
Michael Cochez

Semantic Agent Programming Language: use and

formalization.

Master’s Thesis
in Information Technology
March 13, 2012

UNIVERSITY OF JYVÄSKYLÄ
DEPARTMENT OF MATHEMATICAL INFORMATION TECHNOLOGY

Jyväskylä

Author: Michael Cochez
Contact information: michaelcochez@gmail.com
Title: Semantic Agent Programming Language: use and formalization.
Työn nimi: Semantic Agent Programming Language: käyttö ja formaalistaminen.
Project: Master’s Thesis in Information Technology
Page count: 92
Abstract: This thesis gives an overview of languages used in the Semantic Web
for data representation and querying. Then it gives a formalization of the Seman-
tic Agent Programming Language (S-APL), which is a Semantic Web language for
agent programming. The formalization consists of syntax and query definition, and
definition of the dynamic structure of a S-APL document. Further, it is shown why
the formalization is needed.
Suomenkielinen tiivistelmä: —
Keywords: ontology, logic based languages, S-APL, semantic web
Avainsanat: ontologia, logiikkapohjaiset kielet, S-APL, semanttinen web

Copyright c© 2012 Michael Cochez

All rights reserved.

Glossary

ANTLR ANother Tool for Language Recognition — A parser library and language
ASCII American Standard Code for Information Interchange — A character encod-

ing scheme
DR Description Resources — A way of describing a set of resources on the web

using RDF
EBNF Extended Backus-Naur Form — A formal model for describing context-free

grammars
FIPA Foundation for Intelligent Physical Agents — A standard body specialised in

agent systems
FOAF Friend of a Friend — An ontology specifying concepts for describing people,

their relations and their occupations.
G General Context — the root of the hierarchy in a S-APL document
HTML HyperText Markup Language — Markup language for web pages
IETF Internet Engineering Task Force — A standard body
IP address Internet Protocol address — An address from the addressing scheme

used in the Internet
IRI International Resource Identifier — A type of identifier used on the Internet
ISO International Organization for Standardization — A standard body
ITU International Telecommunication Union — A standard body
MAC address Media Access Control address — Unique address for communica-

tion on the physical network layer
N3 Notation3 — An expressive concrete syntax for RDF graphs
OWL Web Ontology Language — A framework for defining ontologies in RDF
RDF Resource Description Framework — A language for describing resources
RDF/XML RDF encoded as XML
RDFS Resource Description Framework Schema — A schema language for RDF
RFC Request for Comments — An IETF memorandum on Internet standards and

protocols
S-APL Semantic Agent Programming Language — A concrete syntax for the RDF

language, S-APL adds possibilities for dynamic documents and agent pro-

i

gramming
SPARQL SPARQL Protocol and RDF Query Language — A query language for

RDF graphs
SQL Structured Query Language — A management and query language for rela-

tional databases
SWRL Semantic Web Rule Language — A rule language used in the semantic web
UBIWARE A semantic agent platform where agents use S-APL for beliefs storage

and messaging
UCS Universal Character Set — Set of characters which is aiming to cover all sym-

bols used in written and visual communication
URI Universal Resource Identifier — A type of identifier used on the Internet
URL Universal Resource Locator — A subclass of URI, which contains web ad-

dresses of resources
URN Uniform Resource Name — A type of identifier used on the Internet
UUID universally unique identifier — A set of identifiers which are very likely to

be unique
W3C World Wide Web Consortium — A standard body
XHTML eXtensible HyperText Markup Language — Attempt to integrate HTML

into an XML document
XML eXtensible Markup Language — A format for representation of structured

data
XRI Extensible Resource Identifier — A type of identifier intended for use on the

Internet, but not an accepted standard

ii

Contents

Glossary i

1 Introduction 1
1.1 Mathematical preliminaries . 2
1.2 Definitions of used prefixes . 3

2 Languages used for representation of semantic data 5
2.1 Resources and identifiers . 5

2.1.1 URL, URI, URN and family . 5
2.1.2 UUID . 8
2.1.3 IRI vs. UUID . 9

2.2 RDF for data representation . 9
2.2.1 RDF abstract syntax . 10
2.2.2 N-Triples . 12
2.2.3 RDF/XML . 13
2.2.4 N3 . 14
2.2.5 Turtle . 16
2.2.6 N-Triples vs. RDF/XML vs. N3 vs. Turtle. 18
2.2.7 Reification of statements . 19

2.3 Frameworks using RDF to represent data. 19
2.3.1 RDFa . 19
2.3.2 POWDER . 20
2.3.3 Use of RDF as embedded information structure. 22

2.4 RDF structure languages . 22
2.4.1 Resource Description Framework Schema (RDFS) 22
2.4.2 Web Ontology Language (OWL) 24

2.5 Query languages for Semantic data . 27
2.5.1 SPARQL . 28

2.6 Semantic Web Rule Language . 37

iii

3 S-APL language and its formalization 39
3.1 Syntax definition . 39

3.1.1 Original UBIWARE S-APL definition 40
3.1.2 Removal of syntactic sugar . 42
3.1.3 S-APL supergraph definition 44
3.1.4 S-APL document definition . 45
3.1.5 S-APL document and RDF graph equivalence 46
3.1.6 Benefits of equivalence . 48
3.1.7 Merging of containers . 48

3.2 Queries – binding of variables . 49
3.2.1 Definition of a query, bindingset and operators 50
3.2.2 Filling variables . 52
3.2.3 Selection of Literals, Resources, Variables and Containers . . . 52
3.2.4 Selection of nested nodes . 53
3.2.5 Construct for conjunction . 56
3.2.6 Construct for optionality . 57
3.2.7 Creating new nodes from expressions 57
3.2.8 Filtering the results with filtering predicates 58
3.2.9 Filtering the results with negation 59
3.2.10 Filter on whether something is a container 60
3.2.11 Construct for UNION . 60
3.2.12 The empty query . 61

3.3 Limitations and syntactic sugar for queries 61
3.3.1 Statistics and filters on statistics 61
3.3.2 First match, sapl:All and sapl:Some 62

3.4 Rules and dynamics of S-APL . 63
3.4.1 Implies now rules . 63
3.4.2 Removal of beliefs . 64
3.4.3 Dynamics – definition of the delta operator 64
3.4.4 S-APL document classes . 65
3.4.5 Emulating other rules . 66

3.5 Use of S-APL in agents. 67
3.5.1 Software agents . 67
3.5.2 The roots of S-APL . 68
3.5.3 External actions . 69

iv

3.5.4 Agent time and embedded beliefs 69
3.5.5 Inability of implementations to support infinite loops 70
3.5.6 Protection of removal of beliefs in an agent context 70
3.5.7 Exceptions for merging and empty containers 70
3.5.8 Adding and Erasing of beliefs 71
3.5.9 Syntactic sugar for rules available in UBIWARE 71
3.5.10 Referring to containers and statements in UBIWARE S-APL . 71

3.6 The problem of variables in higher order constructs 72

4 Use of theoretical model defined for S-APL 74
4.1 Data representation . 74
4.2 Query language . 74
4.3 Schemas . 75
4.4 Proof of correctness of implementation 76
4.5 Limit for space and time optimizations 77
4.6 Plans . 77

5 Conclusion 78

6 References 79

v

1 Introduction

“The Semantic Web is a web of data” [1]. Data is produced at a very high rate
nowadays and this data is not available enough. The data is produced and used by
applications, often in formats unreadable by or unreachable for other ones. Another
problem is that the data is not linked, i.e., there is no way to relate fragments of infor-
mation to each other.[1] The Semantic Web aims “To do for machine processable in-
formation (application data) what the World Wide Web has done for hypertext“[2].

In order to reach the goals of the Semantic Web, several standards and lan-
guages have been introduced. Among these are languages to represent data like
RDF, schema languages like RDFS, query languages like SPARQL and even rule
languages like SWRL. These and others are described in section 2.

The UBIWARE platform (see also section 3.5.2) is a multi-agent platform which
is based on semantic technologies. A multi-agent platform is a software platform
on which independent software components (agents) perform certain tasks. While
this platform was being developed, it was noticed that the existing languages for
the semantic web were not sufficient for the purposes of the platform. One reason is
that the different available languages are not interchangeable with each other, since
their encoding is different. This is, however, only a practicality and could be ignored
in theory. The main shortcoming of the existing languages is that they do not allow
removal and change of information. It is for instance impossible to first state the
capital of a country to be X and then redifine it to become Y. The problem is that
it is impossible to state that certain information has become invalid. The agents on
the UBIWARE platform need this capability, since an agent needs to have an up-
dated view on the current state of its environment. Therefore, a new language for
the semantic web was developed and named Semantic Agent Programming Lan-
guage (S-APL language). Next to having possibilities for removal of invalid infor-
mation, the language also provides advanced constructs for agent programming as
described below in section 3.5.

The aim of this thesis is twofold. To begin with, it tries to show that the S-APL
language is not restricted to agent programming and that the language needs to be
formalized. In the second place, a formalization of the S-APL language is elabo-

1

rated. A formalization is defined on WordNet as “the act of making formal (as by
stating formal rules governing classes of expressions)” [3]. The point of a formaliza-
tion is thus to state formal rules which should enforce certain properties. In the case
of S-APL, the formalization means the statement of a mathematical description of
the language and its properties.

Because it is more logical and easier to give examples, the answer to these two
research questions is given in oposite order. The second research question which this
thesis tries to answer is how one can make a formalization of the S-APL language.
This research question is answered in chapter 3. The first question about the need
for the formalization is elaborated in chapter 4.

The rest of this chapter describes mathematical preliminaries needed for the the-
sis and prefixes used in examples.

1.1 Mathematical preliminaries

This section contains a description on the mathematics needed in this thesis. Much
of the information of this section is taken directly from the book “Calculus” by James
Stewart [4], and Wikipedia articles on graph theory [5] and [6].

set As set is a collection of objects which are called the elements of the set. If S
is a set, then the notation a ∈ S means that a is an element of the set and
a /∈ S means that a is not an element of the set S. The empty set, i.e., the
set without any elements is denoted ∅. A set can be described by listing its
elements between braces or by using set-builder notation. An example of set-
builder notation could be

{x|x is a car }

Which is the set of all x such that x is a car.

size For a finite set S, the number of elements in S is denoted |S| and is always
a natural number.

union The union of two sets A and B, denoted A∪ B is the set which contains
an element if it is an element of either A or B.

intersection The intersection of two sets, denoted A ∩ B is the set which con-
tains an element if it is an element of both A and B.

subset S is a subset of a set A, denoted S ⊂ A, if all element of S are also
elements of A.

2

power set The power set (or powerset) of any set S, which I will denote 2S, is
the set of all subsets of S. For instance, the power set of the set {a, b} is

{{} , {a} , {b} , {a, b}}. It can be shown that |2S| = 2|S|

partitioning A set of nonempty subsets is called a partition of a set A if every
element x in A is in exactly one of the subsets.

tuples A tuple is an ordered list of elements enclosed by braces and separates by
commas. For instance (1, 2, 3) is the tuple containing the numbers 1, 2 and 3
in that order. When I use the word “n-tuple”, I mean a tuple which has n ele-
ments. A tuple of two elements is sometimes called a pair, for more elements
there are words like triple, quadruple, quintuple, etc. . .

functions A function f is a rule that assigns to each element x in a set A exactly
one element, called f (x), in a set B. Here, A is the domain of the function and
B is the range. A function can be denoted by writing the assign rule directly
or by a set of 2-tuples which have all a different first element from the set A
and a second element from the set B. The value of a function defined with
tuples, for an element a, is the second component from the tuple where the
first component is a.

directed graph A directed graph or digraph is a pair G = (V, A) where

• V a set whose elements are called vertices or nodes,

• A a set of ordered pairs of vertices, called arcs, directed edges, or arrows.

Label A label is a value associated with a node. It uniquely identifies the
node.

Reachable Reachable is the ability to get somehow from one node to another
node. One can state that a node A is reachable from a node B if one can
traverse the graph, following edges and nodes, from A to B.

1.2 Definitions of used prefixes

For the remainder of this document, I define the following namespaces to be used
in different examples and code listings. If the form prefix:suffix is used, where the
prefix is one of the ones defined here, it should be interpreted as the concatenation
of URI associated with the prefix, and the suffix.

3

prefix URI associated with prefix
ex http://www.example.org/

jyu http://www.jyu.fi/concepts#

owl http://www.w3.org/2002/07/owl#

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs http://www.w3.org/2000/01/rdf-schema#

sapl http://www.ubiware.jyu.fi/sapl#

saplvar http://www.ubiware.jyu.fi/saplvar#

xsd http://www.w3.org/2001/XMLSchema#

4

http://www.example.org/
http://www.jyu.fi/concepts#
http://www.w3.org/2002/07/owl#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.ubiware.jyu.fi/sapl#
http://www.ubiware.jyu.fi/saplvar#
http://www.w3.org/2001/XMLSchema#

2 Languages used for representation of semantic data

For the representation of data in the Semantic Web, i.e., semantic data, several lan-
guages and models have been developed. In this chapter, I will give an overview of
the main languages which are actively used in Semantic Web development. Other
notable languages have been developed which overlap in features with the lan-
guages described here. One criteria used for the inclusion here is whether the lan-
guage is accepted as a standard by the World Wide Web Consortium (W3C), which
attempts to guide and standardize developments in the Semantic Web area.

2.1 Resources and identifiers

When using the Internet, the need arises to refer to ‘things’ in the real world. There
are things which are tangible like food, furniture, buildings and so on. Others, how-
ever, are non-tangible e.g. feeling, weather, service, temperature and digital docu-
ments. All these ‘things’, both tangible and non-tangible are known as resources.
In order to refer to objects and concepts in the real world, one needs some kind
of identifier. This identifier should uniquely and unambiguously refer to the real
world concept. In this section, I will give an overview of different technologies and
standards which are used as identifiers for resources.

2.1.1 URL, URI, URN and family . . .

With the appearance of the Internet, there was a need for identifying resources over
the network. Initially, computers on the Internet network had an Internet Proto-
col address (IP address) consisting of 32 bits.[7] One way of representing these ad-
dresses is by grouping them eight bits at a time (4 octets or bytes) and then using
the decimal representation of the integer represented by the byte. An example of
this kind of address would be 130.234.4.129 . This way of representing addresses
made memorizing easier but was still too difficult for humans to remember. The
main problem was that the Internet started to grow exponentially and more and
more addresses came into use and also the machine identified by a given address
changed once in a while. A solution was found by assigning a name to each com-

5

puter in the network which mapped host names to the numerical addresses. Ini-
tially, this mapping was centrally maintained and became known as the Domain
Name System. The Internet, however, grew exponentially and a centralized main-
tenance of this mapping became unfeasible. Therefore, a decentralized system was
elaborated, which is still in use in the Internet nowadays. [8, 9] In 1994, the URI
working group together with Sir Tim Berners-Lee created RFC 1738 “Uniform Re-
source Locators”. [10] This document specifies the syntax and semantics for a com-
pact string representation for location and access of resources via the Internet. These
strings are known as URLs. An example of a URL would be http://www.jyu.fi
. The specification of URLs is derived from concepts defined in RFC 1630 “Universal
Resource Identifiers in WWW” [11], which defined a much wider class of identifiers.
The identifiers specified in this document, known as URIs, are used to encode the
names and addresses of objects on the Internet. It must be noted that the specifica-
tion was explicitly made open for future extension. As said literally in the request
for comments 1630 :

“The web is considered to include objects accessed using an extend-
able number of protocols, existing, invented for the web itself, or to be in-
vented in the future. Access instructions for an individual object under a
given protocol are encoded into forms of address string. Other protocols
allow the use of object names of various forms. In order to abstract the
idea of a generic object, the web needs the concepts of the universal set
of objects, and of the universal set of names or addresses of objects.”[11]

Later on, in RFC 1737 “Functional Requirements for Uniform Resource Names” [12],
specified URNs. A URN is a URI which is using the urn scheme. These identifiers
are used for identification, as opposed to URLs which are used for locating or find-
ing resources. Later RFCs like 2141 [13] “URN syntax” suggest requirements for
presentation, equivalence and transmission of URNs.

In an attempt to make URIs more international, International Resource Iden-
tifiers (IRI) where proposed in RFC 3987 "Internationalized Resource Identifiers
(IRIs)" [14]. IRIs are defined as a complement to URIs and add support for char-
acters from the Universal Character Set, also known as UCS [15]. The RFC also de-
scribes how IRIs can be mapped to URIs. Because of software compatibility reasons,
it was decided that a new protocol element would be defined instead of changing
the existing definition of URIs. IRIs are currently the biggest accepted superset of
the original URIs. The syntax of an IRI is as follows

6

 http://www.jyu.fi

IRI = scheme ":" ihier-part ["?" iquery] ["#" ifragment]

Where schema is the schema in use, like for example http, ftp, gopher, mailto, telnet,
file, . . . ihier-part contains first two forward slashes then possible authorization infor-
mation and a possible hierarchical identifier for the path. Then follows optionally
an encoded list of query parameters in iquery and a fragment identifier in ifragment

Some examples of IRIs follow:

• http://xn--rsum-bpad.example.org/
• http://résumé.example.org/
• URN:ISBN:0-395-36341-1 see also [16]
• http://users.jyu.fi/~miselico
• mailto:john@example.com?body=send%20info see also [17]
• ftp://user:password@host:21/path

Another notable attempt to identify resources in the Internet was done by the
“OASIS Extensible Resource Identifier (XRI) Technical Committee” [18]. This spec-
ification defines URI in the xrn: scheme and extends the syntax of IRIs. The exten-
sions provided by XRIs over IRIs are:

• Persistent and re-assignable segments. The XRI syntax does allow the inter-
nal components of an XRI reference to be persistent or re-assignable. A re-
assignable component can be reassigned by by an identifier authority. The
meaning of the XRI can thus dynamically change at any point in time. This
gives the benefit that of time of creation, the whole resource identifier does not
have to be know. One could for example specify that the identifier refers to the
home page of the current boss of a certain firm.

• Cross-references. XRI references can recursively contain other XRI or IRI refer-
ences. This way, XRIs can contain certain meta-data or semantic information.

• Additional authority types. However not commonly encountered by users,
IRI and older schemes allow for authorization. This is mainly an artifact of the
Internet Protocol allowing for authorization. XRIs support a superset of the
authorization schemes used supported by IRIs. The extension is twofold:

– global context symbols (GCS). These symbols are used to indicate the
global context of the identifiers. Symbols in use are (=, @, + and $) which
refer to Person, Organization, General public and Standards body respec-
tively.

7

http://xn--rsum-bpad.example.org/
http://r�sum�.example.org/
URN:ISBN:0-395-36341-1
http://users.jyu.fi/~miselico
mailto:john@example.com?body=send%20info
ftp://user:password@host:21/path

– cross-references, which enable any identifier to be used as the specifica-
tion of an XRI authority. This way, an authority can be identified by any
other XRI.

• Standardized federation. URI syntax does not give requirements for federated
identifiers. The specification of these is then done in specific schemes. XRI
syntax standardizes federation of both persistent and re-assignable identifiers
at any level of the path.

Despite the many benefits it would have offered, the proposed XRI standard is
rejected by a ballot. [19]

2.1.2 UUID

The Universally Unique IDentifier (UUID) is defined as an ISO standard [20] and as
an request for comment RFC 4122 [21]. Fortunately, all these definitions are techni-
cally compatible. It should be noted that the RFC defines the UUID in function of
defining a URN namespace for UUIDs.

A UUID is a 128 bit long identifier, which means that 2128 or 1632 different iden-
tifiers can be made. This enormous amount has many benefits. Firstly, a centralized
authority for administration is not needed since even at very high allocation rates,
the probability of a collision is negligible. Secondly, UUIDs are unique and persis-
tent which makes them useful as Uniform Resource Names. And at last, the length
of UUIDs is fixed and can be aligned in the memory of most modern computer ar-
chitectures, which makes comparing, sorting, hashing and storing in databases a lot
easier and more efficient when for example compared to IRIs.

