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Abstract

In graph convolutional networks, it is usually unclear how many hidden layers
we should use. Choosing a too big number can lead to over smoothing while
creating a network with only a few layers can undermine the importance of the
topology of the input graph. That is why we build on existing research of two
neural network models for graphs - the graph convolutional network (GCN) and
the relational graph convolutional network (R-GCN) by introducing the Markov
layer and Markov loss. We use them to try to create a system for which the number
of hidden layers is irrelevant to its performance. Regarding the Markov layer, we
specify two different variations. In the first one, we use the Markov loss to force a
GCN or R-GCN to behave like a Markov chain, while in the second approach we
use the Markov chain theory to converge the models’ state representations to an
equilibrium. With this in mind, we claim that reaching a stationary distribution
for a state representation of a machine learning model solves the problem of an
optimal number of hidden layers. This is so because adding more layers after the
system has stabilized does not change its performance. The downside is that we
usually observe a worsening of the models’ accuracies when using a Markov layer.

1 Introduction

Designing a neural network that produces valuable and accurate predictions can be a
complicated and time-consuming task. Depending on the type of input data and end goal,
different variations of neural networks are preferred, for instance, a convolutional neural
network is most suitable for images and video, a recurrent neural network - for time-series
or stock market data, an autoencoder - for compressing data, without losing quality1.
Regardless of the type, a crucial part of creating an efficient network is hyperparameter
tuning. Choosing an appropriate number of the hidden layers is often optimized empirically
by trying different values and comparing their accuracies and times for execution. In such
a case, it is logical to assume that there exists a linear or another type of relation, which
means that increasing the number of hidden layers or choosing a specific one produces
the best results. If we focus on the first assumption, we can claim that modeling with an
infinitely large number of layers should yield the best results. However, in this thesis, we
are using graph convolutional networks, for which adding too many hidden layers leads to
a decrease in accuracy because of signals getting lost and averaging behavior. Therefore,
it makes sense to assume that we are searching for a specific number, which produces the
best results.
To try to find this optimal number of hidden layers without conducting empirical exper-

iments, we propose a novel method of combining graph neural networks [1] with Markov
chains [2]. The goal is to use the Markov chains theory of convergence [3] to create a model
for which the number of hidden layers is insignificant to its performance. The types of neu-
ral networks used are the ones able to model on graphs, such as the graph convolutional
network (GCN) [4] and the relational graph convolutional network (R-GCN) [5] with the
task of node classification.
We introduce two different approaches for combining the Markov chain theory to such

systems. With both, we show that adding specific hidden layers does not change the
1https://towardsdatascience.com/types-of-neural-network-and-what-each-one-does-explained-

d9b4c0ed63a1
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initial performance of the GCN or R-GCN. Depending on the data set, the second method
requires some number of hidden layers before the network stabilizes, while usually, the first
approach has accuracy oscillating around some value. However, this comes with a price.
Compared to the original performance, the models’ precision worsens when applying either
of the two approaches. Furthermore, we additionally show how the GCN and R-GCN can
be used to learn the Markov chain property of convergence with the help of the first method
and its Markov loss.

1.1 Research Question

We formulate the following research question which most precisely describes the purpose
of this thesis: Is it possible to extend a system, like a GCN or R-GCN, in such a way that
changing the number of hidden layers does not influence its actual performance, because
its state representation has reached equilibrium? Although we know increasing the number
of hidden layers in a GCN or R-GCN would eventually mean a decrease in accuracy, we
investigate whether it is possible to create a model, for which we do not need to know the
number of hidden layers because after some point increasing that number would make no
difference to the outcome of the model.

2 Graph Neural Networks and Markov Chains

2.1 Graphs

When considering GCNs, we denote a graph as G = (V,E). Nodes are represented as
vi ∈ V , while edges as (vi, vj) ∈ E. For our research, we work with undirected graphs,
hence having (vi, vj) ∈ E does mean (vj , vi) ∈ E.
If we assume that n is the number of nodes, then for each graph there exists an adjacency

matrix A of size n∗n, which is characterised by Ai,j = 1 if (vi, vj) ∈ E and Ai,j = 0,
otherwise. We also denote the degree vector as δ and we use it to construct the degree
matrix D. It is essentially an identity matrix but with δ for its diagonal entries rather
than ones.

2.2 Graph Convolutional Network

The GCN [4] is a machine learning model that operates on graphs. It is used for model-
ing real-world entities as graphs and predicting their interaction and future behavior. It
can also be applied to image classification, community prediction problems, for molecular
structure analysis, and others2.

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)) (1)

In its core, the GCN uses the propagation rule Eq. 1 to compute the next layer l +
1. In this equation, nodes that are not connected to themselves lose information when
propagating through the network. Their representation in the next layer would be only
a collection of features of their neighbouring vertices. To include their features, all nodes
should have self-loops. The first equation incorporates this requirement in the adjacency

2https://missinglink.ai/guides/convolutional-neural-networks/graph-convolutional-networks/
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matrix Ã = A+IN . By adding an identity matrix with dimensions n∗n, Ã is guaranteed to
contain ones at its diagonal entries which ensure self-loops. D̃ represents the corresponding
degree matrix of the changed adjacency matrix Ã.
Large-scale graphs normally have a set of nodes called hubs. They are characterised

with larger degrees. As a consequence when applying Eq. 1, hubs will have substantially
larger values in their feature representation than other vertices. This can lead to vanish-
ing or exploding gradients3. The authors of the GCN suggest a normalization procedure
of the adjacency matrix. This essentially means that each row of Ã sums up to one -∑

j∈(0,n) Ãi,j = 1. Generally, normalization is achieved by matrix multiplication of the

type D̃−1Ã, however in [4] it is observed that symmetric normalization: D̃−
1
2 ÃD̃−

