
  

High 

Performance 

Computing



  

Source of majority of materials

 CSC (IT Center for science)

 Summer school on HPC 

(2014)

 Creative commons by-nc-sa





WHAT IS HIGH-PERFORMANCE COMPUTING?

–

#2: Cray XK7 ͟TitaŶ͟ @ ORNL: 20 Pflop/s

–
–

–
–



High-performance computing

A special branch of scientific computing – high-

performance computing (HPC) or supercomputing - that 

refers to computing with supercomputer systems, is the 

scientific instrument of the future

It offers a promise of breakthroughs in many major 

challenges that humankind faces today

Useful through various disciplines

#2: Cray XK7 ͟TitaŶ͟ @ ORNL: 20 Pflop/s

–
–

–
–



–

#2: Cray XK7 ͟TitaŶ͟ @ ORNL: 20 Pflop/s

HPC through the ages
Flops: floating-

point operations 

per second

–
–

–
–



–

#2: Cray XK7 ͟TitaŶ͟ @ ORNL: 20 Pflop/s

Materials science

New materials

– Design of meta-materials

– Hydrogen storage

New methods for catalysis

– Industrial processes

– Air and water 

purification

Design of devices from first principles



–

#2: Cray XK7 ͟TitaŶ͟ @ ORNL: 20 Pflop/s

–
–

–
–

Life sciences

Next-generation sequencing techniques

Identifying genomic variants associated with common 

complex diseases

Understanding the natural development of diseases

Simulated surgeries

Predicting protein folding



Earth sciences

Long term climate modeling

– Coupling atmospheric, ocean and land models

– Understanding and predicting the climate change

High-resolution weather prediction

– Predicting extreme 

weather conditions

– District-scale forecasts

Whole-Earth seismological

models

–
–

– siŶgle processiŶg uŶit ;͞core͟Ϳ is used for solǀiŶg a proďleŵ –
–

–

–

–

–
–

–
–
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Utilizing HPC in scientific research

–
–

– siŶgle processiŶg uŶit ;͞core͟Ϳ is used for solǀiŶg a proďleŵ –
–

–

–

–

–
–

–
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PARALLEL COMPUTING CONCEPTS 

– siŶgle processiŶg uŶit ;͞core͟Ϳ is used for solǀiŶg a proďleŵ –
–

–

–

–

–
–

–
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–
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–
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Computing in parallel

Serial computing

– siŶgle processiŶg uŶit ;͞core͟Ϳ is used for solǀiŶg a proďleŵ

Input Process task Result

–
–

–

–

–

–
–

–
–



–
–

–

–

–
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– siŶgle processiŶg uŶit ;͞core͟Ϳ is used for solǀiŶg a proďleŵ

Computing in parallel

Parallel computing

– A problem is split into smaller subtasks

– multiple subtasks are processed simultaneously using multiple 

cores

Input

Process 
subtask 

#1

Result

Process 
subtask 

#N

...

–

–

–

–
–

–
–



  

5 types of Parallel computing 
(personal opinion)

 Vector operations

 Multiple pipelines

 Hyper threading

 Multiple cores

 Multiple nodes



–
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–

–
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– siŶgle processiŶg uŶit ;͞core͟Ϳ is used for solǀiŶg a proďleŵ –
–

Exposing parallelism

Data parallelism

– Data is distributed to processor 

cores

– Each core performs 

simultaneouosly (nearly) 

identical operations with different data

Task parallelism

– Different cores perform different operations with (the 

same or) different data

These can be combined

task 1

task 2

task 3

task 4

–
–

–
–
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– siŶgle processiŶg uŶit ;͞core͟Ϳ is used for solǀiŶg a proďleŵ –
–