When represented in string form, a UUID looks for example like this

f81d4fae-7dec-11d0-a765-00a0c91e6bf6

UUIDs come in different versions and variants, depending on the variant the parts
of the UUID have a certain meaning or are random generated. Different variants
have different ways of generating the UUID. One uses the MAC addresses of the
network interface to guarantee uniqueness, some use pseudo-random number gen-
erators, and also cryptographic hashing and application-provided text strings are
used. One drawback of UUID is that implementers may wrongly assume that they
provide some kind of security. For example, using a predictable random number

8

source (as most pseudo-random number generators are) for generating the UUIDs
will result in a security flaw.

2.1.3 IRI vs. UUID

One might ask the question whether a system should use UUIDs or IRIs to represent
external resources. The first point which should be made is that IRIs can be seen as a
superset of UUIDs, because all UUIDs can be represented as a URN which is an IRI.
On the other hand, the representation of UUIDs might give sufficient benefits for
the implementer in terms of both space and time efficiency to prefer the presentation
over IRIs. However, when IRIs are used and in the implementation pointers to these
memory addresses are used (and re-used by for example interning), the argument
of speed efficiency is void. Further, when the internal UUID representation has
to be mapped to an external IRI for translation, the system might also greatly use
the memory benefit of UUID. One more argument in favor of IRIs is that they are
easily human interpretable. A system which needs to be programmed by a person,
might benefit from using IRIs. The conclusion is that UUIDs are a good idea when
the system does assign ids to resources itself or when the system does not have to
communicate about those identifiers to other systems. Otherwise, the use of IRIs
will be more advantageous or at least not cause considerable overhead.

2.2 RDF for data representation

Resource Description Framework (RDF) is a framework which is defied by W3C as a
recommendation and used for representation of information. The first specification
was written by Lassila et. all in "Resource Description Framework (RDF) Model and
Syntax Specification" [22]. This specification got together with the older specifica-
tion of RDFS (see section 2.4.1) replaced by six recommendations in 2004. These are
called in short Primer [23], Concepts [2], Syntax [24], Vocabulary [25], Semantics [26]
and Test Cases [27]. This review of RDF focuses on the later revisions and relevant
parts of these recommendations are described in further sections. The information
represented by RDF is mostly located on the web, but can also be stored offline. An
abstract syntax is defined to link concrete syntaxes to formal semantics.

The same recommendation provides a motivation on why RDF is needed. The
first reason is to provide meta-data for web resources. A concrete implementation

9

providing this functionality is RDFa, which is described further in section 2.3.1. The
second motivation from the recommendation is that RDF should provide a way of
defining data in an open data model. Moreover, RDF should allow data from differ-
ent sources to be processed in varying contexts leading to new information. Lastly, it
should enable automated processing of Web information by software agents. Mak-
ing the Web a world-wide network of cooperating processes.

The designers of RDF had in mind the creation of a simple data model suitable
for formal semantics and provable interference. The used vocabulary would con-
sist of URIs and the syntax would make be XML and make use of XML schema
datatypes. Some parts of RDF are, however, not URIs; since there is a broad support
for literals. The XML datatypes are used in conjunction with these literals and are
the ones defined in the first version of "XML Schema Part 2: Datatypes" [28] which
got revised later in "XML Schema Part 2: Datatypes Second Edition" [29]. The ben-
efit of using XML and XML schema datatypes is that RDF and XML data are easier
to be transformed into each other. One final design goal was that anyone could
make statements about any resource. Thus allowing explicitly that data can be sep-
arated over different locations and added to existing data at any time. On the other
hand, this also allows one to produce statements that are inconsistent with other
statements or plain incorrect.

In the further extend of this section, I will give a more concrete view on RDF. The
first subsection gives a view on the abstract syntax defined for RDF. Further sub-
sections give a view on RDF-XML, N3 and the Turtle language as concrete syntaxes
for RDF.

2.2.1 RDF abstract syntax

RDF uses an abstract syntax which is used for defining what a concrete implemen-
tation must be able to handle and for formal proofs. This means that a concrete
implementation can do optimizations or use any internal format as long as it is able
to achieve the same results. Concrete implementations are described in further sub-
sections. RDF uses a graph data model consisting of nodes, which can be subject,
object or both. The nodes are connected trough directed arcs which labels are pred-
icates. A node from which an arc leaves, is a subject for that predicate and a node
to which an arc arrives, is an object for that predicate. Every arc (or equivalently
predicate) thus connects a subject to an object. This arc can be denoted as the triple
(Subject, Predicate, Object).

10

Figure 2.1: RDF graph representing one statement.

Let us take a look at the example graph shown in figure 2.1. We see a node
with label http://users.jyu.fi/~miselico , from which an arc leaves. This
must thus be a subject node. The second node, which has the label http://www.
jyu.fi , has an arc arriving to it from which we know that it is an object node.
The arc connecting the two nodes is a predicate and has label http://www.jyu.
fi/concepts/studiesAt . We can encode this information as the triple (http:
//users.jyu.fi/~miselico , http://www.jyu.fi/concepts/studiesAt
, http://www.jyu.fi) . Note here that the direction of the arc is important. Also
when defining triples the order of the elements is significant. The meaning of this
triple is that the relationship given by the predicate holds between the subject and
the object, but not necessarily the other way around. When the graph consists of
more nodes and arcs, the meaning of the graph is the conjunction of the meaning of
all the triples.

When a certain thing in the world is unknown, but one still would want to make
statements about it, blank nodes can be used. A blank node also called an anony-
mous node can be seen as a node without a label, but still unique in the graph, i.e.,
no two empty nodes are equal in the graph. This does, however, not imply that they
cannot refer to the same resource the real world.

There is a restriction on the labels allowed in the graph. For a subject, the only
allowed labels are a URI reference (see section 2.1.1) or a blank node, the label of
a predicate can only be a URI reference and the label of an object can be a URI, a
blank node or a literal. Important to note is that the URI is in most cases not to be
interpreted as the location of anything but as an identifier for something.

Literals are used to indicate values e.g. a number, date, name or binary data. A
literal can have an XML schema datatype, which puts the literal in the datatype’s
value space. Literals without any datatype are considered to be of type xsd:string
and can have an optional language tag indicating the language of the literal. The
data encoded in a literal could also be indicated by URIs, but literals are considered

11

http://users.jyu.fi/~miselico
http://www.jyu.fi
http://www.jyu.fi
http://www.jyu.fi/concepts/studiesAt
http://www.jyu.fi/concepts/studiesAt
http://users.jyu.fi/~miselico
http://users.jyu.fi/~miselico
http://www.jyu.fi/concepts/studiesAt
http://www.jyu.fi

more convenient. On the other hand, this adds complexity for concrete implemen-
tations.

It is useful to have a concrete definition which tells when two graphs are equiv-
alent. This definition is adapted from [2, 6.3 graph equivalence]

1. M maps blank nodes to blank nodes.

2. M(lit)=lit for all RDF literals lit which are nodes of R.

3. M(uri)=uri for all RDF URI references uri which are nodes of R.

4. The triple (s, p, o) is in R if and only if the triple (M(s), p, M(o)) is
in R’

This definition assumes a definition of equivalence of URIs and literals. These are
described in the standard but not included here for brevity.

Further paragraphs will describe concrete implementations of the RDF abstract
syntax. The RDF standard also includes models for adding meaning to specific RDF
graphs. [26] This includes support for some type of reification (see section 2.2.7),
containers, collection and others (see also section 2.2.4). One important part of the
RDF standard is RDFS which is further described in section 2.4.1.

2.2.2 N-Triples

N-Triples, which is not a recommended syntax for RDF is defined in "RDF Test
Cases" [27, 3. N-Triples]. The N-Triples language was created for definition of easy
test cases. The reason for inclusion in this thesis is that the N-triples format is the
most plain model which can be used to express RDF, resulting in a model which
allows simpler proofs. N-Triples is a subset of N3 (see section 2.2.4), leaving out
any construct which can be simplified. A exact EBNF is available from the stan-
dard. Simplified, the structure of a N-triples document can be stated as follows: The
document has 1 statement per line. Each statement describes a triple, i.e., subject
predicate and object with the same limitations as the abstract RDF data model. In
order to encode a blank node, the notation "_:" followed by an identifier local to the
document is used. To refer to the same blank node from another statement, the same
identifier has to be used. Literals are denoted as an ASCII string surrounded by quo-
tation (") marks and contain an optional datatype or language tag. The following ex-
ample is adapted from the test cases collection [27, rdf-charmod-literals/test001.nt] :

12

_ : a <http :// example . org/named> "D\u00FCrst " .
<ht tp ://w3 . org/ t e s t > <http :// example . org/Creator > _ : a .

Note that URIs have to be enclosed in angular brackets and literals, which can con-
tain escaped characters, by quotation marks. Statements are finalized with a dot.

2.2.3 RDF/XML

The concrete syntax for RDF which got endorsed by the World Wide Web Con-
sortium, together with the revised RDF standard, is RDF/XML as defined in "RD-
F/XML Syntax Specification (Revised)" [24]. This syntax is encoded as XML, which
is a standard language used for encoding structured data. XML is also a W3C stan-
dard and the last revision got defined in "Extensible Markup Language (XML) 1.0
(Fifth Edition)" [30]. XML is a subset of an older standard called SGML, applying
restrictions on allowed document trees. The main goal of XML is to allow data to be
served, received and processed on the web. I assume the basic concepts of XML to
be known to the reader. I do not include them here for sake of brevity. Next to the
published standard, there exists several books explaining it. One source covering
XML is for example the book "Learning XML, Second Edition" [31].

The encoding of RDF in XML needs a mapping from the statements represented
by the abstract graph to XML components. Then, these components have to be
put in one valid XML document. Concrete, RDF/XML uses the XML QNames to
represent the URIs used in the abstract graph. All QNames have a namespace and
a short local name. QNames in XML can have a prefix which is resolved against
the prefixes valid in the scope. Otherwise, the QName is declared in the default
namespace of that context in which is is used. Another way to represent URIs of
subjects and objects is in attributes of an XML element. Literals can only be stored
as element text or attribute.

The conversion between the abstract graph and RDF/XML is further described
in the standard. The result of mapping the graph to XML is supposedly easily
machine and human readable. However, regarding the many proposals which ap-
peared later, one could argue that the RDF/XML does not fulfill that promise. I will
not include details about the actual conversion between the abstract graph and the
XML/RDF notation, since it is of limited relevance to this thesis.

13

2.2.4 N3

The Notation3 (N3) language is not accepted as a recommendation. Its latest Team
Submission at W3C was in 2011 "Notation3 (N3): A readable RDF syntax" [32] The
N3 language is an assertion and logic language. N3 is able to describe more as the
abstract RDF syntax and provides thus an expressiveness beyond the graphs possi-
ble in RDF. The reason why I describe this language is because it has had a strong
influence on the S-APL language which I will describe in chapter 3. N3 extends
RDF by adding the possibility to add formulae, variables, logical implication and
functional properties. The N3 syntax is not XML based and has plenty of syntactic
sugar, aiming at a higher readability.

I will not give a complete coverage of all syntactic features in the N3 language.
The features described here are in my opinion the most interesting ones or had the
biggest influence on the S-APL language and are therefore most relevant for this
thesis work. A basic N3 document looks like an N-Triples document. However, a
lot of syntactic sugar is put on top and structures are added.

Namespaces Namespaces are defined using the @prefix directive. A directive of this form
looks for example like this:

@prefix jyu : <http ://www. jyu . f i /concepts #>

After this directive, the prefix bar: is said to be defined and has value <http:
//www.jyu.fi/concepts#> . When statements are declared after this di-
rective, they can use the prefix. For example, jyu:professor , would be a short-
hand for <http://www.jyu.fi/concepts#professor> , i.e., the prefix
got replaced by its value.

Base URIs A feature similar to @prefix in the sense that it is a directive which changes the
meaning of statements following the directive. The @base directive sets the
URI to be used as a base URI when parsing relative URIs.

Shorthands The following shorthands are defined:

a <http://www.w3.org/1999/02/22−rdf−syntax−ns#type>

= <http://www.w3.org/2002/07/owl#sameAs>

=> <http://www.w3.org/2000/10/swap/log#implies>

<= <http://www.w3.org/2000/10/swap/log#implies> but in the inverse direction

14

<http://www.jyu.fi/concepts#>
<http://www.jyu.fi/concepts#>
<http://www.jyu.fi/concepts#professor>

Formulae An RDF document is equivalent to a set of statements like N-triples or its
graph. The graph cannot have another graph as value for a subject or object.
This is exactly where N3 extends RDF; a graph can itself be used as the value
of a node in another graph. Put another way, a graph can be put as the sub-
ject or object of a statement which itself belongs to another graph. The nested
graph is referred to as formula. To nest a graph, it has to be written between
curly brackets and put where normally a subject or object would appear. The
meaning of a subgraph, is the logical conjunction of the statements. The state-
ments in the subgraph form an unordered set. An example of subgraphs could
be as follows:

{ jyu : m i s e l i c o jyu : s tudiesAt <www. ub . tg > } a n3 : fa lsehood .

Which means that the conjunction of the statements in the subgraph is false. A
formula is only defined by its contents. The description of N3 does not provide
precise semantics for formulae, i.e., the interpretation is left open.

Blank nodes N3 provides several ways to represent blank nodes. Firstly, there is the _: form
known from N-triples. It must be defined, however, what the meaning is of
blank nodes inside formulae. The creators of N3 chose to define that blank
nodes can only refer to blank nodes in the formula it occurs directly in. This
means that blank node identifiers cannot refer to ‘surrounding’ graphs.

The second way N3 allows to define a blank node is without any identifier.
Instead the so called square bracket notation is used. The notation is syntactic
sugar for the _: form. A statement of the form [a b] c [d e] can be equivalently
written as

_ : x a b .
_ : x c _ : y
_ : y d e

Where _:x and_:y are identifiers different from possible other identifiers in the
document.

The last way to define blank nodes is implicit by using a feature called paths.
Paths are used to describe a certain type of relation in a concise form. For
instance, the statement x!p stands for [x p]. Another example is x^p stands
for [p x]. From these two notations, whole chains can be build, much like in
natural languages. For example : Joe!fam:mother^fam:mother!loc:office!loc:zip could

15

mean something like "The zip code of the office of someone who’s mother is
also the mother of Joe."

Quantification Quantification allows one to use the existential and universal quantifiers for
variables which can then be used in statements. Variables quantified in outer
graphs can be used in subgraphs. One example could be

@forAll <#person >. @forSome <#drink >. <#person > <#drinks > <#drink > .

This means that for all persons, there is some drink where the person drinks
the drink.

Lists Representing lists in RDF is rather cumbersome, since RDF has a graph struc-
ture and thus no order between nodes.

The solution is to a use blank node, indicating the start of the list. From this
blank node, two predicate arcs leave. The first one is labelled rdf : first and ends
at the node which is the first element of the list. The second one is labelled
rdf : rest and ends at a node indicating the tail of the list. The tail of the list is
actually itself a list defined in the same way or rdf:nil, indicating that the end
of the list is reached. For instance the list with elements "x1", "x2" and "x3"
would be represented as depicted in figure 2.2. The complete N3 code of the
picture is <#a> <http://example.org> ("x1" "x2" "x3") .

Repetition When a subject or a subject-predicate pair has to be repeated multiple times,
one can use shorthand notation. The first version is for repeating subject
where s1 p1 o1 ; p2 o2 is shorthand for s1 p1 o1 . s1 p2 o2 . The second ver-
sion is for repeating subject and predicate where s1 p1 o1 ; o2 is shorthand for
s1 p1 o1 . s1 p1 o2 .

There are plans to define other N3 notations as subsets of N3. Both N-triples
described above and Turtle described in the next section are strict subsets of N3.

2.2.5 Turtle

Turtle is a language which is a superset of N-triples described in section 2.2.2 and a
subset of Notation3 described in the section 2.2.4. The main design strategy of the
Turtle language is to extend N-triples with the most useful things from N3. Turtle
is not yet an officially endorsed standard, but has its current definition is a Team
Submission in "Turtle – Terse RDF Triple Language" [33]. One problem with the

16

Figure 2.2: RDF graph representing a list with elements x1, x2 and x3.

17

officially adopted RDF/XML language as described in section 2.2.3 is that it in its
current form not able to encode all possible RDF graphs. The exceptions are quite
peculiar, like for example that a QName cannot start with a number and that certain
UNICODE code points are not allowed in XML 1.0. These problems do not apply
to Turtle (nor to N3). Another design idea is compatibility with the query language
part of the SPARQL Protocol And RDF Query Language (SPARQL) which will be
described in section 2.5.1. Since Turtle is a subset of N3, the following descriptions
will be rather short if the information can be found in the previous section.

A document is a sequence of triples written in the form subject predicate object .

Thus subject, predicate and object separated by white space and finalized with a
dot. URIs are enclosed in square brackets and can use prefixes just like in N3 nota-
tion. In the newer proposed versions of Turtle, a multi-line string literal is added as
a possible syntax. Blank nodes can only be added by _: notation. Both @prefix and
@base are supported and so is repetition just like in N3. Furthermore, there is sup-
port for writing certain numerical types directly into the document. Thus, without
the need for quoting and providing an XML schema type. This means that 5 can be
the object of a statement, which is equivalent to "5"^^xsd:integer. Turtle has the same
notation for lists as N3.

2.2.6 N-Triples vs. RDF/XML vs. N3 vs. Turtle.

Choosing the best language among the four languages presented here is impossi-
ble and also does not make much sense. All four language can describe quasi the
same languages. (With a minor exception for RDF/XML.) The choice on whether
the one or the other language is better is depending on the context in which the lan-
guage will be used. N-triples, with its very simple structure, is very tempting for
formal proofs. This mainly because while performing the proof there are very little
exceptions to be taken into account. RDF/XML is than again easier to to interchange
since XML parsers exist for all major programming languages. Another important
aspect is the readability. RDF/XML although written in XML which is supposed
to also assist humans in reading data, is much more complicated to understand as
the syntactic sugar used in Notation3 or Turtle. Perhaps the most general purpose
language is Turtle, since it tries to be both simple and advanced by taking parts of
N3. However, the re-definable @base and @prefix directives make the documents a
lot less human readable.

18

2.2.7 Reification of statements

One very relevant concept of RDF is reification of statements, which is best ex-
plained with an example for which we will use the Turtle language. Assume that
we have a triple which looks like

@prefix ex : <http ://www. example . org/> .
ex : s ex : p ex : o .

Now, we want to make a statement about this triple like for example who the author
of the triple is. This can be done by as follows:

@prefix ex : <http ://www. example . org/> .
@prefix rdf : <ht tp ://www. w3 . org/1999/02/22− rdf−syntax−ns#> .
_ : s rdf : type rdf : Statement .
_ : s rdf : s u b j e c t ex : s .
_ : s rdf : p r e d i c a t e ex : p .
_ : s rdf : o b j e c t ex : o .

_ : s ex : c r e a t o r ex : author1

Thus, first we tell that some blank node is of type rdf:statement and then state the
subject, predicate and object in separate statements. Finally, we can make more
statements about the blank node like the fact that the ex:creator is ex:author1 .

2.3 Frameworks using RDF to represent data.

Some frameworks have been adapting the RDF representation of data to represent
their own data. This section describes the frameworks RDFa and POWDER. The
RDFa standard uses RDF representation of data to include semantic data in XHTML
documents. POWDER uses it to describe the content of other documents.

2.3.1 RDFa

The RDFa standard is defined by W3C in "RDFa in XHTML: Syntax and Process-
ing" [34]. The goal of RDFa is to make the structured data which is available on the
web also accessible to tools and applications. The idea is that tools are unable to
read and interpret the data which is intended for humans to read. When publishers
are on the other hand able to express the content in a machine readable form, this
problem would be solved.

