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1 Introduction

1.1 Climate Change and Deforestation

Currently, a significant issue facing mankind is climate change. This exists in
various forms such as biodiversity loss, heating temperatures and deforestation.
The balance of life on Earth consequentially becomes increasingly damaged until
a non-reversible threshold is crossed. These issues are all highly interconnected
and while minimizing them all are essential, it is much too grand to address as a
whole. Therefore, the scope of this research will focus specifically on deforesta-
tion. Coupled with the fact that deforestation rates do not appear to clearly
be reducing, it seems that this would be highly appropriate to focus on [1]. In
fact, according to the Global Forest Watch, forest loss has remained ”stubbornly
high” in 2021, losing ”11.1 million hectares of tree cover” in tropical areas [2].
The knock on e↵ects that this has for the ecological balance of earth are severe.
Commonly referred to as the ’lungs of the Earth’, large tropical forests absorb
billions of tons of carbon dioxide a year, serving as a significant carbon sink to
balance the high volume of carbon sources humans are responsible for [3].

1.2 Machine Learning as a Solutional Aid

While machine learning (ML) may not directly reduces emissions or our carbon
footprint like sustainable energy technology does, it can still be used as indirect
aid to eventually arrive at the same outcome. ML may also for example serve us
as a guide through which oversight can be gained and plans from which appro-
priate action can be taken. Through this oversight, economic and sociological
problems stemming from widespread illegal logging can also be addressed [4].
To achieve this, remote sensory data in the form of satellite imagery over large
areas could be used as input on which predictions and classifications can be
made. This approach is not novel either. ML models are continually being
improved and used in various ways to track and potentially predict deforesta-
tion using remote sensing technologies already [5]. Various studies so far have
shown ability and promise in classifying deforestation already through newer
deep learning methods as well as the established classical ML methods.
One such example can be seen in a study conducted by Mayfield et al. [6] in
which freely available georeferenced land use images (images locatable through
an internally embedded coordinate system) are evaluated on their quality as
neural network inputs. With these land use images, risk maps are created with
the goal of predicting the risk of future deforestation in Mexico and Mada-
gascar. This implementation is done through both classical and deep learning
machine learning methods such as Bayesian networks, artificial neural networks
and Gaussian processes. In practice, the risk maps of all three of these meth-
ods scored an area under the curve (AUC) value above 0.8 which - according
to Platts et al. [7] - indicates a significant forest/deforestation distinction can
be made. Overall, this study found machine learning can serve as a reliable
alternative to traditional statistical methods in deforestation risk modelling.
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In another study, conducted by de Bem et al. [8], convolutional neural net-
work (CNN) architectures are used along with two older ML methods, namely
random forests (RF) and multilayer perceptrons (MLP).

The CNN architectures chosen were Sharpmask, U-Net and ResUnet; three
architectures that, at the time (2020), were all considered state-of-the-art. The
older ML methods at use would serve as a control group on which the deep
learning architecture could be compared against. What was found that while
all model approaches were e↵ective (ResUnet being most e↵ective), the older
ML models also required additional post-processing noise removal to get the
performance up to par with the deep learning architectures.

Table 1: Performance measures of the models used by de Bem et al.

Table 1 shows the performance of each of the algorithms on two di↵erent
datasets. What is apparent is that the older machine learning algorithms under-
perform relative to the deep learning algorithms in almost every performance
measure. The only exception being the RF algorithm which obtains the highest
precision score but lowest score in other measures. The study further shows
that ML is a suitable approach for recognizing deforestation. Furthermore, it
additionally demonstrates that the new deep learning ML methods in particular
are more optimal over older methods.

In a 2004 study by Mas et al. [9], a multilayer perceptron was used to
classify deforestation. This was done using Landsat data ranging from 1974
through to 1991. What makes Mas et al.’s research unique is that they decided
to formulate their classification with not only the Landsat data, but also using
variable geospatial data found in the images such as roads and rivers. Similarly
to the approach by Mayfield et al., risk maps are created where deforestation is
identified to have occurred or not. However, the approach used by Mas et al.
utilizing spatial data was sub-optimal (by today’s standards) as the accuracy of
their model came out at a mere 69%.

