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Abstract

Knowledge graphs, also known as semantic networks, represent a structured way of organizing
and storing information and real world knowledge of various entities including objects,
events, situations and even abstract concepts. This information is stored in the form of
semantic triples in triple databases. To be able to learn from these graphs we employ Graph
Convolutional Networks , this semi-supervised learning model is used to produce vector
embeddings for every node in a graph which then represent points in a multi-dimensional
embedding space.

In this paper we will be focusing on knowledge graph information retrieval in the form
of query answering. Queries can be created in a structured manner by various query
languages for example SPARQL. To answer these queries we introduce a model based on
previous work (Daza and Cochez, 2020) consisting of a Relational Graph Convolutional
Network(Schlichtkrull et al., 2017) combined with the Message Passing Query Embedding
approach that represents and embeds queries as small graphs. In our experiments we show
how training the model on entity type embeddings instead of individual entity embeddings
improves the training convergence speed of the model while maintaining the quality of the
final results. We also address the drawbacks of this approach including lower performance
on large datasets as well as high variance in terms of results which is tied to hyperparameter
settings and the experimental setup.

1 Introduction

Embedding the data found in knowledge graphs is done by means of a neural network
architecture called Graph Convolutional Networks. These networks produce node vector
embeddings by effectively obtaining and combining information from neighboring nodes
during each forward pass. During training, node embedding algorithms often group similar
entities together in the embedding space while moving dissimilar entities further away, the
end result is an embedding space of multiple cluster-like structures that are formed by related
entities, however, this is not always the case for Graph Convolutional Networks.

In our experiments we will be working with Relational Graph Convolutional Networks
(Schlichtkrull et al., 2017) that are additionally able to deal with different relations between
individual entities (nodes) of a knowledge graph as highly multi-relational data is very
common in real world knowledge bases. To generate answers to structured queries we firstly
represent and train the query as a small embedded graph by utilizing Message Passing Query
Embedding (MPQE) (Daza and Cochez, 2020). Analyzing the position of the trained query
embedding in relation to the trained individual entity embeddings in the high dimensional
vector space then allows us to determine answers to the queries.
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1.1 Experiment focus

Models like the MPQE require a substantial amount of generated queries to train on to
achieve good results. We attempt to reduce the amount of training needed while still
maintaining good results by focusing on the fact that entities which share the same type
(class) generally share multiple characteristic and have similarities in terms of features
and shared edges, consequently, they often end up in the same clusters in the final graph
embeddings produced by a RGCN/GCN. Following these observations we compare the
performance of 1. a MPQE model (Daza and Cochez, 2020) trained on entity embeddings to
2. a MPQE model that we first pre-train on type embeddings in phase one and afterwards
transfer the neural network weights to a new model that trains on entities exactly like model
1 in phase two. Our goal is to investigate if a model that begins training on entity embeddings
that had been ”pre-clustered” as opposed to having randomly initialized embedding vectors
will effectively increase convergence speed while retaining the quality of the results obtained
and the capability of answering queries. The reduction of the training that has to be done
by the model is due to the fact that the network now only has to store and train type
embeddings instead of carrying this out for all individual nodes of the graph which equates
to a substantially smaller amount of embeddings.

2 Related Work

Our work builds upon the idea of learning low-dimensional embeddings of knowledge graphs
by means of query answering introduced by (Hamilton et al., 2018) demonstrating how to
map a practical subset of logic to efficient geometric operations in an embedding space. This
approach then paved the way for the models related to our work. The model used in our
experiments is based on the MPQE model presented by (Daza and Cochez, 2020) which uses
RGCN (Schlichtkrull et al., 2017) layers to propagate information across a graph. Concepts
related to both of these models include message passing networks which are described more
closely in (Gilmer et al., 2017) as well as Graph Neural Networks (Scarselli et al., 2009)
and Graph Convolutional Networks which were first introduced in (Kipf and Welling, 2017).
Related work also includes research done on prototypical networks (Snell et al., 2017) which
use a small number of examples for each entity type in the graph to train the network.
The goal of this approach is to deal with few-shot classification where the model must be
capable of classifying new entity types (classes) that have not been observed during training.
This generalization process is done by comparing the embedding of the unknown entity
type to existing trained embeddings that represent each known type (prototypes). In our
experiments we employ a similar concept where we use the trained type embeddings we
obtain as prototypes for different entity classes (types).
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3 Definitions

3.1 Knowledge Graphs

Knowledge graphs (Hogan et al., 2021), also known as semantic networks, represent a
structured way of organizing and storing information and real world knowledge of various
entities including objects, events, situations or even abstract concepts. These graphs often
contain information made up of datasets from many different sources that can also often
have different structures. To be able to encode all of this different information together we
are in need of ontologies. Ontologies ultimately form the backbone of a knowledge graph by
providing formal semantics that aid with expressing and interpreting the data of a graph.
In the case of knowledge graphs, these formal semantics are represented by:

Classes: Entities of knowledge graphs are represented by nodes. Entity classes serve as a
description and a means of classification in terms of a higher class hierarchy.

