
Vrije Universiteit Amsterdam

Bachelor Thesis

Deployment and Evaluation of a New
Recommender System for Wikidata

Author: Marta Anna Jansone (2641123)

supervisor: Michael Cochez
2nd reader: Ilaria Tiddi

A thesis submitted in fulfillment of the requirements for
the VU Bachelor of Science degree in Computer Science

August 3, 2021



Abstract

Wikidata is a collaborative central storage repository that collects structured data
and provides support for other wikis of the Wikimedia movement. The data on the
site is represented in terms of Items and Property statements, which can be edited
by humans or machines. To support the editing of a Wikidata Item in terms of
adding additional Properties, an association rule-based extension PropertySuggester
is used. A paper published in May of 2020 introduced the SchemaTreeRecommender,
which is an alternative approach of assigning properties to an Item that
were previously not attributed to it. The SchemaTreeRecommender assigns
properties to an Item employing the maximum-likelihood property recommendation
approach. The evaluation of the two recommendation systems showed that the
SchemaTreeRecommender outperformed the PropertySuggester in all performance
metrics. In this work the cache efficiency of the SchemaTreeRecommender is improved
leading to a 7% decrease in request latency and no significant difference in CPU usage.
Further, the SchemaTreeRecommender is deployed to Wikidata and the evaluation
between the two recommendation systems is carried out in the production environment
of Wikidata.

2



1 Introduction

Wikidata is a collaborative central storage repository collecting structured data. The
leading purpose of Wikidata is to provide support for other wikis of the Wikimedia
movement (Vrandečić, 2012). Wikidata provides a shared knowledge base that can be
extended and reused. This is enabled through open editing, which implies that the
information provided on the site can be edited by any user. The data available on Wikidata
is multilingual. Other wikis (e.g. Wikipedia) might have independent editions for each
of the languages, however, as the data stored by Wikidata is universal, it is necessary
that all values have direct translations (Vrandečić and Krötzsch, 2014). The repository
consists of Items represented by a Q that is followed by a number. Each Item has a label,
a description and any amount of aliases associated with it.

An Item can be described by statements, which are built from a pair of a property
and a value. Properties are represented by a P that is followed by a number. For
instance, given an Item ’Douglas Adams’ represented by an entity code Q42 it can be
described by a statement pair where the property is ’educated at’ (P69) and the value is
’St. John’s College’ (Q691283). Moreover, each statement can be expanded through the
use of qualifiers. Qualifiers are applied to statement pairs in order to further describe the
value of a property given in a statement. By using qualifiers, the property ’educated at’
(P69) can be further elaborated to include the start time, end time, academic degree and
major. The visual representation of this relationship and its’ layout on a Wikidata entity
page can be seen in Figure 1.

Figure 1: Wikidata entity page representationa.

aImage source: https://www.wikidata.org/wiki/Wikidata:Introduction

The Wikidata database can be edited by the supporting community, therefore, both

3

https://www.wikidata.org/wiki/Wikidata:Introduction


new Items and Property statement pairs can be added by either humans or machines
designed for the task. However, given the growing amount of properties available, it is a
challenging task to assign relevant properties to entities. The current software behind
recommending new properties to users is the PropertySuggester1. PropertySuggester
recommends properties based on the frequency of other entities that have the same
’instance of’ (P31) value and the properties that are present on the item. This approach
is based on association rules. The leading goal of such rules is to locate co-occurring items
within a database (Zangerle et al., 2016). A paper by Gleim et al. (2020) introduced the
SchemaTreeRecommender2, which is an alternative approach to recommend additional
properties to an entity.

The SchemaTreeRecommender uses the maximum-likelihood of properties to suggest
additional properties that were not previously attributed to the entity. The
SchemaTreeRecommender employs a data structure SchemaTree, which is a compact
trie-based representation of property and type co-ocurrences. The structure is stored in
an adapted trie construction frequent pattern tree (FP-tree) for probability calculations
and retrieval of the property pairs. The SchemaTreeRecommender was evaluated
against the state-of-the-art Wikidata PropertySuggester in regards to the performance
and the quality of the recommendations. When evaluating the different variations of
the SchemaTree approach against the state-of-the-art Wikidata PropertySuggester, the
SchemaTreeRecommender outperformed the current system in all performance metrics
(Gleim et al., 2020).