19

RDFa specifies attributes to describe the structure of data independent of the
actual surrounding markup language. In the referred standard, the eXtensible Hy-
perText Markup Language (XHTML) is used, which is one standard for the markup
of extensible documents for the web [35]. The data which gets included in the docu-
ment is RDF. However, the RDF is not included as one block of data in the header of
the document. Instead the designers opted for inclusion of attributes in tags of the
existing XHTML structure. Because the data is RDF, publishers are allowed to ex-
tend on the recommendation and add their own data on top of what is standard. The
rules for interpretation of the data are specified independently on the used format
of representation. For instance, consider the following document fragment without
any semantic information:

< l i >Shoes</ l i >
< l i >43</ l i >
< l i >White</ l i >

To a human, this document describes a pair of shoes of size 43 which have a white
color. To a machine, however, this is a list of separate items. The machine is not able
to put connections between the different items on the list. What can be done with
RDFa is for example the following:

<ul xmlns : ex =" ht tp :// example . org/ typeof =" ex : Product ">
< l i property =" ex : Product ">Shoes</ l i >
< l i property =" ex : hasShoeSize ">43</ l i >
< l i property =" ex : hasColor ">White</ l i >

This data is usefully annotated and a system which has knowledge about the ontol-
ogy, can use the data and give a meaning to it. Any information on the web could be
annotated in a similar way like for example ratings for movies, links between pages,
persons in images, etc. . .

2.3.2 POWDER

The Protocol for Web Description Resources (POWDER) is described in several sep-
arate recommendations [36] [37] [38]. The aim of POWDER is to aid content discov-
ery, protection from unwanted content and increase quality of semantic searches.
In order to achieve this aim, it provides a machine readable way to describe web

20

resources. These descriptions should then guide the user to content of interest. Fur-
ther improvements could be achieved in efficiency of data retrieval, matching with
user profiles, rating of trustworthiness, adaption to the used device, the users priv-
ilege level etc. . . [39] The semantics of POWDER (or in other words its use of RDF)
lies inside the description of resources. A POWDER document is an XML document
which contains an attribution section and describes so called Description Resources
(DR). The attribution section contains the issuer of the information in the document,
using the Friend of a Friend (FOAF) [40] or Dublin Core [41] ontology, or references
to RDF/XML documents containing the information in such form. The DR contains
a selector which describes to which resources (IRIs) this DR applies. Then it contains
the actual description which consists of RDF/XML properties with literal values. In
addition to this data, a human readable description (in the displaytext tag) and icon
(in the displayicon tag) can be included. An example can be found in listing 2.1.
This example was showcased in [39].

<?xml vers ion ="1 .0"? >
<powder xmlns=" ht tp ://www. w3 . org /2007/05/powder #"

xmlns : ex =" ht tp :// example . org/vocab #" >
< a t t r i b u t i o n >

<issuedby s r c =" ht tp :// example . org/company . rdf #me" />
<issued >2007−12−14T00 :00 :00 </ issued >

</ a t t r i b u t i o n >
<dr>

< i r i s e t >
<includehosts >example . com</includehosts >

</ i r i s e t >
< d e s c r i p t o r s e t >

<ex : color >red</ex : color >
<ex : shape>square </ex : shape>
< d i s p l a y t e x t >Everything here i s red and square </ d i s p l a y t e x t >
<disp lay icon s r c =" ht tp :// a u t h o r i t y . example . org/icon . png " />

</ d e s c r i p t o r s e t >
</dr>

</powder>

Listing 2.1: "An example POWDER document"

The meaning of this example is that the issuer about which more information can
be found from http://authority.example.org/company.rdf#me declares that any resource
in the domain example.org is red and square, assuming that this are the semantics
connected to ex:color and ex:shape.

21

2.3.3 Use of RDF as embedded information structure.

The sections on RDFa 2.3.1 and POWDER 2.3.2 where examples on how other stan-
dards make use of the extendability of RDF. Both standards chose to embed infor-
mation described with RDF into other documents. This use of RDF could help the
understanding of existing and newly created documents. It is perhaps questionable
why the POWDER standard, which has been designed much later as the appear-
ance of RDF is not entirely an RDF/XML document. For the RDFa standard, this
is understandable since the standards from which XHTML derives are much older
and generally supported.

2.4 RDF structure languages

Because the data which can be represented with RDF is in principle without any
limits, there is a need to define some structure for the data. The approach taken is
to define the meaning of certain parts of the data in RDF form and the combination
of the data and its description forms the knowledge. Further two different tech-
nologies are described. RDFS is a language with limited expressive powers able to
make statements about resources. OWL is a very expressive language which makes
statements about individuals and properties. It is then possible to use the ontologi-
cal information and the data to reason more information and even give answers to
certain question about the data.

2.4.1 Resource Description Framework Schema (RDFS)

The Resource Description Framework Schema 1.0 (RDFS) was originally specified
in a separate Candidate Recommendation called "Resource Description Framework
(RDF) Schema Specification 1.0" [42]. The new recommendation is spread over the
above-mentioned documents specifying the RDF standard. The parts relevant to
RDFS can be found in the Vocabulary [25] and the Semantics [26] document, I will
only consider the main parts of the specification. The goal of RDFS is to describe
other RDF data. RDF can be seen as a language stating properties of resources.
When looking at a triple, the subject is the described resource, the object is the prop-
erty value and the predicate is the actual property which is being described. In RDF
the property value can be either a literal or an arbitrary resource. RDF does not
provide any mean to describe the properties themselves and relations among them.

22

This is where RDFS comes in by providing the concept of classes and properties
giving meaning to other resources and properties. RDFS does not intend to spec-
ify specific properties which can be used in RDF documents, it provides a mean to
specify your own properties and classes and their relations. RDFS is itself encoded
as RDF and can thus for example accompany an existing document, which becomes
self descriptive.

The basic idea of RDFS classes, is that classes are not described in terms of prop-
erties. It is the properties which are described in terms of the classes they apply
to. In order to define a property, one must define the range and domain, i.e., a set
of classes which can be used as subject or object of the property respectively. The
main benefit of this approach is that properties can be added to classes at any point,
without the need to modify the class itself. This way there is no need to have a cen-
tralized and managed repository of class descriptions. Stating that a resource is an
instance of a certain class is done by adding the rdf:type property with as a value the
resource representing the class. For example ex:MyInstance rdf:type ex:MyClass, makes
the resource ex:MyInstance an instance of the class ex:MyClass . Interesting is that the
class itself can also be member of other classes. This allows to define for example
the class of all classes which define groups of people. It could even be that a class is
instance of itself as for instance the class of all classes which is known as rdfs:Class.
A class can be a subclass of another class. All instances of a class C, which is subclass
of class D, are also instances of class D. This relation between classes is stated using
the property rdfs :subClassOf .

A property is a relation between the subject and the object of a statement. RDFS
adds the notion of a sub-property. If a property P is a sub-property of property
P’, then all subject-object pairs which are related by the predicate P are also related
by the predicate P’. An intuitive example of a sub-property is when we consider
a father-son relation being a sub-property of the parent-child relation, i.e., when a
person is father of a certain boy, he is also the parent of that child. The sub-property
relation is indicated by the property rdfs :subPropertyOf . As mentioned above prop-
erties are defined by specifying the domain and range of the property. This is in-
dicated by the properties rdfs :range and rdfs :domain respectively. It is interesting to
note that these two are properties themselves, having rdfs :Property as their domain
and rdfs :Class as their range. Next to properties and classes, RDFS provides the
properties rdfs : label and rdfs :comment, which allow a human-readable version of the
resource name and a human-readable comment to be attached to a resource respec-

23

tively.
Lastly, the RDFS specification describes container and collection classes for RDF.

The goal of the container classes is giving a unified way to define certain types of
containers like bags, sequences, alternatives. RDFS does not specify any different
formal requirements for these three types of containers, they are rather a convention
for the human reader of the documents. The collection classes define lists in a similar
way as described in the section about lists in Notation3 (see section 2.2.4).

2.4.2 Web Ontology Language (OWL)

Just as RDFS, the Web Ontology Language (OWL) languages has two versions. The
first version was defined in 2004 in “OWL Web Ontology Language Semantics and
Abstract Syntax” [43] and got redefined in 2009 in "OWL 2 Web Ontology Language
Document Overview" [44] and related documents. The later version is often referred
to as OWL 2 and since this version is an extension of the previous one, I will de-
scribe the later. OWL 2 is a Semantic Web language used to describe things, groups
of things and the relation among them. The knowledge described is logic-based in
order to enable computers to reason based on this data. A computer program could
for example determine the consistency of a set of data or infer knowledge only im-
plicitly available in the data set. OWL 2 can be encoded as an RDF graph, which
makes it possible to write OWL in the various concrete syntaxes described above in
section 2.2. The designers of OWL used a Functional-Style syntax to describe OWL.
The reason for this is that that syntax is supposedly more convenient for specifi-
cation and implementation of various tools. The functional-style syntax and the
RDF representation are equivalent as is shown in "OWL 2 Web Ontology Language
– Mapping to RDF Graphs" [45]. The OWL 2 language has an overlap with RDFS
which was previously described in section 2.4.1. The authors, however, decided to
not reuse it entirely and defined for instance the resource owl:Class which is the
type of classes in OWL 2.

The "OWL 2 Web Ontology Language Primer" [46] gives a concise description of
the OWL 2 language and its intentions. OWL 2 is created to express ontologies, i.e.,
a set of descriptive statements about some domain of interest. These statements can
be of different kinds e.g. natural language definitions of terms, their interrelation
with other terms and assertional knowledge about the considered domain. Having
said that an OWL 2 document consists of a set of statements, it should become clear
that OWL 2 is not a programming language. OWL 2 declares, i.e., it represents the

24

current state of an environment in a logical way without giving any information
about how this state is reached or modified. Moreover, next to not being a program-
ming language, OWL 2 is also not a schema language for syntax conformance nor
a database language. The problem for enforcing syntax conformance is caused by
the open world assumption used in RDF and the Semantic Web in general. In ac-
cordance to this assumption, one cannot tell that information does not exist if it is
not available in the currently available data. For example, if one asserts that a cer-
tain property has one and only one value associated with it, it is impossible to tell
whether a data set is conform or not if that property is not present for that instance
in the available part of the data. OWL 2 is not a database, because it does not define
in any way the form the data should have, nor does it give any mean for storing
data.

The modeling of data in OWL 2 is based on three basic notions. There are ax-
ioms which are basic statements of the ontology, entities which are references to
real-world objects and expressions which combine entities in complexer descrip-
tions. Axioms are statements which can be true or not true as opposed to entities
and expressions for which a truth value does not make sense. Entities can be either
objects (called individuals), categories (called classes) or even relations (called prop-
erties). Also expressions are some kind of entity, but instead of being atomic they
are defined by their structure.

The way OWL 2 works reminds partially of the working of RDFS. Therefore, I
will not provide as much details about the exact RDF triples used to describe the
statement as given in the RDFS section. The notation is somewhat similar, but does
not add directly to the scope of this thesis.

First, one can make class hierarchies and assign individuals to classes. One can
say that classes are subclasses of each other, equivalent, disjoint, etc. . . Furthermore,
one can define a class as an enumeration or an intersection, union or complement of
classes defined elsewhere, which is much more as anything RDFS provides. Then,
properties can be assigned to individuals just like a normal RDF statement. More-
over, it is possible to state that an individual does not have a certain property, which
is a very strong tool. Note that in normal RDF it is not possible to state information
not being true.

OWL 2 provides constructs similar to RDFS to define properties with certain
hierarchy, cardinality, domain and range. The possibilities for ranges also include
restrictions, intersections, union, complements and enumerations of values of XML

25

Schema Datatypes. This can be illustrated by restricting the xsd:integer Datatype
which represents the whole numbers to a certain allowed range. This is done in
a similar way to XML Schema Datatypes facets. Also properties provide a mean
to define classes. One could for example define the class of teachers to be all indi-
viduals that are linked to a student by the hasStudent property, which would be a
sound definition. Further, one can state that two entities in the data referred to with
different identifiers are the same in the real world or just different.

On top of all this, OWL 2 provides a way to define characteristics of properties.
It is for example possible to define a property being the inverse of another one or
being the result of a chaining of properties, e.g., chaining a property standing for a
father of relation two times, results in a grandfather of relation. Furthermore, let A,
B and C be individuals, then it is possible to state that that a property is . . .

symmetric If A is connected to B trough this property, then B is connected trough
this property to A. An example could be the property linking siblings together.

asymmetric If A is connected to B trough this property, then B is not connected
trough this property to A. An example could be the property linking children
to their parents.

disjoint No two individuals are linked by both properties. For instance, the prop-
erty linking a man to his parents and the property linking a woman to her
parents.

reflexive The property relates everything to itself. As an example, one could take
the property which connects individuals with the same last name.

irreflexive The property does never relate individuals to themselves. For instance
a property which connects A with B, if A was created before B.

functional If A is linked to B trough a property which is functional, then A cannot
be linked to another individual trough the same property. An example of a
functional property is the property connecting a person with his/her mother.

inverse functional If A is linked to B trough a property which is inverse functional,
then B cannot be linked to from another individual trough the same property.
An example could be the property connecting a company to its address. As-
suming that two companies cannot share an address.

transitive If A is linked trough the property to B and B is linked trough the property
to C, then A is linked trough the property to C. For instance a property which
connects A with B if A was created before B or the property relating siblings
to each other.

26

Direct model-theoretic semantics as specified in "OWL 2 Web Ontology Lan-
guage Direct Semantics" [47] and RDF-based semantics as specified in "OWL 2 Web
Ontology Language RDF-Based Semantics" [48] are two different ways of defining
the semantic meaning of an OWL ontology. The difference is that the former is us-
ing a descriptive model to define the meaning while the later is using RDF graphs
as a model for the ontology. The differences between both are very technical and not
relevant enough for this thesis. However, interesting to note is that the interpreta-
tion given by the Direct model-theoretic semantics is decidable, i.e., it can find any
answer which can be found in the given data set.

OWL is further divided in different so called profiles of which a few predefined
ones are described in "OWL 2 Web Ontology Language Profiles" [49]. A profile is a
restriction on the expressive power of the OWL language and so describes a subset
of the language. The reason for these restrictions are mainly because the expressive
power of OWL makes computation too hard, i.e., both time and space complexity
go beyond reasonable limits. Examples of restrictions are disallowing of negations
and disjunction. Specific profiles have a specific set of restrictions and are designed
with specific use cases in mind which do not benefit from the excluded possibilities.

2.5 Query languages for Semantic data

In this section, I will introduce the SPARQL query language for RDF data. Many
query languages have been elaborated for data retrieval from RDF graphs. More-
over, not all semantic data is represented by a concrete RDF syntax. When also
considering semantic data which is not RDF, also languages which do not query
RDF data can be seen as Semantic Web query languages. [50]

Because the S-APL language, which is the main topic of this thesis, is mainly
concerned with RDF-like data, languages which query RDF are most relevant. Many
of this type of languages like for instance SquishQL, RDQL, TriQL and SPARQL
are much influenced by the SQL relational database query language. I decided to
describe the SPARQL language, since it is the query language which has had the
strongest influence on S-APL and is a W3C recommendation.

27

2.5.1 SPARQL

When data is stored, it is often needed to extract very specific information from it.
The same is true for the data stored in an RDF graph. The most popular query
language for RDF graphs is ’SPARQL Query Language for RDF’ (SPARQL) which
is a W3C Recommendation described in “SPARQL Query Language for RDF” [51].
SPARQL is developed alongside other languages used in the Semantic Web and has
for instance had a strong influence on the Turtle language discussed in section 2.2.5.
SPARQL is strongly influenced by the select statement of the SQL language. The
current SPARQL recommendation does not include any way of updating or adding
data to data sets. The newer version which is not a recommendation yet will include
a way to update the data set as well. [52] The most relevant part of SPARQL for this
thesis are its querying abilities, because they have had a strong influence on the
queries used in the S-APL language. I will focus on those features which are also
available for querying in S-APL and leave out many significant features of SPARQL.
Syntactic sugar used in SPARQL is similar to Turtle’s and includes predicate-object
lists, object lists, RDF collections and the use of the ‘a’ as a shorthand for ’rdf:type’.
The way queries are performed in the S-APL language is described in section 3.2.

SPARQL queries can be grouped according to the type of result they return. Four
different forms are distinguished:

SELECT
Returns values bound to variables.

CONSTRUCT
Returns an RDF graph based on filling of variables in a user specified graph
template.

ASK
Returns whether the pattern in the query could be matched.

DESCRIBE
Returns an RDF graph containing data associated with given resources.

I will focus on the ‘CONSTRUCT’ type of query since this is the one which is similar
to the queries used in S-APL. In some examples, I left the prefix declarations out for
brevity, they are the same as the ones defines in section 1.2.

28

First, we can look at an example of such a query. Assume we have the following
RDF data, here in Turtle notation:

@prefix ex : <http ://www. example . org/> .
@prefix f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ > .

ex : student1 f o a f : name " Michael Cochez " .
ex : student2 f o a f : name " John Doe" .

We can then write a SPARQL CONSTRUCT query as follows:

PREFIX ex : <http ://www. example . org/>
PREFIX f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ >

CONSTRUCT { ?x a ex : student . ?x ex : hasName ?name }
WHERE { ?x f o a f : name ?name }

This query consists of two main parts. At first, between the curly brackets after the
CONSTRUCT keyword, the graph template is defined. The graph template looks
like normal Turtle notation except that some or all terms can be replaced by vari-
ables which are denoted by a question mark and the name of the variable. Secondly,
between the curly brackets after the WHERE keyword, the query is defined by a
graph pattern. This graph pattern also looks (in this example) like Turtle notation
with variables added. It is also possible to use a dollar sign ($) instead of the ques-
tion mark to denote variables. Blank nodes in the graph pattern are scoped locally
to the pattern.

The first step in evaluation of the query is searching all possible so called binding
sets for the variables. A binding set can be seen as a set of tuples each containing a
variable name and the associated value. I chose this way of representing the results
instead of the table representation used in the recommendation because I will use a
similar way to represent the variable binding in S-APL queries.

In this case the binding sets look as follows:

{(?x, ex : student2), (?name, ”JohnDoe”)}

and
{(?x, ex : student1), (?name, ”MichaelCochez”)}

Then these binding sets, in this case two, can next be used to fill the variables in the
graph template. The graph template is repeated for each of the binding sets with the
variables replaced. In case the graph template contains blank nodes, a new blank
node is created for each solution. In this concrete example, we get:

29

@prefix ex : <http ://www. example . org/> .
@prefix rdf : <ht tp ://www. w3 . org/1999/02/22− rdf−syntax−ns#> .

ex : student2 rdf : type ex : student .
ex : student2 ex : hasName " John Doe" .
ex : student1 rdf : type ex : student .
ex : student1 ex : hasName " Michael Cochez "

Starting from this basic query structure, more advanced queries can be build us-
ing syntax available in SPARQL. Note that the form of the query does not any longer
correspond to a Turtle document. In fact, the query is not even a representation of
an abstract RDF tree. The following possibilities modify the query to get a different
binding set, many of them combine queries recursively to create more complicated
patterns.

FILTER
SPARQL FILTERs limit the binding sets to those for which the expression in
the FILTER evaluates to true. The following example limits the binding set
to results for which the literal bound to the variable ?o matches the regular
expression ".*@jyu.fi", i.e., it returns all triples whose object is a literal ending
in "@jyu.fi"

CONSTRUCT ? s ?p ?o
WHERE { ? s ?p ?o

FILTER regex (? o , " . ∗@jyu . f i ")
}

The expression used in the FILTER, can consist of numerical operations and
comparisons, time expressions, boolean operators and type tests. All opera-
tions are constrained using XML Schema Datatypes.