1.3 Personal approach

The scope of the research conducted in this paper aims to pick up concepts
from such studies mentioned prior. A considerable length of time has passed
since the study by Mas et al. for instance and in the world of machine learning,
progress is continuously made and the standard of what is considered state-of-
the-art is rapidly evolving. As seen in other studies such as those performed by
de Bem et al. and Mayfield et al., deforestation classification has already come
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a considerable way. The central question we thereby hope to answer has two
parts. Firstly, whether a CNN can be used to obtain optimal results in pre-
dicting deforestation based on remote sensed data as input. Considering that
de Bem et al. managed to achieve performance measures well over 90% for the
CNN’s, this is defined as the minimum threshold for an optimal performance.
From there, the focus turns to laying out a preliminary framework to creat-
ing a multispectral extension to this ResNet model whereby geospatial data is
also utilized from geographic information systems (GIS). The question for this
framework is whether this could aid the model’s performance.
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2 Finding a Dataset

2.1 Selection Process

2.1.1 Requirements and Challenges

With remote sensing technologies becoming more advanced and thoroughly de-
veloped, the availability of forest satellite imagery is both growing in accessibility
and in quality. This can be seen through freely accessible high resolution im-
ages from the continuously developing Landsat program initially started in the
1970s [10] along with newer innovative startups like Planet.com since 2010 [11].
While these dataset sources in their raw form are cutting edge in quality, there
are other requirements that must also be fulfilled in order for the data to be
suitable for the scope of this research.

The first criterion that must be met is image quality. This is viewed in terms
of resolution and visibility. The implication this has is that the volume of data
obtained in the 1970s and 1980s when imaging programs were still in their infant
years have since become obsolete in favor of the more detailed and informative
imaging programs introduced later on. Presently, the standard for ideal image
resolution is 30x30 meters per pixel [12]. A second criterion is that the data
needs to be labeled. That is, for a given area in the satellite image, there needs
to be an indication of whether deforestation has occurred or to what extent.
This greatly narrows down the number of suitable datasets as satellite images
on their own will not su�ce. Furthermore, as we hope to extend our CNN to
be able to utilize geographic information too, dataset must be georeferenced for
an identifiable location.

2.2 Considered Datasets

One dataset that showed to be promising was a 2017 Kaggle competition with
Planet satellite imagery [13]. Participants would have to classify images based
on whether they fell under categories such as primary forest, roads, cloudy, cul-
tivation and others. This resulted in a vast labeled dataset being accessible that
also happened to be well documented thanks to the community taking part in
the competition. The problem with this dataset though was that georeferenced
satellite images were not accessible, meaning that the image locations could not
be retrieved.

Another consideration was to obtain satellite imagery from Planet directly [11].
Through their API, their database of images could be accessed and images of
chosen rainforest areas could be requested. The benefits of this approach is that
the images would be high resolution, recent, regularly updated and could be lo-
cated through georeferencing. However, because Planet does not o↵er labeled
information in regards to forest gain or loss, labels would have to be manually
created. Being too costly in terms of time and e↵ort, this dataset was subse-
quently abandoned.
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Eventually, a dataset by Hansen et al. from the University of Maryland [14]
was found which seemed to fit all the criteria. This dataset uses recent Landsat
imagery and overlays it with a deforestation label layer. A visual representa-
tion of the deforestation depicted by the dataset can be seen in Figure 1. This
source contains deforestation data of all non-ocean areas on earth. It can be
accessed through a global grid of mosaic tiles in which each tile is tailored specif-
ically to forest change identification. This can be seen in Figure 2. Each tile
is of size 10x10 degrees (latitude and longitude) which corresponds to roughly
1000x1000km at the equator. Data available per tile includes satellite imagery
(captured in 2000 as well as another dataset for 2021), tree coverage loss (be-
tween 2000 and 2021, which can be seen in the background of figure 2), tree
coverage gain (between 2000 and 2012) and overall tree coverage (in 2000). The
first datasets (2000 and 2021) are RGB format satellite images while the latter
three datasets are boolean maps that indicate forest presence or absence with re-
spect to forest loss, forest growth and forest presence, respectively. The datasets
of particular interest in this research are the satellite imagery of 2021 along with
the tree coverage loss dataset. In the corresponding paper by Hansen et al. [14],
it was found that the Amazon showed most clear deforestation trends. Along
with the Amazon having a high level of publicity in the domain of climate change
served as motivation behind our tile choice. This tile spans between Brazil, Bo-
livia and Paraguay, with the coordinate (15S, 55W), at the tile’s center. Figure
2 shows this tile outlined in red.
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Figure 1: Global deforestation with respect to the year it occurred, as depicted
by Hansen et al. 2021 is represented by turquoise, 2020 by red, 2000 by yellow
and all years in between 2000 and 2020 in orange.

Figure 2: Grid of dataset tiles on a tree coverage background.

