
Box R-GCN: Structured Query Answering Using
Box Embeddings For Entities And Queries

Ruud van Bakel
VU Amsterdam

Student Number: 2614457
r.van.bakel@student.vu.nl

Michael Cochez*
VU Amsterdam

m.cochez@vu.nl

ABSTRACT
Knowledge graphs offer an efficient and straightfor-

ward way of storing information. Much of this infor-
mation is typically explicitly represented in the form
of a graph with nodes and edges. Graph convolutional
networks (GCNs) use such an explicit graph repre-
sentation to create embeddings for various tasks (e.g.
link prediction, entity classification, or structured query
answering). Traditional graph embeddings create such an
embedding by producing a vector for each graph node.
These vectors represent a point in the embedding space.
Based on previous works, we introduce a model for the
structured query answering task, which embeds queries
and entities as boxes (i.e. axis-aligned hyperrectangles)
as opposed to points. This model consists of an R-GCN
and an MPQE, and uses a distance-based negative sam-
pling loss function for boxes. Based on our test results,
we could not yet conclude whether box embeddings
could provide a viable way of finding multiple answers
to structured queries.

I. INTRODUCTION
Information stored in knowledge graphs is explicit and

accessible with relative ease. Because the information
has to be stored explicitly, knowledge graphs are very
susceptible to missing information. Graph embeddings
can help with this problem by embedding similar enti-
ties close together, often incorporating information from
neighbouring entities in the original graph. These graph
embeddings do not have the explicit information from the
original graphs, but instead represent the graph nodes as
points in the embedding space. Apart from the entities,
for the structured query answering task traditionally
the queries also get embedded as points in the same
embedding space.

* Thesis supervisor

Fig. 1: A small 2D query box embedding: Here there are
three queries A, B and C, and two entities v and w. In
this case v is an answer to A and C, whilst w is only an
answer to A.

We introduce Box R-GCN, a graph convolutional net-
work which uses entity and query box embeddings, for
the structured query answering task. Box R-GCN uses an
R-GCN and MPQE model. Because of this it can treat
different relation types differently (i.e. it has separate
weight matrices for the different relation types).
This model uses boxes (i.e. axis-aligned hyperrectangles)
to represent entities and queries in the embedding space.
These boxes have multiple potential benefits over tradi-
tional ”point” embeddings, as explained in the following
subsections.

I-A. RESEARCH FOCUS

Our research question focuses on the potential of box
embeddings for queries with multiple answers. We state
our research question as follows:
Can box embeddings be used to give a finite set of
answers to a query rather than a ranking of results.?
Our main focus in this work is on how models using
box embeddings perform for structured query answering
with multiple answers. Box R-GCN is created to provide

mailto:r.van.bakel@student.vu.nl
mailto:m.cochez@vu.nl


Fig. 2: Here Alice and Bob are closely related in context
of the purple relations (1 relation minimum), but they are
not very closely related in context of to the red relations
(5 relations minimum).

such a model, which we use to evaluate the performance
box embeddings.
Apart from this main focus our work also focuses on
the various properties of Box R-GCN, such as the
generalisability from simple query structures to more
complicated structures, as seen in (Daza and Cochez
2020). Also, the properties of the generated embedding
(e.g. box shapes and box locations) are interesting to
analyze. The findings on these topics can be seen in
section VII.

I-B. INTRODUCTION TO QUERY BOXES

Although GCNs (Kipf and Welling 2016) provide
an effective way to create graph embeddings and can
achieve good results on different tasks such as link
prediction and node classification (Kipf and Welling
2016; Schlichtkrull et al. 2017), they do not work well
for structured query answering with multiple answers.

The reason for this is that for the structured query an-
swering task, the query is typically embedded as a point
in the embedding space. The closest entity embedding to
this point is then considered the answer to the query. If
there are multiple answers possible however, there is no
good way to determine how many of the closest points
should be considered.
One potential way to solve this problem is to instead
embed queries as boxes (axis-aligned hyperrectangles).
Figure 1 shows such query box embeddings. These boxes
can help because they provide a clear border which
can be utilized to form two separate groups of entities:
answers which are embedded within the box and non-
answers which are embedded outside of the box. Whilst

Fig. 3: Here Alice and Bob are have relatively close
points (seen near the origin), but also very distant points.

the idea of using query boxes has been experimented
with before, this has to our knowledge only been done by
(Ren et al. 2020). Furthermore, the idea is still very new,
so further experimentation may be desirable. Finally,
(Ren et al. 2020) do not actually train and test the model
for multiple answers, which is our main motive for using
these query boxes.

I-C. INTRODUCTION TO ENTITY BOXES

Apart from box representations for the queries, our
model also uses boxes for the entities themselves. The
main idea behind this is that boxes could potentially pre-
serve information about nodes within different contexts.
Figure 2 shows how two entities may be closely related
in one context, but not in another. It is not possible for
two entities to be embedded close to each other and far
from each other at the same time if they are embedded as
points. Figure 3 on the other hand shows how multiple
box embeddings can have close points and distant points
at the same time.