The SchemaTreeRecommender outperformed the PropertySuggester in the experiments
conducted by Gleim et al. (2020), which suggests that the SchemaTreeRecommender
would provide greater support for property recommendations within Wikidata. To
further investigate this assumption, the two recommendation systems have to be
evaluated in the Wikidata production environment. This paper aims to integrate
the SchemaTreeRecommender in the existing Wikibase, the knowledge base software
driving Wikidata, in order to evaluate and compare the performance of the existing
PropertySuggester against the performance of the SchemaTreeRecommender.

First the changes made to the existing code base of the SchemaTreeRecommender will
be discussed followed by the description of the integration process of the recommender
within Wikibase and, thus Wikidata. The evaluation of the two systems will be carried
out through A/B testing and additional further work will be discussed, which will be the
topics concerning the last sections of the paper.

2 SchemaTree Adaption

In this section the preliminary work and adjustments made to the original SchemaTree
code will be discussed in detail. The data-types and structures used to represent the tree
in Golang will be introduced. Along this, the experiments that were carried out in order
to locate potential areas for improvement in regard to CPU usage and request duration
will be presented.

1https://www.wikidata.org/wiki/Q86989962
2https://github.com/lgleim/SchemaTreeRecommender

4

https://www.wikidata.org/wiki/Q86989962
https://github.com/lgleim/SchemaTreeRecommender


2.1 Introduction to the SchemaTree

The SchemaTree is constructed using the full RDF Dumps of Wikidata. The use of RDF
was introduced to Wikidata due to the necessity for an exchange format for Wikidata with
SPARQL query functionality. The information available on the site closely corresponds
with the RDF model as each entity can be seen as the subject of a triple and the property
statements associated with that entity can be linked to predicates and objects associated
with the subject (Hernández et al., 2015). Within the RDF file each entity is represented
as a combination of a data node and an entity node. The data node describes metadata
about the given entity record and the entity node describes the entity data. The data
contained within the entity node provides information that concerns the labels, aliases,
the description and the statements related to the entity. An example of a data node is
shown in Figure 2 and an example of an entity node is provided in Figure 3.

Figure 2: RDF schema used by Wikidata for the data node a.

aImage source: https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format

Figure 3: RDF schema used by Wikidata for the entity node a.

aImage source: https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format

Further, the SchemaTree structure will be introduced. The description is directly
adapted from Gleim et al. (2020).

The SchemaTree is constructed to contain the data structure which is further used
to serve the property recommendations. These recommendations are calculated given
the maximum-likelihood of properties. Given an entity E with properties S such that
S = {s1, ..., sn} ⊆ A in a knowledge graph where A is set of all available properties, the
task of recommending maximum-likelihood properties is described as finding the property
â ∈ A \ S such that

2Image source: https://www.wikidata.org/wiki/Wikidata:Introduction

5

https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format
https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format
https://www.wikidata.org/wiki/Wikidata:Introduction


â = argmax
a∈(A\S)

P (a|{s1, ..., sn}) = argmax
a∈(A\S)

P ({a, s1, ..., sn})
P ({s1, ..., sn})

(1)

where P ({t1, ..., tm}) is the probability that a selected entity has at least the properties
t1, ..., tm. Following this, the properties that are recommended are the ones which most
often occur together with the properties that the given entity already has. (Gleim et al.,
2020)

Through frequentist probability interpretation and using an approach of grouping RDF
triples by subject, the joint probabilities are approximated by their relative frequency of
occurrence. The absolute frequency of a set of properties is then denoted as supp(A) and
through reformulating Eq. 1 the most likely property recommendation can be estimated
as follows:

â ' argmax
a∈(A\S)

supp(a, s1, ..., sn)

supp(s1, ..., sn)
(2)

The SchemaTree structure is introduced in order to reduce the time consumption
required when computing the recommendations given the large amounts of data contained
by Wikidata. The SchemaTree is an adapted version of the trie construction FP-tree that
was originally introduced by Han et al. (2000). The structure is created using the 2-pass
tree construction approach and the support descending property ordering together with
lexicographical ordering as proposed by Gyorodi et al. (2003).

Property

p1

p2

p3

p4

p5

p6

root

p1

p2

p3

p5

p6

p5

p2

p3

p4p4p4

5

4

3

2

1

1

1

1

11

1

1

Entity Ordered Property Set

e1 {p1, p2, p3, p5, p6}

e2 {p1, p4, p5}

e3 {p2, p3, p4}

e4 {p1, p2, p3, p4}

e5 {p1, p2}

Figure 4: The SchemaTree displayed on the left side of the figure constructed from the
property sets on the right side (Gleim et al., 2020).