Some key strengths of using this data is that cloud interference has already been
dealt with (images with cloud interference are replaced with images from one
year prior), images are recent (Landsat 8) and resolution is up to standard.
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2.2.1 Satellite Image Dataset and Loss Labels

Figure 3: Entire satellite imagery dataset* as provided by Hansen et al. be-
fore preprocessing. *Embedding the dataset into this paper has reduced the
resolution of the dataset in contrast to the original dataset used in practice.
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Figure 4: Raw labeled data corresponding to deforestation occurrence in figure
3 (before preprocessing).

Figures 3 and 4 show the raw datasets that are eventually used to train the
convolutional neural network before any pre-processing. Figure 3 shows an
image of 40,000x40,000 pixels of where forest coverage exists. While appearing
low in resolution, the image becomes sharper and more refined once it is pre-
processed. Note, this image also appears lower resolution due to file type changes
made to include it as a figure. Figure 4 serves as the labels corresponding to
the figure 3. It can be seen that pixels are either black, white or some shade
of grey. Black indicates that no deforestation having occurred relative to 2000
(whether forestry is present to begin with or not), white indicates forest cover
loss having occurred in 2021 and other shades of grey depicting deforestation in
the years between 2000 and 2021 (the darker the shade, the closer the year to
2000).
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2.3 Preprocessing with QGIS

Using QGIS (a geographic information systems interface that provides image
manipulation capabilities), the dataset and dataset label images are prepro-
cessed. Reducing the dataset image to images of 256x256 pixels, a dataset
directory can be created with approximately 24,000 images that can be used to
train and test our CNN. With these lower pixel images, the finer details can
then also be identified, showing geographic features such as rivers, cultivation
and mountain ridges. The dataset was then split into a training set (80%) and
a test set (20%). This process was carried out with a random number generator.

To convert the dataset label image into a usable format follows the same process
with a few extra steps. The image has the same pixel dimensions and is reduced
to 256x256 pixel images. Each image in the label directory thereby corresponds
to another image in the dataset directory. After this has been completed, the
label images are stripped of unnecessary data such as when deforestation has
occurred. Each pixel in the image either has an integer value of 0 or greater
than 0 for the year of deforestation. Using python, each of the images are
iterated through. Per image iteration, integer values are converted to boolean
values with respect to deforestation occurring at some point or not. Next, the
proportion of an image showing deforestation is calculated. So, all the pixels
with a value of 1 in an image are counted. These are then added up and divided
by the number of pixels in the image (65,536 pixels) for a value that represents
the proportion of deforestation. This allows us to determine that in one image,
deforestation occurred in 44% of the total area while in another image that value
may be 2%. These values are then written to a csv file that can be fed into the
CNN.

2.4 GIS Layer and Feature Querying

After having created and processed the dataset along with the labels corre-
sponding to it, the focus shifts to creating a GIS embedded dataset for the
geospatial CNN framework. Embedding geospatial data into the original dataset
means creating one or more layers containing geographic feature information
(the geospatial multi-layer architecture), and overlaying it on top of the orig-
inal dataset as a new image. To do this, the original dataset image (before
preprocessing) is loaded into QGIS. Using QGIS, OpenStreetMap’s Overpass
API can be queried for the presence of any selected features in the given area.
This query will return any features that are present as a newly created image
layer. Depending on what is appropriate for the feature, the layer indicates fea-
ture presence as lines, polygons, or pinpoints. Making these layer backgrounds
transparent allows the original dataset to be visible as a base layer under the
GIS features. This approach with QGIS was advantageous as experience in SQL
and image manipulation was limited prior to this research.

The architecture of the geospatial multi-layer architecture could be created in
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di↵erent ways, each adopting their own strengths and weaknesses.

One approach would be to create one single band boolean layer where each pixel
in an image corresponding to the presence of queried geographic features. The
advantages of this approach are its simplicity and ability to take in an endless
number of features. All features can be compressed into a single layer, produc-
ing dataset images of just four bands that still incorporate many features. The
downside to this approach is that no representational distinctions can be made
between the presence of one feature versus another. This also limits any further
research that might be interesting with respect to how influential some features
are versus others.

A di↵erent approach would be to query geographic features and add each as
their own layers. This would allow distinctions to be made between the pres-
ence of one feature in comparison to another through RGB colors. However, a
tradeo↵ then exists between the quantity of feature information of an image and
how computationally demanding it becomes [15]. So while having di↵erentiable
features would be optimal for more informative data, it also implies that it be-
comes increasingly expensive to train for each additional feature added. For
each feature queried (roads, land-use, rivers, etc.), another three bands would
be added to the multispectral image. To illustrate further, assuming an image
was overlaid with three GIS features, it would quickly turn the three band image
into a staggering twelve band image. Therefore, with a limit on the quantity of
selectable features, the most influential features must be chosen in regards to
how well they correlate with deforestation in order to maximize deforestation
predictability and minimize computational cost.

