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ABSTRACT

Several smart cities around the world have begun monitoring park-
ing areas in order to estimate free spots and help drivers that are
looking for parking. The current results are indeed promising, how-
ever, this approach is limited by the high costs of sensors that need
to be installed throughout the city in order to achieve an accurate
estimation rate. This work investigates the extension of estimating
parking information from areas equipped with sensors to areas
that are missing them. To this end, similarity values between city
neighborhoods are computed based on background data, i.e., from
geographic information systems. Using the derived similarity val-
ues, we analyze the adaptation of occupancy rates from monitored-
to unmonitored parking areas.

CCS CONCEPTS

» Information systems — Clustering; Semantic web description
languages; - Computing methodologies — Cluster analysis;

KEYWORDS

smart parking, machine learning, semantic annotation, data mining

ACM Reference Format:

Andrei Ionita, André Pomp, Michael Cochez, Tobias Meisen, and Stefan
Decker. 2018. Where to Park? Predicting Free Parking Spots in Unmonitored
City Areas. In WIMS ’18: 8th International Conference on Web Intelligence,
Mining and Semantics, June 25-27, 2018, Novi Sad, Serbia. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3227609.3227648

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WIMS °18, June 25-27, 2018, Novi Sad, Serbia

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5489-9/18/06...$15.00
https://doi.org/10.1145/3227609.3227648

André Pomp
Institute of Information Management
in Mechanical Engineering, RWTH
Aachen
Aachen, Germany
andre.pomp@ima.rwth-aachen.de

Michael Cochez
Fraunhofer FIT
Aachen, Germany
Computer Science 5, RWTH Aachen
Aachen, Germany
michael.cochez@fit.fraunhofer.de

Stefan Decker

Computer Science 5, RWTH Aachen

Aachen, Germany
Fraunhofer FIT
Aachen, Germany
stefan.decker@dbis.rwth-aachen.de

1 INTRODUCTION

Parking is a known problem in cities. Worldwide we are experienc-
ing an increase in the number of cars [21]. Currently, about 30%
of the traffic in cities is caused by cars that are actively searching
for parking [20]. Drivers often end up double-parking their cars,
which blocks other cars, thus causing unneeded stress. Drivers that
are circling for a parking space may cause safety issues, as they
are often distracted and are not paying attention to cyclists and
pedestrians. When circling for parking spaces, additional fuel is
consumed, which has an economical as well as an environmental
impact.

Existing parking spaces can be more efficiently occupied if the
drivers know about their availability. This information needs to be
available in advance, so that drivers can take the decision to drive
towards a highly probable free parking space early enough and
not get stuck in a traffic bottleneck. A software system predicting
available spaces would, ideally, take into account factors such as
current parking space availability, traffic, events in the near vicinity,
weather, and many more. Existing forecasting systems often start by
collecting statistics on available parking spaces. Usually, mounted
sensors observe when a car occupies and leaves a parking space.
Acquiring the required data, however, be it on the parking spaces
themselves or the complementary information, is, most of the time,
the bottleneck for these approaches.

Our approach introduces the notion of a parking demand profile,
which reflects the time of the day where parking occurs and its
duration for a given area. Furthermore, we examine how machine
learning models for parking occupancy can be transferred between
city areas with a similar profile. We start by giving an intuitive
example which bridges the understanding path towards the rest of
the work. Further, other contributions to the field of smart parking
are presented, followed by the concrete approach. The evaluation
in this case carries out the instantiation of the proposed approach
with an actual use case. We present the results and an analysis. We
finish off by pointing out aspects that can be further pursued and
by summarizing the outcome. This work is a short version of an
earlier master thesis by the first author of this article [10].
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2 MOTIVATING EXAMPLE

In this section, we provide a motivating example illustrating the
necessity for introducing the concept of parking demand profiles to
improve the accuracy of machine learning models for predicting
free parking spots in smart cities.

The scenario consists of a large smart city with different parking
areas, which are either dedicated parking spots (e.g., car parks or
parking lots) or parking spaces on the side of the street. Some
of these parking areas are equipped with sensors to measure the
occupancy rate whereas other areas are tracked using cameras or
parking meters. Due to the high costs for tracking all parking areas
(especially those which offer free parking), most parking areas are
not tracked at all. To improve the parking situation in the city, the
local government decides to publish the available data sources, such
as the sensor measurements, on their Open Data platform.

Data scientists can now obtain the data and start building predic-
tive models for parking areas at which data are available. For that,
the data scientist examines the data, performs feature engineering
and selection, trains the models and develops an application that
predicts the occupancy rates for different locations of the city.

Examining this scenario, we identify several drawbacks. Due to
the heterogeneity of available parking data sources and information,
it becomes quite hard for the data scientist to build the models. First,
the data scientist has to understand each data source in detail based
on the information provided on the Open Data platform. If the
data were provided homogeneously (e.g., by using RDF and a well-
defined ontology), it would become easier for the data scientist to
understand the data from one source and to aggregate the data
from multiple sources. In addition, the application can be used in
other cities, which provide their data based on the same ontology.

Besides the understanding of the data, the data scientist still
faces the problem of not covering all parking areas of the city. If we
assume that different models for the different parking areas have
been built, it is unclear whether any of these models can be applied
on untracked areas. Hence, our approach exploits the use of parking
profiles which represent parking in a city area. One example would
be an area consisting of office buildings. Here, parking demand is
usually high during working time, e.g., between 8 and 18 o’clock.
Two such areas, perhaps in different parts of a city, or even in
different cities, likely have a similar parking situation, i.e., between
8 and 18 on weekdays there is a high parking demand. In case of
restaurants, on the other hand, we see a spike in parking demand in
the evening, usually from 18 until 22, and even more so on weekends.
In residential areas, the cars are parked in the evening and leave
again early in the morning. A measure that would capture parking
demand will therefore be based on the stay duration of customers
or employees of the particular services, the available number of
shops and restaurants or other point of interests (e.g., event halls).