1
2 yields

more promising results4.
The second part of Eq. 1 (H(l)W (l)) represent the previous layer and the weight matrix

of layer l, respectively. Finally, an element-wise activation function σ(), such as ReLU(x)
= max(0,x) or softmax (Eq. 2), is used.

softmax(k, xi) =
exk∑i
j=1 e

xj
(2)

2.3 Knowledge Graphs

Similar to normal graphs, knowledge graphs [6] contain a set of nodes vi ∈ V . In addition,
they incorporate a set of relations so that each edge between two vertices has a specific type
r, where (vj , rn, vi) ∈ E. This type gives further information on the connection between
the two nodes. In essence, a knowledge graph Gk can be described as Gk = (V,E,R),
where rn ∈ R [7].
It makes little sense to think of an undirected knowledge graph because having equal

inverse relations is rarely the case. Imagine an edge type isFatherOf or even livesIn, where
the two nodes belong to different classes - person and town, for instance.
When translating this to the adjacency matrix Ak of the knowledge graph Gk, we should

have twice as many relations because of inverse relations. They can also be seen as the
indegrees of V. Furthermore, another issue is the dimensionality of Ak. Due to relations
holding valuable information, there should be an adjacency matrix per relation. Hence,
Ak has a size of p ∗ n ∗ n Eq. 3.

p = |R|+|R−1|= 2|R|. (3)

2.4 Relational Graph Convolutional Network

For modeling on knowledge graphs, we use the R-GCN developed by [5]. It is an extension
of the GCN with the difference it manages to incorporate relations through an enhanced
propagation rule Eq. 4 [5]. Furthermore, the R-GCN is used for both link prediction and
node classification, whereas the GCN is primarily used only for the latter. In general, the
use cases of the GCN and R-GCN match.

3https://towardsdatascience.com/how-to-do-deep-learning-on-graphs-with-graph-convolutional-
networks-7d2250723780

4https://tkipf.github.io/graph-convolutional-networks/
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h
(l+1)
i = σ

∑
r∈R

∑
j∈Nr

i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i

 (4)

Although both Eq. 1 [4] and Eq. 4 share some similarities, there are a few key differences.
As already indicated, the last equation manages to include relations. Additionally, Eq. 4
shows the computation of a single element of the new layer, whereas Eq. 1 derives the
whole next layer in a single step. Hence, according to Eq. 4, we need to compute the
feature representation of each next hidden neuron separately to propagate through an R-
GCN layer. Nevertheless, this is an implementation detail. The matrix formulation, as in
Eq. 1, can be derived here, too.
In the GCN section, we mentioned two issues - the problem with losing information when

self-loops are not present and with hubs. As both networks are analogous, these problems
also apply to the R-GCN. Adding self-loops is not as straightforward as in regular graphs.
The authors of [5] decide to include a new relation to each node in the data. Essentially,
they add an identity matrix to A to ensure that each entity keeps its current information
when propagating from layer l to l + 1. This increases relations to Eq. 3 + 1.
When observing Eq. 4 we see σ which is again either ReLU(x) = max(0,x) or softmax

(Eq. 2). For each relation the R-GCN has a separate weight matrix. Hence, W (l)
r in-

dicates the matrix for relation r ∈ R with the suitable dimensionality for layer l. Then,
h
(l)
j expresses the number j node that is connected to h(l)i through relation r, such that

(h
(l)
i , r, h

(l)
j ) ∈ E. Therefore, here

∑
r∈R

∑
j∈Nr

i
W

(l)
r h

(l)
j means that for a node h(l)i , each

of its neighbours’ features of relation type r (h(l)j ) are multiplied by a weight matrix for

that same relation type (W (l)
r ). This is repeated for all the relations node h(l)i has any

neighbours.
Returning to the second issue - the problem with hubs, Eq.4 tackles this complication by

ci,r, which is the number of neighbouring indices of node i under relation r. Depending on
whether r ∈ R or r ∈ R−1, ci,r is either the number of outdegrees or indegrees, respectively.
Finally, after both sums the self-loops are added once: W (l)

0 h
(l)
i .

When imagining a system such as a R-GCN, it is not clear what connection it may
have with Markov chains and how would they be used to boost its performance. Before
explaining the similarity between the two, we give a short description of the theory behind
Markov chains.

2.5 Markov Chains

A Markov chain is a stochastic model that describes sequential events. It has the property
that every current event depends only on the one that precedes it. Markov chains are
composed of a current state vector v0 and a transition matrix M [2].
It is convenient to think of this concept as a graph, where nodes represent all possible

states and the transition matrix holds the probabilities of moving from one particular
state to another. Figure 1 illustrates a simple graph that we use to explain Markov chains.
Here, vector v0 indicates that for state zero, there is a 100 % chance for being at node
A and 0 % probability for being at any other node. The transition matrix M is simply
the adjacency matrix of the graph. However, each entry represents probabilities. That is
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why each column of the transition matrix shown in Figure 1 (b) should sum up to one. A
normalization procedure, similar to the one described in the previous sections, is applied.
Each new state v′ is computed by the equation v′ = M ∗ v. Hence, state one v1 should

be


0
0.5
0
0.5

. If we look at the graph in figure 1, we can reach a logical explanation of why

the state changes in such a way. Provided that we start at node A, we can either go to
node B or node D. Therefore, half of the times, we end up at B and the other half at D
for state 1. Because we start with 100 % probability of being at node A, we end up with
the results represented at v1.
By continuously computing new states we reach an approximation of the unique state

V , which is also known as the stationary distribution of the Markov chain. This vector has
the property that further multiplying it with the transition matrix does not change the
current state of the Markov chain (Eq. 5). Therefore, after some number of iterations, we
can deduct that the Markov chain stabilizes, reaching an equilibrium. Furthermore, the
initial state does not influence the system’s convergence. All variations of v0 can reach the
stationary distribution, although some would require a larger number of multiplications
with the transition matrix.

