Knowledge Representation on the Web revisited:
the Case for Prototypes

Michael Cochez'?#, Stefan Decker!-?, and Eric Prud’hommeaux?®

! Fraunhofer Institute for Applied Information Technology FIT
DE-53754 Sankt Augustin, Germany
{stefan.decker,michael.cochez}@fit.fraunhofer.de
2 RWTH Aachen University, Informatik 5
DE-52056 Aachen, Germany
3 World Wide Web Consortium (W3C)

Stata Center, MIT
eric@w3.org
4 University of Jyvaskyla,

Department of Mathematical Information Technology
FI-40014 University of Jyvaskyla, Finland

Abstract. Recently, RDF and OWL have become the most common
knowledge representation languages in use on the Web, propelled by the
recommendation of the W3C. In this paper we examine an alternative
way to represent knowledge based on Prototypes. This Prototype-based
representation has different properties, which we argue to be more suitable
for data sharing and reuse on the Web. Prototypes avoid the distinction
between classes and instances and provide a means for object-based data
sharing and reuse.

In this paper we discuss the requirements and design principles for
Knowledge Representation based on Prototypes on the Web, after which
we propose a formal syntax and semantics. We further show how to embed
knowledge representation based on Prototypes in the current Semantic
Web stack and report on an implementation and practical evaluation of
the system.

Keywords: Linked Data, Knowledge Representation, Prototypes

1 Introduction and Motivation

In earlier days of Knowledge Representation, Frames [19,20] and Semantic Net-
works [23] were accepted methods of representing static knowledge. These had no
formal semantics but subsequent works (e.g., KL-ONE [2]) introduced reasoning
with concepts, roles, and inheritance, culminating in Hayes’s 1979 [10] formaliza-
tion of Frames. This formalization included instances formalized as elements of a
domain (individuals) and classes (or concepts) as sets in a domain (unary predi-
cates). This formalization was subsequently used as a basis for Description Logics
(DL) and the investigation of expressiveness vs. tractability [16], which lead to
Description Logic systems and reasoners such as SHIQ [11] and FaCT [12]. Finally,

the Semantic Web effort led to the combination of Description Logics with Web
Technologies such as RDF [6], which subsequently evolved into the Web Ontology
Language OWL [13]|. However, the formalization of Frames only covered some
modeling primitives which were in use at the time. Specifically Prototype-based
systems, which do not make a distinction between instances and classes, did not
get much attention for knowledge representation (cf. Karp [15]). Exceptions exists,
for instance, THEO [21], which is a Frame Knowledge Representation System
deviating from the — now common — instance—class distinction by using only
one type of frame, with the authors arguing that the distinction between instances
and classes is not always well defined. Also several programming Languages based
on prototypes were successfully developed (SELF [27], JavaScript [8] and others),
but the notion of Prototypes as a Knowledge Representation mechanism was not
formalized and remained unused in further developments. As noted in [24], these
knowledge representation mechanisms may now be again relevant for applications.
In this paper we develop a syntax and formal semantics for a language based on
prototypes for the purpose of enabling knowledge representation and knowledge
sharing on the Web. We argue that such a system has distinctive advantages
compared to other representation languages.

This paper is augmented by a separate technical report in which we detail
the software which we wrote to support prototype knowledge representation. [3]
The report also includes experiments which show how the system performs in a
web environment.

2 A Linked Prototype Layer on the Web

2.1 Idea and Vision
Tim Berners-Lee stated the motivation for creating the Web as:

The dream behind the Web is of a common information space in which
we communicate by sharing information. ®

We aim to optimize the sharing and reuse of structured data. Currently, on the
Semantic Web, this sharing is typically achieved by either querying a SPARQL
endpoint or downloading a graph or an ontology. We call this vertical sharing:
top-down sharing where a central authority or institution shares an ontology or
graphs. We would like to enable horizontal sharing: sharing between peers where
individual pieces of instance data can be used and reused. Note that this mode
of sharing appears much closer to the intended spirit of the Web. Languages like
OWL evolved driven by the AI goal of intelligent behavior and sound logical
reasoning [14]. They don’t emphasize or enable horizontal sharing - the sharing
and reuse of individual objects in a distributed environment. Rather, their goal
is to represent axioms and enable machines to reason. Imagine a prototype,
for example, an 011 Painting with properties and values for those properties,
that lives at a particular addressable location on the Web. This prototype 01l
Painting can be reused in a number of different ways (see Figure 1):

® https://www.w3.0rg/People/Berners-Lee/ShortHistory.html

— First, by specializing the the 0il Painting prototype(i.e., using it as a
template by linking to it), and either specializing or changing its properties.
For example, whereas the 011 Painting has a value Canvas for its surface
property, the Arnolfini Portrait prototype has the value Oak Panel.
However, the value for the creator property (Jan van Eyck) remains the
same. To accomplish this, current Semantic Web infrastructure would require
one to copy the initial object to a new object before changing its properties.
Note, however, that a this also means that the newly created object looses
its heritage, meaning that it will not receive any updates which are made to
object in the inheritance chain later on.

