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Abstract. Knowledge Graph Embedding (KGE) models concern the
representation of information from Knowledge Graphs (KGs) into vector
representations. Although KGs are characterised by incompleteness, new
knowledge is generated every day and thus, new facts can be added.
However, experiments to obtain new knowledge are often costly and time
consuming. Therefore, I propose a Link Interestingness measure that
ranks potential triples based on how much information they provide. I
evaluate the proposed measure based on the impact of adding triples as
positive and negative triples to the training set, which will be referred
to as positive and negative oversampling respectively. The results show
that larger amounts of oversampling have an impact on the distribution
of Link Prediction (LP) scores. This indicates that this proposed model
should identify interesting links with some degree of significance. Further
research could extent this model by looking at additional factors that
impact link interestingness. In addition, future research could consider
optimizing all parameters to increase the validity of the proposed model.

Keywords: Knowledge Graph · KG Embedding · Link Interestingness · Link
Prediction
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1 Introduction

The increasing amount of knowledge and information calls for means to ac-
curately and efficiently model this knowledge. In recent research, attention has
been drawn to representing knowledge in the form of KGs (Ji et al., 2021). KGs
represent facts as triples where the subject and object represent entities and the
predicate represents the relation between them. KGs can contain large amounts
of facts about our world. As a result, KGs can be used for various applications
in numerous domains (Kazemi & Poole, 2018). However, a major downside to
the use of KGs is that KGs are incomplete, meaning that facts are missing from
the KG.

One method to infer new links in KGs is LP. LP concerns the prediction of
new links between entities based on existing links in the network (Y. Yang et
al., 2015). LP largely serves two purposes. Firstly, LP can infer links that could
be added in the future, therefore expanding the existing network. LP can also
predict missing links. This second task aims at completing the existing network.
Secondly, LP methods generate scores for the probability of a link being true.
Although LP has valuable utilization, often not all links predicted are relevant
(Pusala et al., 2017).

Link interestingness is a topic that is widely discussed in academic research
(McGarry, 2005; Kontonasios et al., 2012; Pusala et al., 2017; Silberschatz &
Tuzhilin, 1995). However, the definition of interestingness is still to be deter-
mined uniformly. In this paper, link interestingness is defined as the impact that
a link has on the information gain within the KG. More specifically, this means
that interesting links impart significant new knowledge to the KG. Although LP
methods give predictions of the plausibility of a link, these predictions are not al-
ways reliable (Y. Yang et al., 2015). In real-world settings, especially biomedical
settings, a reliable level of accuracy of these predictions is essential (Szilagyi et
al., 2005). Experimental methods can be used to determine if a link is actually
true or false. However, these experimental methods are often costly and time
consuming.

Therefore, there is a need for an interestingness measure that can determine
which links should be prioritised to experimentally test. In this work, these are
thus links that increase the information gain significantly, when the plausibility
of these links are known. This paper proposes an interestingness measure based
on the difference in LP scores. Three situations are considered, namely scenario
S,A and B, where in A the link is assumed to be true, in B the link is assumed
to be false and in S it is unknown whether the link is true or false. This paper
focuses on the following research question: to what extent can we evaluate the
interestingness of a link by analyzing LP scores after oversampling potential
triples?

The remainder of this paper is structured as follows. Section 2 gives an
overview of background information and related works. Section 3 showcases the
experimental setup and methodology. Section 4 displays an evaluation of the
results. A discussion is provided in Section 5. Section 6 concerns the conclusion.
Section 7 briefly highlights suggestions for future research.
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2 Related Work

This section summarizes recent research that contributes in the understand-
ing of this research experiment.

2.1 KGE models

KGE models are a form of machine learning tasks which learn to represent
KGs as low-dimensional vectors or matrices. Q. Wang et al. (2017) provide a
review of different knowledge embedding models, such as translational distance
models and semantic matching models. KGE models represent KGs using entities
and relations from the KG, which they then transform into vectors or matrices.

The authors mention several downstream tasks that could be performed using
KGE models. Some of the most popular tasks include: LP, triple classification,
entity classification, entity resolution and node classification.

In addition, the authors describe tasks that extent beyond the KGs. These
tasks reach further than KGs and are used in a wide variety of domains. These
tasks include: relation extraction, question-answering and recommender systems.

To investigate the effect of several models, the authors have trained the KGE
models under an open world assumption (OWA) and tested these models on ef-
ficiency and performance on downstream tasks. OWA assumes that the links
present in a KG are true, and that links absent in the KG may be true. Mod-
els which transform KGs into vectors are concluded to be most efficient. These
models are characterised by a smaller space and time complexity than the mod-
els which transform KGs into matrices. Against expectations, the models with
smaller space and time complexity did not perform significantly worse than the
more costly models. The authors explain that this could be an overfitting issue
caused by the smaller size of the datasets used.

Lastly, different types of additional information that could be included in the
knowledge embedding models are described. These types include: entity types,
relation paths, textual descriptions and the implementation of logical rules to
derive additional information.

Nickel et al. (2015) review different statistical models that can be trained
to predict new relations and new information about objects in KGs. These ob-
jects are entities, which are linked to other entities through edges. These edges
represent relations between entities, and properties of these entities. Such combi-
nations of two entities and an edge between them are called triples. KGs provide
information that can be interpreted by computers. New information in the KG
is predicted based on already existing information present in the KG. Nickel et
al. (2015) review multiple models.

Latent feature models infer new information based on knowledge that is
not explicitly stated in the data. The relationships between entities can be
inferred from interactions of their latent features. These interactions can be
shaped by different ways of modelling. Nickel et al. (2015) mention several mod-
els: RESCAL (bilinear model), Tensor factorization models, Matrix factorization
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models, Multi-layer perception models, Neural tensor networks and Latent dis-
tance models. The results indicate that the performance of each model is dataset
dependent. Latent feature models are best used to infer relational patterns in
the whole KG from new latent variables. The computational cost can be lowered
by reducing the number of latent variables.