Figure 4 depicts the tree which is constructed given the property sets on the right side
of the figure. The property sets are ordered by the support each of the properties has
(e.g. within all of the sets p1 and p2 occur a total of four times each and p3 occurs a total
of three times, therefore, p1 and p2 will be ordered before p3 within the sets). The tree
is then constructed by inserting all of the properties within the sets starting at the root
node.

Additionally, in order to improve recommendations in instances where the input set size
is large, the SchemaTree employs backoff strategies, which either reduce the input set size
or split it into two separate sets. The available backoff strategies are:

6



SplitPropertySet splits the input property set into two smaller input sets. This is done
through sorting the properties supplied in the request based on the global property
support ordering and split into two subsets. A recommendation is performed on
both subsets. The properties which appeared in the original request are removed
and the two recommendation lists are merged.

DeleteLowFrequency deletes the properties that have the lowest property support from
the properties supplied in the request and perform a recommendation using the
remaining properties.

The backoff strategies can be triggered by one of the two backoff conditions, which are:

TooFewRecommendations initiates the execution of a backoff strategy if a threshold
of T1 for the number of returned properties is not satisfied.

TooUnlikelyRecommendations initiates the execution of a backoff strategy if a
threshold of T2 for the average probability of the top 10 recommendations returned
is not satisfied.

2.2 Code base

The original SchemaTreeRecommender3 code consists of ten packages total, required for
creating a new SchemaTree from an RDF file and loading the tree from an encoded file
for the purpose of serving it over an HTTP connection. The modules and their usages are
as follows:

schematree contains the data structures required by the tree and the standard
recommendation algorithm

strategy module responsible for executing the required recommendation procedure given
an input assessment

preparation used to split the input dataset, prepare the dataset in N-Triples format.
Additionally, enables the possability to configure how the split and the filtering of
the dataset is carried out

io methods used to assist with parsing and writing of the N-Triples files

glossary module used to map the property URLs with the corresponding labels and
descriptions in each of the available languages

configuration module used to read the configuration workflow files, used to set the
strategy of the recommendation procedure

backoff contains the possible backoff strategies (DeleteLowFrequency and
SplitPropertySet)

assessment constructs the recommendations from a user-provided input

server module used to set up an API endpoint using a HTTP server to provide
communication with the SchemaTreeRecommender

3The original SchemaTreeRecommender code: https://github.com/lgleim/SchemaTreeRecommender

7

https://github.com/lgleim/SchemaTreeRecommender


evaluation module used carry out the experiments and evaluate the results described by
Gleim et al. (2020)

The deployment of the SchemaTreeRecommender to Wikidata was coordinated with a
team of people working at Wikidata. Due to security concerns regarding the parsing
of files within the same code base that would interact with Wikidata and for better
integration of the SchemaTreeRecommender with the existing PropertySuggester code4,
the code for SchemaTree was separated into two parts. A single repository was created
for the code required to serve the tree and the recommendations and a repository was
created for the code necessary for creating the SchemaTree from a RDF file. The modules
available in the recommender server code base (RecommenderServer5) are 1. schematree,
2. strategy, 3. configuration, 4. assessment, 5. backoff, 6. server. The modules remaining
in the code base used for creating the SchemaTree from a RDF file (SchemaTreeBuilder6)
are 1. schematree, 2. preparation, 3. io. Glossary, the package responsible for mapping
the property URLs with the correct labels and descriptions in each of the corresponding
languages, and the evaluation package were not necessary for the purposes of deploying
SchemaTree to the PropertySuggester extension.

2.3 Performance improvements

The code used for the tree is written in Golang and the SchemaTree structure used
for calculating the recommendations is constructed using user-defined data structures
SchemaTree and SchemaNode. The SchemaTree structure holds the root node of the tree,
which is of SchemaNode data structure. Within the SchemaNode the parent, ID, traversal
pointer and the total frequency of each of the nodes is held. Additionally, each node
contains the pointers of the SchemaNode structures that are the children of the given
node. In the original SchemaTreeRecommender code, all children of a single node are
stored in distinct memory objects that are related to each other with pointers. The cache
performance of the program could be improved by mitigating the performance bottlenecks
between the CPU and the RAM through allocating data structures in a manner that
increases the reference locality (Chilimbi et al., 1999). Thus, to improve the efficiency of
the SchemaTreeRecommender further, the following hypothesis was proposed:

1. The cache efficiency could be improved and the input-output incurred wait times
could be reduced by storing child nodes directly within an array structure once the
tree has been statically constructed, thus, reducing the latency and CPU usage when
executing a request.