–

–

–

Parallel scaling

Strong parallel scaling

– constant problem size

– execution time decreases in 

proportion to the increase in the 

number of cores

Weak parallel scaling

– increasing problem size

– execution time remains constant when number of cores 

increases in proportion to the problem size



Aŵdahl’s law Parallel computing concepts

Load balance

– distribution of workload to different cores

Parallel overhead

– additional operations which are not present in serial 

calculation

– synchronization, redundant computations, 

communications

GB’s

TB’s

GB’s

–
–



–



… … … …

–

–



Aŵdahl’s law

–

–

–

ON SUPERCOMPUTER ARCHITECTURES

GB’s

TB’s

GB’s

–
–



–



… … … …

–

–



Aŵdahl’s law

–

–

–

Supercomputer autopsy
Local

memory,

1-4 GB/core

1 CPU = 8 cores

Each core has 

dedicated fast 

cache memories

Interconnect

1 node

GB’s

TB’s

GB’s

–
–



–



… … … …

–

–



Aŵdahl’s law

–

–

–

Memory hierarchy

Registers

L1 Cache

L2 Cache

L3 Cache

Physical memory

Remote memory (over interconnect)

File system disks

<= 1

~4

~10

~25

O(102)

O(105...6)

O(100 B)

O(100 kB)

O(1 MB)

O(10 MB)

GB’s

TB’s

100s GB’sO(103)

–
–



–



… … … …

–

–



–

–
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 –
 –






–
–
–
– –
–
–



–
–
–

–

–

–

–

– Aǀoid the ͞Not IŶǀeŶted Here͟ syŶdroŵe!

–
–
–
–

1. Productivity: Choosing a programming language

Most common are C, C++ and Fortran 9X

– mostly a question of taste

– C++ more full featured with object oriented features and 

many more data structures (maps, etc.)

– Fortran has really good array syntax

One should also consider Python

– much faster coding cycle (and less error prone)

– parts of the code can be written in C, Fortran

– tradeoff in speed; e.g. 10% overhead (with C extensions)

e

–
–

ŵore or less…

– …

–

–



Aŵdahl’s law

–

–

–

GB’s

TB’s

GB’s

–
–



–



… … … …

Accelerators

Specialized parallel HW for floating point operations

– General purpose graphics processing units (GPGPU) have 

been the most common accelerators during the last few 

years

– New technology emerging: Intel Xeon Phi

Co-processors for traditional CPUs

Refactoring of programs required



Parallel programming models

Message passing

– Can be used both in distributed and shared memory 

computers

– Programming model allows for good parallel scalability

– Programming is quite explicit

Threading (pthreads, OpenMP)

– Can be used only in shared memory computers

– Limited parallel scalability

– ͞“iŵpler͟/less eǆplicit programming

–
–
–

– ;CUDA/OpeŶCL/…Ϳ + C/FortraŶ + MPI ;+ 

–

–

–

–

–

–

–
– α

ݐ�ݑ� = ݑଶߘߙ

ݑଶߘ ݅, ݆ = ݑ ݅ − 1, ݆ − ݑʹ ݅, ݆ + ݑ ݅ + 1, ݆ሺΔݔሻଶ ݑ+ ݅, ݆ − 1 − ݑʹ ݅, ݆ + ,ሺ݅ݑ ݆ + 1ሻሺΔݕሻଶ
Δǆ

Δ

Δ1+�ݑ ݅, ݆ = �ݑ ݅, ݆ + ݐ∆ ߙ ,ሺ݅�ݑଶߘ ݆ሻ
ݐ∆ < ߙʹ1 ሺΔݔΔݕሻଶሺΔݔሻଶ + ሺΔݕሻଶ



– Message-passing interface

MPI is an application programming interface (API) for 

communication between separate processes

– The most widely used approach for distributed parallel 

computing

MPI programs are portable and scalable

MPI is flexible and comprehensive

– Large (over 120 procedures)

– Concise (often only 6 procedures are needed)

MPI standardization by MPI Forum

–

–

–
–

–
–

–
–

–

–

–



–

–

–
–

Execution model

Parallel program is launched as set of independent, 

identical processes

The same program code and instructions

Can reside in different nodes 

– or even in different computers

The way to launch parallel program is implementation 

dependent

– mpirun, mpiexec, srun, aprun, poe, ...

–
–

–
–

–
–

–

–

–



–

–

–
–

–

–

MPI ranks

MPI runtime assigns each process a rank

– identification of the processes

– ranks start from 0 and extent to N-1

Processes can perform different tasks and handle 

different data basing on their rank ...

if ( rank == 0 ) {

...