Graph feature models infer new information based on observable information
in the KG. The authors also discuss several graph feature models: Similarity
measures for uni-relational data, Rule Mining and Inductive Logic Programming
and Path Ranking Algorithm. Graph feature models are best used to derive local
patterns. The computational cost of graph feature models can be decreased if
relations between entities can be explained from the distance of entities.

Furthermore, the authors consider the combination of latent feature models
with graph feature models. They state that the combination of both models
can yield better results as the authors believe that the models complement each
other to increase predictive performance. The models can be combined by adding
one model to the other or by collecting separate outputs from both models and
combining these outputs as an input for another system.

Moreover, the authors describe different elements that should be considered
while training the aforementioned models. The authors indicate that implement-
ing negative samples in your model can be a demanding task. They define dif-
ferent models to cope with this problem, such as creating a local-closed world
assumption or generating potentially false edges from text extraction methods.

Lastly, Markov Random Fields are considered. Markov Random Fields as-
sume that triples are conditionally dependent. This means that every triple could
be dependent on every other edge and entity. This can lead to scalability issues.
However, the number of dependencies can be scaled down by only considering a
part of them. The authors conclude that Markov Random Fields are maleable,
but that they are more difficult to use for scalable inference than latent feature
models and graph feature models.

Training knowledge embedding models relies on the positive as well as the
negative links between entities (Kotnis & Nastase, 2017). These positive links
represent the presence of a relation between two entities. Negative links repre-
sent the absence of a relation between two entities. Kotnis and Nastase (2017)
investigate the impact of negative links on knowledge embedding models. The
authors test the effect of negative links on different LP models by using different
negative sampling methods to train the knowledge embedding models. Kotnis
and Nastase (2017) describe that embedding based negative sampling is best
used for KGs suffering from data inadequacy. In contrast, for data rich KGs,
sampling from corruption is stated to be the best option. The effect of the neg-
ative sampling method is dependent on the relation types embedded in these
KGs.

2.2 Link Prediction tasks

To perform computations on KGEs (KGE), a framework is needed. PyKEEN
is a python based framework which can carry out such computations (Ali et al.,
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2019). Ali et al. (2019) perform a LP task on a biomedical KG using PyKEEN.
PyKEEN can be used to train and evaluate KGEs’s. Using PyKEEN for LP
tasks, a score for every possible link can be generated. This score represents the
likelihood that this link is true. The authors claim that PyKEEN can be used
in any domain, which gives PyKEEN a high usability.

Pujari and Kanawati (2012) propose a rank aggregation approach for LP in
complex network. They describe rank aggregation as the difference between two
rankings. They mention the Spearman Footrue distance, which computes the
distance as the difference between the rankings of each element, and the Kendal
Tau distance, which compares two lists and finds the number of disagreements
as distance metrics to determine the difference between two rankings.

The authors investigate the implementation of adding weights to the rankers
to increase performance of the rank aggregation methods. The authors add
weights to both Borda’s method and local Kemeny optimal method. Further-
more, multiple ways to calculate these weights are introduced and described.
They evaluate their models using rankings of attribute values of the KG. The
authors claim that their approach is promising and that it seems to outperform
classical machine learning algorithms for LP.

LP is realized by comparing nodes in a KG. This comparison often comes
in the form of structural similarity (Zhang et al., 2018). Zhang et al. (2018)
review 18 similarity metrics and observe their performance on link prediction
and spurious link elimination. The performance of the 18 similarity algorithms
is evaluated with the area under the receiver operating characteristic curve or
AUC.

The authors have found that algorithms with high predictive accuracy per-
form badly on spurious link identification. Moreover, the algorithms seem to be
impacted by noise. Noise impacts the performance of LP tasks more than the
performance of spurious link identification. Moreover, an index is created which
depicts the correlation between the AUC of the algorithm on LP and the AUC
of the algorithm on spurious link identification. The results show that the algo-
rithms perform on average more stable for spurious link identification than for
LP. In addition, the authors state that the 18 algorithms can be categorized into
three classes, namely: node-based similarity algorithms, path-based similarity
algorithms and Bayesian similarity estimation algorithms.

2.3 Interestingness

Link interestingness is an important aspect of LP tasks (Pusala et al., 2017).
Although interestingness measures have been studied widely in other fields such
as data mining, Pusala et al. (2017) claim that, to the best of their knowledge,
interestingness measures are not yet used to identify the importance of predicted
links in LP tasks. Therefore, the authors introduce a rank based approach to
rank predicted links based on their importance. The authors analyze thirteen
different interestingness measures and state that their approach can predict the
rank of future predicted links more precisely than predicting the score of an un-
known link. In contrast to aforementioned related work, this paper investigates
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link interestingness as a measure based on link prediction scores resulting from
overesampling triples. In this work, the effect of positive and negative oversam-
pling are emphasized as an evaluation metric for the proposed link interestingness
measure. To the best of my knowledge, this approach is not yet experimented
with and should thus contribute to research into link interestingness.

3 Methodology

The main objective of this paper is to develop and evaluate a method to
measure link interestingness. To achieve this objective, the method presented in
this paper computes an estimated impact that a predicted link has on the infor-
mation gain of the KG. This section explains the approach, as well as important
factors that were taken into consideration.

3.1 Experimental setup

This research experiment is focused on proposing and investigating a link
interestingness measure for KGs. This measure is constructed based on the im-
pact that certain triples have on the information gain in the KG. The impact
is computed by measuring the difference in rankings of a LP task under the
assumption that a triple is positive or negative compared to the situation where
the plausibility of this triple is unknown.

In this research, I perform my experiments onto a subset of the Freebase
15k (FB15K) dataset and onto a subset of the WordNet18 (WN18) dataset. The
FB15k contains 592,213 triples formed from 14,951 entities and 1,345 relations
and was first introduced by Bordes et al. (2013). Moreover, this dataset is well-
known in the field of KGEs and is believed to be a benchmark dataset (M. Wang
et al., 2021). However, Akrami et al. (2018) discovered that the inverse of triples
in the training set corresponded with triples in the testing set. To prevent this
problem, I use the FB15k-237 dataset, which is a subset of FB15k, where the
inverse duplicate relations are removed. The WN18 dataset contains 141,442
triples with 18 relations scraped from WordNet and was also introduced by
Bordes et al. (2013). Similar to the FB15K dataset, inverse relations from the
training set resulted in a large amount of triples in the testing set. Therefore,
I use the WN18RR dataset instead, which addresses this issue. Relevant KG
statistics for these two datasets are shown in Table 1.