— Second, by either directly or indirectly referring to it as a value of a property.
For instance, in Figure 1 the prototype National Gallery has a property
displays, which links to the prototype Arnolfini Portrait, which is
based on the 0il Painting prototype. This usage of entities is currently
also possible using RDF. (But, see also the discussion in section 4.3.)

These two ways to reusing objects on the Web create a distributed network
of interlinked objects, requiring horizontal as well as vertical sharing:

— Vertical sharing is enabled by specializing an object or prototype. The
prototype that is being specialized defines the vocabulary and structure for
the new object, realizing the task of ontologies. For example, a museum
can publish a collection of prototypes that describe the types of artifacts
on display (e.g., 01l Painting), which can then be used to describe more
specific objects.

— Horizontal sharing is enabled by reusing prototypes and only changing specific
attributes or linking to other prototypes as attribute values. For example, a
specific oil painting by painter Jan van Eyck can be used as a template by
describing how other oil paintings differ from it, or a specific oil painting can
be the attribute value for the National Gallery prototype. This creates a
network of prototypes across the Web.

AN
) Oil Painiting
P

remove surface
‘ MNational Gallery
A
Oak Panel «——surface = Arnoffini |< i
lm Portrait
—

surface
creator
Jan van Eyck I‘

Fig. 1: The figure shows three prototypes and different relations between them.
The Arnolfini Portrait is a specialization of the Oil Painting but also displayed
at the National Gallery, London.

2.2 Requirements

In the previous section, we presented a vision for a prototype layer on the Web.
In this section we discuss requirements for the linked prototype layer. Some of
these requirements are based on actual tasks that user communities want to
perform while others are based on desirable principles of the World Wide Web.

The linked prototype layer must primarily enable sharing and reuse of knowl-
edge. Sharing and reuse of knowledge requires an explicit distributed network of
entities. In particular we desire means to share vertically (i.e., provide a central
vocabulary or ontology that many can refer to) and share horizontally (i.e.,
provide concrete reusable entities). Further, it must be possible for the knowledge
to evolve over time and anyone should be able to define parts of the network. This
implies that central authority should be avoided as much as possible. Preferably,
the realization of the prototype layer should be achieved using facilities which
the Semantic Web already provides, such as RDF and IRlIs, in order to leverage
existing data resources. Finally, the designed system should still retain a certain
level of familiarity.

2.3 Design Principles

While designing the prototype-based system, we were inspired by design principles,
such as the KISS Principle (as defined in [28]), and worse-is-better (as coined by
R.P. Gabriel [9]). On the intersection between these principles lies the idea of
simplicity. The worse-is-better approach encourages dropping parts of the design
that would cause complexity or inconsistency.

Our goal was explicitly not to enable sophisticated reasoning, but rather
provide a simple object or prototype layer for the Web.

We use the idea of prototypes as suggested in early Frame Systems [15] as
well as in current programming languages such as Javascript [8]. Prototypes fulfill
the requirements to support the reusabilty and horizontal shareability since it is
possible to just refer to an existing prototype that exists elsewhere on the Web,
ensuring horizontal shareability. Furthermore a collection of prototypes published
by an authority can still serve the function of a central ontology, ensuring vertical
shareability.

3 Prototypes

In this section we introduce our approach for knowledge representation on the
web, based on prototypes. First, we provide an informal overview of the approach,
illustrating the main concepts. Then we introduce a formal syntax and semantics.

3.1 Informal Presentation

To illustrate the prototype system we use an example about two Early Nether-
landish painters, the brothers van Eyck. First, we look at a simple representation

of the Arnolfini Portrait in fig. 2.5 This figure contains the prototype of the
portrait which is derived from the empty prototype (Py, see section 3.2) and has
two properties. The first property is dc:creator and has value Jan van Eyck”.
The second property describes the format of the artwork. We also display the
example using a concrete syntax.

DG:creator example:Arnolfini_Portrait

base proto:P_0
DC:format

add dc:creator example:Jan_Van_Eyck
add dc:format example:Painting

Painting

(a) Graphical Representa-
tion (b) Concrete Syntax

Fig. 2: The prototype representation of the Arnolfini Portrait

Next we will start making use of the prototype nature of the representation.
Starting from the Arnolfini Portrait, we derive the Ghent Alterpiece. This painting
was created by the same painter, but also his brother Hubert van Eyck was involved
in the creation of the work. Figure 3 illustrates how this inheritance works in
practice; we create a prototype for the second work and indicate that its base is
the first one (using the big open arrow). Then, we add a property asserting that
the other brother is also a creator of the work. The resulting prototype has the
properties we defined directly as well as those inherited from its base.