OPTIONAL
A graph pattern can be put as being OPTIONAL. This means that the pattern
can optionally be matched. This implies that it is possible for variables to
not have any value in case the optional part did not get matched. Therefore
SPARQL allows the binding set to include less variables as there are altogether
in the query pattern. As a result, it could happen that binding sets of the same
query pattern have a different number of elements. As a result of missing
variables in the binding sets, not all variable in the graph template can be
filled in. SPARQL then leaves the statements using these variables out of the
resulting graph. If we have for example the following data in Turtle notation:

30

@prefix ex : <http ://www. example . org/> .
@prefix f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ > .

ex : student1 f o a f : name "name1" ; ex : hasCourse ex : course1 .
ex : student2 f o a f : name "name2" .
ex : student3 f o a f : name "name3" ; ex : hasCourse ex : course1

; ex : hasCourse ex : course2 .

Thus student 1 has course 1, student 2 has no courses and student 3 has course
1 and 2. We now construct a query with the OPTIONAL specifier like:

PREFIX ex : <http ://www. example . org/>
PREFIX f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ >

CONSTRUCT { ? student f o a f : name ?name ; ex : hasCourse ? course }
WHERE

{ ? student f o a f : name ?name .
OPTIONAL{ ? student ex : hasCourse ? course }

}

The binding sets found from the graph query are the following:
{(?student, ex : student1), (?name, ”name1”), (?course, ex : course1)},

{(?student, ex : student2), (?name, ”name2”)},
{(?student, ex : student3), (?name, ”name3”), (?course, ex : course1)},
{(?student, ex : student3), (?name, ”name3”), (?course, ex : course2)}


The constructed rdf graph when filling the graph template is as follows:

@prefix ex : <http ://www. example . org/> .
@prefix f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ > .

ex : student1 f o a f : name "name1" ; ex : hasCourse ex : course1 .
ex : student2 > f o a f : name "name2" .
ex : student3 > f o a f : name "name3" ; ex : hasCourse ex : course1

, ex : course2 .

Note that duplicate statements are removed since they are not adding any
meaning to the rdf graph.
When the optional part of the query would contain any FILTERs, they are
only affecting the matching of the optional group. This means that if there
is a FILTER in an optional group which fails, it does not affect the failing or
succeeding of the surrounding pattern, the only difference is that variables
will not be bound.

31

UNION
With UNION, one can join the result sets of two separate groups. The match-
ing succeeds if either of the query patterns in the UNION succeeds. Only the
variables from the matching group will be put in the result set. If both groups
match, then each match forms a separate result set. For instance, we could look
at all students which are taking courses and professors which are teaching the
course. The information is in the following Turtle data:

@prefix ex : <http ://www. example . org/> .
@prefix f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ > .

ex : student1 f o a f : name " student I " ; ex : hasCourse ex : course1 .
ex : student2 f o a f : name " student I I " ; ex : hasCourse ex : course1

; ex : hasCourse ex : course2 .
ex : professor1 f o a f : name " prof I " ; ex : teachesCourse ex : course1

, ex : course2 .

Let us now design a query which gives us the name of all students and pro-
fessors which are related to ex:course1. The problem is now that students and
professors are related to courses in different ways. The UNION can help to
overcome this problem. The query could for example be defined as in the list-
ing 2.2: ."

PREFIX ex : <http ://www. example . org/>
PREFIX f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ >

CONSTRUCT { ? person f o a f : name ?name }
WHERE {

{
? person f o a f : name ?name .
? person ex : hasCourse ? course

}
UNION
{

? person f o a f : name ?name .
? person ex : teachesCourse ? course

}
}

Listing 2.2: "Example of a SPARQL query using UNION

32

The result sets look a follows:

{(?person, ex : student1), (?name, ”studentI”), (?course, ex : course1)},
{(?person, ex : student2), (?name, ”studentI I”), (?course, ex : course1)},
{(?person, ex : student2), (?name, ”studentI I”), (?course, ex : course2)},
{(?person, ex : pro f essor1), (?name, ”pro f I”), (?course, ex : course1)},
{(?person, ex : pro f essor1), (?name, ”pro f I”), (?course, ex : course2)}


The constructed RDF graph then looks as follows and contains the expected
results.

@prefix ex : <http ://www. example . org/> .
@prefix f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ > .

ex : student1 f o a f : name " student I " .
ex : student2 f o a f : name " student I I " .
ex : professor1 f o a f : name " prof I " .

Note again that duplicate statements are removed from the resulting graph.

After selecting data with the query pattern graph(s) which can include FILTERs,
UNIONs an OPTIONAL, a binding set is created. SPARQL allows this binding set
to be modified further by applying so called solution sequence modifiers. As the
name suggests, the bindings are treated as a sequence and thus not as a set without
order. The solution sequence modifier are very much like their counterparts in the
SQL language by which SPARQL is heavily influenced. The following modifiers are
available:

Order
The first modifier puts the solutions in a certain order. The order is determined
by the expression following the ORDER BY clause. In order to sort even enti-
ties which are unrelated, e.g. blank nodes and literals, the standard specifies
an order for all different possibilities. I will give an example of the use of this
modifier together with the example of the LIMIT modifier in listing 2.7.
The reason for not giving a specific example here is that using the ORDER BY
modifier, does not change anything in the constructed RDF graph. This be-
cause the RDF graph is represented by an unordered set of statements. When
the modifier is used in combination with other modifiers, a different solution
graph will be created. When using the SELECT type of query, the solution set
will be ordered according to the requested way of ordering.

33

Projection
Projection is used to only select part of the variables which are bound. I have
been doing this implicitly above when not using all variables which were
bound in the example about the use of UNION in listing 2.2.

Distinct and Reduced
The solution sequence modifiers SELECT DISTINCT and SELECT REDUCED
remove duplicates from the solutions. Since duplicates in the RDF graph will
be removed anyway, these modifiers are not of interest for this discussion.

Offset and Limit
In order to reduce the number of elements in the solution sequence, the OFF-
SET and LIMIT modifiers can be used. Their working is best explained by
means of an example. Lets assume we have the data shown in listing 2.3.

@prefix ex : <http ://www. example . org/> .
@prefix f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ > .

ex : student2 f o a f : name " student I I " .
ex : student3 f o a f : name " student I I I " .
ex : student1 f o a f : name " student I " .
ex : student4 f o a f : name " student IV " .

Listing 2.3: Data for examples about LIMIT, OFFSET, ORDER and BIND in SPARQL

The data contains four students with their name. I will start from a query
without any solution sequence modifiers and the resulting data set. Then I
will add the modifiers and discuss how the data set changes. We start from
the basic query shown in listing 2.4.

PREFIX f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ >

CONSTRUCT { ?x f o a f : name ?name }
WHERE { ?x f o a f : name ?name }

Listing 2.4: Basic query in SPARQL

This query will have as a result all the data which was originally available as
shown in listing 2.3.
Now, I will apply the LIMIT solution sequence modifier. This modifier will
limit the number of result sets used for creating the result. In the example in
listing 2.5 the number of considered binding sets is reduced to 2.

PREFIX f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ >

34

CONSTRUCT { ?x f o a f : name ?name }
WHERE { ?x f o a f : name ?name }
LIMIT 2

Listing 2.5: LIMIT query in SPARQL

One possible result is shown in listing 2.6. There are, however, also other re-
sults possible. The set of result sets is not ordered, thus any two could have
been chosen and included in the result.

@prefix ex : <http ://www. example . org/> .
@prefix f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ > .

ex : student2 f o a f : name " student I I " .
ex : student3 f o a f : name " student I I I " .

Listing 2.6: LIMIT query in SPARQL – Resulting data.

The next thing we can do is make the result deterministic by first sorting the
sequence and then applying the LIMIT. We have then for example the query
as shown in listing 2.7, which instructs to order the result sets by the value
given to the name variable in ascending order.

PREFIX ex : < http ://www. example . org/>
PREFIX f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ >

CONSTRUCT { ?x f o a f : name ?name }
WHERE { ?x f o a f : name ?name }
ORDER BY ASC(? name)
LIMIT 2

Listing 2.7: ORDER BY query in SPARQL

The (unique) result of this query is shown in listing 2.8. The data is limited to
two bindings sets and the limitation is performed after the sorting, resulting
in a unique result.

@prefix ex : <http ://www. example . org/> .
@prefix f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ > .

ex : student1 f o a f : name " student I " .
ex : student2 f o a f : name " student I I " .

Listing 2.8: ORDER BY query in SPARQL – Resulting data.

Lastly, we can add an OFFSET solution sequence modifier. This will only start

35

the selection of result sets with a certain offset. We add to the query an OFFSET
of 1 as shown in listing 2.9.

PREFIX ex : < http ://www. example . org/>
PREFIX f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ >

CONSTRUCT { ?x f o a f : name ?name }
WHERE { ?x f o a f : name ?name }
ORDER BY ASC(? name)
LIMIT 2
OFFSET 1

Listing 2.9: OFFSET query in SPARQL

The unique result set is show in listing 2.10

@prefix ex : <http ://www. example . org/> .
@prefix f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ > .

ex : student2 f o a f : name " student I I " .
ex : student3 f o a f : name " student I I I " .

Listing 2.10: OFFSET query in SPARQL – Resulting data.

SPARQL has support for querying from multiple RDF graphs and combining of
their information. This feature is not relevant to S-APL and I will thus not include
it in this thesis.

SPARQL 1.1 is not an accepted standard yet, but published as a W3C working
draft in "SPARQL 1.1 Query Language" [53]. This new version of SPARQL intends
to extend the current specification with for instance aggregation, sub-queries, nega-
tion, extensible value testing, etc. . . The feature I want to describe here is the pos-
sibility to create values by expressions. The reason why I pick exactly this feature,
is that this is also one feature of the S-APL language. The most relevant form of
using expressions is using the BIND form. The following example uses the same
data set as we used above from listing 2.3. In the query, as shown in listing 2.11, the
concatenation of whatever is bound to the variable ?name with itself will be bound
to the variable ?doubleName. This variable can than be used in the construction of
the RDF graph pattern.

PREFIX f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ >
PREFIX ex : <http ://www. example . org/>

CONSTRUCT { ?x ex : doubleName ?doubleName }

36

WHERE { ?x f o a f : name ?name .
BIND(CONCAT(? name , ?name) AS ?doubleName)

}

Listing 2.11: Example of using expressions in SPARQL 1.1

The result of execution is show in listing 2.12.

@prefix ex : <http ://www. example . org/> .

ex : student2 ex : doubleName " student I I s t u d e n t I I " .
ex : student3 ex : doubleName " student I I I s t u d e n t I I I " .
ex : student1 ex : doubleName " student I s tudent I " .
ex : student4 ex : doubleName " student IVstudent IV " .

Listing 2.12: Example of using expressions in SPARQL 1.1 - Resulting data.

2.6 Semantic Web Rule Language

This section describes Semantic Web Rule Language (SWRL) as an exmple of a rule
language which can be used in the semantic web. SWRL is not a recommendation,
but is filed as a Member Submission under the title “SWRL: A Semantic Web Rule
Language – Combining OWL and RuleML” [54] to the World Wide Web Consor-
tium.

A rule language is a language which formally states rules. In this case a rule is
something which has a antecedent and a consequent. The antecedent is the con-
dition which must be true in order for the consequent to be true. The following
example in “Human Readable Syntax” 1 shows the main feautures of SWRL.

Student(?s) ∧ hasCourse(?s, ?c) ∧ Course(?c) ∧ hasStudent(?u, ?s)
⇒ Institution(?u) ∧ o f f ersCourse(?u, ?c)

The first line is the antecedent and the second line contains the consequent. The rule
means that if

• there is an instance of class Student which we will call s and
• s has a property hasCourse with value c and
• c is of type Course and
• there is a u which has a property hasStudent with value s

1SWRL has, just like RDF, one abstract and several concrete syntaxes.

37

then

• u is of type Institution and
• u has the property o f f ersCourse with value c.

It is thus possible to infer new knowledge from existing knowledge using these
rules. One more feauture is the use of algebraic expressions on the variables. This
can be illustrated as follows:

Event(?e) ∧ hasDurationSeconds(?e, ?l)
⇒ hasDurationMinutes(?e, ?lm)∧?x = op:numeric-divide(?l, 60)

In this case, it is stated that if a given event has a hasDurationSeconds property with
value l, then it also has a hasDurationMinutes property which has value l divided
by 60.

In short, SWRL is able to infer new knowledge from existing knowledge. There
is, however, no way of making information invalid or remove knowledge which has
been reasoned, but is not valid any longer.

Another related effort is AIR (The Accountability In RDF language), which is an
N3 based Semantic Web rule language.[55]. It has some features in common with
the below described S-APL language, like for instance nested rules, negation and
scoping. However, it still does not have the power to do more as adding facts and
new rules. Thus it is not able of removal of facts, nor can external code be executed.

38

3 S-APL language and its formalization

This chapter tries to answer the second research question of this thesis, i.e.,“How
can one make a formalization of the S-APL language?”. The goal is thus to give a
sound and formal definition of the S-APL language. The structure of this chapter is
as follows: First, in section 3.1, I give a definition of the structure of a S-APL docu-
ment. This structure will be an abstract syntax for S-APL which is stricter as the one
used in the UBIWARE agent platform for which the S-APL language was initially
developed. Then, I will define how queries can be made using S-APL in section 3.2
and describe the limitations compared to query constructs available for agent pro-
gramming in UBIWARE in section 3.3. The goal of the query definition is to prepare
for the rules and dynamics chapter 3.4, where I will define how a S-APL document
changes itself dynamically. The next section 3.5 discusses the use of the language in
agents by showing what the UBIWARE version of S-APL needed to become usable
as an agent programming language. The last section 3.6 is a discussion about the
use of variables in S-APL.

3.1 Syntax definition

In this thesis, I consider a S-APL document, not as a concrete tangible document.
It is more an abstract syntax for which concrete syntaxes can be made. One con-
crete notation for S-APL documents is the S-APL language as used in the UBI-
WARE multi-agent platform as described in “Semantic Agent Programming Lan-
guage (S-APL): A Middleware Platform for the Semantic Web” [56], which I will
refer to as UBIWARE S-APL. The language is in that context used to represent the
current memory state of an agent including beliefs, desires and intentions, as well
as an encoding to exchange messages between agents. S-APL can, however, be seen
from a more abstract perspective as a language representing a self modifying graph,
i.e., a graph in which the way the graph must be modified is described in the graph
itself. The first subsections of this section describe the syntax as defined for the orig-
inal S-APL language. In subsections 3.1.3 and 3.1.4 the abstract syntax is formally
introduced. Subsections 3.1.5 and 3.1.6 discuss the equivalence between S-APL and

39

RDF, and the benefits thereof. The final subsection 3.1.7 defines an operator which
will be used in the next chapter.

3.1.1 Original UBIWARE S-APL definition

The original definition of the S-APL language is most detailed described in “De-
liverable D1.1 The Central Principles and Tools of UBIWARE” [57] and “Semantic
Agent Programming Language (S-APL) Developer’s Guide”[58]. The developer’s
guide describes what is know as S-APL axioms. The description goes verbatim as
follows:

• Everything is a belief. All other mental attitudes such as desires, goals, com-
mitments, behavioral rules are just complex beliefs.

• Every belief is either a semantic statement (subject-predicate-object triple) or a
linked set of such statements.

• Every belief has the context container that restricts the scope of validity of that
belief. Beliefs have any meaning only inside their respective contexts.

• Statements can be made about context, i.e. contexts may appear as subjects
or/and objects of triples. Such statements give meaning to contexts. This also
leads to a hierarchy of contexts (not necessarily a tree structure though).

• There is the General Context G, which is the root of the hierarchy. G is the
context for the global beliefs of the agent (what it believes to be true here and
now). Nevertheless, every local belief, through the hierarchical chain of its
contexts, is linked to G.

• Making statements about other statements directly (without mediation of a
context container) is not allowed. The only exception is when a statement
appears as the object of one of the following predicates: sapl:add, sapl:remove
and sapl:erase.

The same document gives also a concrete syntax (which I will call UBIWARE
S-APL) for the S-APL language as follows:

“ The description of S-APL notation follows:

• A statement is a white-space-separated sequence of subject, predicate and

object

40

• Dot (.) followed by a white space separates statements of the same level,

i.e. S P O . S P O

• Semicolon (;) followed by a white space allows making several statements

about the same subject, i.e. S P O ; P O

• Comma (,) followed by a white space allows making several statements

having common subject and predicate, i.e. S P O , O

• { } denotes reification, it may appear as the subject or the object of a state-

ment and has to include inside itself one or more other statements, e.g. S P

{ S P O } or { S P O } P { S P O }. Reification always implies a context; how-

ever, the relation is not necessarily 1-to-1. E.g. {S P O} P O ; P O implies

that the statement in {} is linked to two different contexts defined as given.

• Colon (:) is used to specify an URI as a combination of the namespace

and the local name, i.e. ns:localname There can be default namespace, the

colon is used anyway, i.e. :localname.

• @prefix prefix: namespace links a prefix to a namespace.

• URIs given directly are to be inside < >, i.e. <http://someaddress>.

• Literals containing whitespaces, {, }, <, >, ", or : are to be inside " ", i.e.

"some literal".

• Comments are java-style, i.e. /* comment */ as well as // comment <end

of line>

• Character escaping is java-style as well, i.e. e.g. for " symbol, use \ " while

for backslash symbol itself, use \\

• N3 syntax for anonymous nodes with [], i.e. S P [P O] or [P O] P O is also

supported.

• N3 syntax for RDF lists of resources with (), i.e. (R R R ..) P O or S P (R R

R ..) is also supported.

c ”

The biggest drawback of this concrete syntax is that there is no formal way of
making statements about the document or precise parts of it. Therefore, the devel-
oper’s guide, this definition is taken from, limits itself to giving a partially informal
discussion of the language. Another problem of this concrete syntax is that certain
syntactic tricks have to be used to refer to containers from multiple places in the
document (see also section 3.5.10).

41

3.1.2 Removal of syntactic sugar

The S-APL syntax as described in [58] allows for the declaration of namespaces.
These namespaces are used similarly to the way they are handles in N3 and Turtle
(see sections 2.2.4 and 2.2.5). For the rest of this formalization, we assume the pre-
fixes to be expanded completely, i.e., all qualified names are replaced by their IRI
and are put between angular brackets. Furthermore, the shorthands used in S-APL
are replaced with their IRI counterparts according to table 3.1.

Table 3.1: Shorthands in S-APL
shorthand IRI

a <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

=> <http://www.ubiware.jyu.fi/sapl#implies>

>> <http://www.ubiware.jyu.fi/sapl#achievedBy>

-> <http://www.ubiware.jyu.fi/sapl#impliesNow>

==> <http://www.ubiware.jyu.fi/sapl#infers>

> <http://www.ubiware.jyu.fi/sapl#gt>

< <http://www.ubiware.jyu.fi/sapl#lt>

>= <http://www.ubiware.jyu.fi/sapl#gte>

<= <http://www.ubiware.jyu.fi/sapl#lte>

!= <http://www.ubiware.jyu.fi/sapl#neq>

= <http://www.ubiware.jyu.fi/sapl#eq>

Then, a unique IRI is assigned for each different blank node in the document.
This could for instance be a UUID as described in section 2.1.2 or any other IRIs
which can be guaranteed to be unique. The blank nodes are then replaced by there
assigned IRIs.

Lastly, S-APL allows subject-object, object lists and RDF lists like in Notation3.
We assume all these to be expanded. The first deliverable of the UBIWARE project
described a way of considering variables and the * symbol to be shorthand notations
of certain resources. This, however, lead to some problems when considering ex-
pressions in S-APL . The problem was that expressions in S-APL are literals which
contain variables inside e.g. "?variable1+?variable2", which imposes difficulties on con-
sidering ’?’ a shorthand. The solution used, did no longer replace only variables on

42

the right hand side of rules with their values, but also variables mentioned inside
all string literals. In this thesis, I will propose another way of handling the problem
with variables used inside expressions in section 3.2.7, the main point, for now, is
that variables are not considered shorthand notations.

