
RWTH Aachen University

Bachelor Thesis

Accelerating KGlove Graph
Embedding

Abdulrahman Altabba

Thesis supervisor:
Prof. Dr. Stefan Decker

Thesis advisor:
Dr. Michael Cochez

Chair for
Computer Science 5
Information Systems

RWTH Aachen University
52056 Aachen

Germany

January 25, 2019

Table of Contents

1 Introduction . 4
2 Background and Related Work . 5

2.1 TransE . 6
2.2 TransG . 6
2.3 Graph Convolutional Networks . 8
2.4 Node2Vec . 9
2.5 KGloVe . 10

Graph Embedding using GloVe: . 13
Possible weighting functions: . 15

3 Implementation . 15
3.1 Optimizers . 16

Adagrad . 17
Adam . 17

3.2 Re-implementation of GloVe . 18
3.3 Allocating memory . 18
3.4 Initializing . 19
3.5 Generating batches . 21
3.6 Training. 21
3.7 Optimizing GPU Utilization: . 22

Pinned memory . 22
Overlapping 2x. 22
kernel analysis . 24

3.8 Parallel Training Issue: . 25
3.9 GPU Atomics . 27

4 Conceptual Approaches . 28
4.1 Rotating Approach . 28
4.2 Alternating-optimization Approach . 28

5 Time Evaluation . 29
6 Tuning hyperparameters . 30

6.1 Grid Search . 31
6.2 Random Search . 33

7 Experiments . 35
8 Conclusion . 39
9 Future Work . 40

3

Abstract. The exponential growth of data and the need of processing
it requires efficient algorithms that are capable of gradually interpreting
this immense amount of new information gathered in all kind of struc-
tures. In this thesis we list several approaches to accelerate a recent graph
embedding method and deploy it in tuning the hyper-parameters for the
whole graph embedding model taking a graph as an input and delivering
a set of embeddings for the instances in this graph. We provide some the-
oretical background and thoughts and explain the details of accelerating
the underlying GloVe training model and how to overcome some related
issues. Eventually we build a random search model that is used to de-
termine the suitable hyper-parameters for an efficient graph embedding
model.

4

1 Introduction

Graphs are an essential element of recent data modelling and has been a great
structure for saving arbitrary data and meta data (e.g. RDFs) in the industry.
Analysing the content of these graphs has become recently a substantial task
in data driven applications. Particularly translating data represented in graphs
into a propositional feature vector representation that can be forwarded to differ-
ent machine learning tasks (e.g. node classification, node recommendation, link
prediction, etc.) has drown the interest of many researchers in a lot of artificial
intelligence and data science fields [16][28][7]. Here comes the substantial role of
graph embedding, which produce vector representations for every instance of the
input, i.e. entity and relation vectors for graphs, many algorithms and methods
have been proposed to deliver vectors that preserve semantic and syntactic regu-
larities. In [10] a summarized overview about state of art used graph embedding
methods is given with industrial use cases. In this research the focus will be on
embedding graphs using the approach proposed in [5] by building a cooccurrence
matrix for the graph structure and applying the GloVe [24] algorithm using the
produced matrix. The resulting embeddings should have properties such as the
vectors of two similar entities are close to each other in the vector space due to
the similarity of their neighbourhoods in the graph. These vectors would ease
and fasten tasks such as predicting whether a new edge is likely to exist between
two entities (e.g., for suggesting new friends in social networks) or to determine
a certain characteristic for a subgraph (e.g., revealing spam messages or catch-
ing plagiarism). In order to make the best use of the mentioned approach the
user has to provide the right parameters for both, the algorithm that creates the
cooccurrence matrix out of the graph (KGloVe), and the GloVe algorithm that
minimizes a loss function by gradually updating the word and context vectors
till they reach a high precision degree. These two phases rely on many different
variables and parameters that strongly influence the output vectors, notably a
combination of parameters might be suitable for a kind of tasks but not for all
tasks. Setting the right parameters for different use cases requires running the
model repeatedly with different combinations and evaluating every result. The
training phase is, however, an expensive program that consumes a lot of time and
memory. In this piece of work we will take a look at parallelized implementations
of GloVe and reimplement it using different variants of parallelizing approaches.
Finally we will evaluate the complete work and come out with an accelerated
version of GloVe runnable on a GPU, it will then be used to find out the best
parameters for different kind of machine learning scenarios.
As the GloVe training algorithm relies on optimizing a loss function, it updates
the features of the vectors that represent the instances continuously, till they
get aligned and keep a certain distance from each other in the euclidian space,
which gives the vector an adequate meaning relative to other instances. Updat-
ing the vector in a serialized manner causes no collision problem, however when
this algorithm is distributed over thousands of threads, one has to consider data
races and collisions. Throughout this work we will try reducing the collisions
of threads when they operate on the same vector during the training process

5

and managing the available memory on the GPU efficiently to build the baseline
project for a portable accelerated graph embedding model. We will run different
implementations of GloVe on a GPU with a theoretical discussion regarding their
performance and memory occupancy. After explaining the implementations we
will list all the parameters needed for the complete model and implement a ran-
dom search algorithm that will examine the model using combinations of given
parameter ranges.

2 Background and Related Work

Graphs are used in a wide range of fields to denote different kind of information
(e.g. maps, communication networks, social networks, word co-occurrence net-
works, biological interactions etc.) and they are used as databases to store, map
and query relationships. Analysing graphs and interpreting them with AI- and
ML-algorithms gives a great insight to the information stored in it and makes it
possible to conclude facts and make predictions. For example, analysing social
networks graphs would help to find relationship kinds between people and sug-
gest new connections rather than observing common interests among some social
groups, which could be used to personalize advertisements or to predict a certain
behaviour. Moreover, a recent approach have been published by Haofeng Jia and
Erik Saule [14] to help researchers to find relevant scientific papers for a given
topic, it uses the embeddings of a citation graph for Citation Recommendation:
”Given a set of seed papers S, return a list of papers ranked by relevance to the
ones in S” [14]. The main problem by using graph representations of data is that
the instances (i.e. entities and relationships) have no numerical identities that
preserve their characteristics and features on the one hand and serve as an input
for machine learning models on the other hand. Many scientific works have been
published to solve this problem and create a numerical representation (mainly
vectors) for the instances of a graph, where the features of every instance are
preserved in its vector. Some approaches encode the features of a node (or edge)
directly in the vector representation, so a feature could have a direct meaning
like the number of incoming/outgoing edges as the case in some Graph Con-
volutional Network models. Other approaches generate random vectors for the
instances and train the vectors using the neighbourhood of the corresponding
instance in the graph, producing vectors with semantic meanings demonstrated
via vectors operations (+, -, 〈〉), for example, after creating a vector representa-
tion for instances like queen, woman, king, man, the location of the vectors in
the vector space would denote semantic meanings of the underlying represented
instances and these semantic meanings can be interpreted through by applying
mathematical operations on the vectors. So if we subtract the vector −−→man of the

vector
−−→
king the result would be a vector that represents the property of royalty

and adding this vector to −−−−−→woman is supposed to result in a vector that is very
close to −−−→queen in the vector space. We propose in the following paragraphs some
recently used approaches for graph embedding:

6

2.1 TransE

Fig. 1: TransE example triplet.

This approach introduced in [2] is one of the first approaches for embedding
graphs in vector space directly using the triplet sets of the graph (head, relation, tail).
The idea behind it is straight forward:

– generate a random vector with length k for each node and edge in the graph.
– if the a triplet (h, l, t) holds, then minimize the distance (Manhattan Dis-

tance) between the vectors
−−−→
h+ l and

−→
t .