Jan van Eyck
DC:creator

Amolfini Portrait

DC:format

example:Ghent_Altarpiece

) base example:Arnolfini Portrait
DC:creator- Hubert van Eyck

add dc:creator example:Hubert_Van_Eyck

Ghent Altarpiece

(a) Graphical Representa-
tion (b) Concrete Syntax

Fig. 3: Deriving the prototype representation of the Ghent Altarpiece from the
Arnolfini Portrait

5 In the illustrations, we loosely write identifiers like Arnolfini Portrait for proto-
types, properties and their values. However, the proposed systems requires the use of
IRIs for identifiers, just like RDF. The concrete syntax examples reflect this. Note
that our syntax does not support prefixes as supported by RDF Turtle syntax. If we
write dc:creator we mean an IRI with scheme dc.

" For illustrative purposes we use different graphical shapes for the prototypes under
consideration and the values of their properties. However, as will become clear in the
sections below, all values are themselves prototypes.

Often, there will be a case where the base prototype has properties which are
not correct for the derived prototype. In the example shown in fig. 4 we added the
example:location property to the Arnolfini Portrait with the value National
Gallery, London. The Ghent Altarpiece is, however, located in the Saint Bavo
Cathedral, Ghent. Hence, we first remove the example:location property
from the Arnolfini Portrait before we add the correct location to the second
painting. In effect, the resulting prototype inherits the properties of its base, can
remove unneeded ones, and add its own properties as needed.

Another way to arrive at the same final state would be to derive from a base
without any properties and add all the properties needed. The predefined empty
prototype (proto:P_0) has no properties. All other prototypes derive from an
already existing prototype; circular derivation is not permitted. Now, we will let
the prototype which we are creating derive directly from the empty prototype and
add properties. This flattening of inherited properties produces the prototype’s
fizxpoint. The fixpoint of the prototype created in fig. 4 can be found in fig. 5.

example:Arnolfini_ Portrait

base proto:P_0
DC:creator
e o add dc:creator example.Jén,\'/an,Eyck
sxioalon,__ add dc:format example:Painting
add example:location example:National_Gallery
example:Ghent_Altarpiece
s e ek | base example:Arnolfini_Portrait

rem example:location *

axlocato add dc:creator example:Hubert_Van_Eyck
add example:location example:Saint_Bavo

[Saint Bavo Cathedral)

H
3
2

(a) Graphical Representa-
tion b) Concrete Syntax
(y

Fig. 4: Removing properties while deriving the Ghent Altarpiece from the Arnolfini
Portrait

Jan van Eyck

|

example:Ghent_Altarpiece

DC:creator

scmeaor_teen e | base proto:P_0
.Ghem Atarpiece add dc:creator example:Jan_Van_Eyck
PChoma{ " paning | add dc:format example:Painting

exlocation

add dc:creator example:Hubert_Van_Eyck
add example:location example:Saint_Bavo

[Saint Bavo Cathedral|

i

(a) Graphical Representa-
tion (b) Concrete Syntax

Fig. 5: The result of removing properties while deriving the Ghent Altarpiece
from the Arnolfini Portrait.

In the proposed system we apply the closed world and the unique name
assumptions. If the system used the open world assumption and one would ask
whether the Arnolfini Portrait is located in Beijing, the system would only be
able to answer that it does not know. In a closed world setting, the system will
answer that the painting is not in Beijing. This conclusion is not based on the fact
that the system sees that the painting is located in England, but because of the
fact that there is no indication that it would be in Beijing. Under the non-unique
name assumption, the system would not be able to answer how many paintings
it knows about. Instead, it would only be able to tell that there are one or more.
Without the unique name assumption, the resource names Ghent Altarpiece
and Arnolfini Portrait may refer to the same real-world instance.

3.2 Formal presentation

The goal of this section is to give a formal presentation of the concepts discussed
in the previous section. We separate the formal definition into two parts. First,
we define the syntax of our prototype language. Then, we present the semantic
interpretation and a couple of definitions which we used informally above.

Prototype Syntax In this section we define the formal syntax of prototype-
based knowledge bases. We define a set of syntactic material first, before we
define the language.

Definition 1 (Prototype Expressions). Let ID be a set of absolute IRIs
according to RFC 3987 [7] without the IRI proto:P_0. The IRI proto:P_0 is
the empty prototype and will be denoted as Py. We define expressions as follows:

— LetpeID andry,...,rm € ID with 1 < m. An expression (p,{ri,...,"m})
or (p,*) is called a simple change expression. p is called the simple change
expression ID, or its property. The set {r1,...,rm} or x are called the values
of the simple change expression.