Fig. 4: A small 2D query and entity box embedding:
Here there are three queries A, B and C, and one entity
v. In this case v is an answer to A and B, but not to C.



Fig. 5: Here a graph can be seen on the left. The different
coloured arrows represent relations of different types.
A GCN could turn a representation of this graph to an
embedding such as represented on the right.

Furthermore, as seen in figure 4 an entity with a box
embedding can be an answer to query boxes that have
no overlap, in contrast to point embeddings, as seen in
figure 1.
This extra flexibility for the entity embeddings may help
improve the graph embedding for different tasks, such
as structured query answering.

II. BACKGROUND
In this section we provide some information consid-

ering the field of graph embeddings and the task of
structured query answering.

II-A. MESSAGE PASSING

A message passing algorithm can include information
from neighbouring nodes when creating the embedding
of an entity. When calculation the next hidden represen-
tation of node, a message passing algorithm incorporates
the representations of the neighbouring (i.e. directly
connected to the original node in the graph) nodes.
If multiple layers are used, information from nodes
further away (i.e. separated by more than one edge) can
influence the representation of nodes. Message passing
is useful because often the relations between a node and
its neighbourhood contain valuable information for its
embedding.

II-B. GRAPH CONVOLUTIONAL NETWORKS

A graph convolutional network (GCN) is a graph
neural network that takes a graph representation as
input and produces a graph embedding as output. These
embeddings typically represent nodes as points in the
embedding space, by having a vector for each entity.
GCNs use a message passing algorithm for the propaga-
tion rule. Because GCNs use a message passing scheme,
information from neighbouring nodes can influence the

Fig. 6: Here the blue dots represent the center vectors of
the boxes, the pink arrows represent the offset vectors
v, and the green arrows represent opposite offset vectors
−v. As seen here, adding and subtracting an offset vector
from a center produces two opposite corners of a box.

intermediate representation of a node.
The (layer-wise) propagation rule used by GCNs is:

H(l+1) = σ
(
D̃−

1

2 ÃD̃−
1

2H(l)W (l)
)
. (1)

Traditional GCNs treat all edges in the graph in the
same way (i.e. they share a weight matrix). However,
a specific type of GCN, called the relational graph
convolutional network or R-GCN (Schlichtkrull et al.
2017), can treat different types of edges differently by
using different weight matrices. Figure 5 is a diagram
of a graph representation turned into an embedding.
An R-GCN could treat the differently coloured arrows
differently, whilst a normal GCN could not. Our model
uses R-GCNs for creating anchor node embeddings and
query embeddings (see section IV).

II-C. STRUCTURED QUERY ANSWERING

As the name suggests, the task of structured query
answering involves answering structured queries. These
queries are embedded into the embedding space. Tradi-
tionally they are embedded as a point and the closest
entity to this point in then considered the answer to the
query. With such a setup a model is trained to embed
the queries as best as possible. Traditionally such a
model would use geometric interpretations of the logical
operations in the structured query (Hamilton et al. 2018;
Ren et al. 2020).
Our setup differs in multiple places from such a tra-
ditional setup. Firstly, as mentioned before our entities
and queries are boxes. Secondly, our model does not use
a pre-existing graph embedding, but instead generates
one. Finally, our model uses a message passing query
embedding (MPQE) model (Daza and Cochez 2020)
instead of geometric interpretations. We chose the MPQE



Fig. 7: Left: The query graph that is derived from to the query Vt.∃V1, Vt : is a(V1, Vt) ∧
located in(palace of westminster, V1). The variable nodes have a specific type (e.g. location for V1 and
location type for V2). Right: A subgraph extracted from a KG. This subgraph satisfies the conditions of the query.

because it has a good reported performance (Daza and
Cochez 2020) and because it can be trained on simple
query structures and still be effective on more involved
query structures (Daza and Cochez 2020).

III. DEFINITIONS
III-A. STRUCTURED QUERIES

For this experiment we are interested in structured
queries in the conjunctive form. As (Daza and Cochez
2020) show, structured queries can be represented as
a condition that should be met by the answers (target
entities). For example, the query ”select all projects P,
such that topic T is related to P, and both alice and bob
work on T.” could be written as follows:

P.∃T, P : related(P, T ) ∧ works on(alice, T )∧
works on(bob, T )

(2)

Here alice and bob are so called anchor nodes (i.e.
actual entities in the graph) and P and T are query
variables. Also seen in (Daza and Cochez 2020), the
general form a structured query with a conjunctive form
is as follows:

q = Vt.∃V1, . . . , Vm : r1(a1, b1)∧ . . .∧rm(am, bm), (3)

where ri ∈ R, and ai and bi are either entities in
the set of all graph entities V , or query variables in
{Vt, V1, . . . , Vm}. We will use this as the definition for
our structured queries.