Dataset Fb15k237 WN18RR

number of entities 14505 40559
number of relations 237 11

Table 1. KG statistics for each dataset

The proposed approach has a time complexity of O(n3), as each pair of enti-
ties in the dataset needs to be tested with all relations in the dataset. Especially



Title Suppressed Due to Excessive Length 7

with large datasets, the computational costs scale up relatively quickly. I sug-
gest the following technique to address this problem. The entities are first being
clustered using a K-medoids algorithm. The number of clusters to be formed was
derived from the ”elbow” method. The results from the K-elbow algorithm are
shown in Figure 1 and Figure 2. For each of these clusters, the medoid is taken
which serves as a representative entity for that cluster. From these medoids, all
possible combinations of medoids are derived. These entity pairs are used as
head-tail combinations, which act as representative head-tail combinations.

Fig. 1. Distortion score for Kmedoids clus-
tering (FB15k237)

Fig. 2. Distortion score for Kmedoids clus-
tering (WN18RR)

After clustering, the KGE model is trained and a LP task is performed.
This situation will be referred to as situation S. In this situation, it is unknown
whether a potential triple is true or false. The LP task is performed on the
representative head-tail combinations. From the LP task, a list with scores is
gathered in which probabilities for all relations between the head-tail combina-
tions are shown. From this list, triples that were not present in the training set
are collected. Between the representative head-tail combinations, a number of
relations is inserted to create triples. As the WN18RR dataset only contains 11
relations, 11 relations are inserted for both datasets. For the FB15k237 dataset,
these are 11 random relations. The resulting triples should be triples that were
not yet present in the training set. These triples represent links that are not yet
known, which makes them relevant to inspect. Each of these triple are then pos-
itively and negatively oversampled, which will be referred to as situation A and
situation B, respectively. In both situation A and B, a LP task is performed on
the representative head-tail combinations. The interestingness measure is calcu-
lated by comparing the scores from situation A and B to situation S. A diagram
showing this process is provided in Appendix A. The difference in rankings is
computed by the Kendall (Tau’s) rank correlation coefficient. Kendall Tau’s is
a non-parametric test which provides a score for the correlation between two
rankings (Brandenburg et al., 2013). The difference in scores should provide an
indication of the impact of a triple, where a large difference indicates a higher
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impact. The interestingness measure is then defined as follows:

Eint(h, r, t) = P (A)
−1

τ(S,A)
+ P (B)

−1

τ(S,B)
(1)

where Eint represents the expected interestingness, A represents the situation
in which the triple is assumed to be true, B represents the situation in which
the triple is assumed to be false and S represents the situation in which it is
unknown whether the triple is true or false. The τ value represents the corre-
spondence between the scores resulting from the LP task. Furthermore, the τ
value is a value between 1 and -1, where a value close to 1 represents a strong
agreement and values close to -1 a strong disagreement. Therefore, a large ex-
pected interestingness indicates a higher impact on the information gain and a
smaller expected interestingess indicated a lower impact on the information gain.
The proposed model is evaluated on the distribution of scores resulting from the
LP task in situation S, A and B. I perform a z-test to determine the impact of
oversampling on the distribution of scores.

The model is built on a pipeline function built-in PyKEEN. In the PyKEEN
pipeline different variables can be set to train the embedding model. These vari-
ables include: dataset, KGE model, number of epochs, loss function, training
loop, negative sampling method and learning rate. Next, these variables and their
values are explained and justified.

To embed the KG into a vector space representation, the RESCAL rela-
tion learning aproach is used. RESCAL was first introduced by Nickel et al.
(2011). RESCAL is a latent factor model that takes the structure of the KG into
account to create tensors. Tensors are multidimensional arrays which describe
relationships related to vector spaces (Kolda & Bader, 2009). RESCAL suffers
from overfitting due to the large amount of parameters. (Kong et al., 2019) The
scoring function for RESCAL is defined as follows:

f(h, r, t) = eThWret =

d∑
i=1

d∑
j=1

w
(r)
ij (eh)i(et)j (2)

As Nickel et al. (2015) describe in their review of relation machine learning
models, training under the open world assumption (OWA) leads to underfitting.
Under the open world assumption, triples that are not yet present in the KG
are considered to be obscure. OWA assumes that the relation of this triple could
be true and it could be false. For this research experiment, I use a training loop
under the closed world assumption (CWA).

PyKEEN provides two CWA training loops to train the embedding model, a
local closed world assumption (LCWA) training loop and a stochastic local closed
world assumption (sLCWA) training loop. For this particular experiment, the
sLCWA training loop is used. The sLCWA method is used as it directly impacts
oversampling and therefore this research experiment. With a sLCWA, triples can
be assumed to be true or false based on their presence in the KG. The sLCWA
training loop also comes with advantages over the LCWA training loop. The
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LCWA training loop considers triples that are not present in the KG as negative
triples, based on one of three strategies. These strategies are categorized in a
head, relation and tail strategy, in which the negative triples are generated based
on the presence of either the head or tail in the set of entities and the presence
of a relation in the set of relations. The sLCWA takes a random subset of the
union of the head and tail strategies of the LCWA training loop. The sLCWA
method reduces the computational workload, affects a small set of the KGE and
it creates the opportunity to develop novel negative sampling strategies.

As a loss function, I use the binary cross entropy loss (BCE With logits Loss).
This loss function is formulated as follows:

L(h, r, t) = −(l(h, r, t)·log(σ(f(h, r, t)))+(1−l(h, r, t))·log(1−σ(f(h, r, t)))) (3)

where σ(x) represents the sigmoid function:

1

1 + exp(−x)
(4)

and where f represents the interaction function f : E ×R× E → R and where l
represents the label function l : E ×R×E → {0, 1}, where E represents the set of
entities and R represents the set of relations. In contrary to MarginRankingLoss,
the BCE With logits Loss considers absolute values of the scores instead of only
the relative difference in scores. Furthermore, the cross entropy loss function can
be used to show the LP scores as the result of a sigmoid function. This is needed
to gather the right probabilities that are used in the interestingness measure.

