## Control and design of photochemistry photoisomerization and excitation energy transfer

#### Gerrit Groenhof

#### Department of chemistry & Nanoscience center University of Jyväskylä, Finland



## **Photo-isomerization**

rotation of double bond after photon absorption



## **Photo-isomerization**

rotation of double bond after photon absorption



ubiquitous in photo-biology, e.g. :

photosynthesis

bacteriorhodopsin

light sensing

rhodopsin, phytochromo, photoactive yellow protein, ...

# photoisomerization in bacteriorhodopsin observe while it happens in MD simulations





# Our ultimate goal

### arteficial molecular machines



# Get inspired by nature

e.g. photo-isomerization in photoactive yellow protein

learn & mimic the effect of the protein environment



## Get inspired by nature

photo-isomerization in photoactive yellow protein

learn & mimic the effect of the protein environment



however....

still too complex, even in our simulations

# Reducing complexity in MD simulations

maximally correlated motion in trajectory  $(\mathbf{x}(t))$ 

find vector  $\mathbf{a} \in R^{3N}$  that correlates with observable f(t) $p_a(t) = [\mathbf{x}(t) - \langle \mathbf{x} \rangle] \cdot \mathbf{a}$ 

observable

quantum yield, energy gap, lifetime, ...

maximize Pearson coefficient

$$R = \frac{\operatorname{cov}(f, p_a)}{\sigma_f \sigma_a}$$

reducing dimensionality: basis

normal modes: eigenvectors of Hess matrix

principal components: eigenvectors of covariance matrix

$$C_{ij} = \langle (x_i - \langle x_i \rangle)(x_j - \langle x_j \rangle) \rangle$$

## photo-isomerization in isolation and solution

- lower complexity
- systematic improvement of theory
- high quality experimental data



### photo-isomerization in isolation and solution

- lower complexity
- find correlation between conformation & quantum yield control quantum yield



## Simpler model systems safety in numbers: many simulations statistical analysis conformation-outcome protonated schiff base (retinal model)



Non-adiabatic molecular dynamics comparing diabatic hopping with fewest switches photoisomerization of protonated Schiff base aim a: find out if initial conditions determine outcome aim b: control outcome aim c: compare hopping algorithms



simulations

CASSCF(4,4)/6-31G\*, diabatic & fewest switches surface hopping

| excited-state                      | excited-state                     |
|------------------------------------|-----------------------------------|
|                                    |                                   |
| QY: 44.6%/42.4%                    | 0 fe                              |
| average lifetime: 115.8 fs/75.2 fs | 0 15                              |
| excited-state                      | excited-state                     |
|                                    |                                   |
| QY: 35.5%/34.8%                    | QY (both): 19.9 %/22.8%           |
| average lifetime: 139.5 fs/83.7 fs | average lifetime: 60.2 fs/54.6 fs |

### free unbiased simulations

what determines outcome: hydrogen-out-of-plane motion



free unbiased simulations



#### phase between HN=CH and CN=CC



evolutionary approach: optimize for synchronicity constrain dihedral angles from synchronous simulations generate new ensemble

### free unbiased simulations

### thermal ensemble

| Outcome                  | $N_2C_3$ cis | $N_2C_3$ trans | C <sub>4</sub> C <sub>5</sub> |  |
|--------------------------|--------------|----------------|-------------------------------|--|
| $\tau_{DSH}$ [fs]        | $96 \pm 1$   | $132 \pm 2$    | $51 \pm 1$                    |  |
| $N_{i,DSH}$              | 132          | 105            | 59                            |  |
| $\mathbf{P}_{i,DSH}$ [%] | 44.6         | 35.5           | 19.9                          |  |
| $\tau_{FSH}$ [fs]        | $65 \pm 1$   | $74 \pm 1$     | $46 \pm 1$                    |  |
| $N_{i,FSH}$              | 208          | 171            | 112                           |  |
| $P_{i,FSH}$ [%] 42.4     |              | 34.8           | 22.8                          |  |