}

if ( rank == 1) {

...

}

...

–
–

–
–

–

–

–



–

–

–
–

–

–

–
–

Data model

All variables and data structures are local to the process

Processes can exchange data by sending and receiving 

messages

a = 1.0

b = 2.0

a = -1.0

b = -2.0

Messages

MPI
Process 1

(rank 0 )

Process 2

(rank 1 )

–
–

–
–

–

–

–



–

–

–
–

–

–

–
–

MPI communicator

Communicator is an object connecting a group of 

processes

Initially, there is always a communicator 

MPI_COMM_WORLD which contains all the processes

Most MPI functions require communicator as an 

argument

Users can define own communicators

–
–

–
–

–

–

–



–

–

–
–

–

–

–
–

Routines of the MPI library

Information about the communicator

– number of processes

– rank of the process

Communication between processes

– sending and receiving messages between two processes

– sending and receiving messages between several 

processes

Synchronization between processes

Advanced features

–

–

–



–

–

–
–

–

–

–
–

–
–

–
–

Programming MPI

MPI standard defines interfaces to C and Fortran 

programming languages

– There are unofficial bindings  to Python, Perl and Java

C call convention

rc = MPI_Xxxx(parameter,...)

– some arguments have to passed as pointers

Fortran call convention

CALL MPI_XXXX(parameter,..., rc)

– return code in the last argument



First five MPI commands

Set up the MPI environment

MPI_Init()

Information about the communicator

MPI_Comm_size(comm, size)

MPI_Comm_rank(comm, rank)

– Parameters

comm communicator 

size number of processes in the communicator

rank rank of this process

–
–

–
–

–
–

–

–

–
–
–
–
–
–



–

First five MPI commands

Synchronize processes

MPI_Barrier(comm)

Finalize MPI environment

MPI_Finalize()

–
–

–
–

–
–

–

–

–
–
–
–
–
–



–

Writing an MPI program

Include MPI header files

– C: #include <mpi.h>

– Fortran: INCLUDE 'mpif.h'

Call MPI_Init

Write the actual program

Call MPI_Finalize before exiting from the main program

–
–

–
–

–

–

–
–
–
–
–
–



–

–
–

Summary

In MPI, a set of independent processes is launched

– Processes are identified by ranks

– Data is always local to the process

Processes can exchange data by sending and receiving 

messages

MPI library contains functions for

– Communication and synchronization between processes

– Communicator manipulation

–

–

–
–
–
–
–
–



–

–
–

–
–

–
–

POINT-TO-POINT COMMUNICATION
–

–

–
–
–
–
–
–



–

–
–

–
–

–
–

Introduction

MPI processes are independent, they 

communicate to coordinate work

Point-to-point communication

– Messages are sent between two 

processes

Collective communication

– Involving a number of processes at 

the same time

0

2

1

4

0

2

1

4

–
–
–
–
–
–



–

–
–

–
–

–
–

–

–

MPI point-to-point operations

One process sends a message to another process that 

receives it

Sends and receives in a program should match – one 

receive per send

–
–
–
–
–



–

–
–

–
–

–
–

–

–

–

MPI point-to-point operations

Each message (envelope) contains 

– The actual data that is to be sent

– The datatype of each element of data.

– The number of elements the data consists of

– An identification number for the message (tag)

– The ranks of the source and destination process



Presenting syntax 

Slide with extra material included in 

handouts

Operations presented in pseudocode, 

C and Fortran bindings presented in 

extra

material slides.

