUstering(PROCLUS) [1]
is a top-down algorithm, which samples the data, selects a set of k medoids and
iteratively improves the clustering. Although we can achieve an enhanced cluster
quality, it depends on parameters like the number of clusters and the size of the
subspaces, which are di�cult to determine in advance.

Unsupervised Feature Selection can be broadly classi�ed into three main
approaches: Filter, Wrapper, and Hybrid. Filter methods select the most relevant
features from the data itself without using any clustering algorithm. However,
they are unable to model feature dependencies and yield better results mostly
with supervised data. Relief [16], Laplacian Score [10], Spectral feature selec-
tion [23] are some of the �lter methods. Wrapper methods, on the other hand,
use the results of a speci�c clustering algorithm to evaluate feature subsets. Al-
though they can model feature dependencies, the main disadvantage of wrapper
approaches is that they have a high computational cost and are prone to over�t-
ting. Hybrid methods combine �lter and wrapper models and aim at achieving a
compromise between e�ciency and e�ectiveness (signi�cance of the feature sub-
sets) by using feature ranking metrics and learning algorithms. As highlighted
in [18], the limitation of these models is that they require the speci�cation of
the hyper-parameters in advance. Moreover, most of the traditional methods
are designed to handle only numerical data, whereas the data generated in real-
world applications is a combination of numerical and non-numerical features.
In the next section we present our proposed graph clustering algorithm based
on the Clique-Cover theory. A weighted feature graph is constructed where the
nodes represent the feature set and the edges represent the feature correlation
measures.
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Fig. 1. Feature Selection Pipeline

3 Unsupervised Feature Selection with Clique Covers

Our approach is unsupervised as it does not require class label information. The
main idea is to model the dependency between features by clustering them. In-
terpretability of features is retained as features are not transformed but only
selected. To prove the e�ectiveness of our approach in the domain of data visu-
alization, we provide an interface to visualize the Representative Features. The
interface allows the user to explore the intermediate results, visualize feature
graphs, and visually inspect the data of the resulting feature sets.

We depict the complete work�ow of our feature selection pipeline in Figure
1. As a �rst step, we create a Complete Feature Graph from the dataset.
Next, we assign weights to the feature graph using feature correlation measures.
These weights are stored in the Feature Matrix which acts as the internal data
structure for our Feature Correlation Graph. In the next step, we apply our
graph pruning algorithm to detect and remove weakly connected edges from the
complete Feature Correlation Graph and generate the Feature Dependency

Graph. As a next step, we iteratively apply our Clique-Cover algorithm to the
Feature Dependency Graph to identify the clique-covers. From these clusters, we
now apply our algorithm for Representative Feature Selection, using eigen-vector
centrality measures, to construct the Representative Feature Vector, which
gives us the dimensionality-reduced feature space. In the following subsections,
we describe each of the steps in detail.

Data Model & Preprocessing. We assume the data to be in tabular format,
where the columns represent the features and the rows represent the data points.
After the data is cleaned and pre-processed, we split the features in categorical
and numerical features. For data pre-processing, we perform the following steps:
1. Data Cleaning for the removal of empty and duplicate columns, 2. Data Nor-
malization for standardizing both numerical and the categorical data, 3. Data
Imputation for dealing with missing values by using the principle of predictive
mean matching [21], and 4. Data Segregation for identifying numerical and cat-
egorical features. The reason to segregate is that we apply the most suitable
correlation measures in the respective groups in order to capture the maximum
trends of association. As discussed in the following section, a single correlation
measure cannot work well with both groups. A selection of appropriate measures
is required for the proper construction of the feature graph.
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Construction of the Feature Correlation Graph. First, we need to deter-
mine the pairwise feature correlations. In the feature graph, the nodes are the fea-
tures, and the edge-weights are the correlation or association coe�cients between
the features. As described above, we construct two feature correlation graphs,
one for numerical and one for categorical features. To calculate the weights of the
edges for these graphs we use the following correlation measures: (i) The Chi-
square test of association followed by Cramer's V for categorical feature groups.
(ii) Maximal Information Coe�cient (MIC) for numerical feature groups. The
Chi-square test is used to determine the correlation between categorical vari-
ables. While it is advantageous because it is symmetric in nature and invariant
with respect to the order of the categories, it su�ers from certain weaknesses.
For example, it fails to specify the strength of the association between the vari-
ables and it is sensitive to the sample size. To address this challenge we use a
further test known as the Cramer's V. This is an essential test that we con-
duct in order to determine feature correlation as it is immune to the sample size
and provides a normalized value, where 0 implies no association and 1 implies
a strong association between the attributes. We use MIC to capture non-linear
trends between variables of numerical feature groups by using the concept of
Information Entropy. However, in high-dimensional space this method becomes
computationally expensive [19]. To overcome this, we calculate MIC using the
normalized Mutual Information. A square matrix is created using the MIC pairs
that represents the correlations between the numerical feature groups.