For such city areas (e.g., office buildings, restaurants, residential
areas, etc.) that have parking occupancy data, the data scientist can
build the predictive models. Then, using parking profiles, one can
attempt using models created for tracked areas in untracked ones.
Hence, we investigate in this article how we can transfer these
models to other city areas for which no parking occupancy data is
available, but that have similar parking demand profiles.
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3 RELATED WORK

The goal of improving the parking situation by estimating free
parking spots is well known for many decades. Hence, there are
many works related to the problem we are addressing.

Xu et al. [23] make real-time parking availability estimations
based on data collected from mobile phones. The system uses al-
gorithms incorporating statistical weighted schemes and Kalman
filters. Additionally, the authors create parking availability profiles
based on historical data and statistical algorithms.

Other works making use of smart phones are the ones by Nan-
dugudi et al. [14], Koster et al. [11], and Chen et al. [7]. After data
collection, often using the sensors in the smartphone, they use dif-
ferent machine learning models, such as probabilistic distribution,
Bayesian, and Hidden Markov models, as well as fuzzy logic to
predict the available parking spaces.

Instead of using mobile devices that are carried by drivers, Park-
Net, developed by Mathur et al. [13] is a system made up of dedi-
cated vehicles that captures parking space information while driv-
ing. Every ParkNet vehicle is equipped with a GPS receiver and an
ultrasonic sensor facing sideways. The latter determines whether
it passes by parking spaces and whether they are occupied. The
data is sent to a central server that aggregates it, in order to build
parking space occupancy maps in real-time. The information is
queried by clients that search for a free parking space. The system
was evaluated in Highland Park, New Jersey and San Francisco on
500 miles road-side parking data and yield 95% accurate parking
maps and 90% parking occupancy accuracy.

Compared to approaches that collect data via mobile phones
or dedicated cars, other approaches use data collected by sensors,
parking meters or cameras that are installed on streets or parking
lots. For instance, Tiedemann et al. [22] developed a prediction sys-
tem that gives estimated occupancies for parking spaces in Berlin,
Germany. The occupancy data is collected online via roadside park-
ing sensors and the prediction is realized using neural gas machine
learning combined with data threads. The authors notice that some
factors play a significant part in the predictions, such as holidays,
weather and thus, they use the neural gas clustering to separate
the data, before the data thread method is applied. This perfectly
matches our idea of considering further information about the
circumstances in a city. However, our approach considers more
detailed information about specific districts rather than general
information like holidays, which usually hold for an entire city.

Similar to the approach presented by Tiedemann et al. [22],
Hossinger et al. [9] present a simple real-time occupancy model
based on various pieces of data collected in the city of Vienna,
Austria. An average day curve model was built using the ticket
data from mobile phone parking, the counts of car parks, and the
traffic flow volumes in the city. The data was collected following
agreements with the respective mobile phone companies, through
surveys and by accessing a dedicated traffic website, respectively.
The predictions are valid for short-time spans and applicable to the
above mentioned city.

Located in Spain (Barcelona), Caicedo et al. [4] developed a
methodology for predicting real-time parking space availability.
The probabilistic algorithm consists of three subroutines: allocat-
ing simulated parking requests, estimating future departures, and
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forecasting parking availability. The forecast has been reported to
improve as the system registers arrivals and departures. Similar to
our work, Caicedo et al. [4] take further factors into account, such
as duration of stay and capacity of every operating parking facility.

Rajabioun and Ioannou [17] introduce an information system
for parking guidance that enables communication between vehi-
cles and the infrastructure. It proposes a prediction algorithm that
forecasts the availability for parking locations based on real-time
parking information. It takes into account parameters such as park-
ing duration, arrival time, destination, pricing, walking distance,
parking capacity, etc. Their algorithm uses a probabilistic density
distribution model. The parking data was collected both from on-
street parking meters and off-street garages in Los Angeles and San
Francisco, USA. In a follow-up paper, Rajabioun and Ioannou [18]
propose a multivariate autoregressive model that considers the tem-
poral and spatial correlations of parking availability when making
predictions. The authors hold that the model, which is integrated
into a parking guidance and information system, recommends park-
ing locations with high accuracy.

In contrast to Rajabioun and Ioannou [17], Chen [6] tackles the
parking problem by aggregating parking lots. Their findings show
that the prediction error of parking occupancy decreases by com-
bining multiple parking lots. The trained models take into account
factors such as day, time, event, distance, parking price, etc. The
author evaluated multiple models, such as ARIMA, linear regres-
sion, support vector regression and feed forward neural network.
It turns out that the neural networks algorithm scores the best
when the model is evaluated on the SFpark data [2]. The findings
of Chen confirm our idea building models for smaller areas, such as
one district and one parking lot. However, our work goes one step
further by additionally transferring the trained model to districts
where no data is available.

Richter et al. [19] address the parking prediction problem with
the focus on model storage in vehicles. The authors train models of
various granularity that would predict parking availability based
on the information contained: a one-day model per road segment, a
three-day model per road segment, and a seven-day model per road
segment. Additionally, models based on regions and time intervals
computed by clustering are tried out. Hierarchical clustering with
complete linkage is employed. The models are evaluated on street
data from the SFpark project[2] and reach a prediction success rate
of about 70%.