V =M ∗ V (5)

2.5.1 Regular Markov Chains

Not all Markov chains have a stationary distribution. Certain conditions determine whether
the system can reach an equilibrium. However, if a Markov chain is regular, it always has
a current state that satisfies Eq. 5.
Regularity requires certain conditions, one of which includes that the transition matrix,

being a probabilistic representation of the system, should have the property
∑i

0Mi,j = 1.
Strictly speaking, each column of M should sum up to one. Additionally, a current state
vector is a representation of the probability of being at some node. Therefore, it should
also sum up to one. Moreover, the world of Markov chains represent a rather fixed system,
where the events change, but the probabilities to move from one to another remain the
same. In other words, the transition matrix should be unchanged throughout the process

(a) Simple Graph

M =


0 0.5 0 0

0.5 0 1 0

0 0 0 1

0.5 0.5 0 0


(b) Transition Matrix

v0 =


1

0

0

0


(c) Current State

Figure 1
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of computation of new current states.
Firstly, if we observe figure 1 (a) we see that node A has no outgoing edges, which means

the sum
∑i

0 Pi,0 is zero. A possible way to fix this is to include a connection between
vertices A and C, for example. Secondly, a regular Markov chain should be irreducible. In
figure 1 (b) we see a graph of four nodes. When transitioning from vertex B to C there is
no path backward. For a graph to be irreducible there should exist a path from every two
nodes of that graph. Subgraphs (A,B) and (C,D) are connected with only a single directed
edge, which means that returning to (A,B) is not possible. A solution would be to add an
edge from either vertex C or D to vertex A or B.

(a) Stochasticity (b) Irreducibility (c) Aperiodicity (d) Absorbing

Figure 2

Finally, a Markov chain should only have aperiodic nodes to be regular. A vertex is
periodic if any return to that same vertex occurs in only multiples of an integer. An
example is figure 1 (c). If we start at node A, after exactly 3∗x iterations we return at our
starting point. To make (c) aperiodic we need to break the cycle by introducing self-loops,
for example5. Then, any irreducible and aperiodic Markov chain is guaranteed to converge
to a stationary distribution [3].
Regarding relevance, Markov chains find application in many fields and algorithms such

as biology, statistics, PageRank, speech recognition, and others [8].

2.6 PageRank

Before Google’s solution to web crawling - PageRank, search engines had difficulties return-
ing a suitable website. Their flaw was that they just counted the number of terms in a web
page that is similar to the search. This meant that including popular terms on a website
even if it has no information about them would significantly boost the website’s ranking.
Additionally, other common pitfalls included intentional or accidental spider traps, which
are explained shortly.
Structurally, PageRank can be viewed as a Markov chain model [9]. However, real-

world cases usually do not satisfy the conditions of irreducibility and aperiodicity. Some
particular examples can include dead ends and spider traps. The prior is similar to the
first problem discussed for Markov chains and shown in figure 1 (a). Node A does not have
any outgoing edges which imply that once a process reaches that state it loses its ability
to move to another vertex. Furthermore, no matter how many steps are needed at some

5Figure 1 (c) with self-loops at every node is aperiodic because starting from any node we can go back to
our starting position by any integer. For 1 and 2 iterations, we only use the self-loops, for over 3 iterations
we can either traverse the graph, use self-loops or make a combination of both.
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point we reach node A. Intuitively, this indicates that if we try to estimate the probabilities
of the system after convergence, we end up with only zeroes. We illustrated the second
issue of spider traps in figure 1(d). In Markov chain theory it is analogous to the case of
absorbing Markov chains. It also resembles the problem of dead ends with the difference
that node C has only one outgoing edge - a self-loop. Again, when we reach that vertex
there is no path to any other. The difference between the two lies within the outcome of
the convergence of the system. In the case of spider traps node, C would get all probability
as eventually, a state would end in that vertex. Hence, all nodes will have zero probability
except for the spider trap, which will have one.

v′ = βPv + (1− β)e/n (6)

PageRank addresses these issues by introducing teleportation [9, 10]. Its concept is to
disrupt the natural order of events - an idea which is highly useful when stuck in a dead-end
or spider trap. When looking at the equation of teleportation (Eq. 6), we see that the
first part v′ = βPv is similar to Eq. 5 except for the term β. It stands for the probability
to teleport, usually in the range of 0.8 to 0.9. The second part consists of (1 − β)e/n.
Here, e is a vector of ones with the size the same as v′ and n is the number of nodes.
From a broader perspective, the first part can be interpreted as a natural continuation of
PageRank when following the concepts of Markov chains, whereas e/n can be understood
as a random teleport to any other node with probability equal to one divided by the
number of vertices. Additionally, both parts are connected with the teleport probability,
which defines the chance of choosing either the normal course of events β or teleportation
(1− β).
Regarding convergence of a system, teleportation introduces the notion of randomness

in the rather closed world of Markov chains and Eq. 5. To some degree, Eq. 6 manages
to solve the problems of reducibility and periodicity (both dead ends and spider traps are
special cases of the prior). No matter if a system has dead ends or spider traps, all vertices
receive some probability as a result of randomness. Nevertheless, it is not distributed
evenly. Most of the probability is absorbed by the spider traps depending on the value
of β. The case is similar for dead ends, too. All nodes with outgoing edges receive some
probability, however, a big part of it is lost. If we imagine a process being stuck at a
dead-end node, its only option is to teleport, which depends on β. The difference between
the two lies in the fact that if Eq. 6 is used on a graph with dead ends, eventually the
values of v′ are not going, to sum up to one, whereas in the case of spider traps they are
going to.