– if the a triplet (h, l, t) does not hold, keep a minimum distance (margin γ)

between the vectors
−−−→
h+ l and

−→
t .

The loss function is defined as the following:

L =
∑

(h,l,t)∈S

∑
(h′,l,t′)∈S′

(h,l,t)

[γ + d(h+ l, t)− d(h′ + l, t′)]+ [2]

Where [x]+ = max(0, x) and S′(h,l,t) = {(h′, l, t)|h′ ∈ V } ∪ {(h, l, t′)|t ∈ V }.

An important condition is that the L2 norm of an entity’s vector has to be 1,
while the relations’ vectors are unconstrained. This condition prevents the train-
ing process to trivially minimize L by artificially increasing entity embeddings
norms. Notably some relations (e.g. ”city in”) are treated as corrupted triplets in

some cases in TransE. Let us assume the distance between
»

NewY ork +
»
city in

and
»

USA is being minimized. During the minimization some other distances
between other cities in USA will get negatively affected while it should not.
Therefore TransE lack a proper treatment of reflexive, many-one, one-many and
many-many relations, however it still deliver a good result in the overall process.

2.2 TransG

Han Xiao, Minlie Huang and Xiaoyan Zhu have presented lately in their paper
[29] a generative model for knowledge graph embedding. The speciality of this

7

paper that it addresses the issue of multiple relation semantics assuming
that the meaning of a relation r in a triplet (h, r, t) could eventually be different
from its meaning in another triplet (h′, r, t′) in the graph. For example the re-
lation HasPart has at least two latent semantics: composition-related as (Table,
HasPart, Leg) and location-related as (Atlantics, HasPart, NewYorkBay). An-
other example in Freebase, (Jon Snow, birth place, Winter Fall) and (George R.
R. Martin, birth place, U.S.) are mapped to schema /fictional universe/fictional
character/place of birth and /people/person/place of birth respectively, indicat-
ing that birth place has different meanings [29]. One reason of this phenomenon
in knowledge bases is artificial simplification, this means in the most if not all
knowledge bases similar relations are abstracted into one relation that reflects
the average meaning of these relations. Second reason is the nature of knowledge,
because ambiguous words exist already profusely in a language. An example for
that is ”Expert”, it could refer to an expert doctor, an expert engineer or an
expert writer etc.
As long as every relation has one vector translation in the vector space, different
semantics of the relation will not be distinguishable. Therefor TransG generates
multiple translation components for a relation [29]. For example, the two differ-
ent meanings HasPart.1 and HasPart.2 will have two different components in the
embedding model. The possible semantics are automatically clustered to repre-
sent the meaning of associated entity pairs. In [29], they propose to use Bayesian
non-parametric infinite mixture embedding model (Griffiths and Ghahramani,
2011). In TransG they use the normal distribution as a vector distributor instead
of random distribution as previously done in TransE. The approach works as the
following:

– For every entity e ∈ E:
– Draw each entity embedding mean vector from a standard normal distri-
bution as a prior:

ue ∼ N (0, 1)

– For a triplet (h, r, t) ∈ ∆ :
– Draw a semantic component from Chinese Restaurant Process for this
relation:

πr,m ∼ CRP(β)

– Draw a head entity embedding vector from a normal distribution::

h ∼ N (µh, σ
2
hE)

– Draw a tail entity embedding vector from a normal distribution:

t ∼ N (µt, σ
2
tE)

– Draw a relation embedding vector for this semantics:

ur,m = t− h ∼ N (µt − µh, (σ2
h + σ2

t)E)

8

where µt and µh stand for the mean embedding vector for tail and head. The
mean embedding vector indicates the peak of the normal distribution. σt and
σh are the variances, ur,m is the translation vector of component m of relation
r. CRP stands for Chinese Restaurant Process, which is an unfair distribution
that detects the semantic components of a relation taking in account its triplet
and gives a specific semantic component according to the triplet the relation is
coming from a higher weight πr,m over the others.
So we notice that in every triplet (h, r, t) containing the relation r, one of the
semantic components of r has a significant weight over the other components,
which represents the right interpretation of r in this specific triplet. The score
function looks as the following [29]:

P{(h, r, t)} =

Mr∑
m=1

πr,me
− ‖µh+ur,m−µt‖22

σ2
h
+σ2t

Mr is the number of semantic components for a relation r, it is learned from the
data automatically by the CRP. πr,m is is the mixing factor, indicating the weight
of m-th component. Other methods like TransE and similar ones aim for a given
triplet (h, r, t) to maintain h + r ≈ t. However TransG has a slight difference
because of the multiple semantic components of a relation:

h+ ur,m∗
(h,r,t)

≈ t

m∗(h,r,t) = arg max

(
πr,me

− ‖µh+ur,m−µt‖22
σ2
h
+σ2t

)
where m∗(h,r,t) is the index of the component with the highest weight, depending
on the right interpretation determined by the head.

2.3 Graph Convolutional Networks

The aim in this kind of approaches is to adapt arbitrarily structured data
(graphs) to serve as an input for CNNs and RNNs, so that it can be trained
using a partial set of target values depending on the application. So the input
would be1:

– The adjacency matrix of the given graph A(N ×N)
– A matrix X(N ×D) containing the feature vectors, where D is the number

of input features

Every layer on the convolutional network produces a node-level output matrix
Z(N × F), where F is the number of output features per node. Layers in the
network can be defined in a non-linear function:

H(l+1) = f(H(l), A)

1 The explanation is based on the article: https://tkipf.github.io/graph-convolutional-
networks/

9

with H(0) = X and H(L) = Z assuming L is the number of layers. The difference
between specific models lies only in the definition and parameterization of f(., .).
A simple and powerful model was introduced by Thomas N. Kipf and Max
Welling [19]:

f(H(l), A) = σ(D̂−
1
2 ÂD̂−

1
2H(l)W (l))

Where Â = A+I is meant to enforce self loops into the adjacency matrix, so that
the input feature vector of a node contains information about the node itself. D̂
is the diagonal node degree matrix of Â. By multiplying with A, we sum up for
every node all the feature vectors of all neighbouring nodes including the self
loop since the identity matrix is added to Â. The symmetric normalization is to
avoid unstable gradients calculation during training.

Fig. 2: Embedding the karate club network [3] [19]

One noticeable thing in this approach is that it does not include the edges
of the input graph in the feature representation. Similar approach that includes
edges in the embedding is Relational Graph Convolutional Networks [27].

2.4 Node2Vec

Interpreting data requires a unique identity of every data instance. For instance,
when dealing with complex data like pictures and audio waves, there is enough
information encoded in these data instances that gives the machine a relatively
clear differentiation between them. However, when dealing with words in NLP
tasks, a word string or any mapped id would not give enough information to
describe this word since the context, in which the word occur, plays a role in
defining this word’s essence. Therefore it needs to be embedded into a vector
space, where every word is represented in a feature vector that describe this
word and express its unique meaning to the machine and word similarities are
expressed through vector distance. In Node2Vec [11] and similarly RDF Embed-
ding [4] the approach they use to for embedding a graph is the following three
steps:

10

– Extract Information of the graph:
Many algorithms were deployed to perform a text extraction from a graph
like an edited version of Weisfeiler-Lehman graph kernels, Random
Graph Walks and Biased Graph Walks [4].

– Summarize the extracted information in a text corpus.