While all the presented approaches tackle the problem of im-
proving the parking situation in cities with different ideas and
implementations, they fundamentally differ from our work. Some
approaches match with our idea of adding additional information
about the current circumstances in a city or by building models for
smaller areas. However, none of the approaches focuses on building
a solution that can be ported to other cities. As opposed to this, our
presented approach uses a public pre-defined ontology and data
in RDF format as input in order to calculate the prediction models
and similarity measures. Further, none of the presented approaches
aims at training prediction models for small areas where data are
available and transfer those models to other areas where no data
is available. Our approach aims exactly at this goal for enabling a
more accurate prediction in districts or streets where no parking
data are available.
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4 SELECTED DATA SOURCE

To implement and evaluate our idea, we use the data from the SFpark
project. This project was realized by the San Francisco Municipal
Transportation Agency (SFMTA), the city agency that manages
the city’s transportation, which includes on-street parking [1] [3].
The SFMTA establishes parking rates for on-street parking meters.
Before the project started, parking rates were the same all day,
every day, independent of the parking demand. By implementing a
demand responsive pricing scheme, parking availability improved
dramatically.

In conducting the project, nine pilot areas were chosen for moni-
toring. Out of these areas, seven were selected to have new pricing
policies, while two were control areas. The number of metered
spaces used was 6000, which amounts for 25% of the city’s total.
The meters allow rates to be deployed remotely and they transmit
data to a central server through a wireless connection.

The data was collected using parking sensors. These provided
the central server with the information needed to calculate the
demand-responsive parking rates and provided real-time parking
availability information. A parking sensor is a magnetometer that
detects changes in the earth’s electromagnetic field. A total of 11700
sensors were deployed, resulting in 8000 spaces that were equipped
with one or two sensors. The sensors delivered valid data from
April, 2011 to December, 2013. The sensors can suffer from environ-
mental noise, such as electromagnetic interference, early battery
degradation or street construction.

SFpark made available real-time information on parking rates
and parking occupancy through a smart phone application. The
SFpark project and its success played an important role when choos-
ing to base our project on it.

5 CONCEPT

For implementing our approach, we extract parking data from
SFpark. In addition, we collect city data from various sources (cf.
Section 5.2). To ensure that our approach will be compatible with
data available in other cities, we annotate our data using ontologies
from the CityPulse project [16] and store them in RDF format. Af-
terwards, we merge the data sets and perform a clustering process.
Next, we define the parking profile by introducing two similar-
ity functions: cosine similarity and earth mover’s distance. Finally,
we explain the machine learning training process and define the
estimations for clusters without parking data.

5.1 Parking Data

We consider the following types of data as parking data: parking oc-
cupancy contains information on the availability of parking spaces;
traffic data contains information regarding the city traffic, which is
relevant for parking; weather data contains weather information
for the same area as for the parking problem; event data contains
event information which may have an impact on parking; parking
revenue data contains economic information on parking, whose
relevance may influence parking prediction. fuel price data contains
prices of fuel in the region for which we build the models. Each
piece of data is geographically referenced by a location unit, e.g.,
street block, district or city. An overview of the different properties
available in the data set are shown in Table 1.
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Parking Occupancy

Traffic

date and time
time intervals

parking capacity The total number of parking spaces at the given
location
parking price The price of a ticket at the certain location and

the given time in a given currency
parking occupancy
percent) or in absolute numbers

Recorded usually at full hours or in periodic

Expressed either as rate (subunitary fraction or

date and time recorded usually at full hours or in periodic time
intervals

typically expressed as average traffic road occu-
pancy, average vehicle count, median speed, or

average speed of the traveling cars

traffic value

Events Weather
event name class the name of the event and its class (road closure, temperature may be current temperatures or maximum and
rise of parking demand) minimum values per day
precipitation expressing the quantity of rain or snow for the

corresponding time interval

Fuel Price

Parking revenue

type of fuel gasoline, diesel, etc.

price per unit provided as the price per liter or per gallon.

payment type the way the driver opted to pay for parking, e.g.,
cash, credit card, etc.
the amount in US dollars, Euro or other cur-

rency

payed amount

Table 1: An overview of the properties available in the data used from the SFpark project. Each of these data types also has
the location unit id, as well as the date and time (interval) when it occurred or was measured. In some cases, the location is a
somewhat larger or smaller area as the unit. The time information is provided in different granularities (e.g., per minute, per

hour, per day, etc. ).

5.2 City Data

We established that city data reflects parking demand in a city
area. We obtain it by collecting public amenity information as pro-
vided by OpenSteetMap!. The OSM data is available as shapefiles
containing geometries such as points, polylines and polygons. We
extract the points of interest (POIs). A POI contains an amenity
attribute indicating the public service located at this position as it
was annotated by the OSM users (cf. Figure 1).
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Figure 1: A map indicating public amenities (cafes, restau-
rants, banks) found at points of interest in OSM.

!https://www.openstreetmap.org The maps used in this article are ©OpenStreetMap
contributors

The amenity information accounts for the times of parking (i.e.,
morning, day, night, etc.) and, up to some degree, for the duration
of parking. An example of a service indicating this is Google Maps.
It displays typical visiting duration values and popularity of the
place for specific points in time. The average values are based on
the users’ smart phone GPS sensors (cf. Figure 2). To obtain the
duration values, we manually extract information from Google
Maps. The duration information is aggregated by Google using a
crowdsourcing approach.

Popular times Tuesdays &

Less busy tnan usual - Correct?