3 Implementations

For applying the Markov chain theory, we have taken two directions, which differ funda-
mentally. Before that, we need actual models to make the experiments. Furthermore,
we want to create our own networks and that is why we spent some time coding in plain
PyTorch. We still followed closely Eq. 1 and Eq. 5 for the GCN and R-GCN, respectively,
however, there are some subtle differences between ours and the original networks, which
are described next.
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3.1 GCN

Our Graph Convolutional Network has the task of semi-supervised node classification with
label frequency the same as in [4]. Initially, we were transforming the data in a format
suitable for the GCN ourselves, but we decided to use the DGL library because it conve-
niently prepares all three citation data sets (Cora, Citeseer, and Pubmed [11]), which are
used in the original paper. Our model is trained for 200 epochs, with L2 regularization, 16
hidden neurons per hidden layer, a learning rate of 0.01, and cross-entropy loss. The main
difference with the original is that we do not use dropout and a validation set. Therefore,
we also skip the early stopping procedure. Finally, when showing how the GCN performs
without the Markov properties we take the average 50 accuracies because there is usually
a slight bias of around ± 1.2%.

3.2 R-GCN

Similarly, we use our Relational Graph Convolutional Network for node classification. The
main difference is we create a multidimensional tensor which serves as the adjacency matrix
of the graph. As there are r different relation we can make r adjacency matrices each of
which captures the topology of the graph when viewing it with only one relation. Therefore,
we have a r*n*n tensor, where each matrix is normalized separately. We also have a
weight matrix for each relation as indicated in [5]. From here, our understanding of the
propagation rule in a R-GCN is for each relation multiplying its adjacency matrix with the
current feature’s representation and then with the corresponding weight matrix. We end
up with r different matrices for the next layer, which we sum up into the final version of
the next layer.
Modeling on the larger graphs and creating the 3-D adjacency matrix requires a lot

of computational power, which limits our ability to model on the big knowledge bases.
Moreover, we use Colab and our personal computer which has the GeForce GTX 1050
video card and 16 GBs of memory. This further restricts our abilities for testing. That is
why we limit ourselves to only the AIFB and the MUTAG data sets [12]. Our choice for
graphs is influenced by [5] as we are trying to replicate their system. We also take graphs
from the code of the original R-GCN implementation, which removes relations that were
used to create entity labels. As suggested in [5], we create a unique one-hot vector for each
node in the graph, which serves as the input to the model.
The basis-decomposition regularization reduced the performance of our model and we

decided to drop it. The hyperparameters remain similar to the original implementation
- cross-entropy loss, Adam [13] with a learning rate of 0.01, two hidden layers with 16
hidden neurons, L2 regularization, and 50 epochs. Interestingly, it almost always reaches
100% train accuracy even before the last epoch. Because we work with a considerately
smaller train and test sets we observe a large bias of around ±3.5% between different model
trainings on the AIFB data set. That is why we measure the performance of our R-GCN
by averaging 50 different test accuracies.
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4 Applying Markov Chain and PageRank Theory

We propose two approaches for applying the Markov chain theory to both the GCN and
R-GCN. The first one focuses on the structure of neural networks in general and can be
used on different variations, while the second one exploits the topology of the input graph
and is specifically designed for the two models we use. The main difference between the
two methods is how we interpret the transition matrix and the current state of a Markov
chain.

4.1 First Approach

Since we have a single weight matrix when modeling on regular graphs, we can assign it
to be the transition matrix of a Markov chain. Figure 3 (b) presents it for p number of
features in the field of neural networks and p number of nodes in the realm of Markov
chains. On its top, we observe W (l), which means it is the weight matrix of a GCN, while
on the bottom, we see M , hence it is the transition matrix of a Markov chain too.
Figure 3 (a) shows the other part of a Markov chain - the current state (we will shortly

explain why it is in the form of a matrix). It is also the result of multiplying the normalized
adjacency matrix with the current layer of the GCN. From here, finding the next layer
(figure 3(c)) is multiplying figures 3 (a) and 3 (b).

(a) Current State (b) Transition Matrix (c) Next State (d) Transposed Current Layer

Figure 3

Regarding modeling on knowledge graphs, we need to take into account that we have
multiple adjacency matrices and weight matrices. This means that for every next layer
we have r different matrices like the one in figure 3 (c). We sum them up to obtain the
next layer. Since we already have a single matrix for the current layer, the first approach
for combining the Markov chain theory to R-GCNs looks similar to the one described for
GCNs. On a side note, we can consider a more abstract point of view that we have r GCNs
stacked together, where r is the number of relations.
We now introduce the Markov layer, which is the collection of current states and next

states accompanied by a transition matrix. For example, the first three matrices fall into
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the same Markov layer. Furthermore, it would also include all new next states.
With the notion of a Markov layer, we can introduce the Markov loss and the Markov

depth. The latter is the number of multiplications with the transition matrix. For instance,
we have a Markov layer of depth one in figure 3. This number increases when we multiply
the next state with the transition matrix. However, this would not change the Markov
layer. Regarding the Markov loss, it is the mean absolute error (MAE) between the first
and the last next state of the Markov layer. Hence, it sets boundaries for the Markov
depth because if it is less than two, the Markov loss is the MAE between the same two
matrices - figure 3 (c).
We use the Markov loss to optimize the weight matrix of the GCN or R-GCN in such a

way that we can reach the stationary distribution v in a few multiplications. The number
of temporary new states before v depends solely on the transition matrix because we know
from section 2 that a Markov chain can reach v no matter of the initial state. In an ideal
scenario, we have v for the current state after only one multiplication with figure 3 (b).
Having a stationary distribution for the current layer of a GCN or R-GCN, is equivalent
to the Markov loss being zero. When this happens, we talk about a stabilized system.