We will call the combination of prefix expansion and removal, shorthand replace-
ment and list expansion normalisation of the document. A document which has been
treated this way will be called normalized.

Consider for instance the document in listing 3.1 which is using the UBIWARE
S-APL syntax. In this document, there are prefixes, shorthands and different lists.
The normalized form of this document shown in listing 3.2

@prefix ex : <http ://www. example . org/> .

ex : student2 a ex : Student .
{ ? student a <http ://www. example . org/Student > . ? student = ex : student2 }
=>
{ ? student ex : name " Student I I " }

Listing 3.1: S-APL document using syntactic sugar.

<http ://www. example . org/student2 >
<http ://www. w3 . org/1999/02/22− rdf−syntax−ns\#type >
<http ://www. example . org/Student > .
{ ? student

<http ://www. w3 . org/1999/02/22− rdf−syntax−ns\#type >
<http ://www. example . org/Student > .
? student
<http ://www. ubiware . jyu . f i /sapl #eq>
<http ://www. example . org/student2 > }

<http ://www. ubiware . jyu . f i /sapl \# implies >
{ ? student <http ://www. example . org/name> " Student I I " }

Listing 3.2: S-APL document with syntactic sugar expanded.

Note that also the prefixes declarations have been removed from the document.
In the next sections, I will introduce the definition for S-APL documents which is

used in this thesis, which is a subset of the documents considered in the UBIWARE
S-APL definition. The differences are clarified in the footnotes. In some examples, I
will use a notation which resembles the UBIWARE S-APL closely, since UBIWARE
S-APL syntax is intuitive to understand and no other concrete syntax is available.

43

The semantics of the examples further in this thesis will, however, use the semantics
as described in the following sections and chapters.

3.1.3 S-APL supergraph definition

In order to define what a S-APL document is, I will start from an infinite (directed)
graph, from which each S-APL document will be a finite subset. The infinite graph,
which I will call ŜÂP̂ L̂, consists of nodes and vertices denoted by N̂ and V̂ respec-
tively.

The set of nodes N̂ is partitioned in 5 subsets, i.e., N̂ = Ĉ ∪ Ŝ ∪ R̂ ∪ L̂ ∪ V̂ where
the intersection of each pair of sets is empty. The subsets are defined as follows:

R̂ = { Resource node with label IRI|IRI is an IRI as defined in RFC 3987 [14] } In
other words, R̂ contains one node for each possible IRI. This implies that the
graph is infinite, since there is an infinite number of IRIs.

L̂ = {literal|literal is any literal allowed in N3 (see section 2.2.4) } This set contains
a node for every possible literal.

V̂ =
{

Variable node with label x|x matches regex ′\?[a− zA− Z] + |\∗′
}

Thus V̂
contains the nodes representing all possible variables. The node with label ’*’
indicated as v∗ is the universal matching variable.

Ŝ is the set of all possible statements in a S-APL document. In order to ease its
definition, I introduce three new sets: 1

S = R̂ ∪ Ĉ ∪ V̂ , i.e., the set of possible subjects of statements.

P = R̂ ∪ V̂ , i.e., the set of possible predicates of statements.

O = R̂ ∪ Ĉ ∪ V̂ ∪ L̂, i.e., the set of possible objects of statements.

When we now introduce the notation of a statement which has subject s, pred-
icate p and object o as st(s,p,o), then we can define

Ŝ =
{

st(s,p,o)|s ∈ S, p ∈ P, o ∈ O
}

1The implementation used in the UBIWARE platform uses a slightly bigger set by also allowing
Literals in the Subject and Predicate.

44

Ĉ is the set containing a node for every possible context in an S-APL document. A
container node is defined by the statement arcs which leave from it, i.e., the
statements in the context. We denote the context node from which there is an
arc to statements s1, s2, . . . , sn as c{s1,s2,...,sn}. This way, we can define

Ĉ =
{

cstatements|statements ∈ 2Ŝ
}

The set of vertices of the infinite graph can be partitioned in 4 subsets. V̂ =
ˆCS ∪ ˆSS ∪ ˆSP ∪ ˆSO These subsets are defined as follows:

ˆCS is the set of arcs connecting contexts to statements. Formally, using previously
introduced notation, it is defined as ˆCS =

{
< c{s1,s2,...,sn}, sm > |m ∈ [1, n]

}
with other words, there is an arc from the context to the statement if the state-
ment is a member of the context.

ˆSS , ˆSP and ˆSO are similar sets. They connect the statement nodes with their content. They
are formally defined as:

ˆSS =
{〈

st(s,p,o), s
〉}

ˆSP =
{〈

st(s,p,o), p
〉}

ˆSO =
{〈

st(s,p,o), o
〉}

Put another way, ˆSS connect each statement to its subject, ˆSP each statement
to its predicate and the arcs in ˆSOmake the connection between the statements
and their object.

3.1.4 S-APL document definition

In the previous section, I defined a graph which is the supergraph of all possible
S-APL document graphs. In this section, I will define how a S-APL document is
defined as a subset of this supergraph. I denote the set SAPL as the set of all valid
S-APL documents. A S-APL document is a subgraph of ŜÂP̂ L̂ and is defined as a
9 tuple (C,S ,R,L,V , CS ,SS ,SP ,SO,G) where

C ⊂ Ĉ,S ⊂ Ŝ ,R ⊂ R̂,L ⊂ L̂,V ⊂ V̂ ,

CS ⊂ ˆCS ,SS ⊂ ˆSS ,SP ⊂ ˆSP ,SO ⊂ ˆSO and G ∈ Ĉ

and the following assertions hold:

45

1. Every node of C,S ,R,L and V is reachable from G and all arcs in CS ,SS ,SP
and SO can be traversed in the process. Informally, this means that all parts
of the document are used, i.e., there are no dangling nodes nor edges.

2. ∀c{s1,s2,...,sn} ∈ C : ∀k ∈ [1, n] : sk ∈ S and
〈

c{s1,s2,...,sn}, sk

〉
∈ CS . Informally,

all statements referenced from containers are available and linked by an arc.

3. ∀st(s,p,o) ∈ S :

• s ∈ R∪ C ∪ V and
〈

st(s,p,o), s
〉
∈ SS

• p ∈ R∪ V and
〈

st(s,p,o), p
〉
∈ SP

• o ∈ R∪ C ∪ V ∪ L and
〈

st(s,p,o), o
〉
∈ SO

This last assertion holds if all statements are linked to their content and their
content is part of the document.

For closer equivalence to the language used in the UBIWARE platform, it would
be needed to add the following assertion. This one is, however, not taken into ac-
count in this thesis.

1. G is not reachable from any other node in C, i.e., there is no recursive reference
to the ’General Context’.

3.1.5 S-APL document and RDF graph equivalence

The S-APL document might, at first sight, look as a superset of the RDF abstract
syntax. One can write any valid RDF document graph as a S-APL document with-
out any containers. Thus it is obvious that S-APL can represent any RDF graph.
However, also the opposite is true. The S-APL language as defined, can also be rep-
resented by an RDF graph. The way this is done, is by what is called reification of
statements as was described above in subsection 2.2.7 and is hinted in the “Semantic
Agent Programming Language (S-APL) Developer’s Guide” [58], but not defined.
Information about transformation of variable names can be found from “The Cen-
tral Principles and Tools of UBIWARE”[57]. The following procedure convert any
S-APL document to RDF by describing how to create a Turtle document (see also
section 2.2.5):

1. Add the following prefixes:

46

@prefix sapl: <http://www.ubiware.jyu.fi/sapl#> .

@prefix saplvar: <http://www.ubiware.jyu.fi/saplvar#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

2. Assign a unique blank node to each element of C and S .

3. For each c ∈ C and its assigned blank node c, add an RDF statement of the
form “ c rdf:type sapl:Container ”.

4. For each < c, s >∈ CS with c and s the blank nodes assigned to c and s respec-
tively, add an RDF statement of the form “c sapl:hasMember s”.

5. For each st(s,p,o) ∈ S with assigned blank label st(s,p,o) if

• s ∈ R∪L and ṡ the label of s, add statement “st(s,p,o) rdf:subject ṡ”

• p ∈ R∪L and ṗ the label of p, add statement “st(s,p,o) rdf:predicate ṗ”

• o ∈ R∪L and ȯ the label of o, add statement “st(s,p,o) rdf:object ȯ”

• s ∈ V and ṡ the label of s, add statement “st(s,p,o) rdf:subject saplvar:ṡ”

• p ∈ V and ṗ the label of p, add statement “st(s,p,o) rdf:predicate saplvar:ṗ”

• o ∈ V and ȯ the label of o, add statement “st(s,p,o) rdf:object saplvar:ȯ”

• s ∈ C and s the blank node assigned to s, add “st(s,p,o) rdf:subject s”

• p ∈ C and p the blank node assigned to p, add “st(s,p,o) rdf:predicate p”

• o ∈ C and o the blank node assigned to o, add “st(s,p,o) rdf:object o”

6. Let G be the blank node assigned to G, add statement “G rdf:type sapl:G”.

It is obvious to see from this procedure that the length of the document in RDF is
much bigger and that the structure is harder to discover. Also concrete implemen-
tations will have more difficulties to recover the structure of the S-APL document
when only given the RDF document. As can be seen from the procedure, one will
need 3 RDF statements for each S-APL statement, and on top of that 2 statements
for describing the membership relations of the statement. If the S-APL statement
happens to have a container as subject and/or object, then one resp. two extra state-
ments are needed to describe these.

47

3.1.6 Benefits of equivalence

The equivalence between S-APL and RDF, shown by the procedure in the previ-
ous section, has the benefit that everything which has been said about RDF is also
valid for S-APL. One can for example use S-APL embedded in XHTML and still
comply to the RDFa standard (see section 2.3.1), define an RDFS schema for describ-
ing allowed structure (see sections 2.4.1 and 4.3), use any of the described concrete
syntaxes for describing an S-APL document, use SPARQL queries on S-APL docu-
ments, and use any other existing tools for handling RDF data. Of course, specific
tools for the S-APL language will have strong benefits when speed and space con-
straints are taken into account.

3.1.7 Merging of containers

In this section, I will define an operator which gives a way to merge two S-APL
containers into one. This operator will be used in further sections, but can be gen-
eraly used to merge two S-APL documents into one when applied on the generals
contexts of the documents.

Given the containers c = c{sc1,sc2,...,scn} ∈ C and d = c{sd1,sd2,...,sdm} ∈ C. It is
assumed that the containers have been themselves formed by merging of containers
of one statement into each other. The merge operation “merge c and d” : c d d is
defined in the merge procedure in algorithm 1. Let us try to explain what the result
of this procedure is. The first container gets added to the second one in such a way
that the resulting container contains the following (earlier rules overrule later ones)

• each statement from the first and second container which has a container as
subject and object.

• no two statements which have the same subject and same predicate and a con-
tainer as object. They are joined together by creating a statement which has
the same subject and predicate and the merge of both containers as object.

• Similarly, also no two statements exist which have the same predicate and ob-
ject an a container as subject. They are joined together by creating a statement
which has the same object and predicate and the merge of both containers as
subject.

• all statement from both documents. Duplicates are removed because contain-

48

ers are sets.

Note that according to these rules, the merge operator is commutative.
Further, I define the function mergeContainers which takes a set of containers as

argument as follows:

mergeContainers :
{
Ĉ
}
→ Ĉ

mergeContainers(c1, c2, . . . , cn) 7→ c1 d c2 d · · ·d cn

Algorithm 1 Procedure for merging one container into another one.
procedure MERGE(ccContent = c{sc(s,p,o),sc2,...,scn}, ddContent = c{sd1,sd2,...,sdm})

if cContent = ∅ then . This is the basic case of the recursion
return ddContent

end if
if s, o ∈ Ĉ or s, o /∈ Ĉ then

return merge(c{sc2,...,scn}, c{sc(s,p,o),sd1,sd2,...,sdm})
else if s ∈ Ĉ then

if ∃sd(ds,dp,do) ∈ dContent, dp = p, do = o, ds ∈ Ĉ then . merge is needed
return merge(c{sc2,...,scn}, c{sd1,sd2,...,st(merge(s,ds),p,o),�����sd(ds,dp,do),...,sdm})

else
return merge(c{sc2,...,scn}, c{sc(s,p,o),sd1,sd2,...,sdm})

end if
else . o ∈ Ĉ

if ∃sd(ds,dp,do) ∈ dContent, ds = s, dp = p, do ∈ Ĉ then . merge is needed
return merge(c{sc2,...,scn}, c{sd1,sd2,...,st(s,p,(merge(o,do)),�����sd(ds,dp,do),...,sdm})

else
return merge(c{sc2,...,scn}, c{sc(s,p,o),sd1,sd2,...,sdm})

end if
end if

end procedure

3.2 Queries – binding of variables

The general goal of querying is extracting a subset of information out of a (bigger)
set of data. In S-APL, the data is represented by a graph and hence, querying means

49

the selection of a subgraph of it. As described in the previous section, there are
different types of nodes in the S-APL graph. There are resource, literal, variable,
statement and container nodes. Querying in S-APL will thus be making a certain
selection of these nodes. In order to give names to these selections, we will use
variable nodes. To summarise, this section will tell how to formally assign parts (or
better nodes) of the S-APL graph to variables.

In order to query RDF data, there was the SPARQL language which is described
in section 2.5.1. The designers of S-APL, however, decided that the best way to
query a S-APL document is by using another S-APL document. The S-APL lan-
guage is expressive enough to be used as a query language itself. In order to make
S-APL a usable query language some strict semantics had to be introduced, which
give certain graphs a certain meaning when used as a query for another graph. Fur-
thermore, a lot of syntactic sugar was introduced to make the writing of queries
more convenient and readable. In this section, we will look at how we can define the
semantic meaning of certain query constructs. In the next section 3.3, we will look
at the limitations of the language described here compared to UBIWARE S-APLand
how the syntactic sugar can be defined in function of the in this section defined con-
structs. The reason for working this way is that we should avoid defining too much
independent constructs. Defining all construct separately might make the writing
of proofs which should cover all cases more cumbersome and lengthy.

3.2.1 Definition of a query, bindingset and operators

In order to talk about queries, we must first define what a query is. We define it as
follows:

The set of queries Q = Ĉ

This is the same as saying that any container can be a query. I will, however, use the
notation Q in the context of queries to make the difference clear to the reader. The
notation used to represent a certain query extends from the notation used to specify
a certain container, i.e., q{qs1,qs2,...,qsm} = c{qs1,qs2,...,qsm} thus it is the query specified
by the container containing the statements qs1 till qsm.

When querying a S-APL document, the goal is to bind certain nodes to variables.
A query answer can, however, contain multiple mappings between the variables
and nodes. Therefore, we will introduce a notation for the result of a query which is
able to represent the whole solution. We call the one possible mapping of a query, a

50

bindingset of the query and the S-APL document. A bindingset looks as follows:

bindingset ⊂
{
(var, value) |var ∈ V̂ and value ∈ N̂)

}
where ∀(var1, val1), (var2, val2) ∈ bindingset : var1 = var2⇒ val1 = val2

It is thus a set of tuples in which the first component is a variable and the second
component a value. Such a tuple with components var and value, we will call a
binding for var. Furthermore, there cannot be two tuples defining the same variable
in a bindingset. Another way to look at this is that binding is function which maps
a subset of the variables V̂ to nodes in N̂

The complete answer to a query is a set of bindingsets. The set of bindingsets
looks as follows:

queryresult = QR ⊂ {bindingset|bindingset is a bindingset }

Next on, I will define a few operators which act on queryresults and which we
will use in further sections. The first operator is Υ which joins two queryresults in
the following way:

Υ : (QR, QR)→ QR

αΥβ 7→


bα ∪ bβ|bα ∈ α, bα ∈ β :
∀ (varα, valα) ∈ bα, ∀ (varβ, valβ) ∈ bβ :
varα = varβ⇒ valα = valβ


In other words, the function joins two query results together by taking the union of
these bindingsets where all bindings which are in both bindingsets have the same
value.

It is directly visible from the definition that this operator is commutative and it
can be shown that the operator is also associative. Note that for the working of the
Υ operator, an operand of {} is very different from {{}}. In the former, there are no
results, while in the later there is one result which does not contain any bindings.
Concrete, when applying Υ on α and {}, we will get {} while when applying it on
α and {{}} we will get α.

Mathematically speaking, querying in S-APL is a function which takes as its
arguments a container in which the query takes place and a container representing
the query. We define the query function as follows:

query : (C,Q)→ B̄S

51

We will define the actual mapping of the function in the next sections. Note that is
possible that G is used as a query or as the container from which the query selects
data.

3.2.2 Filling variables

In this subsection, we will define one more function which maps a container and a
bindingset to a container. The meaning of this operator is the filling of variables in
a container with the bindings from the bindingset. The function is called f ill and is
defined as follows:

f ill : (Ĉ, set of bindingsets)→ Ĉ

f ill
(

c{qs1,qs2,...,qsn}, bs
)
7→ c{ f illStat(qs1,bs), f illStat(qs2,bs),..., f illStat(qsn,bs)}

where f illStat is defined as

f illStat : (Ŝ , set of bindingsets)→ Ŝ

f illStat
(

st(s,po), bs
)
7→ st(ŝ,p̂,ô)

where ŝ =

{
bs(s) if bs(s) is defined
s otherwise

p̂ =

{
bs(p) if bs(p) is defined
p otherwise

ô =


bs(o) if bs(o) defined
in place replacement see below
o otherwise

In place replacement happens when the statement has as object a literal of XML
schema datatype “sapl:ExpressionLiteral”. For instance a statement of the form

ex : s u b j e c t ex : p r e d i c a t e " ? x+?y"^^ sapl : E x p r e s s i o n L i t e r a l

The effect of in place replacement is that all variables which are inside the literal
string and which are in the bindingset are replaced by their values and put back in
the literal.

3.2.3 Selection of Literals, Resources, Variables and Containers

This section will show the most essential part of querying S-APL graphs, namely
querying for literals, resources, variables and even containers in a given container,

52

by a query which contains only one statement. The fact that this section is placed
first, does not imply that it is the first step taken when deciding the result of the
query. In some cases, described in further subsections, constructs are recognised in
the query and treated first.

Given a query q{qs1} ∈ Q and a container c{s1,s2,...,sn} ∈ Ĉ where qs1 = st(qs,qp,qo)

is not one of the specially recognised statements described in further sections.
First we define the “matching statement set” (mss) as :

mss(c{s1,s2,...,sn}, qs1,) =

{
s

∣∣∣∣∣ s ∈ c{s1,s2,...,sn} and
testStatement(qs1, s) (see 2) returns true

}
From mss, we can give a partial definition of the query function, which is:

query : (Ĉ,Q)→ B̄S

query(c, q{(qs,qp,qo)}) 7→



{
(qs, s)|qs ∈ V̂ \ {v∗}

}
∪{

(qp, p)|qp ∈ V̂ \ {v∗}
}
∪{

(qo, o)|qo ∈ V̂ \ {v∗}
}

|(s, p, o) ∈ mss(c, (qs, qp, qo))


Let us try to analyze what happens here. We have a container with statements

which is the container from which we want to query data. Then we have a con-
tainer with one statement which is the query which we need to solve. The first thing
we do is applying the testStatement procedure to each statement from the queried
container and the query statement. This procedure will only return true if the state-
ment matches the query, i.e., all variables can be bound and all non-variables are
equal. Then we need to find the bindingsets. A bindingset should be added for ev-
ery possible set of bindings one can make between the variables and the values. We
thus add a set which contains the subject, predicate and/or object and their value
if the subject, predicate and/or object were variables in the query. The fact that the
queryresult and bindingset are sets, removes duplicates. One more remark should
be made: when the query does not contain any variables and an exact match is
found, the bindingset will contain one binding namely the empty set. This detail is
important for the Υ operator which was defined and discussed in section 3.2.1.