At the end of this step, we get two weighted square Feature Matrices for each
feature correlation graphs. Both feature groups were handled independently and
they undergo identical processes in the feature selection pipeline. In the rest
of the paper, for the purpose of explainability, we describe a common feature
selection process (as in Figure 1). This represents the overall work�ow for feature
selection using our proposed approach.

Feature Pruning. The complete feature graph obtained from the previous step
may contain weakly connected edges between the nodes. We identify a weak-edge
as those edges whose weights are below the Threshold Coe�cient. The Thresh-
old Coe�cients are determined using the concepts of K-Nearest Neighbors [3].
The KNN method is a common approach in graph algorithms to determine the
proximity of nodes [14]. The reason for using the KNN algorithm is that it does
not require any assumptions or training steps to build the model. Moreover, it
is easy to implement and robust to noisy data as well. The value of K is set as
K =

√
N , where N is the number of features in each of the feature sets.

After determining the threshold coe�cients, the K strongest connections for
each feature are retained and the others are pruned, resulting in the Feature
Dependency Graph. We store the Feature Dependency Graph in the form of an
a�nity matrix which is symmetric in nature. The steps of this process are shown
in Algorithm 1, which takes the correlation matrix (corrMat) and K (described
above) as inputs and gives the a�nity matrix (affMat) as the output. The
correlation matrices (MIC and Cramer) are square weighted adjacency matrices
obtained by applying correlation measures on the Feature Correlation Graphs.
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Algorithm 1: Identifying Threshold Coe�cient

Procedure : makeAffinity
Input: corrMat (MIC and/or Cramer) and K;
Output: a�nitymatrix(affMat);
totalNodes← length(corrMat);
if K > totalNodes then

affMat← corrMat;
end
else

/* Determine strong connections for every feature node */

foreach i-th feature in totalNodes do
strongConnections← sort(corrMat[i, ], decreasing = TRUE)[1 : K];
/* Make the affinity matrix symmetric in nature */

foreach s-th feature in strongConnections do
j ← position(corrMat[i, ] == s); affMat[i, j]← corrMat[i, j];
affMat[j, i]← corrMat[i, j];

end

end

end
return affMat;

Feature Clustering. To identify relevant clusters in our Feature Dependency
Graph, we have used the �Clique Cover Theory� [8]. For our approach of identi-
fying the maximal cliques with respect to the maximum sum of the edge-weights
from the undirected edge-weighted Feature Dependency Graphs, we evaluate
the sub-graphs satisfying the following properties: (i) Internal homogeneity: El-
ements belonging to a group have high associations with each other. (ii) Max-
imality: A maximal clique cannot be further extended by introducing external
elements. These properties emphasize the notion of a cluster. Such a cluster is
termed as Clique-Cover in graph theory which partitions an undirected graph
into cliques of various sizes. To explain the use of this approach for constructing
our proposed algorithm of �nding feature clusters, let us consider the example
of a Feature Dependency Graph as shown in Figure 2.