FinalLoss = γ ∗ModelLoss+ (1− γ) ∗MarkovLoss (7)

The first approach incorporates two different losses (Markov and model), which we need
to combine. This gives us the advantage that we can alter the natural flow of events of the
models by giving more priority to one of the losses. Priority or weight of a loss is a value
between zero and one, which is defined by γ in Eq. 7. For example, by decreasing γ, we
give more weight to the Markov loss, or we force the model to search for an approximation
of the stationary distribution v.
So far, we have defined a few terms. Now, we focus on the constraints of the first approach

and how to deal with them. The first problem we face is the state of the current layer and
weight matrices of a GCN or R-GCN. Markov chains have positive values, representing
probabilities. Hence, each entry in the current state and the transition matrix should be
positive. Furthermore, the prior should sum up to one, as well as each column of the
transition matrix. Therefore, a normalization procedure for both parts of a Markov chain
is required. It includes subtracting for each column of a weight matrix or a transition
matrix, its smallest value to all other values in the same column. Then, we normalize
column-wise to sum up to one. Regarding hidden layers or current states, we do not need
to worry about negative values because we use ReLU (Eq. 1 and Eq. 4), which produces
only positive numbers or zero. Hence, we only normalize the matrix to sum up to one.
The normalization procedure includes changing the model’s parameters and state repre-

sentations, which can lead to overfitting. That is why in the first approach we decide to
compute the two losses in parallel. Figure 4 (a) shows the normal execution of a R-GCN.
It is directly taken from [5], but it can be applied to GCNs, too. The input is fed into
the neural network and the system’s task is to optimize the performance of the GCN or
R-GCN. With figure 4 (b), we illustrate the parallelism of both losses. We create copies of
the current layer and the weight matrices, which we normalize. Therefore, the Markov loss
does not influence the state of the current layer, because it does not change it explicitly.
We use the loss to alter the results of backpropagation with the help of Eq. 7. In a sense,
we change the current layer implicitly. This implicit change has some benefits. We do

11



(a) Original (R)-GCN (b) (R)-GCN with Markov Loss

Figure 4

not need to worry about linearity with the first approach, as we do not use an activation
function for the Markov loss. We will see how this changes in the second method.
Earlier, we defined the normalization of figures 3 (a) and 3 (b) as column-wise. However,

we have drawn rows in the figures. The more accurate interpretation of figure 3 is vT =
vTMT . We normalize the matrices by rows, which is the same as taking the transpose. If
we want to strictly follow Eq. 5, we can take the transposed current layer depicted in figure
3 (d). It again does not look exactly like a current state, because of its dimensionality.
When we sum it by the rows, we obtain the original current state, which represents the
probability of each feature. Nevertheless, the structure of the matrix in figure 3 (d) keeps
more information because for each node we have the distribution of the probabilities of
its features. That is why we can say that with the first approach, we perform a feature
optimization procedure.
We also need to follow a few other constraints, some of which are described in paragraph

2. Firstly, we need square weight matrices. Secondly, we also need to deal with aperiodicity
and irreducibility and lastly, the weight matrices should be the same for a Markov layer,
no matter the depth.
The first constraint is rather logical when thinking about Markov chains, but it imposes

some restrictions on graph neural networks. If we want to create a network that reduces
or increases the number of features (autoencoder), we need to create intermediate layers
that produce square weight matrices. Then, we can use the Markov layer to compute the
Markov loss. This is certainly a disadvantage as it can also increase the execution time of
the system.
We also do not have a lot of control over the second issue. Having a reducible or periodic

graph means the transition matrix or the weight matrix of the GCN or R-GCN is not
regular. Our approach to this problem is to propose the ingenious solution of Google
to add teleportation. Hence, the problem of non-regular Markov chains is transferred to
PageRank. Furthermore, we argue that no matter the input graph we never have dead
ends. For GCN we use undirected graphs and for R-GCN we have inverse relations. Plus,
both models have self-loops. The lack of dead ends does not solve the second issue and we
still need teleportation, however, the sum of every state is always one.
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4.2 Second Approach

The first approach is somewhat an addition to an existing R-GCN or GCN layer. With
the second method, we change the layers of the models, while the weight matrices remain
the same.
Some of the biggest differences are how we interpret the current state and the transition

matrix. When we look at figure 5 (a) we see a simple knowledge graph with 4 nodes. Each
vertex has some connection to the other ones, where the color of the edge represents the
relation type. This means we have four relations in the graph. To make the Markov layer,
we create a specific weight matrix for it, which is shown in figure 5 (b).
The problem is that each node in the graph has p number of features. Therefore, the

transition from node A to D would look like figure 5 (c). From the picture we can deduct
that p is three because of the number of identical nodes. Each feature of node A is connected
to all the features of node D with some probability which we can obtain from the black
weight matrix. The color black comes from the connection type between A and D. This
applies to the whole figure 5 (b). We use the specific weight matrix for the transition from
any two nodes if an edge between them exists. For example, node C has a blue connection
with vertex B and a green connection to itself. Hence, the transition matrix for the column
of node C has two weight matrices with their corresponding colors and positions as shown
in the figure.
The second method is also applicable to GCNs. If we imagine we do not have relations

then the graph has only one type of edges. This is certainly a simplification as the transition
matrix would look the same as in figure 5 (b) but without the colors.
The current state of this Markov chain is similar to the one used in the first approach.

We take the matrix in figure 3 (a) which has n rows and p columns and we transform it
to (n*p) rows. Basically, we just change its dimensionality. Because we are creating a
Markov chain we need to normalize its parts. As the problem is similar to the one in the
first approach, we apply the same procedure for the current state - the n*p vector, and for
the big transition matrix. However, we need to mention that with this method we are not
dealing with transposed matrices6.