3.2.4 Selection of nested nodes

Next up, I will show how data can be addressed inside a container referenced from
one of the statements of the container being queried. There are three possible ways

53

Algorithm 2 Procedure for calculation of bindingset from a query containing one
statement.

procedure TESTSTATEMENT((qs, qp, qo), (s, p, o))
if qs /∈ V̂ and qs 6= s then . Not a variable and also not equal.

return false
end if
if qp /∈ V̂ and qp 6= p then . Not a variable and also not equal.

return false
end if
if qp ∈ V̂ then

if qp = qs 6= v∗ and p 6= s then . v∗ is the universal matching
variable . The variable occurs twice in the query, but the s and p of the statement
are not equal.

return false
end if

else if qp = p then . Nothing must be done in this case
else . Not a variable and also not equal.

return false
end if
if qo ∈ V̂ then

if qo = qs 6= v∗ and o 6= s then . The variable occurs twice in the query,
but the s and o of the statement are not equal.

return false
else if qo = qp 6= v∗ and o 6= p then . The variable occurs twice in the

query, but the p and o of the statement are not equal.
return false

end if
else if qo = o then . Nothing must be done in this case
else . Not a variable and also not equal.

return false
end if
return true

end procedure

54

for a statement to refer to a container; either the subject refers to a container node,
the object refers to a container node or both. For that reason, the mathematical
representation will be very similar for the three cases. First, let us look at the case
where the subject (and only the subject) of the query refers to a container:

Given a query q{qs1} ∈ Q and a container c{s1,s2,...,sn} ∈ Ĉ where qs1 = st(qs,qp,qo)

and qs ∈ Ĉ and qo /∈ Ĉ. We first define a new function subConQuery which selects
all statements from the container which match the query at least partially.

subConQuery(qs, qp, qo, newvar) =

 bs|bs ∈ query(c{st(newvar,qp,qo)}),

bs(newvar) ∈ Ĉ


Using this definition, the result of the query is defined as follows:

⋃
sq∈subConQuery(qs,qp,qo,newvar)

({sq \ (newvar, sq(newvar))}Υ {query (qs, sq(newvar))})

where newvar is any element of V̂ which is not reachable from qs1.
Before giving more explanation about what this all means, I will define what

happens when the object (but also possibly the subject) of the query is a container.
The reason why the subject can be a container in this case, is because in order to de-
fine the result of the query, I will use queries where the object is not a container and
which will then be handled by the previous case. Therefore, this part defines what
happens in the two last possible cases of statements referring to containers. First
we define a function objConQuery which is similar to the function subConQuery
defined above.

objConQuery(qs, qp, qo, newvar) =

 bs|bs ∈ query(c{st(qs,qp,newvar)}),

bs(newvar) ∈ Ĉ


Using this definition, the result of the query is defined as follows:

⋃
sq∈objConQuery(qs,qp,qo,newvar)

({sq \ (newvar, sq(newvar))}Υ {query (qo, sq(newvar))})

where newvar is any element of V̂ which is not reachable from qs1.
Let us have a look what this all means by looking at the first possibility. We

have a query consisting of one statement called qs1, of which the subject of the first

55

statement refers to a container, which we will call qs. That container, can itself con-
tain an arbitrary query. The query is performed in a container which we will call
c = c{s1,s2,...,sn}. First the subConQuery function must be computed. The result of
this function, is a queryresult containing a bindingset for each statement in c which
has a container as its subject and a predicate and object matching the predicate and
object of the query. That bindingset contains a binding of the container of that state-
ment to the variable newvar, and bindings to the predicate and object of the query if
they are variables.

The actual definition of the query tells us that, for each bindingset in the previ-
ously calculated queryresult, we should use the Υ operator on

• the bindingset from which we remove the binding to the newvar and

• the query result from querying for the query defined in qs in the container
which is bound to newvar, i.e., the subject of the statements which got selected
in the computation of subConQuery.

This way, we make sure that if a variable is used in the subject container of the query
and in the predicate and/or object, the binding will be identical and only existent if
all of the variable locations could be bound.

3.2.5 Construct for conjunction

In this section, I will give meaning to a query which consists of multiple statements.
Given a query q{qs1,qs2,...,qsm} ∈ Q and a container c = c{s1,s2,...,sn} ∈ Ĉ, i.e., a query
with m statements from a container with n statements. The semantic meaning given
to the query is that the query result, will contain bindingsets for which when each
variable in the query is replaced by the value given by the binding, each statement
from the query can be found from the container. This is achieved by using the Υ

operator as follows:

query(c, q{qs1,qs2,...,qsm}) = query
(

c, q{qs2,qs3,...,qsm}

)
Υquery

(
c, q{qs1}

)
As mentioned above, the Υ operator is both commutative and associative which
shows that this operation is independent on the order of the statements in the con-
tainer. What this does, is querying the container for the first statement of the query
and combine that queryresult with the result of querying the container with the rest
of the query statements.

56

3.2.6 Construct for optionality

The construct for optionality in S-APL reminds of the SPARQL OPTIONAL con-
struct (see section 2.5.1). The point is that certain variables will only be bound if
possible, otherwise they will not be bound but the query still has the bindingset
where that part of variable bindings is missing. A part of the S-APL query can be in-
dicated as being optional by making it the subject of a statement which has predicate
“sapl:is” and object “sapl:Optional”. Formally, let the query q{qs1} ∈ Q and the con-
tainer in which we query be c = c{s1,s2,...,sn} ∈ Ĉ where qs1 = st(qs,qp,qo) with qs ∈ Ĉ,
qp the resource node for “sapl:is” and qo the resource node for “sapl:Optional”.
Then the query result is given by:

query(c, q{st(qs,qp,qo)}) =
{
{∅} if query(c, qs) = ∅
query(c, qs) otherwise

Hence, when the query from the subject container gives a result, then it is used.
Otherwise an empty result is added. Note that a result of {} is not the same as a
result of {∅} as discussed in 3.2.1. In the former, there are no results, while in the
later there is one result which does not contain any bindings.

3.2.7 Creating new nodes from expressions

The S-APL query can contain expressions from which data which was not available
in the original data set can be constructed. For instance, we can sum two numbers
by defining a function on two literal nodes containing an integer, resulting in in an-
other literal node, which can then be bound to a variable. We will give a mathemat-
ical definition of this construct which is slightly different from how this construct
is defined in the S-APL version used in the UBIWARE platform. 2 Formally, let
the query q{qs1} ∈ Q and the container in which we query be c = c{s1,s2,...,sn} ∈ Ĉ
where qs1 = st(qs,qp,qo) with qs ∈ V̂ , qp the resource node for “sapl:expression”
and qo a literal node representing an expression depending on the set of variables
v1, v2, . . . , vm ⊂ V̂ and has XML schema datatype “sapl:ExpressionLiteral”. The no-
tation expression(val1, val2, . . . , valm) is used to indicate the result of evaluation of
the expression when vari is substituted by vali. We will now define the result of the
query as being all possible bindings we can make, which fit into the expression.

2The UBIWARE platform requires all variables used in the expression to be bound to variables in
statements which are used in conjunction before any expression is evaluated. The reason is that the
way the UBIWARE S-APL engine is designed, does not allow for lazy evaluation.

57

query(c, st(qs,qp,qo)) =


{(qs, qo (val1, val2, . . . , valm))} ∪
{(var1, val1) , (var2, val2) , . . . (varm, valm)} |
∀i ∈ [1, m] : vali ∈ N̂ and
qs is valid with each vari replaced by vali


The size of the query result is potentially infinite and will in practical queries be

limited by for instance filtering (see section 3.2.8) or using the expression statement
in conjunction with other statements as described in section 3.2.5. In the UBIWARE
platform version of S-APL, there is a big amount of expressions available for nu-
merical calculations (see [58]) and the XML schema datatype of the expression ob-
ject does not have to be “sapl:ExpressionLiteral“, but can be any literal. One type of
expressions does not fit into this definition. This are the expressions whose evalua-
tion is not constant over time. Examples of this type of expressions are expressions
generating random numbers and unique identifiers. They can, however, still be
used when we define that the value of the query result can be different for different
evaluations of the query function for the same document and query. This would,
however, make the model much more complicated and is thus not supported. It is
assumed that every S-APL engine at least supports these expressions which have a
constant evaluation over time.

3.2.8 Filtering the results with filtering predicates

One more possible construct the S-APL query language is inspired by the SPARQL
FILTER construct (see section 2.5.1). The goal of a filter, is the reduction of the num-
ber of bindingsets in the query result by stating conditions the variables have to
fulfill. On can for instance require that the value of variable x must be equal to
the value of variable y by using st(x,sapl:eq,y) in the query container. The version de-
scribed here limits the one used in the UBIWARE platform by not evaluating possi-
ble expressions as the object of the test. This does, however, not limit expressiveness
of the query function since it is possible to simulate the version from the UBIWARE
platform with the version described here by using an extra expression statement
(see 3.2.7) in conjunction as described in section 3.2.5. Another limitation, is that
filters on statistics are not supported since statistics as such are not supported as
described in section 3.3.1.

Despite the fact that expressions and filters are essentially different things, they

58

can be defined in a very similar way. Given a query q{qs1} ∈ Q and the container in
which we query c = c{s1,s2,...,sn} ∈ Ĉ where qs1 = st(qs,qp,qo) with qp a resource node
with label

l ∈ {sapl : gt, sapl : lt, sapl : gte, sapl : lte, sapl : neq, sapl : eq, sapl : regex} .

Then, the query result is the set of all bindingsets which fulfill the filter expressed
by the statement qs1. We split the definition in three cases; if qs, qo ∈ V̂ then

query(c, q{st(qs,qp,qo)}) =
{
(qs, qsv), (qo, qov)|qsv, qov ∈ N̂ and ’qsv qp qov’ is true

}
else, if qs ∈ V̂ but qo /∈ V̂ then

query(c, q{st(qs,qp,qo)}) =
{
(qs, qsv)|qsv ∈ N̂ and ’qsv qp qo’ is true

}
else, if qs /∈ V̂ but qo ∈ V̂ then

query(c, q{st(qs,qp,qo)}) =
{
(qo, qov)|qov ∈ N̂ and ’qs qp qov’ is true

}
The queryresult will thus contain all possible minimal bindingsets which can

pass the filter.3 As a result, the result set will be infinitely big (except for sapl : eq
where the result can also contain only 1 bindingset). Analog to expressions, the
amount of bindingsets in the queryresult should in practical queries be limited
by using this type of query in conjunction with other queries as described in sec-
tion 3.2.5.

3.2.9 Filtering the results with negation

Next to the use of filtering predicates it is possible to filter from the query result
bindingsets using negation. A bindingset will be removed when a specified con-
tainer, filled with the bindings of the bindingset forms a query which yields a result.
Formally, the removal is defined as follows. Given a query q = q{qs1,qs2,...,qsm} ∈ Q
and a container c = c{s1,s2,...,sn} ∈ Ĉ, i.e., a query with m statements and from a con-
tainer with n statements where qs1 = st(qs,qp,qo) and qs the resource node for “sapl:I”
and qp the resource node for “sapl:doNotBelieve” and qo ∈ Ĉ. Then, we define the

3 The S-APL language supported by UBIWARE does not support queries which contains filters in
the same way. One can only use filters in conjunction with other statements which make the query
result a finite set.

59

query as

query(c, q{st(qs,qp,qo),qs2,...,qsm}) =
{

bindingset|bindingset ∈ query(q{qs2,...,qsm}, c),
query(f ill(qo, bindingset), c) = ∅

}

where the fill function was defined in section 3.2.2.
Informally, we first perform the query of all but the negation statement on the

container. Then we see whether the query of the negation statement, filled with that
each bindingset of the query result, yields the empty set. If it is not the case the
bindingset is removed from the result.

3.2.10 Filter on whether something is a container

One more possible filter makes sure that a certain variable is a container. Let the
query be q{qs(s,p,o)} ∈ Q where s ∈ V̂ and, p and o the resource nodes for “rdf:type”
and “sapl:Container” respectively. Then the query function maps the query as fol-
lows:

query(c, q{qs(s,p,o)}) =
{
(s, container) |container ∈ Ĉ

}
The query result is thus the set of all tuples with as first component the variable and
as second component any container. When this statement is used in conjunction
with other statements, only when the variable in the bindingset for these statements
is mapping to a container, the bindingset will remain in the query result.

3.2.11 Construct for UNION

S-APL has support for something which is similar to the UNION from the SPARQL
language. Concrete, it is possible to create a query which contains 2 sub-queries,
where a bindingset in the query result of one of them is enough to be part of the
query result of the whole query. The two queries are embedded in the bigger query
by putting the queries as subject and object of a statement which has the resource
node for “sapl:or” as a predicate. Formally, Let the query be q{qs(s,p,o)} ∈ Q where

s, o ∈ Q̂ and, p the resource node for “sapl:or”. Then the query function maps the
query as follows:

query(c, q{qs(s,p,o)}) = query(c, s) ∪ query(c, o)

60

3.2.12 The empty query

One possible query is the empty query, i.e., the query which consists of a container
without any statements. The result of this query, with c an aribitrary element of Ĉ,
is defined as follows:

query(c, q{}) = {∅}

Notice that the result is a set which contains the empty set. This is stricly different
from a result which is just the empty set as described in section 3.2.1. The effect
of this definition is that the empty query always has a result which is the empty
bindingset.

3.3 Limitations and syntactic sugar for queries

In this section, I will give an overview of more query features which are available in
the UBIWARE S-APL language. First, the feature is described and then explained
how this can be emulated in the S-APL definition used in this thesis or the reason
stated why this feature is not supported.

3.3.1 Statistics and filters on statistics

Up to now, we have not been talking about one possibility which the queries in UBI-
WARE S-APL have, namely the possibility to calculate statistics on the result set and
bind the numbers to variables. The reason for not including statistics is that statis-
tics are depending on the other statements in the query. It is thus not possible to
determine the value of the statistics by solely looking at the statistics statement and
the container which is being queried. Statistics can, however, be emulated by cal-
culating them using expressions and rule features of the S-APL language which are
defined in chapter 3.4. This is best explained with an example, the following query
bind to ?count the number of unique matches for the variable ?x in the bindingset.

{
?x ex : a ex : b .
? count sapl : count ?x
} sapl : Al l ?x

This can be written without the use of the statistics by first adding the following
rule which adds all statements to one container.

{

61

?x ex : a ex : b .
}
−>
{

ex : countContainer ex : temp { ? x ex : a ex : b } .
}

And then performing the following query which will work inside the container.

{
countContainer ex : temp ? c on ta in er
? count sapl : express ion " numberOfMembers (? co nt a i ne r) "

}

Filters on statistics cannot be supported if statistics are not supported. How-
ever, one can use the normal filters in combination with the technique used in the
previous example.

3.3.2 First match, sapl:All and sapl:Some

In the S-APL language used in the UBIWARE platform, a query will by default only
result in one of the bindingsets of the query result as defined in this thesis. This
result is the first bindingset which matches the query found by the engine. In order
to get more bindingsets, the query must be what is called “wrapped in sapl:All”.
Concrete, this means that the query must be the subject of a statement in an encap-
sulating query of the form (query, sapl : All, var), where query is the query, sapl : All
is the resource node for sapl:All and var ∈ V̂ . When this is done, for each different
mapping from var to a value which can be found from the bindingsets, one bind-
ingset with that mapping is chosen. Another option is to use “wrap in sapl:Some”
which will force the engine to find all solutions and then pseudo-randomly select
the resulting bindingset(s).

In this thesis, the S-APL query is considered deterministic and results in all pos-
sible bindingsets of the queried document. Put another way, it works like a UBI-
WARE S-APL query where for each variable, the query is wrapped in sapl:All for
that variable.

62

3.4 Rules and dynamics of S-APL

Up till now, we have seen what the structure of a S-APL document is and how a
S-APL document can be queried. However, as mentioned above, a S-APL document
is a self modifying graph. In this chapter, I will show and define what kind of
dynamics the S-APL document has. First, we will look at the implies now rule
which is the basic rule used for the self modification. Then I will show how these
rules are applied to a S-APL document. Lastly I will show how other rule types
available in UBIWARE S-APL can be emulated by a combination of basic rules.

3.4.1 Implies now rules

UBIWARE S-APL supports many types of rules. In this thesis I will, however, only
define one type of rule, which I will call the implies now rule, which is the equivalent
of the ’conditional action’ as described in “Semantic Agent Programming Language
(S-APL) Developer’s Guide”[58]. Below, I will explain how combinations of one or
multiple instances of this one type of rule can be used to imitate repeated implies
rules, conditional commitments, behavioral rules, inference rules, meta-rules, and
exists while conditions (see section 3.4.5).

This rule has much similarity with the CONSTRUCT query in SPARQL. Having
the construct type of query available, one can imagine that the SELECT and ASK
types are implicitly available as well. The SELECT type is available when the user
binds the values to known variables in the user specified graph template. The ASK
type is available because the user can see whether a graph is build which is equiva-
lent to the question whether a match is possible.

Let us now look at how the implies now rule is defined. An implies now rule
consists of:

• A query container which is executed against a container.

• A container which contains a pattern into which variables will be filled for
each bindingset in the query result, the result of the rule is the set of all these
filled containers.

• A container which will be the only member in the result set of the rule if the
query result is the empty set, i.e., no results were found.

In a S-APL document, the rule is written as two statements st1(q,impliesNow,suc)

and st2(q,impliesNow, f ail) where q ∈ Ĉ is the query which gets performed, impliesNow

63

is the resource node for “sapl:impliesNow”, suc ∈ Ĉ is the container which will be
filled for each bindingset to form a result, and f ail ∈ Ĉ is the container which will
serve as the result in case the query result is empty. Let c be the container against
which the rule is executed. I will define the result of the implies now rule formally
as the result of the implies function which takes the four containers as parameters.

implies : (Ĉ, Ĉ, Ĉ, Ĉ)→
{
Ĉ
}

implies(q, c, suc, f ail) 7→
{
{ f ill(suc, b)|b ∈ res} if res = query(c, q) 6= ∅
{ f ail} otherwise

As can be seen from this definition, there is a separation between the execution of
the rule and the addition of its result to the main container of a S-APL document as
is always the case on the UBIWARE platform. Below, in the sections about dynamics
in S-APL documents, I will define how the result of rules gets added to S-APL
documents.

3.4.2 Removal of beliefs

It is possible that certain statements do become invalid. In order to reflect this
change, the statement should be removed from the document. Removal of state-
ments can be done by writing a “remove statement” in the G container of the S-APL
document. The removal happens at the moment specified by the δ operator as de-
fined in the next section. The actual statement is of the form st(s,p,o) where s ∈ Ĉ
is an empty container 4 and p is the resource nodes for “sapl:remove”. The object
o ∈ Ĉ is the pattern which should be removed. Formally, the statements which
will be removed are these statements which add to the bindingset of the part of the
query function defined in section 3.2.3 and whose bindings do not get removed in
the recursive definition of the query function. After all removal statements have
been handled, the remove statements are themselves removed from the document
(if they are still there).

3.4.3 Dynamics – definition of the delta operator

In this section, I will describe in which sense the S-APL document is dynamic. The
dynamism is caused by two types of constructs, namely the appearance of implies

4This is a big difference from the UBIWARE S-APL language where the subject has to be the
resource node for “sapl:I” and statements with empty containers are removed by the run time. See
also section 3.5.7.

64

now rules, as described section 3.4.1, and removal of statements, as described in
section 3.4.2, in the general context (G) of a S-APL document. Dynamism is for-
malized as a function δ which maps the document on the document after making
certain changes. The operator is repetitively applied on the document; we denote k
repetitive applications of the operator as δk.

