
Turing equivalence of the Ubiware Agent

Michael Cochez

April 6, 2010

Abstract

In this paper, I’m proving that the Ubiware Agent (restricted in the use of
RAB’s) is Turing equivalent to a Turing machine. To prove this, I’ve to prove
that a Turing machine can simulate a Ubiware Agent and that a Ubiware Agent
is able to simulate a Turing Machine. The Ubiware Agent is defined in the Java
language which is ran in a Java VM (which is known to be Turing equivalent).
This implies that only one direction remains to be proven, that a Ubiware Agent
is able to simulate a Turing Machine. I’ll prove this by designing A Ubiware
Agent beliefs structure in Semantic Agent Programming Language (S-APL)
that is able to simulate the Turing Machine.

Contents

1 Introduction 2
1.1 What is S-APL? . 2
1.2 What is a Turing Machine and Turing equivalence? 3

1.2.1 Turing Machine . 3
1.2.2 Turing equivalence . 4

1.3 Why proof Turing equivalence? 4

2 Proof by simulation 4
2.1 Building the machine . 4
2.2 Modeling the input for the machine 6
2.3 Proof of equivalence by induction 6

3 Limitations of the proof 8

4 Conclusions 8

A Instantaneous description of a Turing Machine 9

B The TMSimulationRule 9

1

1 Introduction

1.1 What is S-APL?

S-APL is a language used for Ubiware Agent programming and can be summa-
rized as in [1]

Thus, an S-APL document is basically a statement of some agent’s
current or expected (by an organization) beliefs. S-APL is based
on Notation3 (N3) and utilizes the syntax for rules very similar to
that of N3Logic. N3 was proposed as a more compact, better read-
able and more expressive alternative to the dominant notation for
RDF, which is RDF/XML. One special feature of N3 is the con-
cept of formula that allows RDF graphs to be quoted within RDF
graphs, e.g. {:room1 :hasTemperature 25} :measuredBy :sensor1. An im-
portant convention is that a statement inside a formula is not con-
sidered as asserted, i.e., as a general truth. In a sense, it is a truth
inside a context defined by the statement about the formula and the
outer formulas. In S-APL, we refer to formulae as context contain-
ers.

The S-APL syntax, as described in [3] is
The description of S-APL notation follows:
• A statement is a white-space-separated sequence of subject, predicate and object

• Dot (.) followed by a white space separates statements of the same level, i.e.
S P O . S P O

• Semicolon (;) followed by a white space allows making several statements about
the same subject, i.e. S P O ; P O

• Comma (,) followed by a white space allows making several statements having
common subject and predicate, i.e. S P O , O

• { } denotes reification, it may appear as the subject or the object of a statement
and has to include inside itself one or more other statements, e.g. S P { S P
O } or { S P O } P { S P O }. Reification always implies a context; however,
the relation is not necessarily 1-to-1. E.g. {S P O} P O ; P O implies that the
statement in {} is linked to two different contexts defined as given.

• Colon (:) is used to specify an URI as a combination of the namespace and
the local name, i.e. ns:localname There can be default namespace, the colon is
used anyway, i.e. :localname.

• @prefix prefix: namespace links a prefix to a namespace.

• URIs given directly are to be inside < >, i.e. <http://someaddress>.

• Literals containing whitespaces, {, }, <, > , ”, or : are to be inside ” ”, i.e.
”some literal” .

• Comments are java-style, i.e. /* comment */ as well as // comment <end of
line>

• Character escaping is java-style as well, i.e. e.g. for ” symbol, use \ ” while for
backslash symbol itself, use \\

• N3 syntax for anonymous nodes with [], i.e. S P [P O] or [P O] P O is also
supported.

• N3 syntax for RDF lists of resources with () , i.e. (R R R ..) P O or S P (R R
R ..) is also supported.

2

For the remainder of this document I assume using the namespace sapl: as

<http://www.ubiware.jyu.fi/sapl#> .