## optimizing synchronicity

#### thermal ensemble

| Therm. Ens.   | $\gamma_1$ [°] | $\gamma_2$ | $\gamma_3$ | $\gamma_4$ | $P_{sync}$ | $N_{traj}$ |
|---------------|----------------|------------|------------|------------|------------|------------|
| unconstr. FSH | -              | 1          | -          | 1.4        | 7.63~%     | 491        |
| unconstr. DSH | 3              | 3          | -          | -          | 1.0%       | 296        |



### free unbiased simulations

### thermal ensemble

| Outcome                  | $N_2C_3$ cis | $N_2C_3$ trans | $C_4C_5$   |  |
|--------------------------|--------------|----------------|------------|--|
| $\tau_{DSH}$ [fs]        | $96 \pm 1$   | $132 \pm 2$    | $51 \pm 1$ |  |
| $N_{i,DSH}$              | 132          | 105            | 59         |  |
| $\mathbf{P}_{i,DSH}$ [%] | 44.6         | 35.5           | 19.9       |  |
| $\tau_{FSH}$ [fs]        | $65 \pm 1$   | $74 \pm 1$     | $46 \pm 1$ |  |
| $N_{i,FSH}$ 208          |              | 171            | 112        |  |
| $P_{i,FSH}$ [%] 42.4     |              | 34.8           | 22.8       |  |

### optimizing synchronicity

#### new ensemble with fixed dihedrals

| Therm. Ens.              | $\gamma_1$ [°] | $\gamma_2$ | $\gamma_3$ | $\gamma_4$ | $P_{sync}$ | Ntraj |
|--------------------------|----------------|------------|------------|------------|------------|-------|
| unconstr. FSH            | -              | -          | -          | -          | 7.63~%     | 491   |
| unconstr. DSH            |                | 8          | -          | -          | 1.0%       | 296   |
| 1 FSH, $\gamma_i$ - [14] | -17.5          | 168.6      | 174.1      | -          | 6.06~%     | 99    |
| 2 FSH                    | 13.0           | 150.0      | -172.4     | - <u>-</u> | 18.09~%    | 187   |
| 2 DSH                    | 13.0           | 150.0      | -172.4     | -          | 16.24~%    | 193   |
| 3  FSH                   | -20.63         | -154.4     | 172.9      | 324<br>-   | 14.57~%    | 199   |
| 3b FSH                   | -20.63         | -154.4     | 172.9      | 11.1       | 14.21~%    | 197   |



### free unbiased simulations

### thermal ensemble

| Outcome                  | $N_2C_3$ cis | $N_2C_3$ trans | C <sub>4</sub> C <sub>5</sub> |  |
|--------------------------|--------------|----------------|-------------------------------|--|
| $\tau_{DSH}$ [fs]        | $96 \pm 1$   | $132 \pm 2$    | $51 \pm 1$                    |  |
| $N_{i,DSH}$              | 132          | 105            | 59                            |  |
| $\mathbf{P}_{i,DSH}$ [%] | 44.6         | 35.5           | 19.9                          |  |
| $\tau_{FSH}$ [fs]        | $65 \pm 1$   | $74 \pm 1$     | $46 \pm 1$                    |  |
| $N_{i,FSH}$              | 208          | 171            | 112                           |  |
| $P_{i,FSH}$ [%] 42.4     |              | 34.8           | 22.8                          |  |

## optimizing synchronicity

#### second generation

| Outcome                  | $N_2C_3$ cis | $N_2C_3$ trans | $C_4C_5$ |  |
|--------------------------|--------------|----------------|----------|--|
| $\mathbf{P}_{i,DSH}$ [%] | 39.9         | 46.1           | 14.0     |  |
| $\mathbf{P}_{i,FSH}$ [%] | 47.8         | 39.9           | 12.4     |  |

#### challenge: fixing dihedrals by chemical modification?



# Acknowledgements

## members from the Grubmüller department



Volkswagen Stiftung



Mike Robb IC London

funding



Martial Boggio-Pasqua (Toulouse, Fr.)



Nanoscale Photonic Imaging