-

9a 12p 3p 6p 9p
Plan your visit: People typically spend up to 1.5 hours here

Figure 2: An example of visiting duration information found
on Google Maps.
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5.3 RDF Annotation

We emphasized that our approach should be relevant for any city
that wants to solve its parking problem. Thus, all input data used
in the present approach is in RDF format, in order to establish a
common format that can be used for other cases. Since the actual
parking and city data is only available as raw values, we need to
annotate it as RDF in the first place. The default process involves
the extraction of data, which is afterwards available for further
processing. To annotate the city and parking data, we use Apache
Jena. As underlying ontologies, we reuse those created as part of
the CityPulse project [16]. Afterwards, we can easily extract the
data in a well-defined format using SPARQL queries.

5.4 Merging City and Park Data

In order to combine the parking and city data, both sets of data
require a common location unit. The parking location units are
provided together alongside the various types of parking data. The
city data, on the other hand, references POI geometries, which are
points expressed in a particular reference system, which differs from
the one of the parking locations. Therefore, after establishing the
coordinate systems of both geometries, we define a merge distance
that matches a parking space to a public amenity.

The merge distance can be intuitively understood as the radius
around a public amenity. It is defined to represent the parking area
that is relevant for a particular public amenity, or, more straightfor-
ward, the walking distance from the parked car to, e.g., the restau-
rant, the office, the bank, etc. Concrete instances of the merging
distance can be found in Section 6.3.

5.5 Clustering

In a realistic scenario, the available parking data does not cover the
whole city surface. In fact, it is a fraction of it. Therefore, we first
separate the area with parking data from the area without parking
data. Based on this initial split, we perform clustering to further
separate these regions into smaller areas. By splitting into city areas,
we are making sure that smaller regions lead to more representative
parking profiles and therefore parking estimations.

As we want an exclusively location-based separation, we may
employ K-Means, DBSCAN or OPTICS to cluster the city areas.
The distance is calculated between (latitude, longitude)-pairs of
location unit coordinates corresponding to one parking unit. There
are two clustering processes executed, one for the city area with
parking data, another one for the city area without parking data.
The number of clusters chosen in each area is kept proportional
to the number of total location units that each city area contains.
Since having control over the number of clusters is the goal here, we
choose to use K-Means, where we provide the number of expected
clusters as input. More details on the concrete value of k and an
overview about the clusters can be found in Section 6.4.

5.6 Similarity Functions

To calculate the similarity of city areas, we use cosine similarity and
earth mover’s distance. For this, we use two representations of city
areas: cluster vectors and cluster Gaussians. As data, we use the city
data described in Section 5.2.
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5.6.1 Cosine Similarity. To form the cluster vectors, we first
divide all amenities into categories Caty, Cata, ..., Caty. The criteria
for division will be their average visiting duration. For example,
a short duration category of up to 30 minutes, a medium dura-
tion between 31 and 90 minutes and a large duration of above 90
minutes stay. Each cluster gets represented by an n-dimensional
vector, whose components correspond to the amenity categories.
The magnitude of component i is equal to the number of ameni-
ties of category Cat; that can be found in that particular cluster.
Compare Figure 3 for a general representation.

Cat 3

A

Y. Cluster Vector

Cat 2

Cat1
Figure 3: An example of a cluster vector for three categories.

The cosine similarity between two vectors is defined as the cosine
of the angle between the two vectors:

Z?:l A;B;

A-B
Al 1Bl 2
A JEL A

where A; and B; are the components of vector A, respective B.

Unlike the earth mover’s distance, the cosine similarity imple-
mentation uses the direct mathematical formula by plugging in the
magnitudes of the respective vector components.

cos(9) = o))

5.6.2  Earth Mover’s Distance. A cluster Gaussian is a kernel den-
sity estimation among amenity probability distributions. In turn, an
amenity probability distribution is represented as Gaussian kernel.
To construct a cluster Gaussian, we first collect the average visiting
duration and standard deviation for the individual amenities. A
cluster that contains one amenity A is represented as a Gaussian
curve, i.e., normal probability distribution. The curve’s center is at
the average duration of the amenity A and its standard deviation
is the one of the amenity. When n amenities A exist in the cluster,
the representation will be an A curve multiplied n times. Multiple
amenities, each appearing multiple times, will result in a curve that
is the linear combination of the individual representations of the
amenities as normal distribution curves. Compare Figure 4 for a
visualization of the summing process.

|amenities|

EMD(C))= )

=1

Kij X Aj (2)
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Vi € {1, ..|clusters|} and Vj € {1, ..|amenities|}

where A; is an amenity that appears K;; times in the cluster C;.

Cluster id = 3 (with data)

1.0 4

0.54

0.0 —

T T T T
o 100 200 300 400

Figure 4: The summing of Gaussians resulting in a cluster
Gaussian.

The earth mover’s distance (EMD) is a measure used in statistics
that roughly expresses the difference between position and magni-
tude of two curves. It is best explained by regarding the curves as
the hull of earth piles. For two separate earth piles, EMD computes
the minimum effort of rearranging a pile so that the shape of the
other pile is obtained. Moving P particles over a distance D is equal
to the effort P X D. A prerequisite for this operation is that the two
piles need to contain the same quantity of earth.

More rigorously, the earth mover’s distance is better known
in mathematics under the name Wasserstein Metric. Given two
normal distributions p; = N(mq,Cy) and pz2 = N(mg, Cy), where
mj and my € R" are their respective expected values and C; and
Cy € R™" Then, the 2-Wasserstein distance between y1 and ps is:

Wap1, p2)* = llmy —mal|2+ trace(C1 + Co —2(Cy *C1C)/ %)% (3)

In practice, we will not apply the Wasserstein metric directly,
but rather resort to some levels of discretization. First off, a number
of so-called bins is determined. Each bin represents a unit on the
X axis, the same on which the visiting duration is expressed. We
will take a number of buckets equal to the maximum amenity mean
and add 3X the largest standard deviation to it, as it is known that
within 3X standard deviation on both sides of the mean over 99%
of the Gaussian sum is covered. Moreover, an offset on the X-axis
equal to 3x the maximum standard deviation is used. This way, we
are sure the landscape of summed Gaussians will easily fit into the
number of bins.