G is considered the main Ubiware Agent belief container and contains every-
thing the Ubiware Agent assumes to be general truth. I consider Ubiware Agent
without the possibility to start external RAB’s (Reusable Atomic Behavior’s
are pieces of java code which are executable by Ubiware Agent to support their
interaction to the outside world) For the proof I need a subset of the S-APL
language constructs. Those will be explained in the following sections, for these
and other constructs see [3].

Unconditional commitment to adding a belief

If the Ubiware Agent has a belief: ”sapl : I sapl :add {X}” in G , then the Ubiware
Agent copies ”X” to G and erases the unconditional commitment.

Unconditional commitment to removing a belief

If the Ubiware Agent has the belief: ”sapl : I sapl :remove {X}” in G , then all
believes matching to ”X” are removed from G (For matching rules see [3])

Conditional commitment

If the Ubiware Agent has a belief: ”{X 1 . X 2 X n} => {X}” in G , where
n ∈ ℵ \ {0} then ”X” is added to G if all of ”X 1, X 2, ... , X n” can be
matched against G . (Possibly linking values to variables denoted by ?vari-
ablename.) After applying the conditional commitment, it is removed from G.
However, if a conditional commitment appears inside the subject container of
{} sapl : is sapl :Rule then the rule gets executed but doesn’t get removed.

1.2 What is a Turing Machine and Turing equivalence?

1.2.1 Turing Machine

A Turing Machine is a theoretical model for computation and is formally defined
in [2] as a seven tuple

M = 〈Q,Σ,Γ, δ, q0, B, F 〉 where

• Q is the finite set of states.

• Σ ⊆ Γ \ {B} is the set of input symbols.

• Γ is a finite set of the tape symbols.

• δ : Q \ F × Γ→ Q× Γ× {L,R} is a partial function called the transition
function.

If δ : (q,X) → (p, Y,D) then p is the next state of the Turing Machine,
Y is the replacement symbol written in the cell being scanned. And D is
the direction in which the head of the Turing Machine will be moved.

• q0 ∈ Q is the initial state .

3

• B ∈ Γ \ Σ is the blank symbol The blank symbol appears initially in all
but the finite number of initial cells that hold the input symbols.

• F ⊆ Q is the set of final or accepting states.

Furthermore, the Turing Machine has an infinite tape of cells, initially contain-
ing the input to the machine and each non-input containing cell contains B. I
assume the tape to be infinite in one direction only. This doesn’t decrease the
computational power of the machine [2]. The Turing Machine has a head, which
initially scans the cell containing the first input symbol. A step of the machine
means the application of δ. This means, read the state q of the machine and
the symbol on the currently scanned cell and apply δ; write Y in the scanned
cell, change the state of the machine to p and move the head in direction D.

1.2.2 Turing equivalence

I’m using the following definition for Turing equivalence:

A machine V is Turing equivalent with a machine W ⇔ V can sim-
ulate the functionality of W and vice versa.

Concrete I’m going to give a proof that the Ubiware Agent is Turing equiv-
alent with the previously defined Turing Machine. The proof that the Ubiware
Agent is simulatable by the Turing Machine is given by the fact that the refer-
ence implementation is made in Java (definition by construction). [4] Thus only
one direction remains to be proven: The Ubiware Agent is able to simulate the
Turing Machine.

1.3 Why proof Turing equivalence?

A Turing Machine is a model for all known computing machines. Knowing that
a newly built machine (in this case the Ubiware Agent) is Turing equivalent is
sufficient as a proof that it is able to perform all possible algorithms.

2 Proof by simulation

2.1 Building the machine

I proof the fact that Ubiware Agent is able to simulate the Turing Machine by
writing S-APL code which, when injected in G , is able to simulate the working
of the Turing Machine. The transformation from the Turing Machine definition
to the S-APL code is as follows: (Note that we use a method which simulates
the ”Instantaneous descriptions for Turing Machine” described in A)

I introduce the following notation:
X ∈ F with F a S-APL container and X a valid S-APL belief ⇔ X is part

of the container F .
Let G be the initially empty container of the Ubiware Agent beliefs.