— Letid € ID and base € ID UPy and add and remove be two sets of simple
change expressions (called change expressions) such that each simple change
expression ID occurs at most once in each of the add and remove sets and
* does not occur in the add set. An expression (id, (base, add, remove)) is
called a prototype expression. id is called the prototype expression ID.

Let PROTO be the set of all prototype expressions. The tuple PL = (Py, I D,PROTO)
is called the Prototype Language.

Informally, a prototype expression contains the parts of a prototype which
we introduced in the previous subsection. It has an id, a base (a reference to the
prototype it derives from), and a description of the properties which are added
and removed.

As an example, we could write down the example of fig. 4 using this syntax.
The prototype expression of the Arnolfini Portrait would look like this:
(example:Arnolfini_Portrait, (proto:P_0,
{(dc:creator, {example:Jan_Van_Eyck}),
(dc:format, {example:Painting}),
(example:location, {example:National_Gallery})},

0))

The prototype for the Altarpiece would be written down as follows:

(example:Ghent_Altarpiece, (example:Arnolfini_Portrait,
{(dc:creator, {example:Hubert_Van_Eyck}),
(example:location, {example:Saint_Bavo})},
{(example:location,x)}))

This syntax is trivially transformable into the concrete syntax which we used
in fig. 4b and the other examples in the previous subsection.

Definition 2 (dom). The domain of a finite subset S C PROTOQ, i.e., dom(S) is
the set of the prototype expression IDs of all prototype expressions in S.

Definition 3 (Grounded). Let PL = (Py, ID,PROTO) be the Prototype Lan-
guage. Let S C PROTO be a finite subset of PROT0. The set G is defined as:

1. Ppeg
2. If there is a prototype (id, (base, add, remove)) € S and base € G then id € G.
3. G is the smallest set satisfying (1) and (2).

S is called grounded iff G = dom(S) U {Pg}. This condition ensures that all
prototypes derive (recursively) from Py and hence ensures that no cycles occur.

To illustrate how cycles are avoided by this definition, imagine that S =
{(A, (Py,0,0)),(B,(C,0,0)),(C,(B,0,0)), }. What we see is that there is a cycle
between B and C. If we now construct the set G, we get G = {Py, A} while
dom(S)U{Py} = {4, B,C, Py}, and hence the condition for being grounded is
not fulfilled.

Definition 4 (Prototype Knowledge Base). Let PL = (Py, ID,PROTO) be
the Prototype Language. Let KB C PROTO be a finite subset of PROTO. KB is
called a Prototype Knowledge Base iff 1) KB is grounded, 2) no two prototype
expressions in KB have the same prototype expression ID, and 3) for each
prototype expression (id, (base, add, remove)) € KB, each of the values of the
simple change expressions in add are also in dom(K B).

Definition 5 (R). Let KB be a prototype knowledge base and id € ID. Then,
the resolve function R is defined as: R(K B,id) = the prototype expression in KB
which has prototype expression ID equal to id. .

Prototype Semantics

Definition 6 (Prototype-Structure). Let SID be a set of identifiers. A tuple
pv = (p,{v1,...,vn}) with p,v; € SID is called a Value-Space for the ID-
Space SID. A tuple o = (id, {pv1,...,pvm}) with id € SID and Value-Spaces
pv;, 1 <i <m for the ID-Space SID is called a Prototype for the ID-Space SID.
A Prototype-Structure O = (SID,0B, I) for a Prototype Language PL consists
of an ID-Space SID, a Prototype-Space OB consisting of all Prototypes for the
ID-Space SID and an interpretation function I, which maps IDs from PL to
elements of SID.

Definition 7 (Herbrand-Interpretation).

Let O = (SID,0B,I;) be a Prototype-Structure for the prototype language
PL = (Py,ID, PROTO). I, is called a Herbrand-Interpretation if I, maps every
element of ID to exactly one distinct element of SID.

As per the usual convention used for Herbrand-Interpretations, we assume that
ID and SID are identical.

Next, we define the meaning of the constituents of a prototype. We start
with the interpretation functions Is and I. which give the semantic meaning of
the syntax symbols related to change expressions. These functions (and some
of the following ones) are parametrized (one might say contextualized) by the
knowledge base. This is needed to link the prototypes together.

Definition 8 (I;). Interpretation for the values of a simple change expression
Let KB be a prototype knowledge base and v the values of a simple change
expression. Then, the interpretation for the values of the simple change expression
I, (K B,v) is a subset of SID defined as follows:

SID, if v =x
{In(r1), In(r2)y .., In(rn) }, if v ={r1,...,rn}

Definition 9 (I.). Interpretation of a change expression. Let KB be a prototype
knowledge base and a function ce = {(p1,vs1), (p2,vs2),...} be a change expres-
sion with p1,pa, -+ € ID and the vs; be values of the simple change expressions.
Let W =ID\ {p1,p2,...} . Then, the interpretation of the change expression
I.(KB,ce) is a function defined as follows (We will refer to this interpretation
as a change set, note that this set defines a function):

{(In(p1), L (K B,vs1)), (In(p2), I,(K B vsa)), ...} U | {(Zn(w), 0)}
weWw

Next, we define J which defines what it means for a prototype to have a
property.