– Use the extracted text as an input for a neural language processing model
presented by Mikolov et al. [21].

Fig. 3: NLP Models [4]

The two NLP models used in Word2Vec are presented in fig. 3, where CBOW
predicts a word from a given context and Skip-gram predicts a context from a
given word. Training Node2Vec on a large graph requires some optimizations due
to huge the number of backpropagations needed to update the weight matrices
for every single instance. Therefore the optimizations presented in Mikolovś pa-
per can be adapted in this model as well, which are Hierarchical Softmax or
Negative Sampling.

2.5 KGloVe

GloVe [24] is another model designed for NLP tasks, the concept behind it is to
study the relationship between two selected words by analysing their relevance to
another set of words. An example presented in the original paper is analysing the
relationship between ice and steam by checking their relevance to other words
(solid, gas, water, fashion). The relevance is measured with the ratio of the
probability that a word k occurs in the context of the word i to the probability
that k occurs in the context of the word j, demonstrating this on the given

11

Fig. 4: An experiment done by Elior Cohen using Node2Vec to embed the graphs of
football teams from a FIFA dataset on Kaggle [6]

example would give:

Pik
Pjk

>> 1 for{i = ice, j = steam, k = solid}

solid is relevant to ice but not steam

Pik
Pjk

<< 1 for{i = ice, j = steam, k = gas}

gas is relevant to steam but not ice

Pik
Pjk
≈ 1 for{i = ice, j = steam, k = fashion}

fashion is irrelevant to ice nor steam

By creating a model that realizes this characteristic among the vector repre-
sentations of the words, they start by assuming that a function f exists, which
takes the vectors wi, wj and w̃k as input (w for word vector, w̃ for context vec-
tor) and delivers the wanted ratio Pik

Pjk
and they add some constraints till they

derive a loss function J . So the overall process consists of the following:

– Gather statistics of word occurrences in a given text.
– Create for every word two vectors, one that represents the word itself and

one that represents its context.
– Train the vectors to obtain a semantic meaning based on the probability of

a word occurring in the context of another word.

In the first phase of GloVe the cooccurrences of the words in a text are
gathered based on the given text, we create a Co-Matrix X(N ×N) with N the
number of different words in the text, and scan the text word by word, if a word

12

j occurs in the context of a word i we increment Xij . Determining the value
by which the entries are incremented can be tuned for direct neighboured words
to be larger than indirect neighboured words in the window size. Further more
hyperparameters tunings can be applied regarding the shape and size of the
window, vector length and iterations number. After gathering the cooccurrences
we initialize (2 × N) vectors with random values and train them to obtain the
following property:

wTi w̃k = log pik

which means: the inner product of the word vector for a word i (wi) and the
context vector for a word k (w̃k) should deliver the logarithm of the probability
of the word k occurring in the context of the word i . Then we could have the
probability simply by applying exp(log pik).

To give the embeddings this characteristic we minimize the loss function J
defined in [24] using the calculated cooccurrences:

J =

V∑
i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − logXij)

2

The damping function f is added to limit the influence of high occurring words
(e.g. “the“) to preserve the rare words in the vector space. f is defined in the
original paper as the following:

f(x) =

{
(x/xmax)α x < xmax
1 otherwise

For training the vectors the author of GloVe Pennington et al. uses the Ada-
Grad optimzer with default parameters:

– V ectorSize = 50

– xmax = 100

– LearningRate = 0.05

– α = 0.75

In the paper [24], some experiments have been done to find the best vector
size and context size using one dataset and running several evaluations on the
trained vectors. The following figure from [24] shows the results for word analogy
tests, where questions like “Paris to France is like Rome to ?” are queried.
The window size in (a) is 10 and the vector size in (b) and (c) is 100.

The results in fig. fig. 5 and other evaluations in [24] provide a good visu-
alization for the parameter set regarding NLP tasks. As making the window of
the gathered cooccurrences very small would produce vectors that are useful for
syntactic correctness checking, however widening the window helps by checking
semantic correctness of the sentences.

13

Fig. 5: Effect of changing the window shape and embedding size on the overall accu-
racy [24].

Graph Embedding using GloVe: In [5] a new Graph Embedding approach
was introduced using the GloVe algorithm. It uses the same optimization model
starting from a cooccurrence matrix that was created from a Graph instead of
a text corpus. The entities of the graph are treated as words and the nearby
entities and/or edges are considered to be the context surrounding the focus
node. In Node2Vec [11] and RDF2Vec [4] they used graph kernels and random
graph walks to extract a text consisting of the labels of the graph and then feed
this text into the NLP model. In KGlove [5] there is no text extracting step,
the co-occurrence matrix that summarizes the relatedness of the entities has to
be extracted directly from the graph. The naive way of creating a cooccurrence
matrix for a graph would be to perform breadth-first search for each node with a
defined depth and consider the reachable nodes as the context nodes, where the
cooccurrence rate is higher when the number of the hops between the context
node and the original node is lower. There are several issues that are not handled
in such an approach like 1) reaching the same node through several paths with
different depth level 2) having loops in the graph 3) overrating of further many
nodes over few close nodes. A possible solution would be to use the PageRank al-
gorithm which is used originally for ranking webpages according to the outgoing
edges they contain (references to another URLs). To build up the co-occurrence
matrix we would need to compute the PPR for every single node of the graph,
this would generate a very dense matrix with huge amount of unnecessary data
that plays no role in the training. therefore in [5] they adapt the Bookmark-
Coloring Algorithm (BCA) algorithm [1] to create the co-occurrence matrix in
a fast and scalable way. The BCA algorithm’s idea is to inject a fixed amount of
paint into the focus node, and start pumping this paint through the connected
edges to the neighbouring nodes, where α-portion of the paint is retained in the
node itself and (1−α) is pumped out uniformly. This is repeated recursively for
every node that received paint. If a node has no outgoing edges the outgoing
paint is discarded. For the determinism of the repeating process another param-
eter is added ε, when a node has amount of paint that equals or less then ε it
stops distributing paint. Beside that when a node retain α-portion of paint, this
paint becomes dry so it can not be calculated in future distributions of paint in

14

the case of a cycle. For each walk starting from nominated focus node, the paint
can at most flow n hops far, where n can be calculated as:

(1− α)n ≈ ε =⇒ n ≈ log(ε)

log(1− α)

Fig. 6: Demo of BCA for α = 50% and ε = 12, 5%

In fig. 6 is a demonstration regarding BCA computation for one node, this
computation has to be performed for all nodes, however this would cost too
much computations for large graphs. To make this scalable we start with a set
of significant nodes of the graph and add all nodes that are painted to this set
every iteration. Moreover not all nodes of this set are chosen every iteration, but
nodes with more paint are prioritized over others with little amount of paint, this
guarantees to choose more influential nodes for the computations. More details
are explained in [5] and [1].

In the previous illustration of the BCA algorithm we assumed that the paint
is pumped equally through the out-edges, however, the pumping happens ac-
cording to an importance factor so that some edges (or adjacent nodes) receive
bigger amount of paint. Calculating the importance of an edge is the task of
the weighting function. As shown in [4] there are twelve different approaches to
assign weights to the edges in the graph, each with its different characteristics
and influence on the resulting embeddings.