III-B. BOXES

As mentioned before, traditionally entities and queries
get embedded as a point. Such a point is represented with
a single vector. There are multiple ways to describe a box

(i.e. axis-aligned hyperrectangle) in an embedding space.
To describe all possible boxes in an embedding space
with n dimensions, at least two vectors v1, v2 ∈ Rn are
required. One way to use these vectors to represent a
box is by letting one represent the center of the box and
by letting another be an offset vector (Ren et al. 2020).
As shown in figure 6, when this offset vector is added to
the center vector, one corner of the box is produced and
when subtracted from the center the opposite corner is
produced. So the center vector effectively determines the
location of the box, whilst the offset vector effectively
determines the size and shape of the box.

III-C. ANSWER FUNCTION

Since we also embed entities as boxes, our model
can not use the answer condition used by (Ren et al.
2020), where answers are points embedded within the
query box, and non-answers are embedded outside of
the query box. Instead our answer condition is based on
what entities overlap with a query box. If an entity box
has any overlap with a query box then it is considered
an answer to the query.
Allowing any amount of overlap (even with a volume
of 0) to be sufficient gives relatively much flexibility to
the embedding. In contrast if total overlap were to be
required (i.e. an entity box has to be fully embedded
within a query box to be considered an answer), likely
a more stable, but less flexible embedding would be
created.

IV. THE MODEL

Our model consists of three main parts: stored entitiy
embeddings, an R-GCN, and an MPQE model. The
model is designed to be trained and tested per query.



Fig. 8: Diagram of the full model. First the entity embeddings are given as an input to the R-GCN. The outputs
of the R-GCN representing the query anchor nodes are then passed to the MPQE model. This model then uses
these anchor embeddings along with generic type embeddings to produce a query embedding. The entity and query
embeddings are then used to calculate the loss.

Furthermore, a special loss function is used for training
the model.

IV-A. ENTITY EMBEDDINGS

The R-GCN model takes node embeddings as an
input. These node embeddings are remembered and are
trained with the model through backpropagation.
As mentioned before, each entity embedding consists of
a center vector and an offset vector. This setup allows
us to sample the initial center and offset vectors from
different distributions. We have chosen to sample the
center vectors from a uniform distribution. This allows
for the initial entity embeddings to be scattered evenly
over the embedding space. The offset vectors on the
other hand are sampled from a normal distribution. This
makes it so that the boxes initially tend to have a similar
size. Of course, the shapes and locations could drastically
vary after having been trained for some time.

IV-B. THE R-GCN

Our model uses an R-GCN to generate anchor node
embeddings from entity embeddings. This R-GCN has
separate weights for each relation type. As (Schlichtkrull
et al. 2017) show, the message-passing update rule for
the R-GCN is:

h
(l+1)
i = σ

∑
r∈R

∑
j∈N r

i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i

 , (4)

where N r
i denotes the set of neighbour indices of node

i under relation r ∈ R. ci,r is a problem-specific

normalization constant that can either be learned or
chosen in advance (such as ci,r = |N r

i |). Here the
∑

r∈R
and 1

ci,r
W

(l)
r h

(l)
j parts are responsible for the separate

weight matrices for the different relations.
The way the layers are connected is dependent on
the current query. A sample of negative targets (i.e.
entities which are not an answer to the query) is taken
from around the anchor nodes of the query. The edges
connecting these nodes to the anchor nodes are then
used to connect the R-GCN. The inverse of these edges
are also used for the R-GCN. For example, if the edge
(alice, relation 1, bob) is sampled, then the connections
corresponding to (alice, relation 1, bob) and (bob, re-
lation 1 inv, alice) are present within the R-GCN. The
reason these edges are chosen instead of the edges in the
subgraph corresponding to the query graph (see figure 7)
is because some queries have an enormous corresponding
subgraph. Such a subgraph could contain too many edges
for the model to train in a timely manner.
For our model the size of the hidden representations does
not change throughout the layers of the R-GCN.
For the non-linearity σ between the layers a ReLu
function is used, as it does not suffer from vanishing
gradients as the sigmoid function does.
Finally, at the last layer of the R-GCN, anchor node
embeddings are produced. These are actually simply
entity embeddings, but only the ones representing anchor
nodes in the current query are passed on to the MPQE
model.



IV-C. THE MPQE MODEL

Once the anchor nodes are generated the MPQE model
can start with generating the query embedding. Apart
from these anchor embedding, this model also uses
generic type embedding for the query variables (Daza
and Cochez 2020). These generic type embeddings are
generic embeddings that represent variable nodes with a
specific type. Similarly to the entity embeddings, these
embeddings get stored and are trained with backpropa-
gation.
This MPQE model then uses all the anchor and type
embeddings as an input for an R-GCN. The embeddings
and weights are shared for the different query structures
(see figure 10).
The output of the final layer of this R-GCN gets ag-
gregated to form the final query embedding. This query
embedding is then used in the loss function along with
the entity embeddings.