Research on the most significant factors driving deforestation could provide in-
sight as to what GIS features would be the most powerful indicators worth
selecting. One study in regards to Myanmarese rainforests [16] found that a
highly prominent factor indicating deforestation is the distance of nearby set-
tlements from the location of forest cover loss. With this in mind, it would
make sense to query for village locations. Bax et al. found in their research [17]
that paved and unpaved roads were the strongest indicators of deforestation.
In contrast, Armenteras et al. actually found that in the Colombian Amazon,
rivers were particularly correlated with areas of forest loss [18]. Another study
focusing on the Brazilian Amazon [19] found that 23% of forest clearances in
2003 were credited to land cultivation. With this information, we add villages
(classified under ”Settlements” in GIS), roads, rivers and streams (categorized
under one umbrella term of ”rivers”) and farm land uses (under ”Farmland and
Agriculture”) to the list of selected features.
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Figure 5: GIS features overlaid as additional image channels over the used
dataset

In figure 5, the geospatial dataset can be seen. Note, the largest features are
visible when the entire dataset is viewed. Through the same pre-processing pro-
cedure as before with the image dataset, smaller scale feature occurrences also
become visible. Colors given to feature classes are deliberately made distinct
from each other with little potential for color overlap. This was done to ensure
di↵erent features would not fall under the same classes. This dataset is then
also reduced to 256x256 images and matched to the same deforestation labels
used prior.

Ideally, the network would then be able to identify patterns of where deforesta-
tion occurs in the presence of one or more features. For instance, in figure 6,
an example of what a dataset instance looks like can be seen. A river system
is visible running throughout the image, surrounded by farmland and singular
village occurrences by a road. What can also be seen is that these features
occur in the presence of patches of dense forest. The impression this gives is
that forest cover loss has taken place to clear space for the village and farmland
with the aid of the river and road. In Appendix A, another example can be seen
of where di↵erent patterns could be found indicating forest loss.
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Figure 6: A small scale image indicating potential deforestation patterns.

3 Methods

3.1 Convolutional Neural Networks

Selecting a model, it needs to be suitable for predicting deforestation as well as
acting as the base model for the geospatial model. This means that the model
needs to be flexible in number of image channels it can take as input, enabling
geographic features to be loaded in. The conditions of the experiment consists
of a large volume of images which contain pixel values that represent some po-
tential patterns of deforestation. Neural networks have shown to be well suited
for this application due to their ability to handle large volumes of data as inputs
and mapping it to one flattened tensor output as a classification or regression
value. Various approaches could be taken. We deliberately choose a CNN over
other options such as multilayer perceptrons and traditional ML methods for
various reasons. Firstly, MLP’s make use of vector inputs while for CNN’s,
this input type is in the form of a tensor, allowing it to make spatial inferences
which is beneficial for image analysis. While MLP’s and CNN’s are similar in
the sense of being multilayered feedforward networks, each layer in an MLP
is fully connected with the prior and following layer. In contrast, CNN’s are
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sparsely connected (locally with nearby neurons in the preceding and following
layer) that are only fully connected in the final layers. The resulting di↵erence
of this high connectivity in MLP’s is that they become more ine�cient and per-
form less well when faced with large numbers of feature inputs, as is the case
in this application. CNN’s in contrast, are designed specifically for big data
applications [20].

This has been proven as CNN’s perform well and thrive in large scale images
or sensory data contexts [21]. Furthermore, because CNN’s make use of convo-
lutional layers, they end up working better with image inputs due to a bigger
receptive field of the local pixels in a given area of an image.

Looking at the general architecture of what comprises a CNN, there are vari-
ous defining aspects involved. Convolutional neural networks are made up of of
multiple layer types, namely the convolutional layer, pooling layer, non-linearity
layer and finally the fully connected layer. Making use of convolutional layers,
the network ensures a drastic increase in e�ciency as neurons compute the pa-
rameter weights only with the local neurons around it as opposed to all neurons
which can be seen happening in a fully connected network. These local neurons
then each pass forward calculated parameter weights to the connected neurons
in the next layer. Applying this to images, this could be thought of as partic-
ular pixel values in a given local area of the image. After these convolutions
are performed, a non-linear activation function is used. A common activation
function is the Rectified Linear Unit (ReLU) function. In these layers, any
negative values are identified and made zero, ensuring that the model does not
simply become a linear classifier. This is important to maximizing predictive
and classification capabilities in the network as non-linear patterns can then
be identified that may be present in the input data. Pooling layers then occur
along with these convolutional and activation layers. Pooling can be done in
a number of ways. One such method is average pooling. Groups of pixels are
merged into one pixel and given the average value of the collective pixel values.
Using a filter size of two (2x2 pixels are then looked at per iteration) and a
stride of two for example has the e↵ect of reducing an image size by 75% as four
pixels are replaced by a singular pixel with a value averaging the prior four.
Finally, the network has the fully connected layers. In the fully connected lay-
ers, properties of traditional neural networks can be seen to return as all nodes
are connected with one another as opposed to locally in previous layers. In
the fully connected layers, low-dimensional features extracted in convolutional
and pooling layers are fed forward. Being connected to all nodes in the prior
layer, the fully connected layer can then extract the non-linear high-level feature
combinations that may be present in the flattened data. Multiple other fully
connected layers are connected as back-propagation occurs in which weights are
reviewed and adapted and fed to these next fully connected layers. Finally, the
model creates an output classification or regression value.
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3.2 ResNet