In order to evaluate the hypothesis, additional variants of the RecommenderServer were
created. Within the modified serving code of the SchemaTree, the SchemaNode structure
was adjusted to store a set number of pointers to child nodes directly within the node
itself while the reminder of the children remain within the memory object related to each
other with pointers. The changes made to the SchemaNode data structure are shown in
Figure 5. In the right side of Figure 5 the constant N denotes the number of child nodes
to be stored directly within the parent node.

4https://gerrit.wikimedia.org/r/admin/repos/mediawiki/extensions/PropertySuggester
5https://github.com/martaannaj/RecommenderServer
6https://github.com/martaannaj/SchemaTreeBuilder

8

https://gerrit.wikimedia.org/r/admin/repos/mediawiki/extensions/PropertySuggester
https://github.com/martaannaj/RecommenderServer
https://github.com/martaannaj/SchemaTreeBuilder


Figure 5: Changes made to the SchemaNode data structure in order to store children of
the node directly within the node.

All of the tests were conducted on a Intel Xeon Silver 4210R processor (2.40 GHz) and
264 GB of RAM. When comparing the different variants of the SchemaTree the full Dumps
of Wikidata acquired as of May 12, 2021 were used. The dataset was split into a training set
and a testing set using a 1 in 10000 split. Further, the training set was used to construct the
SchemaTree and the testing set was used to evaluate the performance in regards to latency
(ms) and CPU usage. For all different variants of the SchemaTree evaluated, the training
and testing sets were kept constant. When conducting the performance experiments
the backoff approach used was the SplitPropertySet together with the everySecondItem7

splitter and the average merging strategy. The backoff strategy was triggered by the
backoff condition TooFewRecommendations with a T1 threshold of one. This decision was
made as the evaluation results in Gleim et al. (2020) paper demonstrated that this specific
set-up of the SchemaTree proved to outperform all other variants.

The experiments were carried out on the original version of the SchemaTree and on
the additional variants with storing a single, two and three child nodes directly within
the parent node (setting the constant N depicted in Figure 5 to 1, 2 and 3). Figure 6
depicts the average request duration for the different variants of the RecommenderServer.
In Figure 6 (a) the request duration is recorded per set size, which indicates the number
of properties and types that were used when issuing the request. In Figure 6 (b) the
request duration is recorded on the basis of the number of non-types, which is the number
of properties that were supplied in the request. Figure 6 (a) indicates that all versions
of storing pointers directly within the node outperform the original version of an array of
pointers by a slight fraction up till the set size of roughly 10. However, with the increase
of set size, only the RecommenderServer with a single pointer stored directly in the node
outperforms the original structure of the service. Similarly, when the request duration is
compared in terms of number of non-types, only the RecommenderServer with a single
pointer stored within the node outperforms all other setups.

Original 3 pointers 2 pointers 1 pointer

Latency (ms) 64.87 65.48 66.32 60.32
%CPU used 3030% 3007% 2979% 2956%

Table 1: Average latency of requests and percentage of CPU used during the tests.

7everySecondItem is a method of splitting the properties provided in the request employed during the
backoff strategy of SplitPropertySet. Each property at an even position is ordered in subset P1 while each
property of an odd position is ordered in subset P2.

9



Figure 6: Latency of the request for different set-ups of the SchemaTree (ms).

The results depicted in Table 1 display the average latency in milliseconds and the
average percentage of CPU usage for all four versions of the RecommenderServer evaluated.
When storing a single child node directly within the parent node, the RecommenderServer
saw an improvement of approximately 7% in regards to request latency, while there was
no significant impact on the CPU usage.

Figure 7: Frequency of children per node in the SchemaTree.

The behaviour visible in Figure 6 and Table 1 can be explained by the frequency of
child nodes per node relationship depicted in Figure 7. The x-axis of the figure portray
the number of children a node has while the y-axis show the total count of such nodes

10



within the tree structure. From Figure 7 it can be estimated that roughly 74% of nodes
in the SchemaTree structure have a single child.