Notice that EMD is applicable only when the sum under both
Gaussian curves is equal. Therefore, all cluster Gaussians will get
normalized before EMD is computed.

5.7 Machine Learning Models

The prediction of parking occupancy is realized using machine
learning. We choose to explore this methodology, following the
solid results machine learning models have delivered for the various
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smart parking settings investigated in Section 3. A machine learning
model M will be trained for every cluster with parking data.

The training data features are composed of the parking data
previously enumerated. We aggregate feature values around the
location unit id, as on the cluster level this is irrelevant. The oc-
cupancy rate is set as the target variable. The model training and
evaluation is performed in Python via the scikit-learn library.

During the training phase, we evaluate different machine learn-
ing approaches ranging from simple decision trees over random
forests to support vector machines and gradient boosting. In ad-
dition, we make use of grid search to determine the best model
parameters for the current approach. As error metric, we use root
mean square error and performed a ten-fold cross-validation. Fur-
thermore, a model is evaluated on the other clusters with parking
occupancy data.

5.8 Parking Occupancy Estimations
Once all models M have been built for the clusters with parking
data, making estimations on parking occupancy in these areas is
straightforward. However, we want to apply these models, on the
clusters that are missing parking data. We derive the estimation
J
interval for cluster C,,,,,
follows.

For cosine similarity:

E(Cvlvtth’ wout) =

based on the model of cluster C! . | as
with

[M(CL,,,)—-(1=simij). M(CL ., )+(1=sim;;)]

4)
where sim;; = szm(CWlth, ‘]wut) e [0,1]

For earth mover’s distance:

E(C:zvzth’ wout) [M(Cl 1th) emdz], M(Cwnh)"'emdij] )

where emd;j = emd(CWlth,Cwout) € [0,1]

Vi € {0, ... |Coirnl = 1} and Vj € {0, .... |Cwour| — 1}

X is a parking data record containing feature values. The result
is an estimation interval that “stretches” the punctual estimation
into an interval depending on the similarity value. The lower the
similarity value is, the larger the length of the resulting estimation
interval will be.

Notice that X should be valid for both C‘i”.th and Cwout
averaged values used for features related to the location unit id
will be transferred as they are similar to those of the target cluster
Civout

Furthermore, we define an estimation intersection interval, whose

purpose is to narrow down the computed estimation interval. An

he

estimation intersection interval for the clusters C’ i ;1 And CW out 18
computed by intersecting the estimation mtervals that have a better

P, : 0 i-1
similarity among the clusters with data C .., ....,C, -, and the

same cluster without data Cw out:

EICL 1 Clous) = ﬂEI( K en Chout) (©)
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where

Sim(CK s Cl o) < sim(CL . CL ).k € {0, .., i—1} for EMD

7)
sim(Cﬁith,Civout) > sim(C:;mh,C‘{,out),k € {0, ..,i—1} for cos(in)e
8

Vie{0,...,|Cywirnl — 1} and Vj € {0, ..., |Cywout| — 1}

6 EVALUATION

For evaluating our approach, we require parking and city data. As
parking data, we use those from the SFpark project and determine
the data sets that are relevant for our purposes. As city data, we take
OpenStreetMap data from San Francisco and obtain the available
public amenity information. Google Places provides the visiting
duration values for the amenities. Based on these data sets, we
determine relevant values for the merge distance. Since we cannot
evaluate the performance of our approach using clusters without
data, we evaluated the performance on clusters for which data
were available. Therefore, we first calculated the similarity score
between a cluster ¢ and all other clusters. Afterwards, we calculated
the estimation errors when applying the model of cluster c to all
other clusters.

6.1 SFpark Parking Data

The SFpark data are visualized in Figure 5 using a built Leaflet
application. The actual SFpark data has some particularities. While
the occupancy data is provided with reference to blocks as location
units, all the other data sets use different location units. For the
traffic and events data sets, the location units are street names. For
parking revenue, they are districts. In case of weather and fuel price,
the location reference is valid for the whole city of San Francisco.

Figure 5: The blocks accounted in SFpark. The light blue
ones are blocks without parking data, the light red ones are
with parking data.
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6.2 OpenStreetMap for San Francisco

Following the selection of SFpark data as parking data, the city
data is found in the corresponding OpenStreetMap layer for San
Francisco. The actual public amenity information collected from
POIs is listed in Table 2.

arts_centre dojo marketplace shelter
bank embassy music_rehearsal_place shop

bar fast_food music_school spa
biergarten grocery nightclub stripclub
bureau_de_change  gym pet_grooming_shop studio
cafe hookah_lounge pharmacy training
clinic ice_cream police veterinary
clothes_store karaoke post_office vintage_and_modern_resale
community_centre  lan_gaming_centre  pub

dentist laundry restaurant

doctors library salon

Table 2: List of all OSM amenities found in the SFpark
blocks.

6.3 Merging Parking and City Data

In case of SFpark, the blocks are given in latitude and longitude.
In OpenStreetMap, the geometry is set to EPSG 4326. With both
systems using the same reference, we can therefore set a merge
distance. The distance d should express the impact that a POI P
has on the block B, when dist(P, B) = d. For instance, it expresses
the impact of the parking demand that a restaurant induces on a
parking block situated at d meters away. We assign to it distances
of 100m, 200m, and 400m.