The specific convolutional neural network being implemented is a ResNet model
architecture. The ResNet architecture works similarly to other CNN’s with
a few specific details that distinguishes it. These details allow it to address
particular issues that deep neural networks are commonly faced with [22]. One
such issue is accuracy degradation. It was found that although deeper networks
could perform better than its shallower counterparts, the training error (and
subsequently testing error) was actually higher. Initially, overfitting was thought
to be the cause as this too causes reduced accuracy in response to increased
network depth. However, this was dismissed and the accuracy degradation was
found to be due to a di↵erent reason.

Figure 7: The ResNet architecture

Figure 7 shows an example from the ResNet paper that illustrates this. Al-
though the 56-layer network is deeper, it has a considerably larger validation
error in comparison to the 20-layer network.
Another reason the ResNet architecture is chosen is due to the vast amount of
documentation available about it online. Having minimal experience implement-
ing convolutional neural networks, it felt more ideal to choose a model that has
shown good performance, versatility in applications along with an abundance
of research than to aim for what is state-of-the-art or at this current moment.

The solution ResNet poses is through a system of residual ”blocks” and skip-
steps. Figure 8 shows one such block. Input (X) can be seen coming from the
previous block into the next. However, this weight value is then also passed for-
ward several layers, skipping the convolutional layers in between (given by ”+
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Figure 8: A singular ResNet block

X”). This way, when the two distinct weights are passed through the activation
function, the greatest value can be selected between the weight computation
that passed through the convolutional layers in between and the weight com-
putation that skipped past these layers. As a result, the training error should
at the least, never get worse and prevent the accuracy from saturating. Lastly,
ResNet uses a ReLU activation function, which poses further benefits as the
vanishing gradient problem can also be avoided.

For the scope of this research, we are interested in creating a prediction (as
opposed to classification) for the proportion of deforestation that has occurred
in a given area, and so we include an additional final fully connected regres-
sion layer. Because we choose regression, this also means that a di↵erent error
function is used. As opposed to cross entropy loss, mean squared error loss is
used.

3.3 Adding GIS Input to ResNet

An advantage of using ResNet is that its parameters can be modified to take
in additional image channels. As mentioned prior, adding geospatial data to
an image would be through such additional channels. Ordinarily, the model
assumes a three channel image input corresponding to the red, green and blue
layers that collectively make up a colored image. By adapting the model to
take more than three channels, GIS data can be provided to the model through
the additional channels. The handling of these additional channels would not
happen in a special or di↵erent manner to the RGB layers already in place. The
only di↵erence that can be seen now is that the deforestation label is associated
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with a di↵erent overall combination of data.
Figure 10 (see Appendix B) shows a diagram can be seen from a study by

Fang et al. [23] where a hyperspectral ResNet model is created. The model
takes in hyperspectral images as both spatial input (RGB) and spectral input
(additional image channels depicting other electromagnetic wavelengths). In
practice, this approach is conceptually the same as the approach studied here
as the GIS input too, is another form of input that is combined in the fully
connected layers alongside the spatial input.

4 Results

The ResNet model was run in 100 epochs and varying batch sizes at a depth
of 50 layers. This was done to find what batch size variation would allow the
model to perform most optimally. Batch sizes used were 4, 8, 16 and 32. The
learning rate of the model was set at 1 ⇤ 10�3.