(a) Simple Graph (b) Transition Matrix (c) Single Transition

Figure 5

6The difference is that the transition matrix of approach two has its columns sum up to one, while the
one of the first method has its row sum up to one.
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An issue with the second approach is the dimensionality of the transition matrix. We
have n number of nodes and each entry of figure 5 (b) holds a p*p matrix. Therefore, it is
(n*p) * (n*p). For our experiments, we need to create a new one for every epoch. Although
we manage to use it for smaller graphs, it can easily lead to scalability issues. However, the
advantage of this approach is that we manage to integrate the adjacency matrix. Hence, it
also depends on the topology of the input graph and is far more relatable to the particular
structure of the GCN and R-GCN.
Some of the other drawbacks include the need for square weight matrices and the issues

with periodicity and reducibility. We use the same solution as in the first approach. For
the prior, we again propose the use of an intermediate layer which produces the required
dimensions for the weight matrices, while for the second issue - teleportation. If we look at
the transition matrix of the Markov layer (figure 5 (b)) we can observe another complication
- the connections between nodes A and D. Vertex A has a double connection with vertex
D with two different relations. This means we need to put two weight matrices in the same
place. We propose in such situations taking the sum of both matrices. Then, we argue
that the resulting entry at location MAD holds information of all relations that node A
has with node D.
With everything explained so far we introduce the Markov layer for the second approach.

While in the first method it is more of a whole Markov chain, here a Markov layer is only
one multiplication between the current state and the transition matrix. It surely bears a
stronger resemblance to a normal neural network layer. If we have met all the requirements
and constraints, after some number of Markov layers the system would stabilize because an
approximation of the stationary distribution is reached. Then, adding more Markov layers
would not make any difference to the performance of the GCN or R-GCN. However, we
need to change the activation function. It is understandable that because of the Markov
chain properties the transition matrix from figure 5 (b) and the current state would only
have positive values. In contrast to the first approach, where we left the normal execution
of the GCN or R-GCN, in the second method we have overwritten the normal layers of the
model with the special Markov layers. Hence, choosing ReLU(x) makes no sense. That is
why we create the activation function PositiveReLU(x) = max(0.1,x). It is the same as
ReLU but with an added bias of 0.1. That value can be chosen to be everything bigger
than zero.

5 Experiments

Despite all the theory and concepts explained, our task is to classify nodes in citation net-
works and knowledge bases. We are particularly interested in applying Markov chains and
generalizing the problem of the number of hidden nodes, but we also look for considerably
accurate models.
The code of the six systems (plain GCN and R-GCN and each with the two approaches)

is available at https://gitlab.com/petkov.1231/bachelor-project. We mainly train
and test on the citation data sets Cora and Citeseer [11] for the GCN. The task is semi-
supervised node classification with only 140 nodes for Cora and 120 nodes for Citeseer,
similar to [4]. Both approaches require a lot of computational power. Besides, the citation
network Pubmed has too many nodes and edges and that is why we are unable to make
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extensive testing on it. Regarding our R-GCN input, we utilize the AIFB and MUTAG
data sets [12]. Because of the way we create the adjacency matrix of each graph we are
not able to load the other two networks used in [5] for node classification.
We set two baselines for our experiments. Firstly, we aim at having implementations of

the GCN and R-GCN with similar or at least comparable accuracies to the original models.
That is particularly important because otherwise, we cannot claim that any results we ob-
tain from the two approaches would be relatable to any other systems for machine learning
on graphs. Secondly, we try to create an implementation with the property that after some
point adding more hidden layers is meaningless because theoretically and practically the
model does the same operations. While the test accuracy is not our primary focus and we
do expect some worsening in this area, we still want to create a system that manages to
classify nodes relatively correctly.

5.1 First Approach Results

Here, we try to optimize the Markov loss. As it is the difference between the current
state/layer and an approximation of the stationary distribution if we have a loss of zero
the model is stabilized. We start with some testing for γ in Eq. 7. The Markov depth is
initially kept at three.
Figure 6 (a) shows how the Markov loss changes for each epoch on the Cora data set.

Each line depicts different values of γ as described in the legend of the graph. For example,
the blue line shows the optimization of the Markov loss when γ = 0.99. Although we leave
only 1% priority to the Markov loss and 99% priority to the normal loss we still see that the
blue line decreases. In general, the trend is that with more epochs the values of the Markov
loss are reduced. The weight γ defines how low the Markov loss can go. For example, for
γ = 0.95 we reach a lowest point of around 0.4, while for γ = 0.85 - 0.2. There is, however,
some inconsistencies between epoch 25 and 75. If we look at figure 6 (b) we see the opposite
for the training accuracy. The model struggles to learn in the first epochs, but between
the 25 and the 75 epoch the different lines increase their values substantially. For example,
the green line has some inconsistencies in the Markov loss graph around the 60th epoch,
while in figure 6 (b) we see that around the 50th - 60th epoch it starts learning. In general,
for all lines the first 25 epochs the Markov loss takes priority, then for the next 50 to 75
epochs the model focuses on the training accuracy and for the last 100 epochs, the GCN
optimizes the Markov loss again. That is to say that the two losses interfere with each
other. The results are similar for the other citation network - Citeseer.
Previously we mentioned that the value of the Markov loss is computed by taking the

MAE from the first and the last next states. However, originally it does not start from
3 for Cora as illustrated in figure 6. To have this value, we multiply it with 500 000.
Citeseer has a similar loss of around 1.5 after normalization with the scalar. The value
of 500 000 is chosen to have close values of the Markov loss and the model loss, which
starts from around 2. For modeling on the two knowledge graphs, the constant is chosen
to be 3 000 000. This produces a Markov loss of around 6 for AIFB and 1.5 for MUTAG
with a model loss of around 1.5 on both data sets. Our arguments for the normalization
procedure are that having negligibly small values for the Markov loss leads to a final loss
mainly composed of the model loss. In this scenario, the model loss might overpower the
other one. Furthermore, it is easier to view and compare them if they are of similar scales.
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(a) Markov Loss (b) Model Loss