Given the experiment results the RecommenderServer version deployed to Wikidata
contains a single pointer to a child node stored directly within the parent node. The API
call used to serve the property recommendations to Wikidata handles approximately 0.5 -
1.5 requests each second8. Therefore, the small performance improvement would still have
a significant impact given the scale of Wikidata, which currently contains approximately
94000000 items9.

3 Deploying to Wikidata

This section concerns the process of integrating the SchemaTree code within the existing
Wikidata infrastructure. Alongside, the original implementation and the necessary
adjustments to the original PropertySuggester extension will be explored.

3.1 Current PropertySuggester implementation

The recommendations for additional properties in the current setup of Wikidata are served
by the PropertySuggester, which is an extension for Wikibase. The request for property
recommendations gets triggered when the user attempts to add new statements to a given
Item. The current implementation of the PropertySuggester extension requires that the
wbs propertypairs SQL table is present within the database of the wiki. When the API call
to ’wbsgetsuggestions’ is triggered from within Wikidata, the PropertySuggester extension
is executed. The properties which are then suggested are acquired by using the association
rule approach and querying the information from the wbs propertypairs table. The broad
overview of this process can be viewed in Figure 8 where the API call gets triggered from
within Wikidata, which in turn executes the PropertySuggester extension and leads to an
SQL query to the database associated with the extension.

The API call receives the following parameters10:

entity a string that represents the Q code of the current entity page

properties alternatively, if an entity is not provided the parameter ’properties’ should
be used with a list of P codes

limit the maximum number of suggestions to return

continue the offset from which to return the suggestions

language a string representing the language in which the suggestions should be returned

context a string representing the context of the suggestions to return (either item,
qualifier or reference)

include a string representing which suggestions should be included (e.g. whether
depreciated properties should be provided)

search a string representing the query the user has entered
8https://grafana.wikimedia.org/d/000000559/api-requests-breakdown?orgId=1&refresh=5m&

var-metric=p99&var-module=wbsgetsuggestions&from=now-30d&to=now
9https://www.wikidata.org/wiki/Wikidata:Statistics

10https://www.wikidata.org/w/api.php?action=help&modules=wbsgetsuggestions

11

https://grafana.wikimedia.org/d/000000559/api-requests-breakdown?orgId=1&refresh=5m&var-metric=p99&var-module=wbsgetsuggestions&from=now-30d&to=now
https://grafana.wikimedia.org/d/000000559/api-requests-breakdown?orgId=1&refresh=5m&var-metric=p99&var-module=wbsgetsuggestions&from=now-30d&to=now
https://www.wikidata.org/wiki/Wikidata:Statistics
https://www.wikidata.org/w/api.php?action=help&modules=wbsgetsuggestions


Figure 8: Sequence diagram for a general overview of the execution of the original
PropertySuggester code.

3.2 Adapting the PropertySuggester extension

In order to integrate the SchemaTreeRecommender within the PropertySuggester extension
it is necessary that the RecommenderServer is deployed as a service to Wikimedia Cloud
Services. For integrating the RecommenderServer, the service selected was Cloud VPS 11,
which is a cloud computing infrastructure for projects related to the Wikimedia movement.
To further make the RecommenderServer accessible to requests from outside the cloud
infrastructure, a docker image was created using Blubber12 and it was deployed as a
systemd service within the Cloud VPS instance. HTTP and HTTPS proxies were set
up to make the port used by RecommenderServer publicly available. This integration
will remain active for the purposes of carrying out A/B testing and evaluation of
the two recommendation systems. In the instance where the SchemaTreeRecommender
outperforms the PropertySuggester, the RecommenderServer has to be deployed to the
production cluster of Wikidata to ensure that the correct security protocols are obeyed.

Due to the evaluation purposes of this work, it was decided that A/B testing has to
be implemented. A/B testing is a controlled experiment, which can be conducted in
an online environment, therefore, allowing for data collection. Such tests have shown
to create a more accurate understanding of what customers (users of Wikidata) value
(Fabijan et al., 2017). In regard to this work the decision to implement the data collection
process as an A/B test was to provide unbiased results about the usability and quality

11https://wikitech.wikimedia.org/wiki/Portal:Cloud_VPS
12https://wikitech.wikimedia.org/wiki/Blubber

12

https://wikitech.wikimedia.org/wiki/Portal:Cloud_VPS
https://wikitech.wikimedia.org/wiki/Blubber


Figure 9: Sequence diagram for a general overview of the execution of the
SchemaTreeRecommender within the PropertySuggester code.

of both recommendation systems. The existing PropertySuggester extension was further
adapted to handle responses using both the original rule based suggester and the updated
maximum-likelihood SchemaTree recommender13. By employing this approach it was also
ensured that A/B testing can be integrated within the same API (’wbsgetsuggestions’ ) call
without making it noticeable within the user interface. The general structure of handling
the request with the SchemaTree recommender can be seen in Figure 9, while Figure
10 depicts a lower level description of how both recommenders are integrated within the
PropertySuggester extension.