Defining the namespaces

For the simulation, we need to define the namespaces of the used elements:

4

@pref ix sap l : <http ://www. ubiware . jyu . f i / sap l#> .
@pre f ix tape : <http :// u s e r s . jyu . f i / m i s e l i c o / seminaar i / tape#> .
@pre f ix a l f : <http :// u s e r s . jyu . f i / m i s e l i c o / seminaar i / a lphabet#> .
@pre f ix machine : <http :// u s e r s . jyu . f i / m i s e l i c o / seminaar i /machine#>.
@pre f ix s t a t e : <http :// u s e r s . jyu . f i / m i s e l i c o / seminaar i / s t a t e#> .
@pre f ix r u l e : <http :// u s e r s . jyu . f i / m i s e l i c o / seminaar i / r u l e#> .
@pre f ix d i r : <http :// u s e r s . jyu . f i / m i s e l i c o / seminaar i / d i r e c t i o n#>

∈ G

Machine description

Let : myTuringMachine, : myTuringTape, : myTuringHead be unique names
for this Turing Machine, its tape and its head. First we define a general Turing
Machine:

: myTuringMachine machine : hasTape : myTuringTape .
: myTuringMachine machine : hasHead : myTuringHead .
: myTuringMachine machine : i n i t i a l S a t e q 0 .
: myTuringMachine machine : hasBlankSymbol B

∈ G

Machine initialization

Then we define a rule which must give the Turing Machine its initial position:

{
? theTuringMachine machine : hasTape ? tape .
? tape tape : hasCe l l ? c e l l .
? c e l l tape : hasSequenceNr 0 .
? theTuringMachine machine : hasHead ?head .
? theTuringMachine machine : h a s I n i t i a l S t a t e ? i n i t i a l s t a t e

}
=>
{

?head machine : hasPos i t i on ? c e l l .
? theTuringMachine machine : hasState ? i n i t i a l S t a t e

}

∈ G

Transformation of δ

Now we model the rules of the Turing Machine:
Let every member of the transition function have a unique name, I denote it
with :rule, but it is different for each element.
For rules which make the head move to the right:
∀((state : validState, alf : OChar), (state : resultState, alf : RChar,R)) ∈ δ :

: myTuringMachine machine : hasRule : r u l e

∈ G and

: r u l e r u l e : hasOriginalSymbol a l f : OChar ;
r u l e : hasReplacementSymbol a l f : RChar ;
r u l e : ha sD i r e c t i on d i r : r i g h t ;
r u l e : v a l i d I nS t a t e s t a t e : v a l i dS t a t e ;
r u l e : t r an s i t i onToSta t e s t a t e : r e s u l t S a t e .

5

∈ G
For rules which make the machine move to the left:

∀((state : validState, alf : OChar), (state : resultState, alf : RChar, L)) ∈ δ :

: myTuringMachine machine : hasRule : r u l e

∈ G and

: r u l e r u l e : hasOriginalSymbol a l f : OChar ;
r u l e : hasReplacementSymbol a l f : RChar ;
r u l e : ha sD i r e c t i on d i r : l e f t ;
r u l e : v a l i d I nS t a t e s t a t e : v a l i dS t a t e ;
t r an s i t i onToSta t e s t a t e : r e s u l t S a t e .

∈ G
Later we will refer to these rules in the beliefs of Ubiware Agent which

originate from the definition of th Turing Machine as ”TMRules”.

TMSimulationRule

Then we define a rule (TMSimulationRule) which simulates the working of the
Turing Machine. I’ve placed the TMSimulationRule to the appendix B because
it is quite spacious. It takes the original state of the machine and the symbol the
head is currently pointing at and uses a TMRule to calculate the new position of
the head, the symbol which should het written in the scanned cell and the new
state. The right hand-side of the TMSimulationRule, replaces the scanned cells
content by the new symbol and changes the machine state. Then a new rule is
added to check whether the cell which should be scanned next is already existing
in the Ubiware Agent belief, if not, it gets created with the blank value. Then
a rule is added which moves the head to the cell on the right or left (depending
of the direction of the TMrule) of the scanned cell as soon as it exists.