The number of epochs set, which refers to the amount of training loops
the model trains on, is different per dataset. As Figures 3 and 4 show, the loss
converges to 0 as the amount of epochs increases. Therefore, I choose the number
of epochs based on the epoch after which the difference in losses is smaller than
1e−06. The number of epochs are 13 and 47 for the FB15k-237 and the WN18RR
dataset, respectively. With these number of epochs, the model should be trained
sufficiently to yield significant scores.

To create the assumption that a triple is positive or negative, the triple is
both positively and negatively oversampled. Z. Yang et al. (2020) express the im-
portance of negative sampling in training Knowledge Embedding Models. They
prove that negative sampling is as important as positive sampling. The set of
triples that are not present in the KG are labeled as negative under the closed
world assumption. This implies that there are significantly more potential nega-
tive triples than positive triples. PyKEEN comes with a basic negative sampling
strategy which uniformly randomly corrupts triples using either of two opera-
tions. These operations either corrupt the head or the tail of a triple. Table 2
shows these operations.

In the situation where the triple is assumed to be positive, the basic negative
sampling strategy is used. On the contrary, in the situation where the triple is
assumed to be negative, the triple is negatively oversampled using a new negative
sampling strategy. This new negative sampling strategy is used to negatively
oversample specific triples instead of randomly uniformly corrupting triples. This
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Fig. 3. Losses in situation S per epoch
(FB15k237)

Fig. 4. Losses in situation S per epoch
(WN18RR)

Corrupt Heads H(h, r, t) = {(h′, r, t)|h′ ∈ E ∧ h′ ̸= h}
Corrupt Tails T (h, r, t) = {(h′, r, t)|t′ ∈ E ∧ t′ ̸= t}

Table 2. Corruption operations

is needed to assume that a specific triple is negative (situation B). The new
negative sampling strategy builds on the basic negative sampling strategy. In
addition to uniformly randomly corrupting triples, the new negative sampling
strategy replaces a portion of the corrupted set with the to be oversampled triple.

In addition, I experimented with multiple learning rates to find that the
learning rate λ = 0.0001 performs best. Table 3 shows the variance in scores
for each learning rate that I experimented with. 3 shows that there is a local
optimum for the learning rate. Although the variance is still very low for λ =
0.0001, the variance for λ = 0.0001 is significantly higher. Important to note is
that the variance for λ = 0.0001 is higher for the FB15k237 dataset than for the
WN18RR dataset. This is largely due to the size of the relation set.

Learning Rate λ
Dataset 0.001 0.0001 0.00001

FB15k237 0.000 0.012396 0.000
WN18RR 0.000 0.00085 0.000

Table 3. Variance in LP scores in situation S for each learning rate
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4 Findings

This section concerns the main findings of this work. The proposed inter-
estingness measure is evaluated on the impact of both positive and negative
oversampling. The impact of positive and negative oversampling is measured
by performing a two-sampled z-test. Z-test approximates whether two sample
means are the same or different and is defined by formula 5, where X1 and X2

represent the sample mean, µ1 and µ1 the population mean, σ1 and σ2 the stan-
dard deviation of the population and n1 and n2 the sample size corresponding
to the LP scores resulting from situation S and A. The z-test is performed on
the scores resulting from the LP task in situation S and the scores resulting
the LP task after oversampling a triple. This implies that the impact is mea-
sured for every oversampled triple. For each oversampled triple, the expected
interestingness is calculated. To further evaluate the model, the triple with the
highest expected interestingness for each amount of oversampling is examined.
This triple is evaluated on the impact that this triple has on the LP scores.

Z =
(X1 −X1)− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

(5)

Using the Z-test statistic, I test the following null hypothesis and alternative
hypothesis against each other for each oversampled triple.

H0 : µ1 − µ2 = 0 (6)

H1 : µ1 − µ2 ̸= 0 (7)

Using the Z-test statistic, I test the following null hypothesis and alternative
hypothesis against each other for the triples with the highest expected interest-
ingness.

H0 : µ1 − µ2 = 0 (8)

H1 : µ1 − µ2 > 0 (9)

If the resulting p-value < 0.05, the null hypothesis is rejected. For each over-
sampled triple, this means that there is sufficient evidence to conclude that the
two sample means from the distribution of LP scores are different. For the triples
with the highest expected interestingness, this means that there is sufficient ev-
idence to conclude that the sample mean from the LP scores are higher when
adding this triple with the highest expected interestingness. This indicates that
oversampling has an impact on the resulting LP scores. In addition, the average
variance of the distributions of all triples is measured. The distribution of the
scores resulting from the LP task in situation S are shown in Figure 5 and Figure
6.
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Fig. 5. Distribution of scores in situation
S (FB15k237)

Fig. 6. Distribution of scores in situation
S (WN18RR)

4.1 Positive Oversampling

The results from the z-test for positive oversampling are summarized in Ta-
ble 4. Furthermore, Table 4 displays the average variance of the distributions
resulting from the LP task in situation A. The columns are divided into three
parts, which correspond to three different amounts of oversampling. These per-
centages show how many triples, relative to the amount of triples present in the
training set in situation S, are added in situation A. For each part, the average
variance and the percentage of p-values where the p-values < 0.05 are shown. A
full list of all the p-values for each triple are shown in Table 8, 9, 10 and 11 in
appendices B, C, D and E.