15

Possible weighting functions:
Uniform Approach

Edge-centric approaches
1. Uniform = Object Frequency Split

2. Predicate Frequency
3. Inverse Predicate Frequency
4. Predicate- Object Frequency
5. Inverse Predicate- Object Frequency

Node-centric object freq. approaches
Node-centric PageRank approaches

6.Object Frequency
7.Inverse Object Frequency
8.Inverse Object Frequency Split

9. PageRank
10. Inverse PageRank
11. PageRank Split
12. Inverse PageRank Split

After weighting the edges, pumping the paint out of an edge v that has d out
edges would be biased towards more important nodes according to the formula:

Pr[follow edge vol] =
Weight(vol)∑d
i=1Weight(voi)

After we apply the algorithm on the nominated nodes of the graph according
to their importance, we fill the cooccurrence matrix X(N × N), where N is
number of nodes that got nominated for the BCA algorithm, with the amount
of paint that reaches a node j by applying BCA on node j. The user could
choose to normalize he values and to take only entities in consideration during
the walks. So overall the user get to choose the following set of parameters for
the creation of the co-occurrence matrix:

– Weighers (12×12) effecting the symmetry of the walks
– α and ε effecting the window size
– Normalize the values
– Taking only entities

The result of this process is a co-occurrence matrix ready to serve as an input
for the GloVe training model, taking in consideration that some parameters like
x-max has to be changed since the values of a matrix created from the graph
differs from those created from a text corpus.

3 Implementation

In this thesis we throw an implementation for training the vectors in the KGlove
embedding model. We basically use the CUDA API provided by Nvidia with

16

C++ and the code is inspired from the GloVe code1. The overall graph embed-
ding model consists of many stages that depend on each other. Since the focus
in this thesis is on the implementation of the training phase and the previous
parts of the model are adopted from paper [4] we will assume having already
created the cooccurrence matrix. The dependancies of the GloVe training model
are:

1. Hardware capacity
(a) Host memory
(b) Device memory

2. Vector size
3. Batch size
4. Optimizer

3.1 Optimizers

Optimizing a function using its gradients is a widely researched topic with plenty
different methods. Considering a machine learning problem like graph embed-
ding, the trainable instances are usually sparse and high dimensional. In such
a case the normal gradient descent optimizer is not very applicable to find the
global minima (or maxima) of a function, mainly because it handles frequent
features and infrequent features equally, which causes the effect of informative
infrequent features to get subdued by the effect of frequent ones. In the coming
sections we will explain briefly the two popular optimizers Adagrad [8] and
Adam [17] which claim to suit this exact use case. The originally used opti-
mizer in [24] is adagrad and in this thesis we experiment an implementation of
GloVe with Adam optimizer. The used optimizer has an effect on the amount of
required memory during the training. As we are using the optimzers to find the
global minima of the GloVe loss function, we can directly calculate the gradients
of it:

J =

V∑
i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − logXij)

2

∂J

∂wi
= f(Xij)w̃j(w

T
i w̃j + bi + b̃j − logXij)

∂J

∂w̃j
= f(Xij)wi(w

T
i w̃j + bi + b̃j − logXij)

∂J

∂bi
= f(Xij)(w

T
i w̃j + bi + b̃j − logXij)

∂J

∂b̃j
= f(Xij)(w

T
i w̃j + bi + b̃j − logXij)

1 based on the code in: https://github.com/stanfordnlp/GloVe

17

We notice that the core of all gradients is the calculation of (wTi w̃j +bi+ b̃j−
logXij) and this will be needed for any optimzer that is based on calculating
the gradients.

Adagrad [8]
is an edition of adaptive optimizers that adapt their learning rates to every

single feature of a vector so that infrequent instances get updated with larger
steps depending on the sum of the previous squared gradients of the particular
feature. Quote: “Informally, our procedures give frequently occurring features
very low learning rates and infrequent features high learning rates, where the
intuition is that each time an infrequent feature is seen, the learner should “take
notice.” Thus, the adaptation facilitates finding and identifying very predictive
but comparatively rare features.” The updating rule of Adagrad is:

xt+1,i = xt,i −
α√

Σt−1
τ=1g

2
τ,i

gt,i

The drawback noticed by Adagrad is that the learning rates converge to zero,
so after a certain period of training the improvement becomes negligible.

Adam [18] optimizer combines the the advantage of AdaGrad to deal with
sparse gradients, and the property of RMSProp to deal with non-stationary
objectives, so it computes adaptive learning rates of the features based on two
components, an exponentially decaying average of past squared gradients vt and
an exponentially decaying average of past gradients mt:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2t

Since mt and vt are initialized with zeros they bias towards zero, therefore
the authors of Adam compute bias-corrected first and second moment estimates:

m̂t =
mt

(1− βt1)

v̂t =
mt

(1− βt2)

so the update rule would be as the following:

θt = θt−1 −
α√
v̂t + ε

m̂t

The authors of Adam propose the values for the parameters α = 0.001, β1 = 0.9,
β2 = 0.999, ε = 10−8.

18

3.2 Re-implementation of GloVe

The GloVe algorithm was originally programmed in C by the authors of [24].
In this work we conceive an inspired implementation with C++ and Cuda ex-
plaining in details how the conceptual model is structured and highlighting some
differences. A cooccurrence type is defined as the following:

typedef struct cooccur_rec {

int word1;

int word2;

double val;

} CREC;

In a GPU implementation, the reason behind most of the latency is usually
transferring data, therefore training the model directly from the cooccurrence
file on the hard disk, as the original c-glove does, is extremely inefficient. In our
cuda-glove model we overcome this issue by calculating a sufficient batch size
and dividing the whole cooccurrence matrix into number of batches that is a
factor of number four(explanation comes later). The batch size depends on the
host memory, the device memory and the vector size. A batch generator takes
the cooccurrences binary file that contains the records and splits it into several
batch files gathered in one subdirectory, during generating the batches the largest
index will be saved and later on it will be considered as the vocabulary size. This
way of getting the vocabulary size reduces the need of the vocab-file, which will
be just needed in the end to map the vectors to their instances in the graph.
The glove class is responsible during the training for copying the batches from
the generated batch files to the host memory and then to the gpu memory. The
second part that occupies a significant amount of memory are the vectors, in
c-glove they are initialized on the host memory with random values sequentially.
However, in cuda-glove they reside during the training in the device memory.
Initializing them on the host memory and transferring them is not a good idea
due to the latency caused by sequential initializing and transfer operation beside
reserving memory on the host that will not be used during the training process.
In cuda-glove we alternately allocate and initialize the vectors directly on the
device.

3.3 Allocating memory

After determining the batch size that fits on the device memory given the vector
size and the vocabulary size, the glove model is ready to be initialized with the
following memory allocations:

1. Words’ vectors SizeOfReal × V ectorSize× V ocabularySize
2. Contexts’ vectors SizeOfReal × V ectorSize× V ocabularySize
3. Biases SizeOfReal × 2× V ocabularySize
4. An extra variable for every vector’s feature and bias to store the sum of pre-

vious squared gradients which are used for the adaptive updates described
in the Adagrad optimizer section.

19

Adagrad: SizeOfReal × (V ectorSize+ 1)× V ocabularySize× 2
For Adam we have to store the sum of past gradients mt in addition to the
sum of past squared gradients:
Adam: SizeOfReal × (V ectorSize+ 1)× V ocabularySize× 4

5. Batches sizeOfRecord× batchSize× 2
6. Total Cost sizeOfReal

This is the total memory needed for the GloVe model on the GPU if the Adagrad
optimizer is intended to be used. As a demonstration of this, we take the vocab-
ulary size of the DBpedia knowledge graph that we use later for the evaluations.