Definition 10 (J). The value for a property of a prototype. Let KB be a
prototype knowledge base and id,p € ID. Let R(KB,id) = (id, (b,7,a)) (the

resolve function applied to id). Then the value for the property p of the prototype
id, i.e., J(KB,id,p) is:

1.(KB,a)(In(p)), if b= Py
(J(KB,b,p)\ LK B,r)(In(p))) U L(K B,a) (I (p)), otherwise

Informally, this function maps a prototype and a property to 1) the set of
values defined for this property in the base of the prototype 2) minus what is in
the remove set 3) plus what is in the add set.

As an example, let us try to find out what the value for the creator of the Ghent
Altarpiece described in the example of the previous subsection would evaluate
to assuming that these prototypes were part of a Prototype Knowledge Base
K B. For brevity we will write example:Ghent_Altarpiece as GA, example:
Arnolfini_Portrait as AP, dc:creator as creator, example:Jan_Van_Eyck
as JVE, and example:Hubert_Van_Eyck as HVE.

Concretely, we have to evaluate J(K B, GA, creator) = (J(K B, AP, creator)\
I.(K B, ()(creator))UI.(K B, add)(creator) where add is the add change set of the
GA prototype expression. First we compute the recursive part, J(K B, AP, creator) =
I.(K B, add.p)(creator) = {(creator, {JVE}),...}(creator) = {JVE}. Where
addyy, is the add change set of the AP prototype expression. The second part (what
is removed) becomes I.(K B, 0)(creator) = (). The final part (what this prototype
is adding) becomes I.(K B, add)(creator) = {(creator,{HV E}), ... }(creator) =
{HV E}. Hence, the original expression becomes ({JVE} \ 0) U {HVE} =
{JVE,HVE} as expected.

Definition 11 (FP). The interpretation of a prototype expression is also called
its fixpoint. Let pe = (id, (base, add,remove)) € KB be a prototype expression.
Then the interpretation of the prototype expression in context of the prototype
knowledge base K B is defined as FP(K B, pe) = (In(id), {(In(p), J(K B, id,p))|p €
ID,J(KB,id,p)) # 0}), which is a Prototype.

Definition 12 (/g p:Interpretation of Knowledge Base). Let O = (SID,0OB, I,)
be a Prototype-Structure for the Prototype Language PL = (Py,ID, PROTO)

with I, being a Herbrand-Interpretation. Let KB be a Prototype-Knowledge
Base. An interpretation Ixp for KB is a function that maps elements of KB to
elements of OB as follows: Ixp(KB,pe) = FP(K B, pe)

This concludes the definition of the syntactic structures and semantics of
prototypes and prototype knowledge bases. For the semantics, we have adopted
Herbrand-Interpretations, which are compatible with the way RDF is handled in
SPARQL.

4 Inheritance

Our discussion of inheritance is based on the work by Lieberman [17], Cook et
al. [5], de la Rocque Rodriguez [25], and Taivalsaari [26]. The combination of these

works provides a wide overview of different forms of inheritance. Despite the fact
that the focus of these works is on object oriented programming (OOP) we chose
them because prototype-based systems are much more developed in OOP than
in knowledge representation. Many of the OOP concepts and concerns also apply
to how inheritance mechanisms can be applied in Knowledge Representation.

Broadly speaking, inheritance means that an entity receives properties from
another one because of a relation between the two. Two types of inheritance
are common: class-based and prototype-based. In class-based systems there is
a distinction between objects and classes. An object is an instantiation of a
class or, as some say, a class is a blueprint for an object. A new class can be
inherited from another one and will typically inherit all properties and methods
from the base or parent class. The values associated with these properties are
typically defined in the context of the instances. Prototype-based systems on the
other hand only have one type of things: prototypes. A new prototype can be
made by cloning an existing prototype (i.e., the base). The freshly created object
now inherits from the earlier defined one and the values are defined directly on
the prototypes. As we argued above, we chose the prototype-based inheritance
to allow for both horizontal and vertical sharing. In the next sections we will
describe the consequences of the choice of property based inheritance.