Important to note is that each API call to ’wbsgetsuggestions’ contains the context
parameter. While the PropertySuggester is capable of handling all three possible
contexts, the SchemaTreeRecommender issues responses only if the context provided
is ’item’. Hence, A/B testing and data collection occurs only in the instances where
the context supplied in the request is ’item’. In addition, the implementation allows
for a default recommender to be set and in the instance where the request for the
SchemaTreeRecommender times out, a fallback to the original PropertySuggester will
occur.

Moreover, when introducing the SchemaTreeRecommender and A/B testing to the
PropertySuggester extension the list of possible API call parameters was extended to
include:

13Code patch for integrating the SchemaTreeRecommender : https://gerrit.wikimedia.org/r/c/

mediawiki/extensions/PropertySuggester/+/689161

13

https://gerrit.wikimedia.org/r/c/mediawiki/extensions/PropertySuggester/+/689161
https://gerrit.wikimedia.org/r/c/mediawiki/extensions/PropertySuggester/+/689161


Figure 10: Sequence diagram for the execution of both of the recommendersa.

aThe alternative block represents the A/B testing execution of only one of the recommenders.
Additionally, the sequence diagram does not represent the full extent of the operations carried out by
the PropertySuggester extension. For readability purposes, the initialization order of the instances has
been changed in the diagram.

types if an entity ID is not provided, it is possible to provide a list of types, this parameter

14



can be used in combination with the properties parameter

event if A/B testing is enabled this parameter will contain the event identifier which is
used to link events logged client-side with the events logged server-side

4 Evaluation

This section concerns the evaluation of the SchemaTreeRecommender in comparison to the
association rule based PropertySuggester currently used by Wikidata. The further analysis
regard the results concerning the quality and the performance of the two recommender
systems.

The existing association rule based PropertySuggester and the SchemaTreeRecommender
are evaluated under three hypotheses. These hypotheses are aimed to explore whether
objectives concerning user experience and information quality when using the property
suggestion field within Wikidata are improved.

1. The SchemaTreeRecommender leads to reduced time consumption when a new
property is added

2. The quality of the recommendations served by the SchemaTreeRecommender is
higher than the quality of those served by the original association rule based
recommender

3. The SchemaTreeRecommender provides greater support for users who are less
experienced with the Wikidata site

4.1 Preparation

In order to prepare for the evaluation of the two recommender systems, an additional
patch14 for the PropertySuggester extension was created employing the EventLogging
extension15. Moreover, a patch16 containing the schemas required for event logging both
client-side and server-side were created. To carry out the evaluation between the two
recommender systems the following values are logged:

propertysuggester name a string representing the title of the suggester that handled
the request (’PropertySuggester’ or ’SchemaTreeSuggester’ )

entity id a string representing the Q code of the entity page being edited

existing properties an array of strings containing the P codes of the existing properties
the entity has

existing types an array of strings containing the Q codes of the existing types the entity
has

request duration ms the latency of the request in milliseconds

14Code patch for event logging: https://gerrit.wikimedia.org/r/c/mediawiki/extensions/

PropertySuggester/+/694496
15https://www.mediawiki.org/wiki/Extension:EventLogging
16Code patch containing the evnet logging schemas: https://gerrit.wikimedia.org/r/c/schemas/

event/secondary/+/689152

15

https://gerrit.wikimedia.org/r/c/mediawiki/extensions/PropertySuggester/+/694496
https://gerrit.wikimedia.org/r/c/mediawiki/extensions/PropertySuggester/+/694496
https://www.mediawiki.org/wiki/Extension:EventLogging
https://gerrit.wikimedia.org/r/c/schemas/event/secondary/+/689152
https://gerrit.wikimedia.org/r/c/schemas/event/secondary/+/689152


add suggestions made an array containing the P codes of the additional suggestions
the suggester recommends

language code a string representing the language in which the request was made
(provided in the API call)

rank selected the rank of the property which the user selects

recommendation selected a string representing the URI of the property the user selects

num characters the number of characters the user looks up before selecting a property

user id a string representing a hashed user ID or an indicator that the user was not
logged in when making the request

Values concerning the event id and the session id are also logged in order to link the
events occurring client-side with the requests executed server-side. The session id is used
for the purpose of linking the event occurring in the instance of the user selecting a property
with the events leading up to it. Additionally, all events logged contain a timestamp
representing the moment when the specific event was issued.