For V ocabSize = 8, 876, 675 and using float as real type with size 4, and as-
suming the vector size is 50, we end up using approximately 7.24 GB without the
batches’ memory. The memory usage can be calculated using the formula(using
Adagrad): Required Memory=

SizeOfReal × (4× (V ocabSize(V ectorSize+ 1)) + 1) Bytes (1)

The left memory is a maximum for the batch size of the data used to train the
vectors.

Fig. 7: vector size vs memory usage for DBPedia

3.4 Initializing

After allocating the memory needed for the model we have to initialize the
values of the vectors, biases and the squared gradients. As these components
are residing on the device memory, it is only possible to set their values with
cudaMemset that sets the value of every byte for the given size to v ∈ [0, 255]
or to use a kernel for bigger datatypes. However, the word and context vectors
are initialized originally with random values serially using the internal time as

20

a seed. On the device the initialization happens in parallel nearly at the same
time, therefore taking the time as a seed for randomization is going to generate
the same values in this case. For this reason the seed for every thread has to be
unique in order to generate random values. The first idea is to take the unique
ID of every thread as a seed for the random function:
threadIdx.x + blockIdx.x * blockDim.x

However, these seeds are arranged successively (0,1,2, ... , n) which will cause
the generated values to be arranged successively as well. In our implementation
we use the approach from [25] by using a light hash function created by Thomas
Wang that takes the ID of a thread and returns a hash value, which is used as
a seed for the random function.

uint wang_hash(uint seed)

{

seed = (seed ^ 61) ^ (seed >> 16);

seed *= 9;

seed = seed ^ (seed >> 4);

seed *= 0x27d4eb2d;

seed = seed ^ (seed >> 15);

return seed;

}

Testing this method with a ”bitmap with one random bit per pixel, black or
white” it shows fairly good pseudorandom pixels where a human eye can not
recognize any patterns.

Fig. 8: [25]

We define a cuda kernel that uses this method to initialize the vectors and
biasses with random values between (−1, 1) and a second kernel that intitializes
the squared gradient descents with initial value 1.

21

3.5 Generating batches

After the graph walks are completed and the cooccurrences are calculated and
stored in a cooccurrences binary file with chunks of CRECs, glove takes this file
as an input and iterates over the records using them to train the vectors. As we
mentioned before, instead of copying every cooccurrence from the disk to the
RAM and then to the device, we transfer them in batches depending on the left
device memory after allocating the vectors and other components. We need two
things to determine the maximum size of a batch, the result of (eq. (1)) and
the device’s capacity which can be known by calling cudaGetDeviceProperties
and passing the address of a struct instance cudaDeviceProp [23]. Substitut-
ing the used memory from totalGlobalMem gives us the available memory. The
max batch size would be the available memory (one could subtract some addi-
tion space to leave some free memory in order to avoid overfilling the memory)
divided by 2 due to compatibility with the training patterns we are going to ex-
plain. After determining this we call the function void writeBatches(const

std:: string co_filename , const std:: string outPath). This func-
tion reads from the given file a record and writes it to a batch file (as long as the
first word index is not different) then it checks if the size of the written elements
has exceeded the max batch size. This way we guarantee that the cooccurrences
of a certain word do not land in two different batches. The outPath arg is where
the batch files are stored.

3.6 Training

After we have all the components ready, we start the training by calling void

glove ::train(unsigned nIterations , int save_every). This function
is responsible for organizing data transfer between the Host (CPU) and the
Device (GPU) and kernel launches. As shown in [20] the trivial processing flow
in a GPU consists of:

– Copying data from CPU memory to GPU memory
– Launching a GPU Kernel
– Copying data from GPU memory to CPU memory

In the glove algorithm it is a bit different, in a training iteration the data
(cooccurrences) are copied to the GPU, cuda kernels are launched to train the
vectors using the data, and the data is dismissed in the end. After all the iter-
ations (or somewhen in between when the vectors shall be written to a file) the
vectors will be copied to the CPU memory and then written to a file. As men-
tioned before the cooccurrences file could not always fit on the GPU memory,
therefore it will be split into several batches. So the processing flow in GloVe
after allocating and initializing would be as the following:

– For every Iteration
• Copying Cooccurrences matrix from CPU memory to GPU memory
• Launching a GPU Kernel

– Copy the vectors from GPU to CPU and write them to a file.

22

3.7 Optimizing GPU Utilization:

There is generally two factors that mostly contribute to maximizing the utiliza-
tion of a GPU.

– Choosing the right number of blocks and threads per block for the kernel
launch.

– Minimizing the overhead of memory transfer between CPU and GPU, and
inside the GPU.

A trivial implementation of GloVe would be to carry out the operations se-
quentially. copy batch, train, copy second batch etc. Looking at the processing
flow in fig. 9, a dataset with a cooccurrences matrix consisting of six batches
is being trained. The brown slices represent the periods when the GPU is wait-
ing for data transfer. In this example one data transfer slice takes about 0, 83
seconds. For six batches it means around 4,8 seconds for data transfer.

Fig. 9: sequential

Pinned memory [12] The default allocated memory on the host is allocated
as pageable memory, this means it can be paged in or out between the ram
and some other storage device like an SSD for memory managing purposes. It is
however not possible for the GPU to access data directly from pageable memory
space, therefore by an invocation of a data transfer from pageable memory space
on the host to the device memory, the CUDA driver allocates first a temporary
page-locked, or “pinned” host array, then it copies the data to the pinned array,
and then it can transfer the data from the pinned array to the global device
memory, as shown in fig. 10.

Transferring the batches to the GPU using pinned memory in our training
model has dropped the time consumption per batch transfer to 0, 17 seconds.
This means (0, 83− 0, 17)× 6 = 3, 96 seconds for 6 batches.

Overlapping 2x Another technique to keep the GPU fully occupied with kernel
launches is to overlap memory transfer operations so they happen during a kernel
launch to avoid making the kernel wait for the data transfer. Recent GPUs
provide several streams which can work asynchronously without blocking each
other, we use these streams to achieve overlapped memory transfer. If we want
to perform a batch copy while training on another batch the batch size has to
be the half of the memory designated for uploading the batches, we preserve at
least one batch already uploaded and start a kernel and a copying operations at
the same time and switch the passed address pointing to the start point of the

23

Fig. 10: pinned vs pageable memory transfer [12]

batch memory on the GPU. Moreover we have to make sure that the batches are
not overwriting each other before the kernel that is training on one of them is
completed, this way we guarantee the consistency of the training. According to
[20] the default stream is always synchronized with all other streams, therefore we
avoid using it throughout the whole training in order to maintain the asynchrony
of the operations. [20] Operations within the same stream are ordered (FIFO)
and cannot overlap, copying memory in the same direction can be carried out by
only one stream at a time, cudaStreamSynchronize(stream) is used to wait
for a stream till it finishes all queued jobs. In this approach we use 2 streams,
one designated for copying data and the other one for launching kernels. The
train function in pseudo code is:

cudaMemset(total_cost_on_device , 0);

counter := 0;

for batch in batches

{

SwitchBatchLocation(location);

ReadBatchIntoRAM(batch_file);

cudaMemcpyAsync(batch , location , async_copy_stream);

if (counter > 0)

{

cudaStreamSynchronize(async_kernel_stream);

}

if (counter == 0)

{

cudaStreamSynchronize(async_copy_stream);

}

train_kernel <<<BLOCKS , THREADS , 0, async_kernel_stream

>>>(location);

counter ++;

}

24

Fig. 11: overlap data transfer

A second model for the pipeline of transferring data and launching kernels
concurrently is to use two streams as well where every stream copies data and
run the kernel alternately. This way we can make sure without any additional if-
statements that no batch is overwriting the other because the jobs in one stream
are carried out in FIFO manner. The size of free memory on the GPU after
allocating the model has to be at least 2× batchSize as well. Theoretically the
processing flow has to be as shown in fig. 12.