IV-D. LOSS

Our model uses a distance-based negative (Sun et al.
2019) sampling (Mikolov et al. 2013) loss function. A
distance metric is required to define what distance will be
calculated for the loss function. For our distance metric
we will use the Manhattan distance between the border
of an entity box and the center of a query box (see figure
9). Such a Manhattan distance metric has already been
proven effective for graph embeddings with queries as
boxes and entities as points (Ren et al. 2020).
Heavily inspired by (Ren et al. 2020), our distance metric
is defined as follows:

distbox(e;q) = distoutside(e ; closest(e;q)) +

α · distinside(e ; closest(e;q)),
(5)

where 0 < α < 1 is a fixed scalar factor and closest :
b1, b2 7→ v is a function that takes two boxes, b1, b2,
and returns the closest point v from b1 to the center of
b2. If b1 and b2 do not overlap, this point is also one
of the points of the surface of b1 that is closest to the
surface of b2.
It is important that α is used to downweight the inside
distance. This is important because once an entity box
has some overlap with a query box (i.e. the outside
distance is 0), it is already considered to be an answer.
Being even closer to the query box center does not make
an entity more of an answer.
Furthermore, distoutside and distinside are defined the same
as in (Ren et al. 2020):

Fig. 9: Here the orange box is a query box and the red
boxes are enitity boxes. The pink arrows represent the
outside distance, whilst the blue arrows represent the
inside distance.

distoutside(v;q) =

‖Max(v − qmax,0) + Max(qmin − v,0)‖1
(6)

distinside(v;q) =

‖Cen(q)−Min(qmax, Max(qmin,v))‖1
(7)

where Max : v1, v2 7→ vout and Min : v1, v2 7→ vout
represent functions that map two vectors v1, v2 to one
vector vout in which each element viout is equal to
respectively the maximum or minimum of vi1 and vi2.
Furthermore, ‖ ‖1 represents the L1 norm of a vector.
The loss function itself is a negative sampling loss func-
tion (Mikolov et al. 2013). Given the distance metric,
our loss is defined as follows:

L =

−
k∑

i=1

1

k
log σ(log(γ)− log(distbox((e;q)) + ω)) −

k′∑
i=1

1

k′
log σ(log(distbox(e

′
i;q) + ω)− log(γ)),

(8)

where e ∈ JqK is an answer to the query and e′i /∈ JqK
is not an answer to the query. Also γ is a fixed scalar
margin, k is the number of positive entities, k′ is the
number of negative entities, and ω is a small offset to
prevent the logarithm around the distance from being
undefined when an entity box overlaps with a query
center. Here we chose σ to be the sigmoid function to
stay more in line with the loss function from (Ren et al.
2020). Since this is the only part in our model where
we use the sigmoid function this is unlikely to result in
vanishing gradients.



We do not backpropagate the gradients directly from the
loss, but we instead use the Adam optimizer (Kingma
and Ba 2014), as it has as been proven to be an effective
optimizer in the past (Kingma and Ba 2014; Jais et al.
2019).

IV-E. UNSEEN NODES

It is possible that during training our model never
sees certain nodes. This would lead to these nodes still
using their initial embedding after training. This initial
embedding may not contain any useful information for
its entity, but the neighbourhood of this node still might.
Despite not being trained, these initial embeddings could
still be turned into something useful as the message
passing algorithm in the R-GCN model incorporates
information from the neighbourhood.

V. RELATED WORK

Currently not much research has been performed on
the topic of box embeddings. Our approach to boxes is
mostly inspired by (Ren et al. 2020). In (Ren et al. 2020)
they embed the queries as boxes, but not the entities.
Although they use a similar loss function and distance
metric, their approach to creating the query embeddings
is vastly different from ours. They use a more traditional
approach of using geometric interpretations of the query
operations (Hamilton et al. 2018), where we use an
MPQE model. Also they do not train and test their model
on queries with multiple answers.
Although less relevant for our work, in (Vilnis et al.
2018) a class of models that assign probability measures
to order embeddings is described. In their model they
embed entities as box latices. Although we have not
taken much inspiration from their work, it is still one
of the rare papers that uses box embeddings and the
only paper we could find which used box embeddings
for graph entities.
In (Daza and Cochez 2020) the message passing query
embedding (MPQE) model is introduced. As mentioned
before, we use this model for generating our query
embedding using anchor node embeddings provided by
an R-GCN and generic type embeddings.
Staying on the topic of models we used, in (Schlichtkrull
et al. 2017) the relational graph convolutional network
(R-GCN) is introduced. We use this model for generating
anchor node embeddings. Furthermore, an R-GCN is
used in the MPQE model.
These models we described (R-GCN and MPQE) both
use a message passing framework. In (Gilmer et al. 2017)
multiple message passing neural networks are described.

AIFB MUTAG AM Bio

Entities 2,601 22,372 372,584 162,622
Entity types 6 4 5 5
Relations 39,436 81,332 1,193,402 8,045,726
Relation types 49 8 19 56

TABLE I: Statistics of commonly used knowledge
graphs for graph representation learning and query an-
swering. We only use the AIFB dataset. From (Daza and
Cochez 2020).