2.2 Modeling the input for the machine

The input which is put to the tape of the Turing Machine , must be modelled
for the Ubiware Agent, we do that as follows:

Let w = s1s2...sn be the input to the Turing Machine, then ∀sk ∈ w :

: myTuringTape tape : hasCe l l : c e l l k .
: c e l l k tape : hasSequenceNr k ; tape : hasValue s k

∈ G

2.3 Proof of equivalence by induction

I proof that the simulation in the Ubiware Agent is a simulation of the original
Turing Machine by showing per induction that the Instantaneous description
after every step of the Turing Machine is corresponding to the state of the
Ubiware Agent after execution of TMSimulationRule. Assume a Turing Machine
defined as in 1.2.1 and input string w = s1s2...sn

Basic case

Initially, the Instantaneous description of the Turing Machine is ps1s2...sn. The
corresponding initial part of G is:

6

: myTuringHead machine : hasPos i t i on c e l l 1 .
: myTuringMachine machine : hasState p 0

and the tape looks as follows:
: myTuringTape tape : hasCe l l c e l l 1 , c e l l 2 , c e l l 3 , . . . , c e l l n
c e l l 1 tape : hasSequenceNr 1 ; tape : hasValue s 1 .
c e l l 2 tape : hasSequenceNr 2 ; tape : hasValue s 2 .

c e l l n tape : hasSequenceNr n ; tape : hasValue s n

Inductive step for rules which move the head to the left.

After a number of steps the instantaneous description of the Turing Machine is
X1X2...Xi−1qXiXi+1..Xn

If then
δ{q,Xi} → {p, Y, L} , the next ID will be X1X2...Xi−2pXi−1Y Xi+1..Xn

In the beliefs of the Ubiware Agent, the same will happen : the initial In-
stantaneous description looks like :

: myTuringHead machine : hasPos i t i on c e l l i .
: myTuringMachine machine : hasState q

and the tape looks as follows:
: myTuringTape tape : hasCe l l c e l l 1 , c e l l 2 , c e l l 3 , . . . , c e l l n
c e l l 1 tape : hasSequenceNr 1 ; tape : hasValue X 1 .
c e l l 2 tape : hasSequenceNr 2 ; tape : hasValue X 2 .
. . .
c e l l { i−1} tape : hasSequenceNr i −1; tape : hasValue X { i−1} .
c e l l { i } tape : hasSequenceNr i ; tape : hasValue X { i } .
c e l l { i +1} tape : hasSequenceNr i +1; tape : hasValue X { i +1} .
. . .
c e l l n tape : hasSequenceNr n ; tape : hasValue s n

The Ubiware Agent now applies the TMSimulationRule which maps the ?rule
variable with a TMrule which maps the state q, and value Xi in the scanned
cell to something. This rule must be of the form:
?? ru l e : hasOriginalSymbol X i ;

r u l e : hasReplacementSymbol ?? ;
r u l e : ha sD i r e c t i on ?? ;
r u l e : v a l i d I nS t a t e q ;
r u l e : t r an s i t i onToSta t e ?? .

The only rule which can have this form is a rule which originate from an element
of δ of the form ((q,Xi), (??, ??, ??)) ∈ δ. The only element of δ which has this
form is ((q,Xi), (p, Y, L)) because δ is a function. Thus the only applicable
TMrule is (by construction):
: r u l e r u l e : hasOriginalSymbol X i ;

r u l e : hasReplacementSymbol Y ;
r u l e : ha sD i r e c t i on d i r : l e f t ;
r u l e : v a l i d I nS t a t e q ;
r u l e : t r an s i t i onToSta t e p .

application of the TMSimulationRule with this TMrule, yields the following
result:

: myTuringHead machine : hasPos i t i on c e l l { i−1} .
: myTuringMachine machine : hasState p

7

and the tape looks as follows:

: myTuringTape tape : hasCe l l c e l l 1 , c e l l 2 , c e l l 3 , . . . , c e l l n
c e l l 1 tape : hasSequenceNr 1 ; tape : hasValue X 1 .
c e l l 2 tape : hasSequenceNr 2 ; tape : hasValue X 2 .
. . .
c e l l { i−1} tape : hasSequenceNr i −1; tape : hasValue X { i−1} .
c e l l { i } tape : hasSequenceNr i ; tape : hasValue Y .
c e l l { i +1} tape : hasSequenceNr i +1; tape : hasValue X { i +1} .
. . .
c e l l n tape : hasSequenceNr n ; tape : hasValue s n

which is equivalent to the ID of the simulated Turing Machine.

Inductive step for rules which move the head to the right.

The prove for right moves is equivalent to the one for left moves, I won’t repeat
the reasoning.

For right moves, there are two exceptional cases though[2]:

• If i = n then the i+1st cell holds a blank, and that cell was not part of the
previous ID. Thus, we instead have X1X2...Xn−1qXn ` X1X2...Xn−1Y pB
This case is covered by the construction of TMSimulationRule because if
the cell which should be scanned next does not exist yet, it gets created
with the blank value.

• If i = 1 and Y = B, then the symbol B written over X1 joins the infinite
sequence of leading blanks and does not appear in the next ID, Thus,
qX1X2...Xn ` pX2...Xn Also this case is covered, the Ubiware Agent keeps
the belief about the blank cell being existing, but that does not affect the
state.

3 Limitations of the proof

The main limitation of this proof is that Ubiware Agent is used as a theoretical
model. The concrete implementation of the Ubiware Agent has constraints
which would limit its possibility to model the universal Turing Machine. Those
limitations are mainly the limited size of the belief structure (it has to fit in
the memory of the Java VM) and the limitation of integers to 231 − 1. (With
some tricks this could be increased to 2 ∗ 231 but is still is not infinite. In
theoretical computer science this limitation is often relaxed [2] by assuming that
the computer can be offered an infinite amount of memory in its simulation or
by stating that certain limits are ”infinite enough”.

4 Conclusions

I wanted to proof that the Ubiware Agent is able to simulate a Turing Machine
as defined in [5]. First I needed to construct beliefs for the Ubiware Agent
based on the description of the Turing Machine. Then I transformed the input
to become suitable to feed to the Ubiware Agent. Then I showed by induction
using Instantaneous descriptions as defined in [2] that Ubiware Agent is able to
simulate the Turing Machine. Now, because the Ubiware Agent is simulated in

8

Java, and the Ubiware Agent is able to simulate the Turing Machine, we know
that they are Turing Equivalent. The main limitation of the proof is that the
Ubiware Agent is used as an agent with infinite storing capabilities, which it is
not in a concrete implementation.

References

[1] Katasonov A. and Terziyan V. (2008) Semantic Agent Programming Lan-
guage (S-APL): A Middleware Platform for the Semantic Web. In: Proc. 2nd
IEEE International Conference on Semantic Computing (ICSC’08), August
4-7, 2008, Santa Clara, USA IEEE, pp.504-511

[2] Hopcroft, John E.; Motwani, Rajeev; Ullman, Jeffrey D. (2000). Introduc-
tion to Automata Theory, Languages, and Computation (2nd ed.). Addison-
Wesley.

[3] Semantic Agent Programming Language (S-APL) Developer’s Guide by
Arthem Katasonov (Jyväskylän Yliopisto)

http://users.jyu.fi/ akataso/SAPLguide.pdf on 6 april 2010.

[4] Website about S-APL and the reference implementation.

http://users.jyu.fi/ akataso/sapl.html on 6 april 2010.