4.2 Evaluation procedure

To evaluate the two recommender systems the data described in the section regarding
evaluation preparation is aggregated with regard to the set size (the total number
of existing properties and types the entities have). This ensures that the two
recommenders used can be objectively evaluated given that the speed and the quality
of the recommendations returned is dependent on the amount of properties supplied to
the request.

Further, the PropertySuggester and the SchemaTreeRecommender will be evaluated with
regard to the performance and the quality of the responses served when the requests are
issued by users who are logged in and by users who are not logged in. The data acquired
will be gathered in two groups each corresponding to user status of being a registered
member of Wikidata or not.

4.3 Metrics

In order to objectively compare the performance of the two recommenders, the following
metrics are employed regarding all grouping of entities described in the section of
evaluation procedure:

Rank the average position of the property the user selects in the list of properties
suggested by the recommender

Stddev the standard deviation of the ranks

Latency the average time to receive the list of recommendations (in milliseconds)

Number of characters (NumOfChar) the average number of characters the user
queried before selecting a property

TopX the percentage of all recommendations issued where the suggested property
selected by the user was in the top X recommendations

16



Time the average time it took the user to select a property to add to the entity page in
seconds (measured as the time between the timestamps of the first event logged and
the event of selecting the property logged)

4.4 Evaluation results

The results further discussed will address each of the three hypotheses concerning the
evaluation of the two recommender systems. The results visible in Tables 2, 3, 4 and 5
are grouped by the total set size.

4.4.1 Time expenditure

Recommender Latency (ms) Time (s)

SchemaTreeSuggester Results pending
PropertySuggester

Table 2: Results describing the latency for executing the requests and the average time it
took a user to add an additional property to the entity.

Figure 11: The average request duration and the total time taken to add a new property
to a Wikidata entity page. The results are grouped by set size.

17



4.4.2 Recommendation quality

Recommender Rank Stddev Top1 Top3 Top5 NumChar

SchemaTreeSuggester Results pending
PropertySuggester

Table 3: Results describing the quality of the recommendations provided by the
SchemaTreeRecommender and the PropertySuggester.

Figure 12: The average Top5 score, rank and the number of characters entered by a user
before selecting a property. The results are grouped by set size.

18



4.4.3 User guidance

Recommender Rank Stddev NumChar Top1 Top3 Top5 Latency
(ms)

Time
(s)

SchemaTreeSuggester Results
PropertySuggester pending

Table 4: Results describing the statistics for the SchemaTreeRecommender and the
PropertySuggester for logged in users.

Recommender Rank Stddev NumChar Top1 Top3 Top5 Latency
(ms)

Time
(s)

SchemaTreeSuggester Results
PropertySuggester pending

Table 5: Results describing the statistics for the SchemaTreeRecommender and the
PropertySuggester for users who are not logged in.

19



Figure 13: The average Top5 score, rank, number of characters the user entered before
selecting a property, the average request duration and the total time spent editing. The
results are grouped by set size and displayed separately for users who are logged in and
users who are not logged in.

5 Conclusions and Future Work

In this paper the SchemaTree trie-based data structure previously introduced by Gleim
et al. (2020) was deployed within the Wikidata environment. Leading up to the deployment
process the original SchemaTreeRecommender code base was manipulated to decrease the
request duration and the CPU usage even further. Additionally, the code was separated

20



into two repositories in order to assist with the deployment process to Wikidata. Within
the production setting it was further evaluated against the existing association rule based
PropertySuggester, which thus far has served the purpose of suggesting new properties
to an item. The two recommendation systems were evaluated on the basis of their
performance and quality in regards to the three hypotheses that support core goals of
Wikidata. The SchemaTreeRecommender and the PropertySuggester were contrasted in
terms of the time consumption they require when a new property is added, the overall
quality of the recommendations which they serve and the support they provide to users
with different expirience levels of Wikidata.