FB15k237 WN18RR
0.01% ∥ 0.1% ∥ 1% ∥ 0.01% ∥ 0.1% ∥ 1%

avg. variance 0.094 0.068 0.001 0.013 0.001 0.000
p-value < 0.05 0.0% 0.0% 100% 0.0% 0.0% 0.0%

Table 4. Effect of positive oversampling on the distribution of scores for each percent-
age of oversampling

The results show that the average variance decreases for a higher percentage
of oversampling for the FB15k237 dataset. Similar to the average variances of
the FB15k237, for the WN18RR dataset, the average variance decreases with a
higher percentage of oversampling. This suggests that positive oversampling has
an impact on the distribution of LP scores. Table 4 furthermore shows that for
1% oversampling the p-values < 0.05 for the FB15k237 dataset. Therefore, for
1% oversampling for the FB15k237 dataset, I reject the null hypothesis. This
indicates that 1% positive oversampling for the FB15k237 dataset is correlated
with impacting the distribution of LP scores. All other scenarios for positive
oversampling resulted in p-values larger than 0.05. Therefore, in these scenarios,
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the null hypothesis is not rejected. This indicates that 0.01% and 0.1% positive
oversampling are not correlated with impacting the LP scores for the FB15k237
dataset. This implies that larger amounts of positive oversampling impact LP
scores, which suggests that the proposed interestingness measure should yield
significant results for the appropriate amount of oversampling on the FB15k237
dataset. Moreover, it is shown that 0.01%, 0.1% and 1% oversampling are not
correlated with impacting the LP scores for the WN18RR dataset. This indicates
that the proposed interestingness measure should not yield significant results for
the WN18RR dataset for 0.01%, 0.1% and 1% positive oversampling.

Fig. 7. Distribution of scores in situation A with 0.01% positive oversampling with
from left to right the FB15k237 and the WN18RR dataset

Fig. 8. Distribution of scores in situation A with 0.1% positive oversampling with from
left to right the FB15k237 and the WN18RR dataset

Figure 7, Figure 8 and Figure 9 display the distributions of LP scores in
situation A for each oversampled triple for each percentage of oversampling.
These figures show that 0.01% and 0.1% positive oversampling have a relatively
small impact on the distribution of LP scores, whereas 1% positive oversampling
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Fig. 9. Distribution of scores in situation A with 1% positive oversampling with from
left to right the FB15k237 and the WN18RR dataset

has a relatively large impact on the distribution of LP scores. These results are as
expected. In addition, these figures show that for an increasing amount of positive
oversampling, the LP scores tend to fluctuate more around 0.5. Moreover, the
figures show that positive oversampling also has an impact on the distribution
of LP scores for the WN18RR dataset, which was not seen in the z-test. This
implies that for both datasets, the proposed interestingness measure should yield
significant results for the appropriate amount of positive oversampling.

FB15k237 WN18RR
0.01% ∥ 0.1% ∥ 1% ∥ 0.01% ∥ 0.1% ∥ 1%

expected interestingness -1.005 -1.020 -1.091 -1.022 -1.027 -1.053
z-score 0.376 0.503 -19.514 0.505 1.423 1.750
p-value 0.354 0.308 1.0 0.307 0.077 0.040

in test set False False False False False False

Table 5. Effect of positive oversampling on the LP scores for each percentage of
oversampling for the triple with highest interestingness

The effect of positive oversampling for the triples with the highest expected
interestingness is presented in Table 5. Table 5 shows that the expected inter-
estingness is relatively low. Furthermore, for the FB15k237 dataset with 1%
oversampling, the z-score is negative, which implies that the mean LP score is
lower when the triple with the highest expected interestingness is added. How-
ever, for 0.1% and 0.01% oversampling, the z-scores are positive, which implies
that the mean LP score is higher when the triple with the highest expected inter-
estingness is added. For the WN18RR dataset, this is the case for each amount
of oversampling. This suggests that the effect of positive oversampling is dataset
dependent. For the WN18RR dataset with 1% oversampling, the p-value < 0.05.
Therefore, for the WN18RR dataset with 1% oversampling, I reject the null hy-
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pothesis. This indicates that the LP scores for 1% positive oversampling are
significantly higher when the triple with the highest expected interestingness is
added to the WN18RR KG. Table 5 furthermore shows that the triples with the
highest expected interestingness were not in the testing set. Therefore I assume
that these triples are actually negative triples.

4.2 Negative Oversampling

The results from the z-test for negative oversampling are summarized in Table
6. The results show that the average variance decreases for a higher percentage
of oversampling for both datasets. Although the variances for 0.01% and 0.1%
oversampling are equal, the variance for 1% oversampling is near zero. Table 6
further shows that for 1% oversampling the p-values < 0.05 for the FB15k237
dataset. Therefore, for 1% oversampling for the FB15k237 dataset, I reject the
null hypothesis. This indicates that 1% negative oversampling for the FB15k237
dataset is correlated with impacting the distribution of LP scores. All other
scenarios for negative oversampling resulted in p-values larger than 0.05. There-
fore, in these scenarios, the null hypothesis is not rejected. This indicates that
0.01% and 0.1% negative oversampling are not correlated with impacting the LP
scores for the FB15k237 dataset. This implies that larger amounts of negative
oversampling impact LP scores, which suggests that the proposed interestingness
measure should yield significant results for the appropriate amount of oversam-
pling on the FB15k237 dataset Moreover it is implied that 0.01%, 0.1% and 1%
oversampling are not correlated with impacting the LP scores for the WN18RR
dataset. This indicates that the proposed interestingness measure should not
yield significant results for the WN18RR dataset for 0.01%, 0.1% and 1% nega-
tive oversampling.