The message passing framework used in (Schlichtkrull
et al. 2017), is inspired by special cases of a simple
differentiable message-passing framework (Gilmer et al.
2017).
The actual concept of GCNs was introduced in (Kipf
and Welling 2016). As the name suggests, the R-GCN
is based on GCNs. This in turn makes our model also
based on GCNs.
Although we use an MPQE model for generating our
queries, the method of training geometric interpretations
of the query operations to create graph embeddings
(Hamilton et al. 2018) has been around longer and has
therefore also currently been used more often in research
than the MPQE model.

VI. EXPERIMENTS

In our experiments we only consider the seven query
structures seen in figure 10. These specific query struc-
tures have been used before often (Ren et al. 2020; Daza
and Cochez 2020; Hamilton et al. 2018). Another reason
for just focusing on these query structures is that these
structures capture most commonly used queries (Arias
et al. 2011).

VI-A. DATA SETS

For these experiments we will use the AIFB data
set. This data set is publicly available and has been
used before for graph representation learning (Ristoski
et al. 2016; Ristoski and Paulheim 2016; Schlichtkrull
et al. 2017) and query answering (Daza and Cochez
2020). The statistics of this data set can be seen in table I.

• AIFB: A knowledge graph of academic
institution. The entity types in this knowledge graph
are persons, organizations, projects, publications,
and topics.



Fig. 10: The seven query structures we use. The blue circles are anchor nodes, the orange circles are variable nodes
and the green nodes as (variable) target nodes. The same names are used here as were used in (Ren et al. 2020).

VI-B. SAMPLING CONTROL

As mentioned in subsection IV-D, our model uses a
negative sampling loss. Our loss function can handle
multiple positive answers (i.e. actual query answers)
and multiple negative answers (i.e. entities that are not
answers to the query) for each query. Because we are in-
terested in queries with multiple answers, the possibility
to use multiple positive answers is an interesting option
to explore.
Our model only trains the entities sampled for the loss
function. Because of this, we can control the ratio of
trained positive answers to trained negative answers. In
the next subsection we describe how the amount of
positive and negative samples is determined for each
sampled query.

VI-C. NEW CHALLENGES

Since our model uses an MPQE model for embedding
the queries, sampling in the same way as in (Daza and
Cochez 2020) could seem like a good idea. There are a
few complication for our model when applying such an
approach.
Firstly, since we are interested in creating a model
that can handle queries with multiple answers, we will
need to find all the answers to a query for at least the
validation set and the test set. Without knowing all the
answers there is no good way to judge the performance
of the model for validation and testing. Although it is
in principle not required, we also opted to use multiple
positive answers during training.
Secondly, our model also uses an R-GCN to create
anchor node embeddings which are passed to the MPQE
model. The way in which the layers in this part of the
model should be connected should also be sampled with
the query. Theoretically the R-GCN could be connected

based on the full model. This way would not required
a sample per query, as the connections in the graph
stay constant. For computational efficiency we opted to
instead sample a subgraph from the full graph for each
query.
Apart from these additions our query sampling method
is very similar in effect to the one used in (Daza and
Cochez 2020).

VI-D. TRIVIAL SATISFACTION

The initial graphs we use are directed. Before ac-
tually searching for queries we create a graph that is
that same as the initial graph, but with the inverse
edges added. Our target node search algorithms can
use the same edge type and variable node type in
different places. For example, a query with the edges
((alice, has friend, v1), (v1, has friend, v2)), where
v1 and v2 have the same type.
Because our graph has the inverse edges added, any
query structure could be found by simply going back
and forth between two connected nodes. Figure 11 give
an example of such a trivially satisfied query. Because a
simple searching algorithm could suffer from this trivial
satisfaction our algorithms have specifically take this into
account.
Figure 12 show how sometimes seemingly trivial con-
nections may not actually be trivial.

VI-E. SAMPLING ALGORITHM

Our sampling algorithm we use to find queries with the
structures seen in figure 10 starts by sampling an edge
in the graph. From this edge it searches for one of the
aforementioned query structures. It does this by looking
at all candidates for the next edge and then selecting one.
For each chosen edge, its type and the type of the node
it is going towards are used to build the query. Whilst



Clock Scratch Memory Sockets Cache Cores GPUs Interconnect

1.70 GHz 1.5 TB NVME 256 GB UPI 10.4 GT/s 2 8.25 MB 12 4 x GeForce 1080Ti,11GB GDDR5X 40 Gbit/s ethernet

TABLE II: The specifications of the hardware available to us on the Lisa system. The models are trained, validated
and tested on the scratch file system.

Fig. 11: If a 3p search algorithm selects the
has friend edge it could find the following edges:
((alice, has friend, bob), (bob, has friend inv, alice),
(alice, has friend, bob)). There is no real 3p structure
here, but the inverse edges create these trivial cases.

doing this, the algorithm also finds all the answers to the
query. The algorithm also makes sure it does not sample
duplicate queries. The full algorithm is described in more
detail in the appendix.