[5] A. M. Turing,”Proc. London Math. Soc. 42”, (230–265), ”On Computable
Numbers, with an application to the Entscheidungsproblem”, 1936 volume
2

A Instantaneous description of a Turing Ma-
chine

The Instantaneous description of a Turing Machine is (according to [2] and [5]:
A string X1X2...Xi−1qXiXi−1...Xn in which:

1. q is the state of the Turing Machine

2. The tape head is scanning the ith symbol from the left.

3. X1X2...Xn is the portion of the tape between the leftmost and the right-
most non-blank.

B The TMSimulationRule

@pref ix sap l : <http ://www. ubiware . jyu . f i / sap l#> .
@pref ix tape : <htpp :// use r s . jyu . f i / m i s e l i c o / seminaar i / tape#> .
@pref ix a l f : <http :// use r s . jyu . f i / m i s e l i c o / seminaar i / alphabet#> .
@pref ix machine : <http :// use r s . jyu . f i / m i s e l i c o / seminaar i /machine#>.
@pref ix s t a t e : <http :// use r s . jyu . f i / m i s e l i c o / seminaar i / s t a t e#> .
@pref ix ru l e : <http :// use r s . jyu . f i / m i s e l i c o / seminaar i / ru l e#> .
@pref ix d i r e c t i o n : <http :// use r s . jyu . f i / m i s e l i c o / seminaar i / d i r e c t i o n#>

{
// turingMachine f unc t i ona l ru l e
{

? turingMachine machine : hasHead ?head .
? turingMachine machine : hasSate ? o r i g i n a l S t a t e .
?head machine : hasPos i t i on ? o r i g i n a lP o s i t i o n .

9

? o r i g i n a lPo s t i on tape : hasSequenceNr ? or i g ina lPos i t i onSequenceNr ;
tape : hasValue ? o r i g i na lPo s i o t i onVa lu e .

? newPositionSequenceNr sap l : expre s s i on ? or ig ina lPos i t i onSequenceNr−1 .
? turingMachine machine : hasRule ? ru l e .
? ru l e ru l e : hasOriginalSymbol ? o r i g i na lPo s i t i onVa lu e ;

ru l e : hasReplacementSymbol ? or ig ina lPos i t ionReplacementValue ;
ru l e : hasDi rec t ion d i r e c t i o n : l e f t ;
r u l e : va l i d InS ta t e ? o r i g i n a l S a t e ;
t r ans i t i onToSta t e ? newState .

}
=>
{

// change the value in the scanned c e l l ? po s i t i on
sap l : I sap l : remove {? o r i g i n a lP o s i t i o n tape : hasValue ? o r i g i na lPo s i t i onVa lu e } .
s ap l : I sap l : add {

? o r i g i n a lP o s i t i o n tape : hasValue ? or ig ina lPos i t ionReplacementValue
} .

// change the s t a t e o f the machine
sap l : I remove {? turingMachine machine : hasState ? o r i g i n a l S t a t e } .
s ap l : I sap l : add {? turingMachine machine : hasSate ? newState} .

//move the po s i t i on o f the head to the l e f t
sap l : I sap l : remove {?head machine : hasPos i t i on ? o r i g i n a lP o s i t i o n } .
s ap l : I sap l : add {

// I f the c e l l does not e x i s t yet , we c r ea t e i t
{ sap l : I sap l : doNotBel ieve {

? turingMachine machine : hasTape ? tape .
? tape tape : hasCe l l ? newPosit ion .
? newPosit ion tape : hasSequenceNr ? newPositionSequenceNr

} .
? turingMachine machine : hasBlankSymbol ? blank .
sap l :Now sap l : i s ?now .
? n ewCe l l I d en t i f i e r sap l : expre s s i on

”(?now+?turingMachine+Ce l l)+?newPositionSequenceNr ”
}
−>
{ sap l : I sap l : add {

// generate a new c e l l with blank value
? tape tape : hasCe l l ? n ewCe l l I d en t i f i e r .
? n ewCe l l I d en t i f i e r tape : hasSequenceNr ? newPosit ion ;

tape : hasValue ? blank
}

} .
//move the po s i t i on

{? turingMachine machine : hasTape ? tape .
? tape tape : hasCe l l ? newPosit ion .
? newPosit ion tape : hasSequenceNr ? newPositionSequenceNr
}=> {?head machine : hasPos i t i on ? newPosit ion}

}
}

} sap l : i s sap l : Rule

10