4.1 Prototype Dynamics

There are essentially two ways to achieve prototype-based inheritance. The first
one, concatenation, would copy all the content from the original object to the
newly created one and apply the needed changes to the copy. The second one,
delegation, keeps a reference to the original object and only stores the changes
needed in the newly created object. We decided to follow the second option
(for now) because it more closely resembles what one would expect from a
system on the web. Instead of centralizing all information into one place, one
links to information made available by others. This type of inheritance makes it
possible to automatically make use of enhancements made in the base prototypes.
Furthermore, the option of making a copy of the object one extends from is
still available; we will discuss this further in section 4.3. Note that this is also a
space-time trade-off. Copying will occupy more space, but make look-up faster
while delegation will be slower, but only the parts which have been changed
have to be stored. Another option is to get parts of both worlds by caching
frequently used prototypes for a set amount of time. In this case, one may retrieve
outdated values. In our technical report [3], we describe a possible approach
towards caching using existing HT'TP mechanisms.

When parts of a knowledge base are not in the control of the knowledge
engineer who is adding new information, it might be tempting to recreate certain
prototypes to make sure that the prototypes one is referring to do not change
over time, rendering the newly added information invalid.

4.2 A Prototype is-not-a Class

In class-based object oriented languages, deriving a class A from a base class B
usually implies that an instance of A can be used wherever an object of type B
is expected. In other words, the objects instantiated from the classes A and B
follow the Liskov substitution principle [18]. Since class-based object-orientation
is currently most common in popular programming languages, one might be
tempted to emulate classes in a prototype-based language. Imagine, for instance,
that we want to create a prototype employee to represent an employee of a
company. One might be tempted to give this employee a property name, with
some default value since all employees will have a name in the end. However, this
is not necessary, or even desired, when working with prototype-based systems.
Instead, the employee should only have properties with values which all or most
employees have in common, like for example the company they work for. Any
more specific properties should instead be put on the employees themselves.
Moreover, the fact that a prototype derives from the created employee does not
have any implication beyond the inherited properties. Put another way, there is
no is-a relation between a concrete employee and the employee prototype from
which it was derived. This is also clearly visible from the fact that a derived
prototype has the ability to remove properties from the base. Moreover, any other
prototype with the properties needed to qualify for being an employee can be
seen as an employee; independently from whether it derives from the employee
prototype or not. Next, we will discuss what it means to be ‘seen’ as an employee.

4.3 Object boundaries

Applications usually need to work with data with predictable properties. For
instance, the employees from the example in the previous section need to have a
name, gender, birthday, department, and social security number in order for the
application to work. Hence, there is a need to specify the properties a prototype
needs to have in order to be used for a specific application. This idea is not new
and has also been identified in other knowledge representation research. Named
Graphs are often used for this purpose, but they don’t capture shared ownership
or inheritance. Further, resource shapes® and shape expressions [22] have the core
idea of determining whether a given RDF graph complies with a specification.
The main goal of these is checking some form of constraints, but they could as
well be used to identify instances in a dataset.

This need has been identified in many places in OOP literature. An object
oriented programming language which allows variables to contain any object
which fulfills a given interface definition is said to have a structural type system.
Recent examples of programming languages with such type system include OCaml
and Go, but to our knowledge the first programming language to use it was
Emerald [1] and later School [25]. In these languages, if objects have a given set
of operations (according to what they called an abstract type in Emerald, type

8 https://www.w3.0rg/Submission/2014/SUBM- shapes-20140211/

in School, or interface in Go), they would be treated a being an instance of, or
assignable to, a variable of that type.

One of the arguments against structural type systems is that it might happen
that an object has the properties (or methods) of the type by accident. We
can envision this happening in OOP because the names of methods have little
semantic meaning connected to them (does the write() method write something
to the disk or to the printer?). However, in a Semantic Web setting, the prop-
erty names are themselves IRIs and chosen carefully not to clash with existing
names (a http://xmlns.com/foaf/0.1/workplaceHomepage will always be
‘The workplaceHomepage of a person is a document that is the homepage of a
organization that they work for.”®). In other words the property names in the
system under consideration in this paper do in principle not suffer from this
problem.

5 Future Work

Since most past work in the research community has been focused on class-
based knowledge representation, there are still many areas unexplored related to
prototype-based knowledge representation on the web.

5.1 Relation to RDF and OWL

In this paper, we are suggesting a knowledge sharing language based on prototypes.
Future work will need to investigate how to layer the prototype language on top of
RDF. While most of the conversion and layering should be straightforward (e.g.,
the IRI of a prototype expression would also be the IRI of the RDF resource),
some challenges remain. For example, one would need to define a protocol working
on RDF graphs in order to locate and interact with a prototype. However, we
believe that these challenges can be overcome.

5.2 A Hint of Class?

In this paper, we presented prototypes as a possible alternative to class-based
systems such as OWL for Knowledge representation on the Web - at least for the
purpose of scalable Knowledge Sharing. However, both ways - prototypes and
class-based representations, have different use cases and reasons to exist: OWL
is focusing on enabling reasoning whereas prototypes are focusing on enabling
Knowledge Sharing. Exploring the exact boundaries of their respective use cases
still remains a topic for future work.