Figure 9: Performance of the ResNet model with a batch size of 4
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Figure 10: Performance of the ResNet model with a batch size of 8

Figure 11: Performance of the ResNet model with a batch size of 16
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Figure 12: Performance of the ResNet model with a batch size of 32

Figures 9 through 12 show the ResNet model’s root mean squared error (RMSE)
performance on the train and test datasets (blue for training and purple for test-
ing). Appendix C shows an adjusted version of figure 12 with the performance
spike removed for a clearer view. Overall, there does seem to be a general trend
that is followed throughout the results where the model is in fact able to make
predictions that are significant. The lowest RMSE values the model achieves
are 0.085 (batch size 4), 0.089 (batch size 8), 0.092 (batch size 16), 0.095 (batch
size 32). Thereby, if the model were to be run again throughout all batch sizes,
a safe assumption could be made that the highest performing test RMSE would
fall somewhere between 0.08 and 0.1, with lower batch sizes falling closer to 0.08
and higher batch sizes toward 0.1.

Although the model shows strength in being able to exhibit predictive capabil-
ities, it does demonstrate overfitting during training. The RMSE of the model
during training becomes steadily lower but during testing on the other hand, the
performance stubbornly stays around a particular threshold. What is apparent
too is that the point at which overfitting becomes dominant can be identified
at roughly the same point throughout all batch sizes. At around 40 epochs,
the model starts to overfit on the training set, largely separating the train and
test performance of the model. For the test set, the performance also generally
worsens slightly after 40 epochs, although being much more subtle.

Furthermore, when the batch size is increased the model generally becomes more
inconsistent. At a batch size of 4, the model rapidly increases in performance
and fluctuates much less after 20 epochs. With a batch size of 16, a clear
di↵erence can be seen as frequent spikes can be seen to occur which exaggerate

19



further with a batch size of 32. Along with the fluctuations, the extreme of
the worst performing instance of the model increases with the increasing batch
size. A possible explanation could be the model being more sensitive to unusual
images in the dataset.

5 Discussion

5.1 Creating a Deforestation Predicting Model

One initial goal of the research in this paper was to explore the possibility
of creating a CNN model that could take a satellite image of a forest and be
able to accurately deduce whether deforestation has occurred. The results were
not perfect as there was overfitting that undermined the model’s performance.
However, the model still showed a significant capability to predict deforesta-
tion on the test set. On the other hand, if the model were not able to make
a distinction between deforested and non-deforested areas, the model could be
expectd to be accurate only half the time. This can be said as each pixel of
a given dataset image has a Boolean classification of depicting deforestation or
not. One mentioned benefit of creating such a model that could identify the
areas of deforestation was that it could allow for oversight to be gained. For
the model to generalize optimally for such oversight, this overfitting would have
to be minimized to a larger degree. It was seen that the larger the batch size,
the larger the di↵erence between training and testing performance and thus,
the worse the model generalizes. It thereby becomes clear that a batch size of
no more than 16 would be optimal. If for some reason a higher batch size is
required (to speed up training for example), a potential work-around could be
to increase the learning rate of the model.

With this issue of overfitting, it seems that adding depth would likely make it
worse. In fact, making the model shallower could actually be beneficial. The
hope then would be that the model might run more epochs where in performance
on the test set can increase without the training set being drastically overfit on.

5.2 Extending the Model to a Geospatial ResNet Model

Another goal of the research posed in this research was to lay out a framework on
which a geospatial ResNet model could be implemented. The goal with such a
model is that it could improve the performance of a spatial CNN. Carrying this
out has shown to be possible through deliberate geographic feature selection
for the dataset and adapting the input shape that the ResNet model takes
in. With the performance of the ResNet model being positive yet showing
overfitting, the stage is set for potential improvement using a geospatial dataset.
As mentioned prior, this dataset contains vibrantly outlined geographic features
that the model can pick up on. This might subsequently aid the model in
separating the signals in the dataset images from the noise.
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6 Limitations and Future Work

6.1 Limitations

6.1.1 Dataset

The dataset used by Hansen et al. contains imagery that was obtained using
the Landsat program. The imagery used as baselines for forest levels (relative
to loss or gain years later) dates back as early as 2000 in the dawn of Landsat
7’s launch. Simultaneously though, the Landsat program is also continuously
evolving. Currently, forest levels are still being updated annually, now using
the Landsat 9 satellites. The e↵ect this has is that because di↵erent remote
sensing technology is used, not all imagery in the datasets are exactly uniform
and minor variations in map tiles occur.

Furthermore, conflicting views exist on the reliability of the Hansen et al.
dataset. One study by Bellot et al. [24] claimed that the dataset actually
overestimates deforestation in Indonesia, outlining occurrences of ”phantom de-
forestation” where forest cover loss takes place in areas where there was either no
loss or no forest to begin with. An accuracy assessment performed by Mitchard
et al. [25] found that the dataset performed with high accuracy in Brazilian
forests but failed to consistently detect forest change in Ghana.