Note!  Extra error parameter for Fortran

INPUT 

arguments in 

red

OUTPUT 

arguments in 

blue
ǀalue; iŶ C/C++ it’s the returŶ ǀalue of

–
–

–


–


–



∑=

∑=



Send operation

MPI_Send(buf, count, datatype, dest, tag, comm)

buf The data that is sent

count Number of elements in  buffer

datatype Type of each element in buf (see later slides)

dest The rank of the receiver

tag An integer identifying the message

comm A communicator 

error Error ǀalue; iŶ C/C++ it’s the returŶ ǀalue of
the function, and in Fortran an additional 

output parameter

–
–

–


–


–



∑=

∑=



ǀalue; iŶ C/C++ it’s the returŶ ǀalue of

Receive operation

MPI_Recv(buf, count, datatype, source, tag, comm, 

status)

buf Buffer for storing received data 

count Number of elements in buffer, not the number

of element that are actually received 

datatype Type of each element in buf

source Sender of the message

tag Number identifying the message 

comm Communicator 

status Information on the received message

error As for send operation

–
–

–


–


–



∑=

∑=



ǀalue; iŶ C/C++ it’s the returŶ ǀalue of

MPI datatypes

MPI has a number of predefined datatypes to represent 

data

Each C or Fortran datatype has a corresponding MPI 

datatype

– C examples:  MPI_INT for int and MPI_DOUBLE for double

– Fortran example: MPI_INTEGER for integer

One can also define custom datatypes

–


–


–



∑=

∑=



∑=

∑=

∑=

∑=

∑=

Special parameter values

MPI_Send(buf, count, datatype, dest, tag, comm)

dest MPI_PROC_NULL Null destination, no operation takes place

comm MPI_COMM_WORLD Includes all processes

error MPI_SUCCESS Operation successful

–
–
–



∑=

∑=

∑=

∑=

∑=

Special parameter values

MPI_Recv(buf, count, datatype, source, tag, 

comm, status)

source MPI_PROC_NULL No sender, no operation takes place

MPI_ANY_SOURCE Receive from any sender

tag MPI_ANY_TAG Receive messages with any tag

comm MPI_COMM_WORLD Includes all processes

status MPI_STATUS_IGNORE Do not store any status data

error MPI_SUCCESS Operation successful

–
–
–



∑=

∑=

∑=

∑=

∑=

Status parameter

The status parameter in MPI_Recv contains information 

on how the receive succeeded

– Number and datatype of received elements

– Tag of the received message 

– Rank of the sender

In C the status parameter is a struct, in Fortran it is an 

integer array



∑=

∑=

∑=

∑=

∑=

–
–
–

Status parameter

Received elements

Use the function
MPI_Get_count(status, datatype, count)

Tag of the received message

C: status.MPI_TAG

Fortran: status(MPI_TAG)

Rank of the sender

C: status.MPI_SOURCE

Fortran: status(MPI_SOURCE)



Blocking routines & deadlocks

Blocking routines 

– Completion depends on other processes

– Risk for deadlocks – the program is stuck forever

MPI_Send exits once the send buffer can be safely read 

and written to

MPI_Recv exits once it has received the message in the 

receive buffer

–

–

–

–

–

–
–

–
–



–
– –

Point-to-point communication patterns

Process 0 Process 1

Pipe, a ring of processes exchanging data

Pairwise exchange

Process 2 Process 3

Process 0 Process 1 Process 2 Process 3

–

–

–

–

–

–
–

–
–



–
– –

Combined send & receive

MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag,

recvbuf, recvcount, recvtype, source, recvtag, comm, 

status)