Another interesting future research path would be the discovery of ‘hidden’
classes in the knowledge base. A hidden class would be formed by a group
of objects with similar characteristics. These classes would be automatically
discovered, perhaps with techniques like Formal Concept Analysis (FCA) [29], by

9 definition of foaf:workplaceHomepagefrom http://xmlns.com/foaf/spec/

collecting a large number of prototypes from the Web. Another approach to this
would be to perform a hierarchical clustering of the prototypes with a scalable
technique as proposed in [4]. After this clustering, it might be possible to extract
a class hierarchy from the generated dendrogram.

5.3 Variations, Evaluations and Large Scale Benchmarks

The prototype system introduced in this paper is only an initial exploration. There
are numerous variations possible by making different choices for the inheritance
model (e.g. concatenation, multiple inheritance, etc.), the allowed values (intervals,
literals, etc.), and solutions for resolving the values for non-local prototypes. These
choices will have different implications for implementations and good evaluation
metrics and large scale benchmarks should be designed to compare them. We
presented initial work in this direction in a technical report [3] and publicly
available software https://github.com/miselico/knowledgebase (LGPLv3).
We benchmarked the system using several synthetic data sets and observed that
the theoretical model presented offers the scalability needed for use in production
environment in a typical distributed web architecture.

6 Conclusions

During the last decade, Knowledge Representation (KR) research has been
dominated by W3C standards whose development was influenced by the state of
the mind that researchers in the involved research communities had at the time of
creation. Several choices which were made which have far reaching consequences
on the way knowledge representation is done on the Web today.

In this paper we tried to take a step back and investigate another option for
KR which, in our opinion, has properties more suitable to deliver on the goals
of horizontal and vertical sharing. Concretely, we introduced a system in which
everything is represented by what we call prototypes and the relations between
them. Prototypes enable both vertical sharing by the inheritance mechanism and
horizontal sharing by direct reference to any prototype. We provided a possible
syntax and semantics for the Prototype system and performed experiments with
an implementation. The experiments showed that the proposed system easily
scales up to millions of prototypes. However, many question still remain to be
answered. First and foremost, this kind of Knowledge Representation needs to
get traction on the Web, which is a considerable challenge - but one we believe
can be achieved based on early feedback we obtained. Furthermore, a larger
deployment of this kind of system would need a clear mechanism for resolving
non-local prototypes. We did some experiments in this direction in a technical
report using existing web technologies like HI'TP for this, but still there are
many options to investigate. We would like to see what kind of options others
come up with to introduce useful parts of class-based systems into the prototype
world. Finally, we hinted towards finding ‘hidden’ classes in the Prototype system.
This would not only be an academic exercise, but would be very useful to be able

to compress knowledge base representations and reduce communication costs.
We hope that this paper contributes constructively to the field of Knowledge
Representation on the Web and that in the future, more researchers will explore
different directions to see how far we can reach.

Acknowledgments

Stefan Decker would like to thank Pat Hayes, Eric Neumann, and Hong-Gee Kim
for discussions about Prototypes and Knowledge Representation in general.

Michael Cochez performed parts of this research at the Industrial Ontologies
Group of the University of Jyviiskyld, Finland, and at the Insight Centre for
Data Analytics in Galway, Ireland.

References

1. Black, A.P., Hutchinson, N.C., Jul, E., Levy, H.M.: The development of the emerald
programming language. In: Proceedings of the Third ACM SIGPLAN Conference
on History of Programming Languages. pp. 11-1-11-51. HOPL III, ACM, New
York, NY, USA (2007), http://doi.acm.org/10.1145/1238844.1238855

2. Brachman, R.J.: A structural paradigm for representing knowledge. Tech. Rep.
BBN Report 3605, Bolt, Beraneck and Newman, Inc., Cambridge, MA (1978)

3. Cochez, M., Decker, S., Prud’hommeaux, E.G.: Knowledge representation on the
web revisited: Tools for prototype based ontologies. In: arXiv (2016), https://
arxiv.org/abs/1607.04809, arXiv:1607.04809 [cs.Al]

4. Cochez, M., Mou, H.: Twister tries: Approximate hierarchical agglomerative cluster-
ing for average distance in linear time. In: Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. pp. 505-517. ACM (2015)

5. Cook, W.R., Hill, W., Canning, P.S.: Inheritance is not subtyping. In: Proceedings
of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 125-135. POPL 90, ACM, New York, NY, USA (1990), http:
//doi.acm.org/10.1145/96709.96721

6. Decker, S., Fensel, D., van Harmelen, F., Horrocks, 1., Melnik, S., Klein, M.,
Broekstra, J.: Knowledge representation on the web. In: Proc. of the 2000 Description
Logic Workshop (DL 2000). CEUR (http://ceur-ws.org/), vol. 33, pp. 89-98
(2000)