6.4 Clustering

As established in Section 5.5, we apply K-Means to cluster the city
areas. In the evaluation, we will refer to the number of clusters with
parking data as the number of clusters. The area without parking
data is going to be split into a proportional number of clusters, as
the sizes of clusters should be kept roughly equal for both sides.
It turns out that the proportion is approximately 2.6, following
the division between the total number of blocks from each group.
We have chosen two numbers of clusters to run the evaluation,
namely 8 clusters and 16 clusters. The area without parking data
will therefore have 20 and 41 clusters, respectively.

After running the K-Means clustering process, the Leaflet ap-
plication map reveals the individual clusters by highlighting them
on mouse-over. The clusters with parking data will turn dark red,
while the clusters without parking data will appear in dark blue (cf.
Figure 6).

3 &

/

&

Figure 6: Highlighted cluster with parking data on the left
side and a cluster without parking data on the right side.
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The resulting aggregated blocks is worth taking into account
when training the machine learning models, as these will average
over pieces of information contained in individual blocks.

6.5 Similarity Functions

Before computing cluster vectors and cluster Gaussians, we will
establish the visiting duration in every amenity. For this, we use in-
formation gathered from Google Places available via Google Maps?.

We manually collected information from 470 places in San Fran-
cisco, for which a maximum duration of stay was provided (the
minimum duration is not always given, as indicated earlier). The
data was obtained by manually navigating to every business place
and writing the duration visit information in a spreadsheet. This
piece of information is not accessible yet via the Google Places
APD. The results are shown in Table 3 and the numbers are given
in minutes and have been rounded to the nearest integer. We have
included only amenities for which at least two stay duration sources
were found.

Alongside this information, we need the amenity categories in
order to derive the cluster vectors. As defined in Section 5.6.1, the
categories are based on the visiting duration mean. We split them
in three categories: under half an hour, 31 to 90 minutes and more
than 1.5 hours. The assigned partitions for every amenity are shown
in Table 3.

The calculation of cluster Gaussians relies on both the mean and
standard deviation of the amenity visiting duration, as defined in
Section 5.6.2.

6.6 Model Training and Evaluation for Clusters
with Parking Data

We use four methods to train models for the clusters with parking
data: decision trees, support vector machines, multilayer perceptrons,
gradient boosted trees. As training data, the SFpark occupancy data
is used with street blocks as location unit. It turns out that training
on the additional SFpark data, i.e., traffic and events, encounters,
some problems.

The traffic data do not share the same location unit with the
parking occupancy’s street block. However, aggregating traffic data
on the district level, which is available for the occupancy data
as well, does not provide an additional value to the training. For
the SFpark events data, we encounter the same problem as for the
traffic data: the location unit does not match the block. In fact,
the events are marked for streets, whose association to blocks is
not determinable. Parking revenue data is provided for districts,
which again are too general to make a difference in training. Finally,
weather data and fuel data are given per city, hence making even
less an impact to improve the model.

As indicated in Section 5.7, the training data is averaged on
all blocks so that it can be applied later on other clusters. The
averaging is performed per timestamp, i.e., if multiple blocks have
an occupancy record for the same time and block, the occupancy
rate will be averaged for both of these. Features such as price and
parking capacity per block are averaged as well. This means that the
original collection of data records shrinks. In Table 4, the number

Zhttp://maps.google.com
3Google Feature Request: https://issuetracker.google.com/issues/35827350
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of training records per cluster is shown, together with the number
of occupancy records for that cluster. On average, there are 10.5
blocks that share the same data points.

In Figure 7, a screenshot of the application showing a sample
of the results is illustrated. Figure 8 displays the presented table in
more detail.

Figure 7: Selected cluster with parking data and the pop-up
table in the Leaflet application.

6.7 Clustered- vs. Total Models

One assumption of our approach is that models originating from
smaller clusters are better at predicting occupancy than models
trained with the entire city area. We have compared the two types
of models during our tests. For each target cluster Crqrger, We
determine the source cluster Csoyrce Whose model has the best
estimation error when applied on Ctarges. We also train a model
containing the entire city area with parking data A minus Ctarget’s
data and compute this model’s estimation error on Cygrget. As we
can observe from Table 5, in the case of 8 clusters, and in Table 6
for 16 clusters, the cluster’s models estimations are superior to the
ones of the total model with very few exceptions.

6.8 Best Model Method

Models were trained using four methods: decision trees, support
vector machines, multilayer perceptrons, gradient boosted trees.
Table 7 shows the distribution of best machine learning methods in
case of 8 and 16 clusters. The values were obtained by summing up
the number of times a method produced the least estimation error,
i.e., RMSE, among the four methods for all combinations of clusters
with parking data (Csource, Ctarget)- Extreme gradient boosting
claims the first spot in both cases.

6.9 Similarity Values vs. Estimation Errors

The goal of our approach was to replace occupancy estimations for
clusters where no parking data is available with estimations based
on cluster similarity values. Among clusters with parking data,
the real occupancy values are known. This enables us to compute
estimation errors for cluster models, which can then be correlated
with the similarity values between clusters. We use two correlation
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Table 3: All amenities listed with their corresponding mean visiting duration (in minutes) and standard deviation, as collected
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amenity name mean | stdev | cat amenity name mean | stdev | cat
arts_centre 110 37 3 laundry 78 16 2
bank 42 65 2 library 83 13 2
bar 121 38 3 music_school 120 30 3
cafe 76 39 2 nightclub 189 20 3
clinic 100 29 3 pharmacy 25 20 1
clothes_store 41 37 2 post_office 16 2 1
community_centre 119 40 3 pub 135 21 3
dentist 104 35 3 restaurant 135 32 3
doctors 60 42 2 salon 141 53 3
embassy 75 24 2 shelter 90 0 2
fast_food 31 15 2 shop 43 21 2
grocery 20 10 1 spa 161 54 3
gym 100 22 3 stripclub 140 46 3
hookah_lounge 130 17 3 studio 60 0 2
ice_cream 23 7 1 veterinary 67 29 2
karaoke 188 15 3 vintage_modern_resale 38 32 2

from Google Places. The assigned category for cluster vectors is included.