VI-F. TRAIN, VALIDATION AND TEST SETS

Before actually sampling queries some edges are re-
moved form the original graph. Of the original edges
90% remain in the graph and 10% are put away for the
validation and test set.
This now smaller graph is used to sample the queries for
the train set from. This sampling happens as described
before.
For the validation and test set first an edge is sampled
from the 10% removed edges. The algorithm for sam-
pling validation and test queries is mostly the same as
the algorithm for the train queries, with the exception
that this sampled edge must be included at some point
within the sampled subgraph. This makes sure that every
query in the validation and test set contains information
not seen during training.
A set of queries is sampled in this manner. Of these
queries one eleventh is used for the validation set, whilst
the remaining queries are used for the test set. Since all
these queries are unique, no query appears in both the
validation and test set.
When validating and testing the first R-GCN is con-
nected based on the edge of the whole graph, as opposed
to a sample.

Fig. 12: If a 2p search algorithm selects the has friend
edge between alice and bob it could generate the fol-
lowing query: P.∃V1, V2, P : has friend(alice, V1) ∧
has friend inv(V1, V2). Although this query can be triv-
ially satisfied, it can also be satisfied in a non trivial
manner since bob as an outgoing has friend inv edge
that does not go back to alice.

VI-G. IMPLEMENTATION

Our model and the query generation code is imple-
mented in python. We use the R-GCN implementation
from pytorch geometric. The MPQE code we used is
found on github (Daza and Cochez 2020). The rest of the
code is implemented by ourselves and is also available
on github1. The code is written for in python 3.7.7 for
pytorch 1.5.0, with cuda 10.1.
These jobs were performed on the Lisa system2 from
SURFsara. The specifications of the hardware we used
on the Lisa system can be seen in table II.

VI-H. EXPERIMENTS

We perform two experiments on the AIFB data set.
In the first experiment we sample 8750 queries with
structures seen in figure 10. This number is chosen as
8750 queries roughly contain a million targets. This
model is trained for one epoch.
For the second experiment we sample 1250 queries, but
this time the queries only have the 1p structure. This
model is trained for seven epochs.
Both the validation and test set contain queries of all
seven structures seen in figure 10. For the validation
and test set 100 queries are sampled, 9 of which go to
the validation set. The remaining 91 queries go to the
test set. The same test set is used for both experiments.

1github.com/R-van-Bakel/BPAI Box-Embeddings
2https://userinfo.surfsara.nl/systems/lisa

https://github.com/R-van-Bakel/BPAI_Box-Embeddings
https://userinfo.surfsara.nl/systems/lisa


actual
value

predicted value

p n total

p′ 13,410 449 13,859

n′ 206,820 18,613 225,433

total 220,230 19,062

Fig. 13: Results of experiment 1. This model has a
precision of 0.061, a recall of 0.968 and an F1 score
of 0.115.

Hyperparameter tuning in only performed for the first
experiment. The chosen hyperparameter settings will
then be used for both experiments. This also means that
we only use the validation set for the first experiment.
The final hyperparameter settings can be found in the
appendix.

VII. RESULTS

Since using query boxes to find multiple answers to
queries has not been done before to our knowledge, we
do not have a proper baseline to compare our results to.
This may prove not to be a large problem as our focus
is not on getting state of the art results, but on figuring
out if query boxes could offer a viable way of giving a
finite set of answers to a query.
Figure 13 shows the results of the first experiment. With
a total predicted amount of positive targets of 220,230
and a a total predicted amount of negative targets of
19,062 the model seems very eager to consider an entity
an answer to a query. When considering that there are
much fewer actual positive targets than actual negative
targets, the model does not seem to perform very well.
Due to the model to predicting positive targets far to
often, the precision of the model is very low, but the
recall if very high. Because of this low recall, the F1
score for the model is also quite low.
As the model performs poorly, which is trained on 8750
unique queries of all seven structures, it is no surprise
that the model which is trained on 1250 unique queries
with only one query structure performs very poorly. As

actual
value

predicted value

p n total

p′ 2,704 11,155 13,859

n′ 131,221 94,212 225,433

total 133,925 105,367

Fig. 14: Results of experiment 2. This model has a
precision of 0.020, a recall of 0.195 and an F1 score
of 0.037.

figure 14 shows, the second experiment did not yield
good results.
Table III shows some statistics about the trained entity
boxes. This table shows the averages of the standard
deviation and mean of all dimensions of the center and
offset vectors. These values did not tend to vary much
among the dimensions of the respective vectors. For
example, the standard deviations for the dimensions of
the center vectors from the first experiment were all
between 55.9 and 58.1. As can be seen in table III, the
query boxes tended to have a similar size, but were still
very spread around.