The exact definition of deforestation or forest loss by Hansen et al. is a complete
removal of forest canopy coverage at a pixel scale. This creates a grey area
though as the Landsat resolution is 30 meters per pixel and forest cover loss
may occur in patches of less than 30 meters. Selective logging for example is a
widespread occurrence but occurs at a scale of significantly less than 30 meters.
This implies that while macro levels of forest loss can be easily captured, much
more precise remote sensing technology would have to be used to truly capture
micro levels of forest cover loss. Generalizing the potential of this dataset, it
would mean that issues such as illegal selective logging would go undetected.

6.1.2 ResNet Model

The ResNet model used was a model that was created from scratch and therefore
not pre-trained. Not using a pre-trained model and creating one from scratch
raised questions as to whether the performance of the model could otherwise
have been higher. Furthermore, ResNet, being a deep learning architecture, is
by nature prone to taking a long time to train. Using a pre-trained ResNet
model would have allowed training time to be minimized more. The model
would not have had to train from scratch and would already have some kind of
foundation by training on a public database (ImageNet for example). Our task
would then be to apply it to our own application.
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6.1.3 GIS Dataset and Modeling

The main issue in regards to the geospatial dataset is data sparseness. This
sparseness arises in the form of incompleteness and non-occurrence. Data from
OpenStreetMap tends to be highly documented and complete when it comes
to urban and highly populated areas but unfortunately not in rural areas. Ap-
pendix D provides a visualization of what this sparseness looks like using loca-
tion markers. For instance, some rivers are not labeled, causing them not to be
outlined at all (non-occurrence) and in other cases, the rivers are merely labeled
to a certain point (incompleteness). Farmland is also prone to this problem as
land cultivation can clearly be seen taking place but not identified as farmland
or agriculture. Non-occurrence of data refers to dataset instances where the
image is identical to the original dataset without GIS features as there is no oc-
currence of these features. In some areas like the deep Amazon that has barely
been penetrated, data sparseness is more extreme. In other areas, this is less
the case. However, training possibilities consequentially become limited with
the reduced exposure to geospatial features.

Furthermore, creating the geospatial dataset involves assumptions to be
made which cannot always be quantified exactly. The features that were chosen
were selected as they were influential phenomena that are commonly seen to
precede or co-occur with deforestation. Knowing that the number of features
the network uses cannot be endless due to parameter constraints, the question
is raised as to whether a neural network could perform better given a di↵erent
- more influential - set of features that better fit the area of interest.

6.2 Proposals for Future Work

The next steps ensuing the framework described and presented in this paper
would be to make necessary changes and implementing them. Key limitations
mentioned prior would be addressed in order to make the model feasible. Ensur-
ing this feasibility entails optimizing the ResNet model for better performance
and the dataset quality. A ResNet model could potentially be used that has
already been pre-trained. This pre-training could be performed on public ML
datasets such as SpaceNet (o↵ered by Amazon Web Services) [26] or the SAT-
6 Airborne Dataset [27]. There also exists the Forest Type Mapping Dataset
specifically for classifying forestry [28]. However, this dataset contains a mere
326 instances compared to more than 17,500 and 405,000 instances o↵ered in
the other mentioned respective datasets.

With the pre-trained model, it would be wise to do preliminary runs on GIS
datasets where features are added incrementally. Beginning with two additional
features (9 band images), the ease with which this trains can be assessed and
additional features can subsequently be added. This would make it possible to
find a middleground in the tradeo↵ between computational cost and how infor-
mative a dataset instance can be.
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Realistically speaking though, it is still possible that the geospatial model is run
on the GIS dataset and still struggles to separate noise from signals (overfitting).
In this case, making the model layer depth shallower is a path worth taking.
This implies moving from a ResNet50 model to a ResNet34 or ResNet18.

6.2.1 Pre-Training on Di↵erent Richer Datasets

One path that could be taken would be to take the principles of this research
proposal and apply it to urban areas. For example, monitoring urban land use
with a CNN could be optimized by combining it with a geospatial data approach.
This would be done as a way of pre-training the geospatial ResNet model that
would eventually then be applied back to the Amazon. The benefit of this
approach is that it addresses what is arguably the most prominent limitation
of using GIS data in rural areas. Urban areas are documented to a greater
extent and are more likely to be complete in regards to feature occurrences
than rural areas are. Additionally, selected features such as roads will be more
comparatively more prevalent in urban areas. While the exact manner in which
the model learns is hard to predict (due to the black box problem), this could
potentially allow the model to have more opportunities to learn as exposure to
feature instances will increase.