Source ID$

g

c

&n

€n

en

wn

g
g

c

Model$
dt
dt
dt
dt
dt
dt
dt
dt
dt

Training-Error*™ %

Target ID$ Test-Error « Similaritys Sim-Type %
2 11.68 1.00 cosine
8 1412 0.59 cosing
0 15.40 0.5% cosine
7 22,53 0.98 cosine
4 2277 0.93 cosing
9 22483 0.98 cosine
1 26,63 0.93 cosine
3 2793 0.85 cosine
6 2561 0.59 cosing

*Cluster Datapoints: 9.112
**Error Type: Root Mean Square

Figure 8: The pop-up table for the Leaflet application view of Figure 7.

Cluster ID | Data Points | Occupancy Points Blocks
per Timestamp
0 9879 120320 12.2
1 12387 203728 16.4
2 8713 61839 7.1
3 6134 22371 3.6
4 9586 110 463 11.5
5 9112 87316 9.6
6 10 244 118096 11.5
7 9500 115588 12.2
8 9051 112245 12.4
9 8713 76 230 8.7
Average 9332 102 820 10.5

Table 4: Number of training points per model alongside the
initial occupancy points within the containing blocks.

coefficients: the Pearson correlation coefficient and Spearman’s
rank correlation coefficient.

We have evaluated both cosine and EMD similarity values in
configurations of 8 and respectively 16 clusters. Additionally, we
varied the merge distance to see how the correlation behaves. The
similarity values are hence calculated for 100m, 200m, and 400m
merge distance respectively. In Table 8 the final results are shown.
For each correlation measure, the percent of similarity values were
calculated that correlated positively, in case of EMD distance, or
negatively, for cosine similarity, with the estimation errors. The
models taken were trained with gradient boosted trees.

We notice that the cosine similarity achieves better results than
EMD for the same testing configuration, peaking at 100% negative
correlation for 8 clusters and 100m merge distance. Its average Pear-
son coefficient is —0.55, while the mean Spearman rank coefficient
is —0.49. EMD positively correlates the most for the same testing
configuration, when the average Pearson coefficient is at 0.28 and
Spearman’s rank coefficient equals 0.23. There is a clear descending
trend in correlations, as the merge distance increases. Also, the
results for 8 clusters are superior to the ones when the city is split
in 16 clusters.
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Ctarget M(AN Ctarget) €rroryotal E€rrorciuster M(Csource) Csource
0 xgb 18.20 16.10 xgb 6
1 dt 17.44 12.14 xgb 7
2 xgb 20.33 17.45 svm 5
3 xgb 17.59 13.35 xgb 1
4 dt 17.49 17.30 xgb 6
5 xgb 18.44 16.08 xgb 2
6 xgb 16.00 15.92 svm 0
7 dt 16.38 10.87 xgb 3

Table 5: Comparison between the estimations of the total models versus the ones of clustered models, in case the city is split

into 8 clusters. Errors are expressed as RMSE.

Ctarget M(AN Ctarget) erroriotal errorelyster M(Csource) Csource
0 mlp 19.53 13.40 xgb 15
1 xgb 17.82 17.18 xgb 7
2 xgb 20.79 17.97 svm 6
3 xgb 16.44 13.25 xgb 0
4 xgb 17.58 16.40 xgb 8
5 dt 17.59 10.93 xgb 0
6 xgb 18.44 16.29 xgb 2
7 xgb 16.73 16.38 xgb 9
8 xgb 1357 14.14 xgb 10
9 xgb 16.90 15.95 xgb 10
10 xgb 16.25 16.45 xgb 7
11 mlp 21.73 14.95 xgb 11
12 xgb 20.33 15.42 xgb 0
13 dt 14.52 11.39 xgb 15
14 dt 2293 18.73 svm 6
15 dt 20.63 13.33 xgb 0

Table 6: Comparison between the estimations of the total model versus the ones of clustered models, in case the city is split

into 16 clusters. Errors are expressed as RMSE.

dt svm | mlp | xgb
8 clusters 24.6% | 17.5% | 12.3% | 45.6%
16 clusters | 14.6% | 13.8% | 13.8% | 57.9%

Table 7: The proportion of best models by means of machine
learning method.

6.10 Estimations for Clusters without Parking
Data

We apply the models trained on SFpark data on clusters without
parking data. The testing data records are composed of values
equal to the averages of the respective data types in all clusters
with parking data. This is the case for parking price and parking
capacity. One piece of data that still needs to be provided so that
the estimation is computed is the date and time. For convenience,

we choose the next day at the point when the user starts the model
training. An example of the estimation is visualized Figure 9.

7 FUTURE WORK

To further investigate parking occupancy prediction given the as-
sumptions in this work, there are several improvements or alterna-
tive approaches that can be realized.