Now follows the definition of the δ operator:

δ : SAPL → SAPL
δ : (C,S ,R,L,V , CS ,SS ,SP ,SO,G) 7→

(
C̃, S̃ , R̃, L̃, Ṽ , ˜CS , ˜SS , ˜SP , ˜SO, G̃

)
where

• G̃ = remove ◦ applyRules(G),

• C̃, S̃ , R̃, L̃, Ṽ , ˜CS , ˜SS , ˜SP and ˜SO are appropriate to make the result a valid
S-APL document,

• remove is as specified in section 3.4.2,

• The function applyRules is defined as follows:

applyRules : Ĉ → Ĉ
applyRules(G) 7→ G d mergeContainers({implies(q, c, suc, f ail)|rule})

where rule is any “applies now rule” in G with q, suc and f ail as described in
section 3.4.1.

3.4.4 S-APL document classes

After having defined in which way a S-APL document is dynamic, it is possible to
classify documents according to how the dynamism, i.e., the δ operator changes the
document. A S-APL document D is said to be

stable if δ : D 7→ D, i.e., the document does not change when the operator is ap-
plied.

unstable if the document is not stable, i.e., δ : D 7→ E and D 6= E.

converging if ∃k, ∀n > k : δn : D 7→ E, i.e., after applying the δ operator a sufficient
amount of times, the document becomes stable.

65

diverging if the document is not converging, i.e., @k, ∀n > k : δn : D 7→ E where
D 6= E.

revolving if ∃k, δk : D 7→ D, i.e., after applying the operator a fixed number of
times, the document comes back to the same state.

3.4.5 Emulating other rules

In this chapter, I will give a description of how the “implies now rule” from sec-
tion 3.4.1 and the dynamics of the document from section 3.4.3 are strong enough to
emulate other rule types available in UBIWARE S-APL. The descriptions here are
not formal proofs, but could be a starting point for those.

Repeated implies now rule This rule which is closely related to the implies now
rule. In UBIWARE S-APL, this is an implies now rule which is member of the
subject container of the statement {} sapl: is sapl:Rule in G. The way the rule
works is that is is executed and does not get removed as long as its query
remains true. We thus need to find a way to prevent the S-APL document
from removing the rule as long as the query has had a result in the previous
iteration of the δ operator. The way to solve this is rather straightforward;
the recursive inclusion of the rule statement itself in the suc container of the
implies now rule gives the wanted behavior. 5

Conditional commitment A conditional commitment rule is a rule which stays as
long as its query is not matched. Once the query is matched it gets removed.
This type of rules look similar to implies now rules, except that they have no
f ail container and a different predicate ("sapl:implies" or as shorthand ’=>’).
To emulate the behavior of this type of rule, it is sufficient to use an implies
now rule with the same query q and suc container, and the addition of a f ail
container which contains as its only statement a recursive inclusion of the
whole rule.

Behavioral rule Behavior rules are like a conditional commitment, but defined in
the same context as repeated implies now rules. The difference with condi-
tional commitments is that they do not get removed after a successfully match.
The way they can be emulated is a combination of the two previous ways. This

5Recursive inclusion of statements or containers is very poorly supported in the UBIWARE plat-
form and might bring the agent into an infinite loop. For more information, see section 3.5.5.

66

time the recursive inclusion of the whole rule is needed in both the suc and the
f ail container.

Inference rule A way for emulating inference rules, i.e., rules using the arrow ’==>’
or "sapl:infers" as a predicate, is already described in the “Semantic Agent Pro-
gramming Language (S-APL) Developer’s Guide”[58]. The basic idea is to
make sure that all bindingsets are used by wrapping in “sapl:All” (see sec-
tion 3.3.2) for all variables used, which is done in any case in the S-APL ver-
sion described here and adding a negation of the suc container to the query by
means of sapl:doNotBelieve as described in section 3.2.9.

Meta rule Meta rules are just like normal rules, except that they are executed before
and after the execution of other rules. This abstraction can also be made by
temporarily removing a certain set of rules and enabling another set. It is even
possible to introduce a hierarchy of meta rules, i.e., meta rules which manage
meta-rules.

Exists while condition “Exists while conditions” are not actual rules, rather they
assert that certain set of statements will be removed if a given query does not
have any results any more. It is easy to see that they can be imitated with
implies now rules, which will have the statements to be removed in a remove
statement in the f ail container and a recursive inclusion of the rule in the sub-
ject container.

3.5 Use of S-APL in agents.

The S-APL language as initially proposed was intended for use in software agents.
This chapter will shortly look at how the model used up to now needs to be extended
to be extended to be useful for agent programing.

3.5.1 Software agents

In general, the word agent has many meanings. It should be clear that I am talk-
ing here about an agent in the sense of something which has the power to act.
More specifically, I want to discuss about software agents, i.e., software which is
able to act itself. The concept of software agents has been defined in several ways.
The Foundation for Intelligent Physical Agents (FIPA) gave a definition in “FIPA

67

Agent Management Specification” [59]. The most relevant parts of the definition for
this discussion are that “An agent is a computational process that implements the
autonomous, communicating functionality of an application.” and that “an agent
must support at least one notion of identity. ” The FIPA definition does not make
any statements about the agent having any specific knowledge, nor that the agent is
able to act on and upon its environment.

Russel shows a different view on agents by saying that “An agent is anything
that can be viewed as perceiving its environment through sensors and acting upon
that environment through actuators.” [60] This definition is clearly much broader as
the definition given by FIPA, since not only the communicative aspect is taken into
account. It is not clear from Russels definition whether each agent needs its own
notion of identity, since it could even be said that a group of agents can be seen as
one.

The S-APL language was designed for agents which are more in the sense which
Russel is defining. For the scope of this thesis, I will limit the concept of agent or
software agent to a software entity which has a description about its own internal
state and part of its environment. It is less relevant whether the agent is able to sense
and react on its environment.

3.5.2 The roots of S-APL

The S-APL language was originally developed in the Smartresource [61] and the
UBIWARE project [62]. One of the aims of the UBIWARE project was to make a se-
mantic agent platform, i.e., an agent platform where the agents use semantic data.
This platform uses ideas from the Smartresource project by make agents representa-
tives of resources external to the platform. S-APL is the language used to give agents
an internal state, make them communicate, start actions external to the agent, etc. . .

As was shown in chapter 2, there have been many attempts to define languages
for use in the Semantic Web. The problem with all of these language is, however,
that their scope is very limited and not usable for programming. Furthermore, a
new language needed to be elaborated because the existing languages did not allow
for explicit removal of existing information.

The aim of the language evolved to become a one-fits-all language for the Se-
mantic Web. The concrete language developed was described in section 3.1.1, but is
basically a combination of many of the concepts found in other languages used in
the Semantic Web with the addition of removal of information.

68

3.5.3 External actions

One definition of agent quoted above in section 3.5.1 about software agents is that
“An agent is anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through actuators.” [60]. In the defini-
tion of S-APL in this thesis, there is no interaction mechanism with the document
whatsoever. The document is a graph which is dynamic, but the results of this dy-
namism can in no way be observed nor influenced. Therefore, we need to enable an
agent which is using S-APL to represent its internal state to

• perceive its environment trough sensors and

• act upon that environment trough actuators.

The way this is solved in UBIWARE S-APL on the UBIWARE platform is described
in “Semantic Agent Programming Language (S-APL): A Middleware Platform for
the Semantic Web” [63]. In this document, there is a description of the Reusable
atomic behavior (RAB) as an atomic function which is implemented in a program-
ming language (in this case Java), which serves as actuators and sensors of the envi-
ronment. Further, it is argued that these RABs should be parametrized. The way the
external code is started has changed over time and more advanced construct have
been added for controlling what happens when the behavior starts, stops, succeeds,
fails and even if the behavior cannot be run due to policies of the platform. [64] Es-
sentially, all of the methods which have emerged over time make the agent check
in the S-APL document whether statements of a specific form are present and starts
external code with parameters specified in the statements. In order to sense the en-
vironment, the code is able to add data back to the model with a procedure similar
to the on described in section 3.1.7 about the merging of containers.

3.5.4 Agent time and embedded beliefs

The agents on the UBIWARE platform have certain statements which are always in
the G container and which are kept up to date by the platform. These statements
include information about time and the agent’s own name. This way, it is possible
to define queries which only give a result when the time has advanced beyond a
certain time point. The reason why this is not included in the theoretical model,
it that this would lead to a different evaluation of a query at different times. Fur-
thermore, it would also render the definitions given in section 3.4.4 about document

69

types useless. Another problem with time is that a S-APL document will be time
dependant making it impossible for any implementation to make hard guarantees
about how the document will be run on the platform

3.5.5 Inability of implementations to support infinite loops

The UBIWARE implementation cannot support the version of S-APL which is de-
scribed in this thesis because it is unable to handle infinite loops. If a document is
revolving but not stable then the UBIWARE agent will get in an infinite loop chang-
ing the document between the states which are part of the revolution. Furthermore,
as already described in sections 3.2.8 and 3.2.7, the UBIWARE platform is unable to
support queries which yield an infinite set of results nor is it able to determine that
a resultset will be limited in size. The only way this type of query is possible on
the platform is if the variables used in filters and expressions are explicitly bound in
statements of the query which are in conjunction with them.

3.5.6 Protection of removal of beliefs in an agent context

Next to the embedded beliefs, there are also certain statements or so called beliefs
which are protected form removal. These include statements about certain types of
rules, goals and currently active external actions. As a result, even if one tries to
remove these beliefs, nothing will happen.

3.5.7 Exceptions for merging and empty containers

Some exceptions are made to the merging of containers when rules are executed
and statements are added. I could not find any good argumentation on why these
exceptions were made except that statements are used in such a way that merging
them would lead to unexpected results. For instance, if the remove statements as
described in section 3.4.2 would as in the UBIWARE platform have the resource
node for “sapl:I” as a subject, then the queries of all remove statements would join
into one big query which would have a different semantic meaning as the separate
queries.

One more curiosity is the removal of any statement which has an empty con-
tainer. This also applies recursively inside containers. The fact that this operation
is performed has been the cause of many difficult to solve problems in program-

70

ming agents in S-APL for the UBIWARE platform which the author of this thesis
has encountered.

3.5.8 Adding and Erasing of beliefs

UBIWARE S-APL also supports “sapl:erase” and “sapl:add” next to “sapl:remove”.
The reason for this is mainly historical and is mainly used for syntactic problems
with the syntax. Further, these constructs show in my opinion too much of the
internal implementation of the platform. The idea is that “sapl:erase” removes the
actual container which it gets as an argument (the object of the statement) instead of
using it as a query, while “sapl:add” just adds its argument to the G container when
it appears there. Another reason for “sapl:add” is the addition of statements on the
suc or f ail side of a rule as mentioned in the section 3.5.10.

3.5.9 Syntactic sugar for rules available in UBIWARE

As mentioned in the section on sapl:All (see section 3.3.2), the UBIWARE platform
S-APL has a different way of performing queries with regard to how many bind-
ing sets are in the query result. The syntax use for denoting the fact that multiple
solutions are needed can be as follows:

{ {A B ?x } sapl : Al l ?x }
−>
{ use of ?x }

but also like this:

{A B ?x }
−>
{ { use of ?x } sapl : Al l ?x }

The later variant is against the concept that the query is completely stated in the
container which is the subject of the rule statement, which is used in this thesis.

3.5.10 Referring to containers and statements in UBIWARE S-APL

The UBIWARE S-APL query language allows the programmer in concrete syntax to
refer to a certain container or statements using IDs. This ID is local to the document
while being loaded and will be removed when the engine loads the document.

Another thing which is made possible is to explicitly query for specific state-
ments. The problem is, however, that once a statement node is bound to a variable,

71

it cannot be used in the fill operator discussed above. To overcome this problem,
UBIWARE S-APL introduces yet another construct which will be replaced by the
referred statement. I decided to leave these possibility out of the specification in
this thesis, since it is possible to use other syntax constructs to emulate the same
behavior and I did not want to introduce more irregularities in the definitions.

3.6 The problem of variables in higher order constructs

One problem of the S-APL language when used, is that variables are not unique
enough. The problem might arise that two programmers use the same variable
name for several things and therefore errors occur. One option to solve this prob-
lem is to use for the replacement of all variable names UUIDs before merging two
S-APL documents. The problem is, however, that there is not possibility to deter-
mine upfront how variables will be used. The cause of this problem is that it is
possible to write code which uses higher order variables, i.e., variables whose value
is another variable. The following example shows the use of higher order variables,
where the first document contains the data and the second one a rule. This is the
first document, containing the data:

ex : a ex : hasLeftHandSide { ? var ex : p ex : o }
ex : value ex : p ex : o

And this document containing the rule using an higher order variable.

//Rule
{

? example ex : hasLeftHandSide ? l h s
} =>
{

{
? l hs sapl : i s sapl : t rue

} => {
? var ex : p2 ex : o2

}
}

When merged, the rule will be matched and the right hand side added. The docu-
ment will then look like this:

ex : a ex : hasLeftHandSide { ? var ex : p ex : o }
ex : value ex : p ex : o

72

{
? var ex : p ex : o

} => {
? var ex : p2 ex : o2

}

Now, the variable ?var appears on both the left and right hand side of the rule and
the rule can do some useful work which results in:

ex : a ex : hasLeftHandSide { ? var ex : p ex : o }
ex : value ex : p ex : o
ex : value ex : p2 ex : o2

Notice that the second document counts on the fact that a certain variable in the
first document has a certain name. We can thus not in general assume that we can
replace the variable names in documents by unique names before merging them.

One way to overcome this problem is to treat variables in some sense as ’docu-
ment global’, i.e., a variables in a document must have only one meaning and do not
have any meaning outside the document. This can, however, not be enforced by the
S-APL engine and must thus be done by the programmer. Once this requirement is
put, it is possible to use the aforementioned methods to make sure variables do not
collide.

73

4 Use of theoretical model defined for S-APL

This chapter discusses tries to provide an answer to the first research question of
this thesis, i.e, “Why is there a need for formalization?”. The answer to this question
is given by several use-cases for the formalization described in the sections of this
chapter.

4.1 Data representation

S-APL can just like RDF be used to describe any possible data which is representable
on computer systems. The proof that any data can be represented is rather simple.
The trick is to realise that a literal can for instance contain data encoded in what is
called Base64 encoding. Multiple possible encodings exist, one is described in [65].
The working of the encoding consists of a fixed mapping of binary data to a string
in which 64 different characters can be used and also a reverse mapping is available.
This character string can then be used as a literal in a S-APL or RDF document. A
document could for instance look like this :

@prefix ex : <http ://www. example . org/> .
@prefix xsd : <http ://www. w3 . org /2001/XMLSchema#> .

ex : a ex : a " Tm90aGluZyBzcGVjaWFsIGhlcmUh"^^xsd : base64Binary

Of course, it would not be of much benefit to use S-APL to represent data in such a
way, since it loses the possibilities and semantics of the language.

4.2 Query language

As can be seen immediately from chapter 3.2, the language can be used as a query
language for semantic data. This feature is already available on the UBIWARE plat-
form, but requires the data to be inside the beliefs’ structure of an agent. The formal-
ization does, however, not require any agent as an intermediate and it is thus possi-
ble to use S-APL as a general purpose Semantic Web query language like SPARQL.
Furthermore, thanks to the formalization it is possible to make statements about

74

what the exact results of a query will be.

4.3 Schemas

As discussed in section 2.4.1 and 2.4.2, RDFS and OWL can be used to make schemas
for data in RDF. These two specifications make a description of the shape of the data
by putting constraints on it. The way this is done is declarative, meaning that there
is a static set of conditions to which the data has to comply. In S-APLone could,
however, imagine a different way of defining schemas. Data could be for instance
be according to a schema if the S-APL schema document merged with the data
becomes a specific type of document or equal to a given document.

Let me illustrate the idea with an example. Imagine a set of data about students
and supervisors with the condition that each supervisor must have more publica-
tions as the supervised student. For the sake of the example, I am assuming that all
data about publications is available and that there is no other data in the document,
which is a violation of the open world assumption. For the example I will use a
S-APL notation similar to the one used in UBIWARE S-APL, but the semantics and
dynamics should be interpreted as the S-APL described in this thesis.

Assume that the revolving document which must be reached is a document
which has the statement (ex:schema ex:state ex:ok). The schema could then look like
this:

ex : schema ex : s t a t e ex : ok .
{

{
?A ex : supervises ?B .
?A ex : hasPubl i ca t ion ?APub
?B ex : hasPubl i ca t ion ?BPub

}
−>
{

?A ex : hasPubl ica t ionConta iner { ?APub rdf : type ex : P u b l i c a t i o n } .
?B ex : hasPubl ica t ionConta iner { ?BPub rdf : type ex : P u b l i c a t i o n } .
{

?A ex : hasPubl ica t ionConta iner ?ACont .
?ACount sapl : express ion

" numberOfMembers (? ACont)"^^ sapl : E x p r e s s i o n L i t e r a l .
?B ex : hasPubl ica t ionConta iner ?BCont .
?BCount sapl : express ion

75

" numberOfMembers (? BCont)"^^ sapl : E x p r e s s i o n L i t e r a l .
?ACount sapl : gt ?BCount

}
−>
{ }
; sapl : e l s e {

ex : schema ex : s t a t e ex : v i o l a t e d .
{ } sapl : remove { ex : schema ex : s t a t e ex : ok } .

}
}
; sapl : e l s e {

__S1 sapl : i s sapl : t rue
}

} sapl : ID __S1 .
__S1 sapl : i s sapl : t rue

Where the “sapl:ID” and “sapl:is sapl:true” are the way UBIWARE S-APL indi-
cates that the same statement. This is thus a recursively defined rule which keeps
on checking that everything is alright, but which will be revolving if there is, or no
data or valid data.

4.4 Proof of correctness of implementation

When a formal model of a system is defined, it becomes possible to formally proof
that a certain implementation is correct according to that definition. The benefit is
that when a piece of code is run on a system which is proven to be correct, it cannot
fail in the sense of working unexpectedly. If on top of that, the code is also proven
to have certain properties, the properties will also be valid for the working system
on which the code is deployed.

Concrete, if an implementation of a S-APL engine can be proven to be compliant
with the version of S-APL described in this document, then any code run on this
platform can be proven to have certain properties. For instance, if a piece of code,
which is proven to solve a certain mathematical equation, is run on an implemen-
tation, which is proven to be compliant, then one can ensure that the code will give
the answer to the equation.

76

4.5 Limit for space and time optimizations

When a formalization of a language is defined, it is possible to make statements
about the complexity of evaluation of fragments of code. This way, it is possible to
state maximum limits for space (in terms of memory) and time needed for evalua-
tion of code.

4.6 Plans

A plan is a chain of atomic actions which can be performed in order to reach a
certain goal. Analog to concepts described in the previous paragraphs, it is possible
to prove that certain plans will work, even during run time. The system can, using
knowledge about the input and output of the atomic actions, and knowledge about
the formal model by which they are interacting, decide whether the chain of actions
will lead to the desired goal.

77

5 Conclusion

This thesis tried to give an answer to the following research questions

1. Why is there a need for formalization?

2. How can one make a formalization of the S-APL language?

The first research question was answered in chapter 4. This chapter contains
several use-cases for the S-APL language which are not all agent centric. Most of
these use cases are centered around the fact that a formalization gives the possibility
to make formal statements about the document.

The second research question was answered by giving a formalization in chap-
ter 3. The formalization consists of a function δ which defines how a S-APL docu-
ment, as defined formally in this thesis in section 3.1, changes its structure dynam-
ically. The δ operator makes use of rules and remove statements which themselves
depend on the query function. All of these where defined and elaborated in this the-
sis in sections 3.4, 3.4.2 and 3.2 respectively. The formalization was also compared
to the version of S-APL which is used in the UBIWARE platform in section 3.5.