Fig. 12: theoretically

The runtime of the kernel takes longer than the data transfer operations
when the GPU is sufficiently utilized. fig. 13 shows two profiled iterations, if
an output of the cost has to be printed, then we would need a cudaSynchronize
statement after completing an iteration and a cudaMemCpy to copy the cost
from the device to the host since variables on the device can not be printed
directly.

Fig. 13: profiled

kernel analysis In the kernel we implement the code that every thread has
to run on his own inspired from the implementation of GloVe by Pennington et
al., the cuda kernel receives pointers referring to the vectors and training data.
Common cuda style is to use a thread for every single element, this style is called
by Mark Harris monolithic kernel [13], however this is only applicable when the
number of available threads larger than or equal the number of the elements to
process. Therefore we use in our implementation the grid-stride loop as Harris
M. advices in the his article ”Grid-stride loops are a great way to make your
CUDA kernels flexible, scalable, debuggable, and even portable”.

for(int i = blockIdx.x * blockDim.x + threadIdx.x;

25

i < n;

i += blockDim.x * gridDim.x)

The number of elements is n, we notice here that if the number of threads
exceeds the number of elements, it would lead to idle threads, and if the number
of elements exceeds the number of threads, the threads will loop over the rest of
the elements.
The first thing we do in the loop is to copy the variables we need throughout the
computations to locally defined variable, thus we try to restrict the operations
to be carried out on local memory, which is considered to be the fastest memory
among global, shared and local memory of a graphic card. In order to train the
vectors wi and w̃j using a co-occurrence Xij and the loss function defined by
GloVe, first we calculate the gradients from the formula showed previously in
section 3.1.

Second we update the parameters {wi, w̃j , bi, b̃j} according to the rule of
the used optimizer. For AdaGrad we accumulate the squared gradient for the
next update and for Adam we accumulate additionally the gradients. After we
calculate all needed gradients we have to update the parameters stored in the
global memory, for this we either use atomic operations provided by the GPU
atomicAdd(addr , value), or we use our alternating approach introduced in
section 4.2 to reduce collisions.

3.8 Parallel Training Issue:

For an efficient training, a good implementation would utilize as many threads
as possible to use the most capabilities offered by the hardware. By minimizing
the loss function of the GloVe model, an epoch means a complete one iteration
over the cooccurrence matrix entries, where the word vector wi and the context
vector w̃j are updated for every single cooccurrence Xij . A trivial approach to
parallelize this process is to distribute the cooccurrences among the available
threads and let them work together. In the HOWILD paper [22] they assume
that all the operations are atomic and let the threads overwrite each other. They
have proven that by a sparse problem the collisions have an intangible effect on
the result with a great win in performance.
They ran some numerical experiments on different machine learning tasks, the
comparison was against a round-robin approach proposed in [30] notated as RR,
and another model called AIG. This works very similar to HOGWILD except
that it uses locks when updating the variables. Their experiments demonstrate
that even this fine-grained locking induces undesirable slow-downs see fig. 14.
”All of the experiments were coded in C++ are run on an identical configuration:
a dual Xeon X650 CPUs (6 cores each x 2 hyperthreading) machine with 24GB
of RAM and a software RAID-0”
In their experiments they have used Xeon CPUs with maximum 32 threads.

Returning to our specific cause of collision when implementing a multithreaded
GloVe training model, a collision could occur when two cooccurrences on the

26

Fig. 14: Total CPU time versus number of threads for (a) RCV1, (b) Abdomen, and
(c) DBLife.

same row, or on the same column of the matrix X, are being handled by two
different threads at the same moment, either both of them will update the same
context vector when the cooccurrences are on the same column, or both of them
will update the same word vector when the cooccurrences are on the same row.

In this thesis we are trying to reach a highly scalable implementation that is
able to run on a GPU with thousands of threads. First, atomic operations are
more expensive on a device with this number of threads, second if we demonstrate
the probability of collisions according to the number of running threads we will
notice that it grows exponentially by increasing the number of threads. This can
be estimated using a formula similar to the birthday paradox:

P (t, v) = 1− v!

vt(v − t)!

Where t denotes the number of threads and v the number of vectors in the model,
this function computes the probability of a collision to occur in one iteration.
The results are shown in fig. 15.

Fig. 15

The probability of collisions becomes very high (almost certain to happen at
every iteration) when the number of threads is large. This means that optimizing
the loss function will somewhen get very chaotic and at some point will stop
approaching the global minimum.

27

3.9 GPU Atomics

CUDA provides atomic operations for consistent memory writing among threads,
these operations have been improved on newer GPUs to compete the normal
operations in performance. For this reason we have done a little experiment
to compare the performance of the normal addition + = operation and the
atomicAdd(addr , value) operation provided by cuda. We use the Nvidia
Titan Xp with compute capability 6.1 and we repeat the experiment for different
datatypes. We define two kernels as the following:

__global__

void atomic_addition(real* a)

{

atomicAdd(a,1);

}

__global__

void normal_addition(real* a)

{

*a += 1;

}

And we run these two kernels with 1024 blocks × 1024 threads per block, we
observe the following results:

type: int

Expected result: 1048576

... Atomic ...

Value: 1048576

Time: 0.070528 milliseconds

... Normal ...

Value: 25

Time: 0.456 milliseconds

type: float

Expected result: 1048576

... Atomic ...

Value: 1.04858e+06

Time: 0.151392 milliseconds

... Normal ...

Value: 25

Time: 0.652768 milliseconds

type: double

Expected result: 1048576

... Atomic ...

Value: 1.04858e+06

Time: 3.9711 milliseconds

28

... Normal ...

Value: 26

Time: 0.48928 milliseconds

The results show that the atomic addition overperforms the normal addition
when using integer and 4 byte float numbers, whereas normal addition is still
faster when using 8 bytes float numbers (double)1.

4 Conceptual Approaches

The first approach to overcome the collisions that would happen when two dif-
ferent threads are updating the same vector according to two different cooc-
currences is to distribute the cooccurrences among the threads in such a way
that would not lead to a collision between threads. There is probably several
distribution manners that satisfy our constraint, therefore this is in fact an open
question, for whom we will provide one possible good distribution.

4.1 Rotating Approach

As shown in Figure fig. 16, every yellow region is the portion of cooccurrences
assigned to one thread and the four subfigures demonstrate four serial sub-
iterations completing one epoch of training. n threads will divide a single epoch
into n serial sub-iterations, in each iteration the threads are assigned new regions
ofX in a rotating style till all the entries are handled. Theoretically this approach
would cause no collisions at all, because when a thread is responsible for a
cooccurrence Xij it would be the only candidate to update the word and context
vectors wi and wj since no other thread is handling any cooccurrences lying on
the same row i or column j. We notice that if the number of threads was increased
the number of serial sub-iterations will be increased as well.

Fig. 16: Rotating Approach

4.2 Alternating-optimization Approach

In this approach we follow a straight distribution of the words over the threads
with an additional modification of the updating privileges. We split a training

1 Some further speculation on this unexpected behavior can be found from
https://devtalk.nvidia.com/default/topic/524652/-slower-than-atomicadd-is-there-
an-alternate-method-/

29

epoch into two sub-iterations, in the first iteration the threads are allowed only
to update the word vectors, while in the second one they are only allowed to
update the context vectors. At first glance it is confusing to understand why this
would prevent collisions, but if we dig the cause of a collision we will find the
following two causes:

– Two threads handling two cooccurrences Xik and Xjk lying on the same
column k. Both could collide when updating the context vector w̃k.