The example has seven nodes, representing the features of the dataset, and
the edge-weight corresponds to the correlation coe�cient between the feature
pairs. The algorithm initially determines the cliques from the graph and further
determines the maximal cliques. It then proceeds to incorporate the edge-weights
of the maximal cliques. The maximal clique with respect to the maximum sum
of edge-weight is identi�ed as a cluster. In the graph from Figure 2 we can see
that there exists many cliques such as {3,6}, {1,7},{5,6},{3,5,6}. However only
�ve maximal cliques can be identi�ed namely, {3,4,6}, {1,4}, {2,3,7}, {3,5,6} and
{1,7}. We assign the weight of the maximal clique to be equal to the sum of the
weights of the edges in that clique. So the corresponding weight of the 5 maximal
cliques is 1.82, 0.65, 1.90, 1.42, and 0.60, respectively. In this case, {2,3,7} is the
maximal clique with respect to the maximum weight of 1.90. This clique sat-
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Fig. 2. Identi�cation of Cliques Covers on a Feature Dependency Graph

Algorithm 2: Unsupervised Feature Clustering w. Clique Cover Theory

Procedure : FeatureClustering;
Input : Weighted Adjacency Matrix obtained from Feature Correlation
Output : ClusterNodeIds and ClusterNodeLabels
Initialize: ClusterNodeIds ← (); ClusterNodeLabels ← (); remainDim ←
totalDim;
Step 1: Identify threshold coe�cient
Step 2: Generate a feature dependency graph
Step 3: Determine Cliques Q, Maximal Cliques Qi and # of Maximal Cliques
Step 4: Determine the weight of all the Maximal Cliques
Step 5: Determine the Maximal Clique with maximum weight and set it as
the �rst cluster or the Clique Cover
Step 6: Update the output with the cluster node Ids and labels
Step 7: Remove the clustered nodes and edges from the feature graph
Step 8: Update the feature graph with remaining dimensions
Step 9: Recursive call to FeatureClustering procedure
Step 10: If there is one feature node present, then update the output with
the last node

is�es the properties of �internal homogeneity� and �maximality�, because it has
strong interconnections and is maximal. This can be termed as the �rst cluster
or the Clique Cover. We now remove the clustered nodes and edges from the
existing graph by dynamically truncating the a�nity matrix and updating the
dimensions. Then, the new feature dependency graph contains the remaining
four nodes with features F1, F4, F5, F6 respectively. The cluster identi�cation
is applied recursively on the remaining subgraph, and it outputs two more clus-
ters {1,4} and {5,6}. Therefore, the Clique Cover graph clustering algorithm
generates three clusters {2,3,7}, {1,4} and {5,6} of sizes 3, 2 and 2 respectively.
It can be seen that, the Clique Cover always creates non-overlapping/exclusive
clusters, which is evident from the fact that none of the features can be present
in more than one cluster. Moreover, the approach does not require a prior esti-
mation of the number of clusters. The number of clusters and the size of each
cluster is determined dynamically from the intrinsic properties of the graph.
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Algorithm 2 presents our feature clustering approach. As an input to the
algorithm we give the weighted adjacency matrix obtained from the Feature
Correlation step. It initializes two output lists; one for storing the cluster node
IDs and the other for storing the cluster node labels. Initially, the remaining
dimensions are set to the total dimensions of the feature graph. The algorithm
proceeds by identifying the threshold coe�cient for each node and generates a
feature dependency graph. Next, the algorithm determines the cliques, maximal
cliques, and the total number of maximal cliques in the Feature Dependency
Graph. It then iterates through all of the maximal cliques and identi�es the
maximal clique having the maximal weight by summing up the edge-weights in
the maximal clique. This maximal clique is the �rst cluster or Clique Cover.
It updates the output list with the corresponding node Ids and labels of the
�rst cluster. The algorithm then removes the clustered nodes and edges and up-
dates the feature graph with the remaining dimensions. It recursively calls the
FeatureClustering procedure to generate more clusters. This way, the algorithm
recursively reduces the size of the remaining dimensions and assigns the feature
nodes as part of some clusters. The terminating condition for the recursive pro-
cess is reached when there is a single node. It terminates by updating the output
list with node Ids and labels of the last node.