FB15k237 WN18RR
0.01% ∥ 0.1% ∥ 1% ∥ 0.01% ∥ 0.1% ∥ 1%

avg. variance 0.100 0.100 0.001 0.024 0.024 0.000
p-value < 0.05 0.0% 0.0% 100% 0.0% 0.0% 0.0%

Table 6. Effect of negative oversampling on the distribution of scores for each per-
centage of oversampling

Figure 10, Figure 11 and Figure 12 display the distributions of LP scores
in situation B for each oversampled triple for each percentage of oversampling.
These figures show that 0.01% and 0.1% negative oversampling have a near zero
impact on the distribution of LP scores, whereas 1% negative oversampling has
a significant impact on the distribution of LP scores. Moreover, the figures show
that negative oversampling has an impact on the distribution of LP scores for
both datasets. This implies that for both datasets, the proposed interestingness
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Fig. 10. Distribution of scores in situation A with 0.01% negative oversampling with
from left to right the FB15k237 and the WN18RR dataset

Fig. 11. Distribution of scores in situation A with 0.1% negative oversampling with
from left to right the FB15k237 and the WN18RR dataset

Fig. 12. Distribution of scores in situation A with 1% negative oversampling with from
left to right the FB15k237 and the WN18RR dataset

measure should yield significant results for the appropriate amount of negative
oversampling.
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FB15k237 WN18RR
0.01% ∥ 0.1% ∥ 1% ∥ 0.01% ∥ 0.1% ∥ 1%

expected interestingness -1.020 -1.020 -1.142 -1.027 -1.027 -1.258
z-score 0.054 0.054 -18.567 0.100 0.100 1.750
p-value 0.478 0.478 1.0 0.460 0.460 0.040

in test set False False False False False False

Table 7. Effect of negative oversampling on the LP scores for each percentage of
oversampling for the triple with highest interestingness

The effect of negative oversampling for the triples with the highest expected
interestingness is presented in Table 7. Similar to Table 5, Table 7 shows that
the expected interestingness is relatively low. Furthermore, for the FB15k237
dataset with 1% negative oversampling, the z-score is negative, which implies
that the mean LP score is lower when the triple with the highest expected
interestingness is added. However, for 0.1% and 0.01% oversampling, the z-scores
are positive, which implies that the mean LP score is higher when the triple
with the highest expected interestingness is added. For the WN18RR dataset,
this is the case for each amount of oversampling. This suggests that the effect of
negative oversampling is dataset dependent. For the WN18RR dataset with 1%
oversampling, the p-value < 0.05. Therefore, for the WN18RR dataset with 1%
oversampling, I reject the null hypothesis. This indicates that the LP scores for
1% positive oversampling are significantly higher when the triple with the highest
expected interestingness is added to the WN18RR KG. Table 7 furthermore
shows that the triples with the highest expected interestingness were not in the
testing set. Therefore I assume that these triples are actually negative triples.
Additionally, the z-scores and corresponding p-values of 0.01% and 0.1% negative
oversampling are equal for each dataset. This indicates that the effect of negative
oversampling does not decrease anymore after 0.1% negative oversampling with
decreasing amounts of negative oversampling.

5 Discussion

This paper has investigated a possible approach to measure link interesting-
ness in KGs. The proposed model measures link interestingness by comparing
LP scores resulting from both positively and negatively oversampling triples.

The results show that an increasing amount of positive oversampling for the
FB15k237 dataset results in a decrease of variance, but an increase in impact
on the distribution of LP scores. The decrease in variance could possible be ex-
plained by the uncertainty of the model. As the amount of positive oversampling
increases, it seems that the distribution of LP scores becomes more concentrated
around 0.5. This indicates that the model becomes more uncertain about other
triples when oversampling a specific triple. A reduction in variance emphasizes
the impact of positive oversampling.
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In addition, the results show that an increasing amount of negative oversam-
pling results in a reduction of variance. While the average variances are equal
for 0.01% and 0.1% oversampling, the average variance drastically decreases to
near zero for 1% oversampling. For both datasets, with an increasing amount of
oversampling, scores fluctuate around 0.5. However, for the WN18RR dataset,
scores already fluctuated around 0.5. This could explain why the z-test does not
imply a difference in distributions.

It is to be noted that the amount of LP scores is relatively small for the
WN18RR dataset compared to the amount of LP scores of the FB15k237 dataset.
The number of relations present in both datasets plays a central role in this
difference. As the WN18RR dataset only has 11 relations, less scores are collected
from the LP task, making the distribution of the WN18RR dataset smaller than
the distribution of the FB15k237 dataset.

Moreover, for the distributions of the FB15k237 dataset, depicted in Figure
5, a peak of frequencies can be seen for scores between 0.9 and 1.0. This could
possibly be explained by the LP task. The LP task predicts probability scores
for all relations between the representative head-tail combinations. There is a
probability that some scores were scores for triples that were already in the
training set. Thus, these scores naturally tend to scores close to 1.

The evaluation of the model was mainly conducted by investigating the im-
pact of positive and negative oversampling, as these variables play a central role
in the proposed interestingness model. However, there are more factors that could
be taken into consideration. Without clustering, this model will still be compu-
tationally expensive since every possible triple should be investigated/oversam-
pled to understand their interestingness and to rank all potential triples. For
this research experiment, the computational costs were lowered by clustering
the entities. To identify interestingness of all links in a KG in a real life set-
ting, all potential triples should be inspected. This would be computationally
very expensive, especially for large datasets. Though, it could be argued that
these computations are still less expensive than experimentally testing poten-
tial triples. Also, the proposed clustering of entities should solve this problem
to some extent. However, in biomedical settings a high precision is essential.
Therefore, in these settings, clustering can help to identify relevant clusters to
investigate, but all potential triples in that cluster should still be ranked by their
interestingness.

The results furthermore show that the triples with the highest expected inter-
estingness does not significantly increase the LP scores after adding those triples
to the KG for the FB15k237 dataset. The results suggest that adding the triples
with the highest expected interestingness does have some effect on the LP scores,
but this effect is not significant enough. For the WN18RR dataset, the results
show that larger amounts of oversampling result in a significant increase of the
LP scores when adding the triples with the highest expected interestingness to
the KG. This implies that the impact of oversampling is dataset dependent.
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6 Conclusion

This paper has evaluated a proposed method for measuring link interest-
ingness in KGs. This research experiment suggests that positive and negative
oversampling has an impact on the distribution of LP scores for higher percent-
ages of oversampling. Adding triples with the highest expected interestingness
does not result in a significant increase of LP performance for the FB15k237
dataset. However, for the WN18RR dataset, adding these triples does result in
a significant increase of LP performance. This implies that the effect of over-
sampling is dataset dependent. Regardless, it can be stated that the proposed
interestingness measure is a reasonable approach to measure link interestingness
to some extent. Nevertheless, the interestingness measure can still be analyzed
further. This paper has proposed an outset for measuring link interestingness,
on which could be built further to increase the truthfulness of the model.