6.2.2 Semantic Segmentation Using Dual Datasets

Another potential extension to this research could be to create an annually
updating model aided by semantic segmentation. In semantic segmentation,
pixels are individually analyzed in an image and assigned a class. As the name
suggests, the result of this process is that objects or regions in an image that
may show some kind of similarity in contextual meaning are grouped with each
other as collections of pixels, also sometimes referred to as superpixels. This
approach could be a manner in which geographic features such as rivers, roads
and settlements could be identified and di↵erentiated without using actual GIS
data. For example, semantic segmentation in regards to a river could be that a
river always looks like an elongated shape containing dark pixels, or in regard
to farms as monochromatic squares or rectangles. The benefit of this is that it
can thereby avert issues relating to overloads of parameters from multispectral
images.

To make this model annually updating, a particular benefit of the Hansen et al.
dataset comes to light. The dataset is updated each year, providing a new set
of input to the model. Semantic pixel segmentation could be performed on both
the baseline year and the new year’s dataset to subsequently be compared with
each other. What may become apparent then is that a superpixel classified as
forest in one prior image may be a much smaller superpixel in the next image.
This would then influence the model’s prediction of how much deforestation has
occurred. Other events could also be extracted such as when settlements ex-
pand (by segment area) or when forests become less dense (by segment value),
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further bolstering this prediction. Creating and training such a model might
be challenging however. The model would have to have some training in recog-
nizing what superpixels fall under what classes in the first place. A potential
solution could be to use the Kaggle competition dataset that was considered
for this research, mentioned earlier [13]. This dataset is thoroughly labeled and
contains images that all fall under what these superpixels could be classified
as. Namely, rivers, logging, primary rainforest, roads and other classes. Having
this information would not only allow oversight to be gained over deforestation
level di↵erences as time passes, but also to uncovering the potential causes and
trends.

6.2.3 Expanding the Focal Area

Lastly, a research extension is proposed that aims to improve the caliber of
the model. A possible issue that could occur is that for a given image in the
dataset, features present in the direct surroundings outside of the image might
influence what can be seen in the image. Because these features occur outside
of the visible pixels, they are not detected by the model. For instance, sparsely
present forest might be visible in a corner of the image due to a highway that
passes by it outside the view of the image. To solve this, a modification to
the way in which the CNN parses through the dataset would be recommended.
Currently, there is deliberate order in which dataset instances are analyzed.
Instead, it might be more beneficial to, per dataset image, create a 9x9 grid of
images that are analyzed as a larger image. The focal image would be at the
center, with the corresponding eight images surrounding it. A visualization of
this can be seen in Appendix E. The focal image is given in green (initially at
[2, 2] and blue images surround it. These 9 images are then analyzed.

This would allow the model to analyze what occurs at the edges of the image
with complete information beyond the edges. The convolutional stride of the
model also therefore does not increase. Thus, referring to Appendix E, the
initial focal image [2, 2] then becomes a surrounding image for the next focal
image [2, 3] in the next convolution. This is to ensure that this process occurs
for each dataset image. Should the stride be increased, then the initial problem
remains as there is no overlap between the 9x9 grid of one dataset image and
that of the image next to it on the map. Without overlap, the model functions
identically to before and information between dataset instances are not shared.

7 Conclusion

The research done in this paper served two goals. To in one part, present a con-
volutional neural network that could predict deforestation on satellite imagery.
A ResNet model of 50 layers was created and trained and appeared to generally
be successful, deviating less than 1% from the true deforestation label of dataset
instances at its best. The most optimal batch size to run this model was seen
with highest performance on lower batch sizes. Another goal of this paper was
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to present a geospatial convolutional neural network that could improve on the
results of the created network. By tweaking the ResNet model’s input data
shape and the model’s in-channels, this has been seen to be possible. Along
with careful feature selection, multispectral data could be fed into the model
and achieving better performance is a possible outcome. While the research
done in this paper was positive overall, there has been areas that were lacking
and other paths for the future could be of greater interest moving forward. For
instance, overfitting showed to be occurring very clearly in the data to a degree
that minor changes to the model may not be enough. Thus, alternative steps
moving forward could be to train the model not from scratch but to pre-train on
a richer dataset. Or, to use a dual-dataset approach with semantic segmenta-
tion. Finally, a third option is to make the model less prone to inaccurate data
representations where relationships cannot be inferenced from a given image
due to being outside the focal view.
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Appendix A: Another small scale image indicat-

ing potential deforestation patterns
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Appendix B: Fang et al.’s Hyperspectral ResNet

architecture representation
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Appendix C: Adjusted view of the ResNet model

performance with a batch size of 32
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Appendix D: A representation of GIS data sparse-

ness
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Appendix E: A visualization of the proposed pars-

ing method to increase the focal area
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Appendix F: Access to code used for this research

All code used in this research can be found on the following github profile:
https://github.com/jbeek00/Thesis

34