VIII. DISCUSSION
There are multiple possible explanations for why the

results of the first experiment turned out the way they
did. The actual reason is likely a combination of these
explanations.
Firstly, the model considered entities an answer to a
query if their embeddings had any overlap with the query

Avg. Std. Avg. Mean

Experiment 1 Center 56.962 -0.145
Experiment 1 Offset 1.960 4.159
Experiment 2 Center 56.941 0.041
Experiment 2 Offset 1.963 4.155

TABLE III: The average standard deviations and means
of the dimensions of the center and offset vectors for
experiment 1 and experiment 2.



embedding. This relatively liberal criterion most likely
makes it very easy for entities to be considered an answer
to a query. A more conservative criterion requiring more
overlap could make the model predict negative targets
more often.
Secondly, we performed a relatively little hyperparameter
tuning. This may however likely not be a major cause for
the final results as the model performed very similarly
under the different hyperparameter settings.
Thirdly, the model is trained on considerably fewer
queries that what is typically the case. The reason for this
is that our model trains on multiple targets per query, but
it could be possible that this has a negative effect on the
model convergence. Such conclusions are still difficult to
make, as we have not found any research on this topic.
Fourthly, our loss function may simply not effect the
negative targets as much as it should. An alternative
loss function that would put more emphasis on moving
the wrong entity boxes away from a query box, could
potentially help with this problem.
Finally, this topic has not been studied much as of yet.
Because of this it is difficult to make many predictions
about the model in advance. This topic still requires
more research to be properly understood. Our setup was
very experimental, which should not make relatively bad
results a surprise. To gain better insight into the potential
of query and entity boxes more research is in order.
Apart from these explanations there is more to discuss
regarding the results. One thing to note is that table III
suggests that the entity boxes were not very big and
were spread out. This could suggest that the query boxes
for experiment 1 must have been quite large in order to
predict that amount of positive targets.
As for the second experiment the worse conditions (i.e.
less unique queries and only one used query structure)
are probably the reason the model performs worse that
the model from the first experiment. Due to the poor
results there is not much more interesting to say about
the performance in experiment 2.

IX. CONCLUSION
We have introduced Box R-GCN, a model that

uses axis-aligned hyperrectangles to represent knowledge
graph entities and structured queries. The results of
our experiments were quite poor and warrant further
experimentation.
Although the results are not conclusive there are still
many options available for different variants of the model
which may perform better. For example, the answer
function and the loss function could be changed to

something entirely different. Another part to experiment
with is the amount of answers used to train each query.
Right now our model uses all answers to a query for
training. Models that are not made to find multiple
answers to a query often train with only one target per
query. Our model could also be modified to do that. It
could than train on more queries, but with only one target
used for training per query. Our model could also be
modified to not use the full set of answers for training,
but to instead use a sample of these answers.
For now there are many ways to still experiment with
this model. If after some more experimentation better
results are achieved, it would be a good idea to also test
it on other data sets such as the ones seen in table I.
Altogether, with the result from both experiments, we
can not yet conclude whether box embeddings can be
used to give a finite set of answers to a query rather
than a ranking of results.

REFERENCES
Arias, M., Fernández, J. D., Martı́nez-Prieto, M. A., and

de la Fuente, P. (2011). An empirical study of real-
world sparql queries.

Daza, D. and Cochez, M. (2020). Message passing query
embedding. In ICML Workshop - Graph Representa-
tion Learning and Beyond.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O.,
and Dahl, G. E. (2017). Neural message passing for
quantum chemistry.

Hamilton, W. L., Bajaj, P., Zitnik, M., Jurafsky, D., and
Leskovec, J. (2018). Embedding logical queries on
knowledge graphs.

Jais, I. K. M., Ismail, A. R., and Nisa, S. Q. (2019).
Adam optimization algorithm for wide and deep neu-
ral network. Knowl. Eng. Data Sci., 2(1):41–46.

Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization.

Kipf, T. N. and Welling, M. (2016). Semi-supervised
classification with graph convolutional networks.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space.

Ren, H., Hu, W., and Leskovec, J. (2020). Query2box:
Reasoning over knowledge graphs in vector space
using box embeddings.

Ristoski, P., de Vries, G. K. D., and Paulheim, H.
(2016). A collection of benchmark datasets for
systematic evaluations of machine learning on the
semantic web. In Groth, P., Simperl, E., Gray, A.,
Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., and Gil,



Y., editors, The Semantic Web – ISWC 2016, pages
186–194, Cham. Springer International Publishing.

Ristoski, P. and Paulheim, H. (2016). Rdf2vec: Rdf graph
embeddings for data mining. In Groth, P., Simperl, E.,
Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck,
F., and Gil, Y., editors, The Semantic Web – ISWC
2016, pages 498–514, Cham. Springer International
Publishing.

Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg,
R., Titov, I., and Welling, M. (2017). Modeling
relational data with graph convolutional networks.

Sun, Z., Deng, Z.-H., Nie, J.-Y., and Tang, J. (2019).
Rotate: Knowledge graph embedding by relational
rotation in complex space.

Vilnis, L., Li, X., Murty, S., and McCallum, A. (2018).
Probabilistic embedding of knowledge graphs with
box lattice measures.