Feature Mapping. In the last step, we map the features from the high di-
mensional feature space to the representative features in the low dimensional
space. These features are selected from each of the generated feature clusters.
The selection is made using the concepts of graph centrality. Centrality in social
networks is an important measure of the in�uence of a node in the network [7].
In our approach, we have used Eigenvector Centrality to determine the impor-
tance of a node in a cluster. It is a globally based centrality measure based on
the principle that a node is important if it is linked by other important nodes.
Bonacich, in his work [5] has shown that Eigenvector Centrality gives better re-
sults when clusters are formed by the determination of maximal cliques. In our
approach, the process of determining the Eigenvector Centrality score is carried
out for all nodes within each cluster. The maximum score corresponds to the
node, which is the most central node in the cluster. The central node is termed
as the representative feature.

4 Evaluation

We have evaluated our approach over ten datasets and compared with �ve of the
most prominent unsupervised feature selection methods. We demonstrate that
our approach discovers more meaningful feature clusters from complex datasets
and gives good results in terms of clustering and classi�cation accuracy. From
visualization perspective, we show that by using our approach the visualizations
render much less clutter and in turn making high dimensional data much easier
and intuitive to explore.
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Table 1. Experimental results for selected Datasets. Dimensions are the total number
of features in the dataset and #Features are the �nal set of selected features after the
application of our feature selection algorithm.

Dataset Dimensions Time(in seconds) #Features

Automobile 25 0.10 9
QSAR Biodegradation 41 0.16 12

Emotions 78 0.97 17
Robot Failure 91 1.08 27

Yeast 116 2.42 20
Musk 168 11.61 32

Arrhythmia 280 22.52 44
AirlineTicketPrice 417 43.59 37
GAMETES Genome 1000 111.50 70

Colon 2000 576.27 115

Experimental setting.We have conducted our experiments in a server running
Ubuntu 14.04, with two Intel Xeon X5647@2.93GHz CPUs (8 logical cores/CPU)
and 16G RAM.
Datasets.5 For the evaluation, we have considered high-dimensional datasets
from various categories. The datasets also have di�erent aspects like binary class,
multi-class, missing values, and skewed classes. This enables us to perform a
stress test in order to compare with existing approaches. For the quantitative
evaluation, supervised datasets are selected because the class labels are needed to
evaluate the classi�cation and clustering accuracy, and also for the cost-sensitive
analysis. Since our approach is unsupervised, we conducted the following steps:
1. we have removed the class labels from the selected datasets, 2. we run our
algorithms for feature selection on the unsupervised datasets, 3. the class labels
are then appended to the results obtained from each of the feature selection
approaches, and 4. the supervised reduced feature sets obtained are then used
for quantitative evaluation. Table 1 shows the list of the selected datasets used
for evaluation along with the time taken to construct the reduced feature set
using our proposed feature selection pipeline.

4.1 Baseline Algorithms

We compare the performance of our proposed Clique-Cover based Unsupervised
Feature Selection against the following �ve baseline algorithms. (1) Laplacian
Score for Feature Selection [10], (2) Spectral Feature Selection for Supervised
and Unsupervised Learning [23], (3) l2,1-Norm Regularized Discriminative Fea-
ture Selection for Unsupervised Learning(UDFS) [22], (4) Unsupervised Feature
Selection Using Nonnegative Spectral Analysis(NDFS) [11]., (5) Unsupervised
feature selection for multi-cluster data(MCFS) [6]. Evaluation Metrics. The
reduced feature sets obtained from each approach are quantitatively evaluated
using these metrics:

5 Data Repository: https://�gshare.com/s/1807247ef2165735465c

https://figshare.com/s/1807247ef2165735465c
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� Evaluation using Classi�cation Accuracy - The accuracy of the re-
duced feature sets are evaluated using classi�ers: Naive Bayes, Support Vec-
tor Machine (SVM), Random Forests and Logistic Regression. K-fold cross
validation is used to evaluate the classi�ers.