7. Duerst, M., Suignard, M.: Internationalized resource identifiers (iris). RFC 3987,
RFC Editor (January 2005), http://www.rfc-editor.org/rfc/rfc3987.txt,
http://www.rfc-editor.org/rfc/rfc3987.txt

8. European Computer Manufacturers Association and others: Standard ecma-262
ecmascript 2015 language specification. June (2015)

9. Gabriel, R.: The rise of “worse is better”. Lisp: Good News, Bad News, How to Win
Big 2, 5 (1991)

10. Hayes, P.J.: The logic of frames. In: Metzing, D. (ed.) Frame Conceptions and Text
Understanding, pp. 46-61. Walter de Gruyter and Co., Berlin, Germany (1979)

11. Horrocks, 1., Sattler, U., Tobies, S.: Practical reasoning for expressive description
logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) Proc. of the 6th
Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99). pp.
161-180. No. 1705 in Lecture Notes in Artificial Intelligence, Springer (1999)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc. of the
6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’98).
pp. 636—647 (1998)

Horrocks, 1., Patel-Schneider, P.F., van Harmelen, F.: From SHZQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics 1(1), 726
(2003)

Israel, D.J., Brachman, R.J.: Some remarks on the semantics of representation
languages. In: Brodie, M.L., Mylopoulos, J., Schmidt, J.W. (eds.) On Conceptual
Modelling: Perspectives from Artificial Intelligence, Databases, and Programming
Languages, pp. 119-142. Springer, New York (1984)

Karp, P.D.: The design space of frame knowledge representation systems. Tech.
rep., SRI International Artificial Intelligence (1993)

Levesque, H.J., Brachman, R.J.: A fundamental tradeoff in knowledge representation
and reasoning (revised version). In: Brachman, R.J., Levesque, H.J. (eds.) Readings
in Knowledge Representation, pp. 41-70. Kaufmann, Los Altos, CA (1985)
Lieberman, H.: Using prototypical objects to implement shared behavior in object-
oriented systems. In: Conference Proceedings on Object-oriented Programming
Systems, Languages and Applications. pp. 214-223. OOPLSA 86, ACM, New York,
NY, USA (1986), http://doi.acm.org/10.1145/28697.28718

Liskov, B.: Keynote address - data abstraction and hierarchy. SIGPLAN Not. 23(5),
17-34 (Jan 1987), http://doi.acm.org/10.1145/62139.62141

Minsky, M.: A framework for representing knowledge. Tech. rep., Massachusetts
Institute of Technology, Cambridge, MA, USA (1974)

Minsky, M.: A framework for representing knowledge. In: Haugeland, J. (ed.) Mind
Design: Philosophy, Psychology, Artificial Intelligence, pp. 95-128. MIT Press,
Cambridge, MA (1981)

Mitchell, T.M., Allen, J., Chalasani, P., Cheng, J., Etzioni, O., Ringuette, M.,
Schlimmer, J.C.: Theo: A framework for self-improving systems. Architectures for
intelligence pp. 323-356 (1991)

Prud’hommeaux, E., Labra Gayo, J.E., Solbrig, H.: Shape expressions: an rdf
validation and transformation language. In: Proceedings of the 10th International
Conference on Semantic Systems. pp. 32-40. ACM (2014)

Quillian, M.R..: Semantic memory. Tech. rep., DTIC Document (1966)

Rector, A.L.: Defaults, context, and knowledge: Alternatives for owl-indexed knowl-
edge bases. In: Altman, R.B., Dunker, A.K., Hunter, L., Jung, T.A., Klein, T.E.
(eds.) Pacific Symposium on Biocomputing. pp. 226-237. World Scientific (2004),
http://dblp.uni-trier.de/db/conf/psb/psb2004.html#Rectoro4

Rodriguez, N.d.1.R., Ierusalimschy, R., Rangel, J.L.: Types in school. SIGPLAN
Not. 28(8), 81-89 (Aug 1993), http://doi.acm.org/10.1145/163114.163125
Taivalsaari, A.: On the notion of inheritance. ACM Computing Surveys (CSUR)
28(3), 438-479 (1996)

Ungar, D., Smith, R.B.: Self. In: Ryder, B.G., Hailpern, B. (eds.) Proceedings
of the Third ACM SIGPLAN History of Programming Languages Conference
(HOPL-III), San Diego, California, USA, 9-10 June 2007. pp. 1-50. ACM (2007),
http://doi.acm.org/10.1145/1238844.1238853

Victor, T., Dalzell, T.: The concise new Partridge dictionary of slang and uncon-
ventional English. Routledge (2007)

Wille, R.: Formal concept analysis as mathematical theory of concepts and concept
hierarchies. In: Formal Concept Analysis, pp. 1-33. Springer (2005)