Appendix

SAMPLING ALGORITHM

Our sampling algorithm is implemented separately for
each considered query structure (see figure 10). All these
implementations start at some random edge in the graph.
For each implementation the edge labeled as 1 in figure
10 is sampled first. Since the graph is directed the first
anchor node can be determined based on the direction
of the edge. Once such a beginning has been found
the algorithm for finding all target nodes can continue
expanding from there. During this search the actual
query is also generated. One important property shared
between all the algorithms is that the initial edges are
sampled directly out of a set of edges. Another approach
could be to first sample an anchor node and to afterwards
sample one of its outgoing edges. Our approach make
any edge equally likely to be initially sampled, but this
also means that nodes with many edges connected to it
are more likely to be sampled as an anchor node or for
the first query variable.
For the 1p query structures the algorithm is very simple.
Once the initial edge is sampled, the first target node can
also be found as it is the node the edge is going towards.
After that, the other edges from the anchor node leading
to answers are searched. These edges need to have to
have the same type as the initial edge and the type of
the potential target needs to have the same as the initially
found target node. During this search the target nodes are
added to the set of target nodes target.
The 2p query structures the algorithm is very similar
to the 1p algorithm. First the whole 1p algorithm is
performed, but instead of a target set it produces a set of
variable candidates. Now an edge search is performed.
A set edge2 is created of all outgoing edges from these
nodes. One of these edges is then sampled to provide
the type of the second edge and the type of the target. If
this edge happens to have the inverse type of the previous
edge t1 inv, then a new search is performed. This search
traverses all edges in edge2. If any edge is found of type
t1 inv which does not go to the anchor node, the edge
type and target type are accepted. This is done to work
around the trivial satisfaction problem. Figure 12 gives
an example of such a case. Once a type for the second
edge and a type for the target node have been found,
the other edges in edge 2 with the same type and target
type are searched. The target nodes are then added to a
set target.
Similar the to the p2 algorithm, the 3p algorithm is sim-
ply an extension of the previous one. The p3 algorithm is

in fact the same as the p2 algorithm, except that another
edge search is performed before creating the target set.
This extra edge search only differs from the previous one
in how it deals with the trivial satisfaction problem. In
the p2 algorithm the anchor node was used to determine
whether an edge lead to trivial satisfaction. As can be
seen in figure 10, the third node is not preceded by
an anchor node. Since we combine all variable nodes
in sets, we have no information about the exact path
taken to reach later variable nodes. We only know that a
variable node is connected to some node in the previous
variable set or to the previous anchor node. Because of
this, to prevent trivial satisfaction the p3 algorithm does
not look if an edge goes to the previous anchor node, but
it looks if it goes to some node in the previous variable
set. If there is one edge for which this is not the case
the relation type and target type are accepted.
The 2i algorithm starts by first performing the the p1
algorithm. Then a set of outgoing edges is generated
form the variable nodes. One of these edges is sampled
to find the second anchor node, if this edge would lead
to trivial satisfaction then another edge is sampled until
there is no trivial satisfaction. The inverse of this edge
will be the second edge for the query. Now all outgoing
edges of this type from the second anchor node are
searched. This produces a set of nodes. To get the final
target set, the intersection between this set and the first
variable set is taken.
The 3i algorithm is simply an extended 2i algorithm.
Once the set intersection S is generated a third edge
is sampled from this in a similar manner as the second
edge, except now trivial satisfaction can occur from a
relation back to the first or second anchor node. Once
an eligible edge is found the third anchor node is found.
The inverse of this edge is then selected as the third edge
for the query. Now just as with the previous anchor nodes
a set is created with this anchor node and relation. The
intersection of this set and S then contains the final target
nodes.
The ip algorithm starts out with the 2i algorithm. Then
it performs an edge search like in the 2p algorithm.
The only additional thing in this algorithm is that trivial
satisfaction has to be prevented for with regards to both
anchor nodes.
Finally, the pi algorithm starts out with the 2p algorithm.
From this point on the algorithm continues to search for
a third edge and second anchor node, just as in the 2i
algorithm does for its second edge. To prevent trivial
satisfaction the same rules as in the 3p algorithm are
used.



One final thing to notice is that if at any point in any
of the algorithms no edge can be found to further the
algorithm, the whole algorithm starts over again.

HYPERPARAMETER SETTINGS

• Embedding Dimension 128

• Number of RGCN layers 3

• Number of MPQE layers 3

• Learning rate 0.0001

• Weight Decay 0.0005

• Number of bases RGCN 98

• Number of bases MPQE 98

• MPQE readout mp

• MPQE scatter operation add

• α 0.2

• γ 24

• ω 0.001


	Introduction
	Research Focus
	Introduction To Query Boxes
	Introduction To Entity Boxes

	Background
	Message Passing
	Graph Convolutional Networks
	Structured Query Answering

	Definitions
	Structured Queries
	Boxes
	Answer Function

	The Model
	Entity Embeddings
	The R-GCN
	The MPQE model
	Loss
	Unseen nodes

	Related Work
	Experiments
	Data sets
	Sampling Control
	New Challenges
	Trivial Satisfaction
	Sampling Algorithm
	Train, Validation and Test sets
	Implementation
	Experiments

	Results
	Discussion
	Conclusion
	Appendix