The content of this thesis can be used in further work on any of the topics de-
scribed in the need for formalization chapter. For one, it is possible to formalize
how a particular implementation of schemas based on S-APL will work and proof
its correctness. Furthermore, it is possible to proof correctness of implementation
and programs written in S-APL. Last but not least, it would be possible to extend
this formalization to a formalization in which agents using this version of S-APL
are interacting with each other in a multi-agent platform. Further research could
also point out whether this formalization can be simplified without losing expres-
siveness.

78

6 References

[1] I. Herman, “W3c semantic web frequently asked questions,” nov 2009. [Online;
accessed 25-February-2012].

[2] J. J. Carroll and G. Klyne, “Resource description framework (RDF): Concepts
and abstract syntax,” W3C recommendation, W3C, Feb. 2004. http://www.
w3.org/TR/2004/REC-rdf-concepts-20040210/.

[3] Princeton University, “Wordnet - formalization.” website, 2006. http://

wordnetweb.princeton.edu/perl/webwn?s=formalization, last re-
trieved on 20 Feb 2012.

[4] J. Stewart, Calculus. Stewart’s Calculus Series, Thomson Brooks/Cole, 2003.

[5] Wikipedia, “Digraph (mathematics) — wikipedia, the free encyclopedia,”
2008. http://en.wikipedia.org/w/index.php?title=Digraph_

(mathematics)&oldid=245066361 [Online; accessed 25-February-2012].

[6] Wikipedia, “Glossary of graph theory — wikipedia, the free ency-
clopedia,” 2012. http://en.wikipedia.org/w/index.php?title=

Glossary_of_graph_theory&oldid=478435016 [Online; accessed 25-
February-2012].

[7] J. Postel, “DoD standard Internet Protocol,” RFC 0760, Internet Engineering
Task Force, Jan. 1980.

[8] P. Mockapetris, “Domain names: Concepts and facilities,” RFC 0882, Internet
Engineering Task Force, Nov. 1983.

[9] P. Mockapetris, “Domain names: Implementation specification,” RFC 0883, In-
ternet Engineering Task Force, Nov. 1983.

[10] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform Resource Locators
(URL),” RFC 1738, Internet Engineering Task Force, Dec. 1994.

79

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://wordnetweb.princeton.edu/perl/webwn?s=formalization
http://wordnetweb.princeton.edu/perl/webwn?s=formalization
http://en.wikipedia.org/w/index.php?title=Digraph_(mathematics)&oldid=245066361
http://en.wikipedia.org/w/index.php?title=Digraph_(mathematics)&oldid=245066361
http://en.wikipedia.org/w/index.php?title=Glossary_of_graph_theory&oldid=478435016
http://en.wikipedia.org/w/index.php?title=Glossary_of_graph_theory&oldid=478435016

[11] T. Berners-Lee, “Universal Resource Identifiers in WWW: A Unifying Syntax
for the Expression of Names and Addresses of Objects on the Network as used
in the World-Wide Web,” RFC 1630, Internet Engineering Task Force, June 1994.

[12] K. Sollins and L. Masinter, “Functional Requirements for Uniform Resource
Names,” RFC 1737, Internet Engineering Task Force, Dec. 1994.

[13] R. Moats, “URN Syntax,” RFC 2141, Internet Engineering Task Force, May 1997.

[14] M. Duerst and M. Suignard, “Internationalized Resource Identifiers (IRIs),”
RFC 3987, Internet Engineering Task Force, Jan. 2005.

[15] “Information technology, "Universal Coded Character Set (UCS)",” 2000.

[16] J. Hakala and H. Walravens, “Using International Standard Book Numbers as
Uniform Resource Names,” RFC 3187, Internet Engineering Task Force, Oct.
2001.

[17] P. Hoffman, L. Masinter, and J. Zawinski, “The mailto URL scheme,” RFC 2368,
Internet Engineering Task Force, July 1998.

[18] D. M. e. a. Drummond Reed, “Extensible resource identifier (xri)
syntax v2.0,” OASIS committee specification, OASIS, Nov. 2005.
http://docs.oasis-open.org/xri/xri-syntax/2.0/specs/cs01/

xri-syntax-V2.0-cs.html.

[19] M. McRae, “Failed oasis standard ballot of xri syntax v2.0.” Mail-
ing list on http://lists.oasis-open.org/archives/xri/200806/

msg00001.html, jun 2008. Last retrieved 29 january 2012.

[20] “Information Technology, "Procedures for the operation of OSI Registration
Authorities: Generation and registration of Universally Unique Identifiers
(UUIDs) and their use as ASN.1 Object Identifier components",” 2004.

[21] P. Leach, M. Mealling, and R. Salz, “A Universally Unique IDentifier (UUID)
URN Namespace,” RFC 4122, Internet Engineering Task Force, July 2005.

[22] O. Lassila, “Resource description framework (rdf) model and syntax specifi-
cation,” W3C recommendation, W3C, Feb. 1999. http://www.w3.org/TR/
1999/REC-rdf-syntax-19990222/.

80

http://docs.oasis-open.org/xri/xri-syntax/2.0/specs/cs01/xri-syntax-V2.0-cs.html
http://docs.oasis-open.org/xri/xri-syntax/2.0/specs/cs01/xri-syntax-V2.0-cs.html
http://lists.oasis-open.org/archives/xri/200806/msg00001.html
http://lists.oasis-open.org/archives/xri/200806/msg00001.html
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

[23] E. Miller and F. Manola, “RDF primer,” W3C recommendation, W3C, Feb. 2004.
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

[24] D. Beckett, “RDF/xml syntax specification (revised),” W3C recom-
mendation, W3C, Feb. 2004. http://www.w3.org/TR/2004/

REC-rdf-syntax-grammar-20040210/.

[25] R. V. Guha and D. Brickley, “RDF vocabulary description language 1.0: RDF
schema,” W3C recommendation, W3C, Feb. 2004. http://www.w3.org/TR/
2004/REC-rdf-schema-20040210/.

[26] P. Hayes, “RDF semantics,” W3C recommendation, W3C, Feb. 2004. http:

//www.w3.org/TR/2004/REC-rdf-mt-20040210/.

[27] D. Beckett and J. Grant, “RDF test cases,” W3C recommen-
dation, W3C, Feb. 2004. http://www.w3.org/TR/2004/

REC-rdf-testcases-20040210/.

[28] P. V. Biron and A. Malhotra, “XML schema part 2: Datatypes,” first edition
of a recommendation, W3C, May 2001. http://www.w3.org/TR/2001/

REC-xmlschema-2-20010502/.

[29] A. Malhotra and P. V. Biron, “XML schema part 2: Datatypes second edition,”
W3C recommendation, W3C, Oct. 2004. http://www.w3.org/TR/2004/

REC-xmlschema-2-20041028/.

[30] T. Bray, J. Paoli, E. Maler, F. Yergeau, and C. M. Sperberg-McQueen, “Extensible
markup language (XML) 1.0 (fifth edition),” W3C recommendation, W3C, Nov.
2008. http://www.w3.org/TR/2008/REC-xml-20081126/.

[31] E. Ray, Learning XML, Second Edition. O’Reilly Media, Inc., Sept. 2003.

[32] T. Berners-Lee and D. Connolly, “Notation3 (n3): A readable rdf syn-
tax,” W3C team submission, W3C, Mar. 2011. http://www.w3.org/

TeamSubmission/2011/SUBM-n3-20110328/.

[33] D. B. T. Berners-Lee, “Turtle - terse rdf triple language,” W3C team sub-
mission, W3C, Mar. 2011. http://www.w3.org/TeamSubmission/2011/
SUBM-turtle-20110328/.

81

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/
http://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/
http://www.w3.org/TeamSubmission/2011/SUBM-turtle-20110328/
http://www.w3.org/TeamSubmission/2011/SUBM-turtle-20110328/

[34] S. Pemberton, B. Adida, S. McCarron, and M. Birbeck, “RDFa in XHTML: Syn-
tax and processing,” W3C recommendation, W3C, Oct. 2008. http://www.

w3.org/TR/2008/REC-rdfa-syntax-20081014.

[35] S. Pemberton, “XHTMLTM 1.0 the extensible hypertext markup language (sec-
ond edition),” W3C recommendation, W3C, Aug. 2002. http://www.w3.

org/TR/2002/REC-xhtml1-20020801.

[36] A. Perego, P. Archer, and K. Smith, “Protocol for web description resources
(POWDER): Description resources,” W3C recommendation, W3C, Sept. 2009.
http://www.w3.org/TR/2009/REC-powder-dr-20090901/.

[37] A. Perego, P. Archer, and K. Smith, “Protocol for web description resources
(POWDER): Grouping of resources,” W3C recommendation, W3C, Sept. 2009.
http://www.w3.org/TR/2009/REC-powder-grouping-20090901/.

[38] P. Archer and S. Konstantopoulos, “Protocol for web description resources
(POWDER): Formal semantics,” W3C recommendation, W3C, Sept. 2009.
http://www.w3.org/TR/2009/REC-powder-formal-20090901/.

[39] K. Scheppe, “Protocol for web description resources (POWDER):
Primer,” W3C note, W3C, Sept. 2009. http://www.w3.org/TR/2009/

NOTE-powder-primer-20090901/.

[40] D. Brickley and L. Miller, “Foaf vocabulary specification 0.98,” specification,
Aug. 2010. http://xmlns.com/foaf/spec/20100809.html.

[41] The Dublin Core Metadata Initiative, “Dublin core.” website. http://

dublincore.org last retrieved on 5 Feb 2012.

[42] R. V. Guha and D. Brickley, “RDF vocabulary description language 1.0: RDF
schema,” W3C candidate recommendation, W3C, Mar. 2000. http://www.

w3.org/TR/2000/CR-rdf-schema-20000327/.

[43] P. Hayes, P. F. Patel-Schneider, and I. Horrocks, “OWL web ontology language
semantics and abstract syntax,” W3C recommendation, W3C, Feb. 2004. http:
//www.w3.org/TR/2004/REC-owl-semantics-20040210/.

[44] W3C OWL Working Group, “OWL 2 web ontology language document
overview,” tech. rep., W3C, Oct. 2009. http://www.w3.org/TR/2009/

REC-owl2-overview-20091027/.

82

http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014
http://www.w3.org/TR/2002/REC-xhtml1-20020801
http://www.w3.org/TR/2002/REC-xhtml1-20020801
http://www.w3.org/TR/2009/REC-powder-dr-20090901/
http://www.w3.org/TR/2009/REC-powder-grouping-20090901/
http://www.w3.org/TR/2009/REC-powder-formal-20090901/
http://www.w3.org/TR/2009/NOTE-powder-primer-20090901/
http://www.w3.org/TR/2009/NOTE-powder-primer-20090901/
http://xmlns.com/foaf/spec/20100809.html
http://dublincore.org
http://dublincore.org
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

[45] P. F. Patel-Schneider and B. Motik, “OWL 2 web ontology language mapping
to RDF graphs,” W3C recommendation, W3C, Oct. 2009. http://www.w3.

org/TR/2009/REC-owl2-mapping-to-rdf-20091027/.

[46] M. Krötzsch, P. F. Patel-Schneider, S. Rudolph, P. Hitzler, and B. Parsia, “OWL
2 web ontology language primer,” W3C recommendation, W3C, Oct. 2009.
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/.

[47] P. F. Patel-Schneider, B. Motik, and B. C. Grau, “OWL 2 web ontology language
direct semantics,” W3C recommendation, W3C, Oct. 2009. http://www.w3.
org/TR/2009/REC-owl2-direct-semantics-20091027/.

[48] M. Schneider, “OWL 2 web ontology language RDF-based semantics,”
W3C recommendation, W3C, Oct. 2009. http://www.w3.org/TR/2009/

REC-owl2-rdf-based-semantics-20091027/.

[49] B. Motik, A. Fokoue, I. Horrocks, Z. Wu, C. Lutz, and B. C. Grau, “OWL 2 web
ontology language profiles,” W3C recommendation, W3C, Oct. 2009. http:

//www.w3.org/TR/2009/REC-owl2-profiles-20091027/.

[50] N. Eisinger and J. Maluszynski, eds., Reasoning Web, First International Summer
School 2005, Msida, Malta, July 25-29, 2005, Tutorial Lectures, vol. 3564 of Lecture
Notes in Computer Science, Springer, 2005.

[51] E. Prud’hommeaux and A. Seaborne, “SPARQL query language for RDF,”
W3C recommendation, W3C, Jan. 2008. http://www.w3.org/TR/2008/

REC-rdf-sparql-query-20080115/.

[52] P. Gearon, A. Passant, and A. Polleres, “SPARQL 1.1 update,” W3C
working draft, W3C, Jan. 2012. http://www.w3.org/TR/2012/

WD-sparql11-update-20120105/.

[53] S. Harris and A. Seaborne, “SPARQL 1.1 query language,” W3C
working draft, W3C, Jan. 2012. http://www.w3.org/TR/2012/

WD-sparql11-query-20120105/.

[54] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean,
“Swrl: A semantic web rule language - combining owl and ruleml,” W3C
member submission, W3C, May 2004. http://www.w3.org/Submission/
2004/SUBM-SWRL-20040521/.

83

http://www.w3.org/TR/2009/REC-owl2-mapping-to-rdf-20091027/
http://www.w3.org/TR/2009/REC-owl2-mapping-to-rdf-20091027/
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/
http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/
http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/
http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/
http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2012/WD-sparql11-update-20120105/
http://www.w3.org/TR/2012/WD-sparql11-update-20120105/
http://www.w3.org/TR/2012/WD-sparql11-query-20120105/
http://www.w3.org/TR/2012/WD-sparql11-query-20120105/
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

[55] A. Khandelwal, J. Bao, L. Kagal, I. Jacobi, L. Ding, and J. Hendler, “Analyzing
the air language: A semantic web (production) rule language,” in Web Reason-
ing and Rule Systems (P. Hitzler and T. Lukasiewicz, eds.), vol. 6333 of Lecture
Notes in Computer Science, pp. 58–72, Springer Berlin / Heidelberg, 2010.

[56] A. Katasonov and V. Terziyan, “Semantic Agent Programming Language (S-
APL): A Middleware Platform for the Semantic Web,” in ICSC ’08: Proceedings
of the 2008 IEEE International Conference on Semantic Computing, (Washington,
DC, USA), pp. 504–511, IEEE Computer Society, 2008.

[57] V. Terziyan, A. Katasonov, O. Kaykova, O. Khriyenko, O. Loboda, A. Nau-
menko, and S. Nikitin", “Deliverable D1.1 the central principles and tools of
ubiware,” Deliverable D1.1, Industrial Ontologies Group - Agora Center, Uni-
versity of Jyväskylä, Jyväskylä, Finland, nov 2007.

[58] A. Katasonov, “Semantic agent programming language (s-apl) developer’s
guide,” technical report, Jyväskylän Yliopisto, Apr. 2010. http://users.

jyu.fi/~akataso/SAPLguide.pdf, retreived on 6 april 2010.

[59] F. for Intelligent Physical Agents, “Fipa agent management specification,”
Available online at http://www.fipa.org/specs/fipa00023/, no. 23,
2004.

[60] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Pearson
Education, 2003.

[61] V. Terziyan and et al.", “Smartresource project final report,” deliver-
able, SmartResource Tekes Project - Agora Center, University of Jyväskylä,
Jyväskylä, Finland, 2007.

[62] O. Khriyenko, V. Terziyan, and et al.", “Ubiware final project report,” de-
liverable, UBIWARE Tekes Project - Agora Center, University of Jyväskylä,
Jyväskylä, Finland, 2010.

[63] P. Petta and J. Müller, Multiagent system technologies: 5th German conference,
MATES 2007, Leipzig, Germany, September 24-26, 2007 : proceedings. Lecture notes
in artificial intelligence, Springer, 2007. SmartResource Platform and Seman-
tic Agent Programming Language (S-APL) by Artem Katasonov and Vagan
Terziyan.

84

http://users.jyu.fi/~akataso/SAPLguide.pdf
http://users.jyu.fi/~akataso/SAPLguide.pdf
http://www.fipa.org/specs/fipa00023/

[64] V. Terziyan, M. Nagy, M. Cochez, V. Pilli-Sihvola, J. Kesäniemi, and
O. Khriyenko", “Deliverable D3.4 ubiware platform prototype v. 3.1,” Deliver-
able D3.4, Industrial Ontologies Group - Agora Center, University of Jyväskylä,
Jyväskylä, Finland, nov 2010.

[65] J. Linn, “Privacy Enhancement for Internet Electronic Mail: Part I: Message
Encryption and Authentication Procedures,” RFC 1421, Internet Engineering
Task Force, Feb. 1993.

85

	Glossary
	1 Introduction
	1.1 Mathematical preliminaries
	1.2 Definitions of used prefixes

	2 Languages used for representation of semantic data
	2.1 Resources and identifiers
	2.1.1 URL, URI, URN and family …
	2.1.2 UUID
	2.1.3 IRI vs. UUID

	2.2 RDF for data representation
	2.2.1 RDF abstract syntax
	2.2.2 N-Triples
	2.2.3 RDF/XML
	2.2.4 N3
	2.2.5 Turtle
	2.2.6 N-Triples vs. RDF/XML vs. N3 vs. Turtle.
	2.2.7 Reification of statements

	2.3 Frameworks using RDF to represent data.
	2.3.1 RDFa
	2.3.2 POWDER
	2.3.3 Use of RDF as embedded information structure.

	2.4 RDF structure languages
	2.4.1 Resource Description Framework Schema (RDFS)
	2.4.2 Web Ontology Language (OWL)

	2.5 Query languages for Semantic data
	2.5.1 SPARQL

	2.6 Semantic Web Rule Language

	3 S-APL language and its formalization
	3.1 Syntax definition
	3.1.1 Original UBIWARE S-APL definition
	3.1.2 Removal of syntactic sugar
	3.1.3 S-APL supergraph definition
	3.1.4 S-APL document definition
	3.1.5 S-APL document and RDF graph equivalence
	3.1.6 Benefits of equivalence
	3.1.7 Merging of containers

	3.2 Queries – binding of variables
	3.2.1 Definition of a query, bindingset and operators
	3.2.2 Filling variables
	3.2.3 Selection of Literals, Resources, Variables and Containers
	3.2.4 Selection of nested nodes
	3.2.5 Construct for conjunction
	3.2.6 Construct for optionality
	3.2.7 Creating new nodes from expressions
	3.2.8 Filtering the results with filtering predicates
	3.2.9 Filtering the results with negation
	3.2.10 Filter on whether something is a container
	3.2.11 Construct for UNION
	3.2.12 The empty query

	3.3 Limitations and syntactic sugar for queries
	3.3.1 Statistics and filters on statistics
	3.3.2 First match, sapl:All and sapl:Some

	3.4 Rules and dynamics of S-APL
	3.4.1 Implies now rules
	3.4.2 Removal of beliefs
	3.4.3 Dynamics – definition of the delta operator
	3.4.4 S-APL document classes
	3.4.5 Emulating other rules

	3.5 Use of S-APL in agents.
	3.5.1 Software agents
	3.5.2 The roots of S-APL
	3.5.3 External actions
	3.5.4 Agent time and embedded beliefs
	3.5.5 Inability of implementations to support infinite loops
	3.5.6 Protection of removal of beliefs in an agent context
	3.5.7 Exceptions for merging and empty containers
	3.5.8 Adding and Erasing of beliefs
	3.5.9 Syntactic sugar for rules available in UBIWARE
	3.5.10 Referring to containers and statements in UBIWARE S-APL

	3.6 The problem of variables in higher order constructs

	4 Use of theoretical model defined for S-APL
	4.1 Data representation
	4.2 Query language
	4.3 Schemas
	4.4 Proof of correctness of implementation
	4.5 Limit for space and time optimizations
	4.6 Plans

	5 Conclusion
	6 References