The current implementation of the SchemaTree is limited to only suggestions of
additional properties. Therefore, further work to improve the usability of the
recommendation systems of Wikidata would be to extend the SchemaTree to support
the recommendations of qualifiers and references, which currently remain handled by
the original PropertySuggester. The current implementation of qualifier and reference
recommendations are frequency based and do not take take into consideration the qualifiers
and references that are already added to the property statement. In order to adapt the
SchemaTreeRecommender to recommend additional qualifiers to a property statement, the
code base for constructing the SchemaTree and for serving the recommendations could be
adjusted to return a ranked list of qualifiers given their maximum-likelihood.

Additionally, it is worth investigating to what extent the current implementation of
the SchemaTreeRecommender complies to the property constraints set within Wikidata.
Property constraints are the rules which denote what properties specific entities can be
described by. An example of such a constraint is that the property ’head of government’
(P6) should be assigned to only entities which are people. Property constraints are
currently defined for over 8000 items on Wikidata, however, they remain rather guidelines
and not strict rules (Ahmadi and Papotti, 2021). Therefore, conducting further analysis
of how well the SchemaTreeRecommender complies would provide additional information
on the quality of the recommendations served. Proposals of how to integrate the property
constraints within the current SchemaTreeRecommender include adding these constraints
directly within the SchemaTreeRecommender code base or to supply them within the
API request body. Additionally, a table could be added to the Wikidata SQL database
containing these property constraints, therefore, allowing for the removal of unsuitable
properties within the PropertySuggester extension.

Moreover, the SchemaTreeRecommender is capable of returning types as well, however,
they are not used for the purposes of adding additional properties to an item. It would
be beneficial to include further investigation of how accurate the type recommendations
provided by the SchemaTreeRecommender are. Given results of such an experiment the
SchemaTreeRecommender could be further adapted to provide type recommendations as
well.

21



References

Ahmadi, N. and Papotti, P. (2021). Wikidata Logical Rules and Where to Find Them,
page 580–581. Association for Computing Machinery, New York, NY, USA.

Chilimbi, T. M., Davidson, B., and Larus, J. R. (1999). Cache-conscious structure
definition. SIGPLAN Not., 34(5):13–24.

Fabijan, A., Dmitriev, P., Olsson, H., and Bosch, J. (2017). The benefits of controlled
experimentation at scale.

Gleim, L. C., Schimassek, R., Hüser, D., Peters, M., Krämer, C., Cochez, M., and Decker,
S. (2020). Schematree: Maximum-likelihood property recommendation for wikidata. In
Harth, A., Kirrane, S., Ngonga Ngomo, A.-C., Paulheim, H., Rula, A., Gentile, A. L.,
Haase, P., and Cochez, M., editors, The Semantic Web, pages 179–195, Cham. Springer
International Publishing.

Gyorodi, C., Gyorodi, R., Cofeey, T., and Holban, S. (2003). Mining association rules
using dynamic fp-trees. In Proceedings of irish signals and systems conference, pages
76–81.

Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without candidate
generation. SIGMOD Rec., 29(2):1–12.

Hernández, D., Hogan, A., and Krötzsch, M. (2015). Reifying rdf: What works well with
wikidata? 1457:32–47.

Vrandečić, D. (2012). Wikidata: A new platform for collaborative data collection.
In Proceedings of the 21st International Conference on World Wide Web, WWW
’12 Companion, page 1063–1064, New York, NY, USA. Association for Computing
Machinery.

Vrandečić, D. and Krötzsch, M. (2014). Wikidata: A free collaborative knowledgebase.
Commun. ACM, 57(10):78–85.

Zangerle, E., Gassler, W., Pichl, M., Steinhauser, S., and Specht, G. (2016). An empirical
evaluation of property recommender systems for wikidata and collaborative knowledge
bases. In Proceedings of the 12th International Symposium on Open Collaboration,
OpenSym ’16, New York, NY, USA. Association for Computing Machinery.

22


	Introduction
	SchemaTree Adaption
	Introduction to the SchemaTree
	Code base
	Performance improvements

	Deploying to Wikidata
	Current PropertySuggester implementation
	Adapting the PropertySuggester extension

	Evaluation
	Preparation
	Evaluation procedure
	Metrics
	Evaluation results
	Time expenditure
	Recommendation quality
	User guidance


	Conclusions and Future Work