� Evaluation using Clustering Accuracy - The accuracy of the reduced
feature sets are evaluated using two clustering algorithms: K-means and
Expectation Maximization clustering approaches. The Clustering Accuracy
metric is used for assessing the clustering quality. The number of clusters is
set to the number of classes present in the respective datasets.

� Evaluation in terms of the redundancy of the Selected Features -
We have used �Representation Entropy� [13] as a metric to evaluate the re-
dundancy of the selected features. Let the eigenvalues of the d×d covariance
matrix of a feature set of size d be λj , where j = 1...d and λ̃j =

λj∑d
j=1 λj

where

0 ≤ λ̃j ≤ 1, then we de�ne Representation Entropy as: HR =
∑d
j=1 λ̃j logλ̃j

The Representation Entropy(HR) measures of the amount of information
compression achieved by dimensionality reduction. This is equivalent to the
amount of redundancy present in the reduced feature set. The goal of our
approach is to have a low value of HR for the individual clusters but a high
HR for the �nal reduced feature set, which in turn would indicate that the
representative feature set has low information redundancy.

� Evaluation using ROC Curves for cost-sensitive analysis: ROC curve
is used to check the performance of a classi�cation model. We have used
this metric for cost-sensitive analysis. The higher AUC signi�es the better
performance of the classi�er corresponding to relevant features in the dataset.
We have considered all the classi�ers mentioned above and plotted the ROC
curve for each of the reduced feature sets obtained from di�erent approaches.

Because of limited space, we describe the evaluation result only from one ex-
periment. However, the extensive evaluation report using the remaining nine
datasets can be found here (https://�gshare.com/s/01d10e873bd0896fa30a). Be-
low, we show the performance of our model and the comparisons with the base-
line approaches using the `Colon Tumor' dataset6 as it has the highest number
of features (2000 features).

The classi�cation and the clustering accuracy are depicted in Figure 3. From
the results, we can conclude that the classi�cation accuracy of the reduced fea-
ture space from our proposed approach has shown relatively better results in all
the four selected classi�ers in comparison with the baseline methods. Regarding
clustering accuracy, although the overall clustering accuracy is low as compared
to the classi�cation accuracy, the relative performance of our approach is good.
The low accuracy is because the number of clusters in the data are di�erent from
what we have assigned. As seen in Figure 3, we have determined the clustering
and the classi�cation accuracy using the Full Feature Set in order to estimate
the relative accuracy of our proposed method.

6 Colon Tumor Data: http://csse.szu.edu.cn/sta�/zhuzx/Datasets.html

https://figshare.com/s/01d10e873bd0896fa30a
https://figshare.com/s/01d10e873bd0896fa30a
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html
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Fig. 3. Classi�cation and Clustering Accuracy with the Colon Tumor Dataset

In Figure 4, we plot the ROC curves of the reduced feature sets measured us-
ing di�erent classi�ers which shows that our approach outperforms the selected
methods. Whereas, Figure 5 gives the Representation Entropy (HR) obtained
from the reduced feature sets of our approach along with the corresponding val-
ues obtained from the baseline methods. The resulting Representation Entropy
of our proposed approach is higher, which indicates that the features selected by
our method have a relatively low information redundancy rate.