– Parameters as for MPI_Send and MPI_Recv combined

Sends one message and receives another one, with one 

single command

– Reduces risk for deadlocks 

Destination rank and source rank can be same or 

different

–

–

–

–
–

–
–



–
– –

–

–

Case study 2: Domain decomposition

Computation inside each domain can be carried out 

independently; hence in parallel

Ghost layer at boundary represent the value of the 

elements of the other process

Serial ParallelP0

P10 1 2 3
0
1
2
3
4
5

0 1 2 3

1

3

4

0 1 2 3

1
2

0

P2
0 1 2 3

1
2

6
7
8

3

0

0

3

2

–

–

–

–
–

–
–



–
– –

–

–

ParallelP0

P1
0 1 2 3

1
2
3

4

0 1 2 3
0
1
2
3

0

P2
0 1 2 3

0
1
2
3

CS2: One iteration step

Have to carefully 

schedule the order 

of sends and 

receives in order to 

avoid deadlocks

P0

P1 Recv

Send Recv

Send Compute

Compute

Recv Send

P2 Send Compute

Timeline

Recv

–

–

–

–
–

–
–



Solving heat equation in parallel

Temperature at each grid point can be updated

independently

Domain decomposition

Straightforward in shared memory computer

Core 1

Core 2

Core 3

͟ ͟



–

–
–

–
–
– ͞“iŵpler͟/less eǆplicit 

–
–
–

– ;CUDA/OpeŶCL/…Ϳ + C/FortraŶ + MPI ;+ 

–

–

–

–

–

–

–
– α

ݐ�ݑ� = ݑଶߘߙ

Numerical solution

Finite difference Laplacian in two dimensions

ݑଶߘ ݅, ݆ = ݑ ݅ − 1, ݆ − ݑʹ ݅, ݆ + ݑ ݅ + 1, ݆ሺΔݔሻଶ ݑ+ ݅, ݆ − 1 − ݑʹ ݅, ݆ + ,ሺ݅ݑ ݆ + 1ሻሺΔݕሻଶ
Δǆ

Temperature

field u(i,j)

Δy

Δ1+�ݑ ݅, ݆ = �ݑ ݅, ݆ + ݐ∆ ߙ ,ሺ݅�ݑଶߘ ݆ሻ
ݐ∆ < ߙʹ1 ሺΔݔΔݕሻଶሺΔݔሻଶ + ሺΔݕሻଶ



Solving heat equation in parallel

In distributed memory computers, each core can access

only its own memory

Information about neighbouring domains is stored in 

͟ghost layers͟

Before each update cycle, CPU cores communicate

boundary data: halo exchange

Core 1 Core 2 Core 3



–
– –

–

–

P0

P1
0 1 2 3

1
2
3

4

0 1 2 3
0
1
2
3

0

P2
0 1 2 3

0
1
2
3

CS2: MPI_Sendrecv

MPI_Sendrecv

– Sends and receives 

with one command

– No risk of deadlocks

P0

P1 Sendrecv

Send

Compute

Compute

P2 Compute

Sendrecv

SendRecv

Recv

–

–
–

–
–



–
– –

–

–

–

–

Summary

Point-to-point communication

– Messages are sent between two processes

We discussed send and receive operations enabling any 

parallel application

– MPI_Send & MPI_Recv

– MPI_Sendrecv

Status parameter

Special argument values
–
–



–
– –

–

–

–

–

–

–
–

Web resources

List of MPI functions with detailed descriptions

http://mpi.deino.net/mpi_functions/index.htm

Good online MPI tutorial:
https://computing.llnl.gov/tutorials/mpi

MPI 3.0 standard

http://www.mpi-forum.org/docs/

MPI Implementations

– MPICH2 http://www.mcs.anl.gov/research/projects/mpich2/

– OpenMPI http://www.open-mpi.org/



COLLECTIVE OPERATIONS

–

–
–
–

–

–

“egŵeŶts A, B, … ŵay coŶtaiŶ ŵultiple eleŵeŶts



Outline

Introduction to collective communication

One-to-many collective operations

Many-to-one collective operations

Many-to-many collective operations

Non-blocking collective operations

User-defined communicators

–

–
–
–

–

–

“egŵeŶts A, B, … ŵay coŶtaiŶ ŵultiple eleŵeŶts



Introduction

Collective communication transmits data among all 

processes in a process group 

– These routines must be called by all the processes in the 

group

Collective communication includes

– data movement

– collective computation

– synchronization

Example

MPI_Barrier

makes each task hold 

until all tasks have 

called it
int MPI_Barrier(comm)

MPI_BARRIER(comm, rc)

–

–

“egŵeŶts A, B, … ŵay coŶtaiŶ ŵultiple eleŵeŶts



–

–
–
–

Introduction

Collective communication outperforms normally point-

to-point communication

Code becomes more compact and easier to read:
if (my_id == 0) then

do i = 1, ntasks-1

call mpi_send(a, 1048576, &

MPI_REAL, i, tag, &

MPI_COMM_WORLD, rc)

end do

else 

call mpi_recv(a, 1048576, &

MPI_REAL, 0, tag, &

MPI_COMM_WORLD, status, rc)

end if

call mpi_bcast(a, 1048576, &

MPI_REAL, 0, & 

MPI_COMM_WORLD, rc)