Figure 6: GCN on the Cora Data Set

The results of γ testing for the R-GCN are illustrated in figure 7. The graph of AIFB
is almost the same as MUTAG’s, so it is not shown. Here, the two losses are optimized
in parallel unlike the case of GCNs. The Markov loss in figure 7 has a stable trend of
decreasing with the increase of epochs. The inconsistency comes from how γ relies to the
minimum reached value. Although we can argue that usually a higher γ poses stronger
restriction to the amount of Markov loss (the red line comes at around 0.75 and the blue one
at around 0.6 at the 50th epoch), we see that the purple line has slightly higher loss than
the yellow one throughout the whole execution of the R-GCN. This trend is particularly
odd for the green and black ones. We would imagine that forcing the model to optimize
the Markov loss or choosing γ = 0 would perform the best, however we see that between
epoch 15 to 35 the green line has lower loss than the black. After that, they have similar
values, which we still did not expect.

GCN (Markov depth = 3) R-GCN (Markov depth = 3)
Method Citeseer Cora Method AIFB MUTAG
Original [4] 70.3% 81.5% Original [5] 95.83% 73.23%
2-layered 67.47 79.19 2-layered 89.16% 69.59%
3-layered 63.33% 75.92 75% Model Loss 87.22% 69.59%
99% Model Loss 61.48% 74.68% 50% Model Loss 87.33% 69.59%
95% Model Loss 59.20% 72.77% 10% Model Loss 85.83% 68.29%
85% Model Loss 55.42% 70.19% 1% Model Loss 79.89% 66.79%
50% Model Loss 46.54% 64.8% 0.1% Model Loss 72.94% 67.65%
30% Model Loss 44.24% 47.15% 0% Model Loss 26.39% 24.53%

Table 1: Results First Approach

So far we have demonstrated the ability of our two models to learn the Markov property
(Eq. 5) by fixing the depth of the Markov layer at three. The corresponding accuracies
are shown in table 1. Decreasing the priority of the model loss influences the models’
performances. It is worth explaining why the GCN needs three-layered architecture. One
of the constraints of both approaches is the need for a square weight matrix. The Cora and
Citeseer networks come with 1,433 and 3,703 input features, respectively. We could create
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weight matrices with such dimensions, however, as the first method is computationally
costly we reduce the hidden neurons to 16 as in [4]. This reduction is made possible
with an extra hidden layer with weight matrix of dimensions (1433,16) for Cora. The
disadvantage is we lose accuracy of our GCN model - from 67.47% to 63.33% for Citeseer
(table 1). On the contrary, the R-GCN does not come with input features. Hence we
can create the unique one-hot encoded matrix of size (n,16). Furthermore, we believe we
satisfy our baseline to have the GCN and the R-GCN models with performance relatable
to the original ones. On all four data sets we have worse accuracies, but we think that the
difference is not substantial.
Finally, we test on how the depth influences the performance of our models. Although

in the first approach we consider a Markov layer the whole Markov chain, increasing the
depth can be viewed as adding a hidden layer. The concepts are similar - we multiply the
normalised copies of the matrices in figures 3 (a) and (b). The difference is that we do not
use an activation function as there is no such thing in a Markov chain.

Table 2: Markov Depth Accuracy Figure 7: Markov Loss on MUTAG Data Set
(R-GCN)

The results are available in table 2. While we initially fixed the depth to make testing
for γ, now we do the opposite. Basically, we fix γ = 0.95 for the GCN (yellow line, figure
6) and γ = 0.01 for the R-GCN (green line, figure 7) to test on the Markov depth. We
choose these values because of our second baseline - we need to take into account model
accuracy, too. Indeed, we do not change the current layers of the GCN and R-GCN, but
we influence the outcome with the Markov loss. The results indicate that increasing the
number of hidden layers inside the Markov layer does not change the models’ performances.

5.2 Second Approach Results

We give a more concrete solution to the research question with our second approach.
However, we need to solve the problem of linearity caused by the non-negative values of
a Markov chain. As we modify the current layer in the second method, we need to find a
specific activation function. Using ReLU makes no sense because it would not produce any
different results. We perform testing with our R-GCN to find the optimal minimal value
of ReLU, which is illustrated in table 3. Clearly, our model gives the best results on both
data sets when PositiveReLU(x) = max(0.1,x). We still consider this temporary solution
to a bigger issue.

17



Positive
ReLU

Accuracy
AIFB MUTAG

0 50% 66.18%
0.05 52.78% 69.12%
0.1 55.56% 69.12%
0.15 52.78% 63.24%
0.2 51.39% 63.24%
0.3 47.22% 64.71%

Table 3: Min. Value PositiveReLU

Layer
Depth

R-GCN
AIFB MUTAG

Original
(ours)

Markov Original
(ours)

Markov

1 89.16% 55.56% 69.59% 69.12%
2 90.61% 55.56% 69.82% 69.12%
3 88.89% 55.56% 68.71% 69.12%
4 84.5% 55.56% 69.47% 69.12%
5 73.72% 55.56% 65.97% 64.71%
7 43.57% 55.56% 64,26% 64.71%
10 41.67% 55.56% 66,18% 64.71%

Table 4: Results R-GCN on 2nd Approach

As already mentioned, with the second approach we give a different definition to a Markov
layer. We drop the concept of the Markov loss, while the Markov depth is somewhat the
Markov layer itself. The final results are shown in Table 4. Before viewing them, we need
to explain what we mean by layer depth. It is the number of hidden layers. However, they
share the same weight matrices.
Moving to the results in Table 4, we see our R-GCN has the best performance on both

data sets with a layer depth of 2. If we try increasing the number of hidden layers, we
observe that even without the Markov chain property (Eq. 5) the difference between the
accuracies starts to become smaller and smaller, which is what we want to prove with this
thesis. By giving a larger layer depth, we see that the performance of our R-GCN oscillates
around 66% for MUTAG and converges at around 41% for AIFB7.
The difference between the two input graphs is that with increasing the number of

hidden layers the results on AIFB show a significant drop, reaching 43.57% and 41.67%
accuracy for seven and ten layers, respectively. On the contrary, on MUTAG even with a
large layer depth, we observe a similar performance to the best accuracy of around 66%.
This characteristic of the graphs turns out to be very important for our Markov layer
performance.
The column named "Markov" in Table 4 represents our findings for the second approach.