– Two threads handling two cooccurrences Xki and Xkj lying on the same row
k. Both could collide when updating the word vector wk.

So organising the updating step of the threads in a way that prevent them from
updating the same word/context vector at the same phase, taking in consider-
ation the distribution manner, will guarantee no collisions. When we assign a
thread number of words to handle the cooccurrences lying on their rows, it means
in the first phase when only word vectors are being updated, all the cooccur-
rences lying on the same row, that could cause a collision in this phase, will fall
into the responsibility of this one thread. The same applies for the second phase,
all the cooccurrences lying on the same column will fall into the responsibility
of one thread as shown in fig. 17.

Fig. 17: Alternating-optimization Approach, Thread t1 with green region t2 with blue
region, left matrix during phase one, right matrix during phase 2.

This approach will always split one epoch into two sub-iterations, no matter
how many threads are invoked. The learning rate has to be calibrated in order
to avoid biased behaviour during the training. One could split the learning step
into two sub steps.

5 Time Evaluation

We have performed a time evaluation for the GloVe model developed based on
this thesis meant to run on GPU and another time evaluation for the CPU
version. The input used for both training is a set of 9 cooccurrence matrices
extracted from the DBpedia data set using the tuned BCA algorithm approach
with different parameters. The GPU we use for our experiments is the NVIDIA
TITAN Xp(compute capability 6.1), while the CPU is Intel(R) Xeon(R)

30

Gold 5122 CPU @ 3.60GHz with 32 threads. In fig. 18 we see that the GPU
version has gained almost 1.71 speed up for one training iteration compared to
the CPU version.

Fig. 18

6 Tuning hyperparameters

The main use case of the acceleration in this thesis is to run as many differ-
ent experiments as possible in order to develop an understanding of how every
parameter of the Graph Embedding process would affect the out-coming em-
beddings and eventually determine the best practice parameters for a various
amount of scenarios. As we have seen in previous sections there are plenty a lot
of parameters summarized in fig. 19

31

Fig. 19

In Graph Embedding we encounter three levels of dependant input parame-
ters. The first dependency is the relevant parts or structure of the graph that has
to be included when extracting the cooccurrence matrix. Choosing relevant parts
of the graph is mainly dependent on the study case (i.e. different approaches for
including the attributes). Second level of dependencies is the level where the
parameters for the extraction of cooccurrence matrix are given. For this level
there is a huge amount of different parameters combinations that can be exper-
imented, hence one could settle on some best practices for choosing these. The
third layer of parameter set contains the vector size and the damping function. In
our case we will try to tune the second layer (weighting function, alpha, epsilon)
and include some plots in the evaluations that give an approximate description
of the affect of each one. First we define the intervals from which the values of
the parameters are tested:

• α ∈ {0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}
• ε ∈ {10i for i ∈ {−6,−5,−4,−3}}
• Weighting function (forward, reverse): |Weighers| × |Weighers| = 12× 12

6.1 Grid Search

Grid Search is the first intuitive concept that could serve us finding the suitable
hyperparameters for our model, in which we set up the complete parameter
combinations set and train the model on each combination individually, after all
we compare the evaluations of the resulted trained vectors for every parameters
combination. The evaluation has to be based on a different data set from that
which was used for the training. The advantage of this method that it gives a

32

Fig. 20: Example of grid search from [15]

33

guaranteed result, however the inefficiency by this method is noticeable, since
we would have to do:

|α| × |ε| × |Weighers| × |Weighers| × |normalized| × |only-entities|
= 12× 6× 12× 12× 2× 2 = 41472

different walks, trainings and evaluations.

It is infeasible to search for the optimal combination having this number of
different settings. Therefore we try another approach.

6.2 Random Search

In the random search tuning method, one provides a distribution for every pa-
rameter, from which a sample will be chosen, we create as many random sampled
parameter combinations as our experiments can cover, then we run the experi-
ments and try to have an intuition about the effect of every single parameter.

In fig. 20 and fig. 21 an example for finding the optimal hyperparameters for a
problem set. We notice that iterating in a grid manner to find the global minima
is pretty exhaustive for complex problem sets, whereas the random search is more
applicable with some accuracy tradeoff. One could combine random with grid
search, in which a convenient set of settings will be chosen based on the random
search and a further investigation can be performed using this the chosen set
and tuning every parameter on his own while fixing the others.

34

Fig. 21: Example of random search from [15]

35

7 Experiments

In our investigation for the optimal hyperparameters we performed 105 experi-
ments with randomly chosen values for the walksṕarameters, every experiment
consists of three stages:

• Graph walks using BCA applied on all data of DBpedia 2016.
• Training using our GPU version of GloVe with 250 iterations.
• Evaluation of vectors regarding Classification and Regression tasks.

We evaluate the trained vectors with the Graph Embedding Evaluation Frame-
work [9] developed mostly by Maria Angela Pellegrino and Martina Garofalo.
The Datasets [26] used for the evaluation as golden sets are gathered by official
observations linked to DBpedia. We use the following collections:

• Cities
• Metacritic movies
• Metacritic albums
• Forbes
• AAUP (only salary information)

So the embeddings for the whole DBpedia graph are computed with:

• vector size = 50× 2 (50 for word vector and 50 for context vector)
• learning rate = 0.01
• Xmax = 0.6
• original damping function of GloVe with alpha = 0.75

and then the vectors are piped into the evaluation process which repeat ev-
ery evaluation 10 times delivering twelve different measurements for each data
collection:

• 10×Classification C45 accuracy
• 10×Classification KNN K=3 accuracy
• 10×Classification NB accuracy
• 10×Classification SVM C=0.001 accuracy
• 10×Classification SVM C=0.01 accuracy
• 10×Classification SVM C=0.1 accuracy
• 10×Classification SVM C=1.0 accuracy
• 10×Classification SVM C=10.0 accuracy
• 10×Classification SVM C=100 accuracy
• 10×Classification SVM C=1000 accuracy
• 10×Regression KNN K=3 root mean squared error
• 10×Regression LR root mean squared error

We take the average among the ten repeated evaluations for each experiment
(hyperparameter combination), then we take the average result of each measure-
ment among the five data collections. In the end we get for every hyperparameter
combination twelve averaged measurements. For each measurement we rank all
the 105 done experiments then take the average rank of each. For the defined
values of each parameter of the walks (α,ε, Forward Weigher, Reverse Weigher,
Normalizing, Only Entities) we rank the value according to what ranks it ap-
peared in, then we plot the values vs rank. Lower ranks are better.