7 Future work

Further research should focus on testing different settings and values for the
KGE model. The impact of variables such as the embedding dimension can be
further investigated. Moreover, the parameters of the PyKEEN pipeline such as
the optimizer or evaluator could be further optimized for the KGE model. In
addition, other loss functions such as Margin Ranking loss could be investigated.
This research experiment has experimented with a default pipeline for which to
some extent, parameters were optimized. However, these parameters were opti-
mized such that the model would show understandable results. Future research
could investigate on optimizing the embedding parameters, after which the link
interestingness measure could be tested.

Moreover, future research could examine the impact of different embedding
models on the proposed interestingness measure. For this experiment, RESCAL
was used as an embedding model, but other embedding models could be explored
as well. Potentially, this could lead to a further understanding of defining a link
interestingness measure.
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A Appendix A

Fig. 13. Diagram showing the global outlines of the proposed approach
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B Appendix B

0.01% 0.1% 1%
Triple variance ∥ z-score ∥ p-value variance ∥ z-score ∥ p-value variance ∥ z-score ∥ p-value

1 0.093 -0.39 0.698 0.065 0.53 0.597 0.001 20.48 0.000
2 0.094 -0.35 0.723 0.069 -0.30 0.766 0.001 20.63 0.000
3 0.093 -0.32 0.748 0.068 -0.16 0.870 0.001 20.53 0.000
4 0.093 -0.38 0.706 0.067 0.20 0.839 0.001 20.56 0.000
5 0.093 -0.39 0.694 0.068 -0.03 0.980 0.000 20.04 0.000
6 0.093 -0.39 0.697 0.067 0.13 0.897 0.001 20.36 0.000
7 0.093 -0.39 0.695 0.065 0.56 0.574 0.001 20.24 0.000
8 0.094 -0.35 0.725 0.070 -0.53 0.599 0.000 19.59 0.000
9 0.094 -0.39 0.699 0.064 0.95 0.344 0.002 20.71 0.000
10 0.094 -0.35 0.726 0.070 -0.53 0.598 0.000 19.59 0.000
11 0.093 -0.38 0.707 0.069 -0.50 0.615 0.000 19.51 0.000
12 0.094 -0.37 0.711 0.069 -0.19 0.848 0.000 19.84 0.000
13 0.094 -0.33 0.739 0.070 -0.71 0.479 0.001 18.66 0.000
14 0.094 -0.29 0.773 0.071 -0.55 0.580 0.000 19.23 0.000
15 0.094 -0.36 0.718 0.070 -0.41 0.680 0.000 19.32 0.000
16 0.094 -0.37 0.712 0.071 -0.47 0.636 0.001 18.46 0.000
17 0.094 -0.36 0.721 0.070 -0.41 0.685 0.000 19.29 0.000
18 0.094 -0.35 0.724 0.069 -0.19 0.852 0.000 19.81 0.000
19 0.094 -0.32 0.746 0.072 -0.69 0.488 0.001 18.45 0.000
20 0.095 -0.37 0.713 0.067 0.07 0.948 0.000 19.69 0.000
21 0.094 -0.32 0.749 0.072 -0.71 0.476 0.001 18.56 0.000
22 0.094 -0.36 0.721 0.071 -0.75 0.456 0.001 18.42 0.000
23 0.093 -0.41 0.680 0.064 0.83 0.409 0.000 19.90 0.000
24 0.094 -0.34 0.733 0.068 -0.25 0.804 0.001 18.78 0.000
25 0.093 -0.32 0.750 0.068 -0.17 0.869 0.000 19.15 0.000
26 0.093 -0.39 0.696 0.066 0.22 0.827 0.000 19.12 0.000
27 0.093 -0.40 0.688 0.068 -0.06 0.952 0.001 18.53 0.000
28 0.093 -0.40 0.692 0.066 0.16 0.871 0.000 19.49 0.000
29 0.094 -0.39 0.695 0.064 0.82 0.411 0.000 19.50 0.000
30 0.095 -0.30 0.762 0.071 -0.50 0.617 0.002 17.99 0.000
31 0.094 -0.42 0.678 0.062 1.43 0.151 0.001 19.98 0.000
32 0.095 -0.30 0.762 0.071 -0.53 0.598 0.001 18.22 0.000
33 0.094 -0.34 0.735 0.070 -0.48 0.634 0.002 18.03 0.000

Table 8. Complete list with z-scores and variance for every positively oversampled
triple (FB15k237)
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C Appendix C

0.01% 0.1% 1%
Triple variance ∥ z-score ∥ p-value variance ∥ z-score ∥ p-value variance ∥ z-score ∥ p-value