4.2 Performance Measure

The computational complexity is regarded starting after the ingestion and the
feature correlation phase. We have determined the computational complexity
from the construction of the Complete Feature Graph until we obtain the Rep-
resentative Feature Vector. The recursive process of determining the feature
clusters mainly depends on three steps: identifying the threshold coe�cient us-
ing K-NN method, maximal clique determination, and �nding the weight of each
maximal clique. In our case, the complexity of identifying the threshold coe�-
cient depends on the number of nodes in the complete feature graph(n) and
the value of k (k is the number of nearest neighbors). The complexity is given
as O(kn). It has already been proved that the complexity of maximal clique
determination is equal to O(2n/3), where n is the number of nodes [20]. The
complexity of �nding the weights of each of the maximal clique depends on the
number of edges(e), and is equivalent to O(e). After the feature clusters are
determined, the algorithm identi�es representative features from each cluster
based on the Eigenvector Centrality measure. The complexity of determining
Eigenvector Centrality is O(qE), where q is the number of iterations needed be-
fore convergence, and E is the number of edges in each cluster. The combined
computational complexity for feature clustering and selection can be written as:
[O(kn) +O(2n/3) + (p×O(e))] +O(qE) where n is the total number of features
in the feature graph, k is the number of nearest neighbors, p is the number of
intermediate maximal cliques obtained, e is the number of edges in each maximal
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Fig. 4. ROC Plots using the Colon Tumor Dataset

Fig. 5. Representation Entropy (Colon Tumor Dataset)

clique, q is the number of iterations required to determine Eigenvector Centrality
and E is the number of edges in the cluster. The core complexity of this step
is represented by the exponential function to determine maximal cliques in the
graph. This indicates that the time complexity to determine maximal cliques
increases exponentially with the number of features. To investigate the practical
consequences, we have calculated the time taken to process the feature graph to
determine the Representative Features. As seen in the Table 1, the time taken
increases exponentially with respect to the number of features in the dataset.
On analyzing the time taken for processing the features, the run time of the
algorithm is found to be t = 1.38n.

We would like to mention that the enumeration of maximal cliques has
been proven as an NP-hard combinatorial optimization problem. Over the past
decade, several algorithms have been designed to address this issue. However,
most of these heuristic algorithms fail for massive graphs. Lately, prunning
based exact and parameterized algorithms have been proposed which are able to
achieve linear runtime scaling for massive graphs [17], [9], [12]. For the purpose
of determining the maximal cliques in our proposed feature selection pipeline,



Unsupervised Feature Selection for High Dimensional Data 13

we have used the Parallel Maximum Clique Solver7 which have implemented the
algorithms presented in the work of Rossi et al. [17].

5 Conclusion

In this work, we have presented a novel graph-based clustering algorithm based
on the Clique Cover Theory. The number of clusters along with their size is de-
termined dynamically using the intrinsic properties of the data without any prior
estimation from the user. The approach was also evaluated on several datasets
having a varying number of features and properties. The results indicate that
our proposed approach can be used in an e�ective way for selecting important
features in an unsupervised manner, thus proving to be an e�cient strategy for
dimensionality reduction.

To identify meaningful features from high dimensional data sets and to vi-
sualize them e�ciently we have tested the implementation of our approach with
an interactive data exploration tool8. Our visualization tool provides two main
functionalities: 1. Explore Data Features and 2. Visualize data in the reduced
feature space. With the help of this tool, the features are visualized using fea-
ture graphs like cluster feature graphs and representative feature graphs. The
correlation between features is explored using correlation heatmaps. The data
points in the reduced feature space are visualized using standard methods. The
reduced dimensional space allows many visualization techniques to demonstrate
various characteristics of the data.

With this tool, we have presented an interface for the e�cient exploration
of large multidimensional data. One limitation of our approach is that we have
segregated the datasets into numerical and categorical feature groups and the
feature clusters are determined separately for these individual groups. In the fu-
ture, we plan to extend our approach so that the resulting clusters are a mix of
both the feature groups. We are currently investigating techniques to determine
clusters by incorporating correlation measures that determine the relationship
between numerical and categorical features. Another interesting direction would
be to extend the feature selection to deal with skewed clusters. For example,
suppose a dataset has 24 features, and in the clustering phase, 20 features be-
come a part of the �rst cluster, and the remaining four features are part of the
second cluster. Since there are only two clusters, there will be two representative
features from each cluster. Thus, the resulting feature set can have very low
accuracy. Instead, more than one representative feature for the skewed clusters
could be considered.
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7 https://github.com/ryanrossi/pmc
8 VizExploreTool:http://dbis.rwth-aachen.de/cms/sta�/chakrabarti/
unsupervised-feature-selection/eval/view
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