36

Fig. 22: α Rankings

Fig. 23: ε Rankings

37

Fig. 24: Walk Length Rankings

Fig. 25: Forward Weigher Rankings

38

Fig. 26: Reverse Weigher Rankings

39

8 Conclusion

We have listed in this thesis core explanations of state of the art graph embed-
ding approaches, that have drawn a big attention in the data analysis field of
science. Some of the approaches deal directly with the graph, transferring its in-
stances into embeddings based on the triplets they appear in. Other approaches
deal with extracted statistical information about significant parts of the graph.
We discussed at length how the KGlove embedding model works based on cre-
ating vectors for the instances, whose inner product gives the log probability of
their relatedness. Moreover we summarized the main steps for developing the
training model including the details in implementing Adagrad and Adam opti-
mizers. Throughout the implementation we tried to propose convenient solutions
for problems related to generating pseudo random numbers on the GPU using
the threads ids with a light hash function and a seed random number generator,
and dividing the training data into batches according to the required memory of
the model. For an efficient CUDA program we listed some best practices sum-
marized in using pinned memory (non-pageable) on the RAM for any data that
has to be transferred between GPU and CPU, avoid using the default stream for
memory copying and kernel launching, which is always synchronous with GPU
operations and try to use local and shared memory for the threads’ code, since
accessing global memory costs relative high latency. We discussed the paralleliza-
tion of the GloVe training model and its issues regarding collisions and memory
efficiency, for the collision problem we introduced two theoretical approaches, ro-
tating approach and alternating approach, which organize the updating process
of the threads in a pattern that reduces the probability of a collision. In order
to avoid the latencies caused by memory transfers we implemented two models
of concurrent memory transfer and kernel launches. We compared atomic and
normal addition operations on our experimental device concluding that atomics
overperform normal additions when using any datatype except for 8 bytes float-
ing point numbers(double). Our final implementation gave an average speed up
of ×1.71 compared with the original implementation for cpu. We used the accel-
erated model to investigate the effect of the hyperparameters used to extract a
co-occurrence matrix from a given graph based on a scalable Bookmark-Coloring
algorithm. Based on our investigations after a random search among evaluations
of 105 different experiments, the correlation of α and ε influences not only the
number of hops reached in every walk, but also the decaying function that plays
a role by determining the importance of the nodes. The experiments show good
results for α = 0.7 and ε = 10−5 and for a Forward weigher: ”Uniform Weigher”
and Reverse weigher: ”Inverse Object Frequency”.

40

9 Future Work

Deeper investigation in tuning the hyperparameter should be done, since our
resources during the thesis work phase allowed us to perform a relatively small
amount of random experiments, therefore a larger scale experiments using our
parallel training model can be done to cover a larger space of the parameters. Fur-
ther experiments regarding other levels of parameters like vector length, Adam
optimizer, different damping functions and Xmax values are still needed to com-
plete the whole picture. Implementing the rotating and alternating approaches
is a future piece of work that requires a deeper thoughts on mapping the co-
occurrences to their responsible threads in a more efficient way than our existing
implementation.

41

References

1. Berkhin, P.: Bookmark-coloring algorithm for personalized pagerank computing.
Internet Mathematics 3(1), 41–62 (2006)

2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.:
Translating embeddings for modeling multi-relational data. In: Burges,
C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q.
(eds.) Advances in Neural Information Processing Systems 26, pp. 2787–
2795. Curran Associates, Inc. (2013), http://papers.nips.cc/paper/

5071-translating-embeddings-for-modeling-multi-relational-data.pdf

3. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wag-
ner, D.: On modularity clustering (2008)

4. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Biased graph walks for rdf
graph embeddings. In: Proceedings of the 7th International Conference on Web
Intelligence, Mining and Semantics. pp. 21:1–21:12. WIMS ’17, ACM, New York,
NY, USA (2017), http://doi.acm.org/10.1145/3102254.3102279

5. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Global RDF vector
space embeddings. In: d’Amato, C., Fernandez, M., et al. (eds.) The Seman-
tic Web – ISWC 2017: 16th International Semantic Web Conference, Vienna,
Austria, October 21–25, 2017, Proceedings, Part I, pp. 190–207. Springer In-
ternational Publishing, Cham (2017), http://users.jyu.fi/~miselico/papers/
GlobalRDFEmbedding.pdf

6. Cohen, E.: node2vec: Embeddings for graph
data (2018), https://towardsdatascience.com/

node2vec-embeddings-for-graph-data-32a866340fef

7. DIMITROV, K.: Cyber platforms for adaptive cyber defence in industry 4.0 and
logistics systems based on intelligent fault diagnosis. Cyber Defence in Industry
4.0 Systems and Related Logistics and IT Infrastructures 51, 38 (2018)

8. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. Tech. Rep. UCB/EECS-2010-24, EECS Department,
University of California, Berkeley (Mar 2010), http://www2.eecs.berkeley.edu/
Pubs/TechRpts/2010/EECS-2010-24.html

9. Garofalo, M., Pellegrino, M.A.: Graph embedding evaluation framework (2018),
https://datalab.rwth-aachen.de/embedding/evaluation/

10. Garofalo, M., Pellegrino, M.A., Altabba, A., Cochez, M.: Leveraging knowledge
graph embedding techniques for industry 4.0 use cases (2018)

11. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-
covery and data mining. pp. 855–864. ACM (2016)

12. Harris, M.: How to optimize data transfers in cuda c/c++, https://devblogs.
nvidia.com/how-optimize-data-transfers-cuda-cc

13. Harris, M.: Cuda pro tip: Write flexible kernels with
grid-stride loops (2013), https://devblogs.nvidia.com/

cuda-pro-tip-write-flexible-kernels-grid-stride-loops/

14. Jia, H., Saule, E.: Graph embedding for citation recommendation. arXiv preprint
arXiv:1812.03835 (2018)

15. Johnson, A.: Common problems in hyperparameter optimization (2017), https:
//sigopt.com/blog/common-problems-in-hyperparameter-optimization

16. Kaspar, R., Horst, B.: Graph classification and clustering based on vector space
embedding, vol. 77. World Scientific (2010)

42

17. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014), http://arxiv.org/abs/1412.6980

18. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

19. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. CoRR abs/1609.02907 (2016), http://arxiv.org/abs/1609.02907

20. Luitjens, J.: Cuda streams best practices and common pit-
falls, http://on-demand.gputechconf.com/gtc/2014/presentations/

S4158-cuda-streams-best-practices-common-pitfalls.pdf

21. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. pp. 3111–3119 (2013)

22. Niu, F. and Recht, B. and Re, C. and Wright, S. J.: HOGWILD!: A Lock-Free
Approach to Parallelizing Stochastic Gradient Descent. ArXiv e-prints (jun 2011)

23. NVIDIA: Doxygen for nvidia cuda library, https://www.cs.cmu.edu/afs/cs/

academic/class/15668-s11/www/cuda-doc/html/annotated.html

24. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP). pp.
1532–1543 (2014), http://www.aclweb.org/anthology/D14-1162

25. Reed, N.: Quick and easy gpu random numbers in d3d11 (2013), http://www.

reedbeta.com/blog/quick-and-easy-gpu-random-numbers-in-d3d11/

26. Ristoski, P., de Vries, G.K.D., Paulheim, H.: A collection of benchmark datasets for
systematic evaluations of machine learning on the semantic web. In: International
Semantic Web Conference. pp. 186–194. Springer (2016)

27. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: European
Semantic Web Conference. pp. 593–607. Springer (2018)

28. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale infor-
mation network embedding. In: Proceedings of the 24th International Conference
on World Wide Web. pp. 1067–1077. International World Wide Web Conferences
Steering Committee (2015)

29. Xiao, H., Huang, M., Zhu, X.: Transg: A generative model for knowledge graph
embedding. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). vol. 1, pp. 2316–2325 (2016)

30. Zinkevich, M., Langford, J., Smola, A.J.: Slow learners are fast. In: Bengio, Y.,
Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) Advances in
Neural Information Processing Systems 22, pp. 2331–2339. Curran Associates, Inc.
(2009), http://papers.nips.cc/paper/3888-slow-learners-are-fast.pdf