1 0.100 -0.05 0.96 0.100 -0.05 0.96 0.000 20.22 0.000
2 0.100 -0.05 0.96 0.100 -0.05 0.96 0.000 20.12 0.000
3 0.100 -0.05 0.96 0.100 -0.05 0.96 0.000 19.86 0.000
4 0.100 -0.05 0.96 0.100 -0.05 0.96 0.000 20.05 0.000
5 0.100 -0.05 0.96 0.100 -0.05 0.96 0.001 20.31 0.000
6 0.100 -0.05 0.96 0.100 -0.05 0.96 0.001 20.32 0.000
7 0.100 -0.05 0.96 0.100 -0.05 0.96 0.000 20.19 0.000
8 0.100 -0.05 0.96 0.100 -0.05 0.96 0.000 19.53 0.000
9 0.100 -0.05 0.96 0.100 -0.05 0.96 0.001 20.41 0.000
10 0.100 -0.05 0.96 0.100 -0.05 0.96 0.000 19.56 0.000
11 0.100 -0.05 0.96 0.100 -0.05 0.96 0.000 19.59 0.000
12 0.100 -0.05 0.96 0.100 -0.05 0.96 0.001 18.43 0.000
13 0.100 -0.05 0.96 0.100 -0.05 0.96 0.001 18.32 0.000
14 0.100 -0.05 0.96 0.100 -0.05 0.96 0.002 18.00 0.000
15 0.100 -0.05 0.96 0.100 -0.05 0.96 0.001 18.28 0.000
16 0.100 -0.05 0.96 0.100 -0.05 0.96 0.001 18.57 0.000
17 0.100 -0.05 0.96 0.100 -0.05 0.96 0.001 18.69 0.000
18 0.100 -0.05 0.96 0.100 -0.05 0.96 0.001 18.43 0.000
19 0.100 -0.05 0.96 0.100 -0.05 0.96 0.001 18.46 0.000
20 0.100 -0.05 0.96 0.100 -0.05 0.96 0.001 18.60 0.000
21 0.100 -0.05 0.96 0.100 -0.05 0.96 0.001 18.39 0.000
22 0.100 -0.05 0.96 0.100 -0.05 0.96 0.001 18.41 0.000
23 0.100 -0.05 0.96 0.100 -0.05 0.96 0.002 17.79 0.000
24 0.100 -0.05 0.96 0.100 -0.05 0.96 0.002 18.02 0.000
25 0.100 -0.05 0.96 0.100 -0.05 0.96 0.002 17.81 0.000
26 0.100 -0.05 0.96 0.100 -0.05 0.96 0.002 17.90 0.000
27 0.100 -0.05 0.96 0.100 -0.05 0.96 0.002 18.03 0.000
28 0.100 -0.05 0.96 0.100 -0.05 0.96 0.002 17.73 0.000
29 0.100 -0.05 0.96 0.100 -0.05 0.96 0.002 18.00 0.000
30 0.100 -0.05 0.96 0.100 -0.05 0.96 0.001 18.40 0.000
31 0.100 -0.05 0.96 0.100 -0.05 0.96 0.002 17.51 0.000
32 0.100 -0.05 0.96 0.100 -0.05 0.96 0.001 18.22 0.000
33 0.100 -0.05 0.96 0.100 -0.05 0.96 0.002 18.16 0.000

Table 9. Complete list with z-scores and variance for every negatively oversampled
triple (FB15k237)
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D Appendix D

0.01% 0.1% 1%
Triple variance ∥ z-score ∥ p-value variance ∥ z-score ∥ p-value variance ∥ z-score ∥ p-value

1 0.014 -0.21 3 0.000 -1.36 0.174 0.000 -1.75 0.08
2 0.015 -0.34 3 0.000 -1.35 0.178 0.000 -1.75 0.08
3 0.010 0.68 3 0.003 -0.98 0.328 0.000 -1.75 0.08
4 0.011 -0.44 3 0.001 -1.42 0.155 0.000 -1.75 0.08
5 0.014 -0.21 3 0.000 -1.36 0.174 0.000 -1.75 0.08
6 0.014 -0.24 3 0.000 -1.38 0.166 0.000 -1.75 0.08
7 0.014 -0.24 3 0.000 -1.38 0.166 0.000 -1.75 0.08
8 0.011 -0.44 3 0.001 -1.42 0.155 0.000 -1.75 0.08
9 0.013 -0.36 3 0.000 -1.34 0.180 0.000 -1.75 0.08
10 0.014 -0.21 3 0.001 -1.37 0.169 0.000 -1.75 0.08
11 0.014 -0.21 3 0.000 -1.36 0.174 0.000 -1.75 0.08
12 0.014 -0.23 3 0.001 -1.26 0.207 0.000 -1.75 0.08
13 0.014 -0.25 3 0.003 -1.25 0.210 0.000 -1.75 0.08
14 0.010 0.72 3 0.001 -0.77 0.441 0.000 -1.75 0.08
15 0.009 -0.50 3 0.000 -1.32 0.187 0.000 -1.75 0.08
16 0.014 -0.23 3 0.000 -1.26 0.207 0.000 -1.75 0.08
17 0.014 -0.22 3 0.001 -1.31 0.192 0.000 -1.75 0.08
18 0.014 -0.22 3 0.001 -1.28 0.200 0.000 -1.75 0.08
19 0.009 -0.50 3 0.001 -1.32 0.187 0.000 -1.75 0.08
20 0.013 -0.41 3 0.000 -1.22 0.222 0.000 -1.75 0.08
21 0.014 -0.21 3 0.001 -1.29 0.195 0.000 -1.75 0.08
22 0.014 -0.23 3 0.001 -1.26 0.207 0.000 -1.75 0.08
23 0.015 -0.16 3 0.005 -1.16 0.246 0.000 -1.75 0.08
24 0.016 -0.20 3 0.002 -1.16 0.247 0.000 -1.75 0.08
25 0.011 0.71 3 0.001 -0.74 0.457 0.000 -1.75 0.08
26 0.014 -0.31 3 0.001 -1.10 0.270 0.000 -1.75 0.08
27 0.015 -0.16 3 0.001 -1.16 0.246 0.000 -1.75 0.08
28 0.015 -0.18 3 0.002 -1.20 0.231 0.000 -1.75 0.08
29 0.015 -0.15 3 0.001 -1.17 0.243 0.000 -1.75 0.08
30 0.014 -0.31 3 0.002 -1.10 0.270 0.000 -1.75 0.08
31 0.015 -0.33 3 0.001 -1.14 0.253 0.000 -1.75 0.08
32 0.015 -0.17 3 0.001 -1.16 0.248 0.000 -1.75 0.08
33 0.015 -0.16 3 0.001 -1.16 0.246 0.000 -1.75 0.08

Table 10. Complete list with z-scores and variance for every positively oversampled
triple (WN18RR)
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E Appendix E

0.01% 0.1% 1%
Triple variance ∥ z-score ∥ p-value variance ∥ z-score ∥ p-value variance ∥ z-score ∥ p-value

1 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
2 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
3 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
4 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
5 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
6 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
7 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
8 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
9 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
10 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
11 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
12 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
13 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
14 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
15 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
16 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
17 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
18 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
19 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
20 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
21 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
22 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
23 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
24 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
25 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
26 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
27 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
28 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
29 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
30 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
31 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
32 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08
33 0.024 -0.10 0.921 0.024 -0.10 0.921 0.000 -1.75 0.08

Table 11. Complete list with z-scores and variance for every negatively oversampled
triple (WN18RR)
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