As we can see, applying the Markov chain property to the R-GCN stabilizes the system. On
the AIFB data set, we get a constant accuracy of 55.56%, no matter the layer depth, while
on MUTAG we start with an accuracy of 69.12%, but after 4 hidden layers, it decreases
to 64.71%. It is safe to assume that adding more Markov layers does not change the
performance of the R-GCN.
We think there is a correlation between the expected final Markov accuracy and the

accuracy of the original R-GCN with a lot of hidden layers. On AIFB there is a huge drop
in performance after a layer depth of seven. We believe this influences the low value of
the Markov accuracy. Conversely, we see a relatively good Markov accuracy on MUTAG
because there is no drastic decrease in the performance of the original model. Further

7We would like to say that the actual results might be slightly different because when testing on the
plain R-GCN we get results with big bias. We do average 50 different test results for each entry in the
tables, however, one might need to pick a larger number.
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research is necessary, where multiple data sets are used, to prove or disprove our claim of
correlation.
We use a value of 0.85 for the teleportation β in Eq. 6 for both approaches on the

two models. While on the first approach changing β does not influence the results on the
second method a higher teleportation probability yields better output.
We tested the second approach on our GCN, however, we did not obtain any valuable

results. Initially, we were skeptical about changing the models’ parameters and current
states because it might cause problems with gradient descent. We think this is the case for
the GCN as it cannot learn during training. Here, our model usually does not change the
training accuracy no matter of the epoch. We get constant training accuracy of 16.67%
and testing accuracy of 7% on Cora.

6 Related Work

In this section, we provide a brief overview of related work on the two main fields for our
thesis. The first one is the (relation) graph convolutional networks. The second is the
models that try to solve the problem of hidden layers.
A lot of research has been done in the area of graph neural networks. However, we

concentrate on [4, 5]. As we have reported their work in section 2, we describe the other
field. The first paper that caught our attention creates a system that can be viewed
as an infinite depth network for normal8 neural networks [14]. The advantage of the
deep equilibrium model (DEQ) is the substantial memory reduction of up-to 88%. It
does not require storing of intermediate activation values, because of its logistics of the
backpropagation procedure, which uses constant memory due to implicit differentiation.
The authors note the model can be viewed as in infinitely deep network and can also be
viewed as a single-layer network. Furthermore, stacking multiple DEQ does not create
extra representation power over a single DEQ.
The next paper works on graphs and it introduces a novel approach to computing current

states and the learning algorithm for GNNs by a constraint optimization task, solved in the
Lagrangian framework [15]. The weights and the current states are simultaneously updated
up to a stationary condition. The authors rely on backpropagation for the computations
and on constraints, which express the diffusion mechanism. Compared to most of GNN
models, their system requires less memory. The DEQ still has an even better performance
with regards to memory, however, it is not developed for input in the form of graphs.
The last paper explores the GCN model and its limits [16]. We mention it because

the authors talk about how the hidden layers influence the performance of the system.
The idea is that using a lot may lead to an over smoothed output. Furthermore, vertices
from different clusters may become indistinguishable, and adding more layers increases the
complexity when training.

7 Future Research

Here, we focus on the limitations we faced. The first one is the already mentioned issue with
linearity in the second approach. While we think that PositiveReLU(x) = max(0.1,x) can

8Here, by normal we mean neural networks that do not operate on graphs
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work well enough for this thesis, we also believe it is worth exploring other functions. The
reason is we only make empirical experiments, which means that the nonlinear function
might not work for other cases. It would be interesting to see more testing on PositiveReLU
and how other activation functions work in our scenario and with other knowledge bases.
The second issue is the complication with scalability. Although this relates more to the

second approach, where using a larger graph is almost impossible, we also note that the
first approach is very computationally heavy, too. In the second method, we create a new
sparse tensor for the big (n*p) * (n*p) matrix for every epoch. The initializations take
more time than the computations. We believe that optimization can be applied to reduce
the time used.
With the first approach, we create the Markov loss and we optimize it, while with the

second method we directly stabilize the current layer of the R-GCN by Eq. 5. These two
approaches are interchangeable. We can easily transform the second approach to create
the same Markov loss and vice versa. That is to say, the scope is too broad to explore
every variation in this thesis, especially since we test on two different models. With this in
mind, we suggest that in future research the goals can be changed to possibly obtain more
valuable results.
Finally, we have researched only node classification. There are two other tasks when

modeling on graphs. It would be interesting to see if any valuable results can be obtained
for creating embeddings and for link prediction.

8 Conclusion

In this thesis, we have created our implementations of the GCN and R-GCN, which perform
similar to the originals, and the Markov layer, which builds on top of these two models.
Using two different approaches, we have shown how to create a model, for which after
some point the number of hidden layers does not influence its performance. We support
our system with the theoretical foundation of Markov chains and their explanation of
convergence to a stationary distribution. We have also demonstrated how to make a
GCN or R-GCN learn the Markov property (Eq. 5) by introducing the Markov loss and
optimizing it. Although we have experienced a worsening of the model accuracy, we believe
that with further research this problem can be overcome.
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