(1) Use other parking settings. In the present work, several
pieces of data could not be integrated because of merging
issues, i.e., the location unit did not coincide with the oc-
cupancy data’s block. Traffic, events, weather, etc. could
improve estimation results and hence the final estimations
for clusters without parking data. Other sources for parking
occupancy data can be found for the cities of Cologne [12],
Zurich [24], Santa Monica [15]. In Germany, Deutsche Bahn
provides an API to obtain data from parking around train
stations [8]. Data pertaining to street occupancy is, however,
hard to find. At the time of writing, open data portals mostly
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C-WouUT ID 19
Similarity cosine | emd

C-WTIH ID Similarity Sim-Type
6 1.00 cosing
7 1.00 cosing
8 0.99 cosine
9 0.95 cosine
5 0.59 cosine
0 0.58 cosine
1 0.58 cosing
2 0.98 cosine
B 087 cosine
3 0.52 cosine
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Timepoint: 2017-11-04 09:00:00 -

Estimation Interval Intersection
£5.27 [45.19 - 45.35] [45.19 - 45.35]
45.15 [45.01 - 45.29] [45.19 - 45.29]
57.73 [56.99 - 58.46] empty
50.84 [49.84 - 51.83] empty
688.71 [65.49 - 67.93] empty
52.52 [50.58 - 54.48] empty
36.32 [34.10 - 38.54] empty
55.45 [53.03 - 57.87] empty
5211 [55.53 - 60.58] empty
45.26 [37.51 - 53.01] empty

Figure 9: The pop-up table of a cluster without data. Notice the drop-down list from which the time can be selected.

8 clusters
merge distance | cosine | rank_cosine emd | rank emd
100m 100% 100% 87.5% 75%
200m 75% 75% 75% 75%
400m 62.5% 50% 75% 75%
16 clusters
merge distance | cosine | rank_cosine emd rank_emd
100m 75% 75% 68.75% 62.5%
200m 75% 75% 56.3% 56.3%
400m 68.8% 68.8% 62.5% 62.5%

Table 8: Correlations between similarity values and model
estimations errors for pairs of clusters with parking data
(Csource>Crarget)- For cosine similarity, the proportions
show the negative correlation, while for EMD, they express
the positive correlation. The Pearson coefficient and Spear-
man’s rank coefficient were used.

provide the location of parking lots, parking meters, parking
price and opening times, if applicable.
(2) Use more city data. The parking profiles in the present

work are relying on the public amenities from OpenStreetMap.

OSM has great potential as a collaborative map service but it
lacks many pieces of information that could be useful. Data
such as opening hours would be interesting to include in
the parking demand profile, which would then take into ac-
count the number of public amenities that are available at a
certain point in time. Furthermore, the stay duration data col-
lected for the present approach is currently limited. Adding
more stay duration data may fine tune the emerging similar-
ity values. Overall, more and finer city data, together with
an appropriate representation and similarity function could

eventually improve the occupancy estimations for clusters
without parking data.

(3) Integrate city data in machine learning models. An al-
ternative to building urban measures and similarity functions
is to let machine learning figure out the similarities by itself.
One can add the city data as further training information
for clusters. The models are then applied on clusters with-
out parking data and return occupancy estimations. The
difference here is that models will be built for all clusters,
including the ones without parking data. This also has the
disadvantage of not using most of the parking data for train-
ing. The benefit of finding better similarities by leveraging
unknown patterns in the city data may, however, outweigh
this drawback.

(4) Apply semi-supervised machine learning. Another rel-
evant machine learning approach in this case is based on
organizing the city areas as an undirected graph. The ver-
tices represent the clusters with their respective occupancy
data, while the edges between them are assigned similarity
values. Initially, only a part of the vertices have the occu-
pancy value known, i.e., the clusters with parking data, while
the rest has undetermined occupancy, i.e., the clusters with-
out parking data. At each step, the value for a vertex whose
value is undetermined is being computed by considering the
occupancies of the linked vertices and their corresponding
similarity values.

8 CONCLUSION

In this work, we have presented an attempt at approximating street
parking occupancy in cities. Under the assumption that parking
data is lacking, in order to build scalable occupancy prediction sys-
tems, we proposed an alternative solution to the ones previously
developed for this problem. We built parking demand profiles by us-
ing complementary city data, which localize various types of public
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amenities and indicate the average visiting duration there. All data
has been made available in an established RDF format, so that it
can be easily reused. We merged the parking data with the city data
by matching parking location units to points of interest, split the city
into clustered areas, and built machine learning models for them.
K-Means was used to cluster the location units, while four methods
were employed to train models for the clusters: decision trees, sup-
port vector machines, multilayer perceptrons and extreme gradient
boosting. Based on the city data, urban measures were built in the
form of cluster vectors and cluster Gaussians, both of which took
advantage of the mean visiting duration and its standard deviation.
The vectors were part of the cosine similarity computation, while
Gaussians contributed to the earth mover’s distance calculation. The
occupancy estimations for clusters without parking data were de-
fined in terms of model estimations from clusters with parking data
and the corresponding cluster similarity values. The estimations are
expressed as intervals which extend the model prediction values
by the magnitude of the similarity values.

As use case, we chose the SFpark project from San Francisco,
which gathered parking data for more than 2 years starting in 2011
and now offers it for free usage. The city data was collected from
OpenStreetMap as amenity information, and from Google Places
as stay duration values. Both sources are open and free of charge.
Over 30 types of public amenities were found in the San Francisco
blocks, which corroborated with over 470 Google Places sources,
lead to building the urban measures and similarity values.

The results confirmed that clustering the city into smaller ar-
eas yields better occupancy estimations than those of entire city
area models. Following our tests, the best machine learning model
turned out to be extreme gradient boosting. We used the clusters
with parking data for the evaluation of the similarity values and
calculated correlation coefficients between the similarity values
and the estimation errors, using both absolute values and ranks.
The best correlation were reached for the 100m merge distance
for 8 clusters, averaging at —0.55 as Pearson Coefficient and —0.49
as Spearman’s rank coefficient. In the same configuration, both
cosine similarity and EMD distance reached their best results from
all the test configurations. Overall, cosine similarity achieved better
correlations than emd. Finally, the models for 8 clusters produced
superior results over the models for 16 clusters.
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