Communicating a vector a consisting of 

1M float elements from the task 0 to all 

other tasks 

–

–

“egŵeŶts A, B, … ŵay coŶtaiŶ ŵultiple eleŵeŶts



–

–
–
–

Introduction

Amount of sent and received data must match

Non-blocking routines are available in the MPI 3 standard

– Older libraries do not support this feature

No tag arguments

– Order of execution must coincide across processes

“egŵeŶts A, B, … ŵay coŶtaiŶ ŵultiple eleŵeŶts



–

–
–
–

–

–

Broadcasting

Send the same data from one process to all the other

P0

P1

P2

P3

P0

P1

P2

P3

A

A

A

A

A

This buffer may contain multiple 

elements of any datatype.

BCAST

“egŵeŶts A, B, … ŵay coŶtaiŶ ŵultiple eleŵeŶts



–

–
–
–

–

–

Broadcasting

With MPI_Bcast, the task root sends a buffer of data to 

all other tasks

MPI_Bcast(buffer, count, datatype, root, comm)

buffer data to be distributed 

count number of entries in buffer 

datatype data type of buffer 

root rank of broadcast root 

comm communicator  

“egŵeŶts A, B, … ŵay coŶtaiŶ ŵultiple eleŵeŶts



–

–
–
–

–

–

Scattering

Send equal amount of data from one process to others

“egŵeŶts A, B, … ŵay coŶtaiŶ ŵultiple eleŵeŶts

P0

P1

P2

P3

P0

P1

P2

P3

A A

B

C

D

SCATTER

B C D



Scattering 

MPI_Scatter: Task root sends an equal share of data 

(sendbuf) to all other processes

MPI_Scatter(sendbuf, sendcount, sendtype, recvbuf,

recvcount, recvtype, root, comm)

sendbuf send buffer (data to be scattered) 

sendcount number of elements sent to each process 

sendtype data type of send buffer elements 

recvbuf receive buffer 

recvcount number of elements in receive buffer 

recvtype data type of receive buffer elements 

root rank of sending process 

comm communicator  

A, B, … 

Σ Σ Σ Σ 



–

Σ Σ Σ Σ 

Σ Σ Σ Σ 

Σ Σ Σ Σ 

Σ Σ Σ Σ 

–

͟ ͟ 

– Coŵpare: ͞All scatter͟

Common mistakes with collectives

✘Using a collective operation within one branch of an if-

test of the rank
IF (my_id == 0) CALL MPI_BCAST(...

– All processes, both the root (the sender or the gatherer) 

and the rest (receivers or senders), must call the collective 

routine!

✘ Assuming that all processes making a collective call 

would complete at the same time

✘Using the input buffer as the output buffer
CALL MPI_ALLREDUCE(a, a, n, MPI_REAL, MPI_SUM, ...

–

–



–

Σ Σ Σ Σ 

Σ Σ Σ Σ 

Σ Σ Σ Σ 

Σ Σ Σ Σ 

–

͟ ͟ 

– Coŵpare: ͞All scatter͟

✘

–

✘

✘

Summary

Collective communications involve all the processes

within a communicator

– All processes must call them

Collective operations make code more transparent and 

compact

Collective routines allow optimizations by MPI library

Performance consideration:

– Alltoall is expensive operation, avoid it when possible



USER-DEFINED COMMUNICATORS
–

–

–

–
–



Communicators

The communicator determines the "communication 

universe" 

– The source and destination of a message is identified by 

process rank within the communicator

So far: MPI_COMM_WORLD

Processes can be divided into subcommunicators

– Task level parallelism with process groups performing 

separate tasks

– Parallel I/O

–
–



–

–

–

Communicators

Communicators are dynamic

A task can belong simultaneously to several 

communicators

– In each of them it has a unique ID, however

– Communication is normally within the communicator



–

–

–

–
–

Grouping processes in communicators
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