Relation types: An edge between two nodes (entities) of a knowledge graph is paired with
an edge label. These labels serve as a description of the relationship between two
entities. (e.g. child-of, friend-of, class-mate-of, co-worker-of)

Categories: Entities of the graph can be a part of different (or even multiple) categories
(e.g. a professor that is a part of a specific research group or a student that is a member
of a specific student association.)

Free text descriptions: These can optionally be included and take the form of notes that
provide further clarification to a subject or a part of the knowledge graph.

3.2 Structured Queries

To be able to carry out information retrieval on a given knowledge graph we make use of
structured queries in conjunctive form as seen in (Hamilton et al., 2018). These queries are
formed by a conjunction of binary predicates that consist of entities or variables as their
arguments. Consider for instance a knowledge base of an academic institution, an example
query can look like: “select all projects P, such that topic T is related to P, and both alice
and bob work on T.” In other words, we search for entities P that satisfy the following
condition:

P.∃T, P : related (P, T ) ∧ works on (alice, T ) ∧ works on (bob, T ) .

A query q is defined by a condition on a target variable Vt in the following way:

q = Vt.∃V1, . . . , Vm : r1(a1, b1) ∧ . . . ∧ rm(am, bm).

where ri ∈ R and ai and bi are either entities in the knowledge graph, or query variables
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in Vt, V1, . . . , Vm. Following this definition, an entity is considered an answer to the given
query if it satisfies this condition (Daza and Cochez, 2020).

Figure 1: An example of a
query graph derived from
the example described above
(Daza and Cochez, 2020).
Alice and bob represent entity
nodes (blue), topic represents
a variable node (orange) and
project represents a target of
the query (green).

Figure 2: Query structures
considered when generating
and answering queries (Daza
and Cochez, 2020), blue nodes
represent entities and the rest
corresponds to variables in the
query with the green nodes
being the targets. The names
of the structures from left to
right, top to bottom: 1hop,
2hop, 2i, 3hop, 2i-1hop, 3i,
1hop-2i. With ”hop” denoting
edge hops and ”i” denoting
intersections.

3.3 Query Answering

When answering a query our model uses a message passing query embedding (Daza and
Cochez, 2020) model to generate embeddings of the graph entities as well as the query targets
and variables. Once trained, we use the dot product of the generated query embedding vector
to calculate a score matrix between the query and all other entities in the graph to effectively
determine how similar they are to each other in the multi-dimensional embedding space
generated by the model. The entities and the generated query embeddings are then ranked
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based on these similarity scores. The entities with the highest score are then considered as
the answers to the query.

3.4 Graph Convolutional Networks

A Graph Convolutional Network (GCN) is a form of semi-supervised learning model derived
from convolutional networks with the difference being that GCN’s can operate directly on
graphs. In general, the network takes as input:

• A summarized description of the individual node features (In our case these are node
embeddings)

• A representative description of the graph (In our experiments this is an edge index as
well as a matrix containing edge types).

The goal of these networks is to propagate information across a graph, i.e. encode both
local graph structures as well as features of individual input nodes and produce a graph
embedding as output. Similar to classic neural networks, a GCN is formed by several neural
network layers that share a common layer-wise propagation rule which can be generalized
to:

H(l+1) = f
(
H(l), A

)
(1)

This function represents a form of message passing where information about graph nodes
gets propagated along graph edges. During each step, every node effectively gets features
from neighboring nodes while updating its own features accordingly.

Different choices of f result in different variants of the GCN model, for instance the
model introduced by (Kipf and Welling, 2017) uses the following function:

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)W (l)

)
(2)

Ã represents the normalized adjacency matrix of an undirected graph G that is created
by adding self loops to the original adjacency matrix and subsequently summing it with an
identity matrix of the same size (Ã = A + IN). D̃ represents the diagonal matrix produced
from Ã (D̃ii =

∑
j Ãij). W(l) is a trainable weight matrix and σ is a chosen activation

function (for instance ReLU(·) = max(0,·).
A simple multiplication of the weight matrix with the normalized adjacency matrix during

propagation would lead to a loss of control over the range of the hidden layer output, the
model would then face the exploding or the diminishing problem of a neural network. To
combat this we use the renormalization trick of multiplying the normalized adjacency matrix
with the diagonal matrix D̃−

1
2 ÃD̃−

1
2 as described by (Kipf and Welling, 2017).
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3.5 Relational Graph Convolutional Networks

In our experiments we are going to be using an extension of GCN’s called a Relational
Graph Convolutional Network (R-GCN) (Schlichtkrull et al., 2017). This modified version
of the model allows us to handle different relationships between entities during information
propagation by using different weight matrices for each different edge type. During the
forward pass, the R-GCN computes the hidden representations of the (l+1)th layer as follows:

h
(l+1)
i = σ

∑
r∈R

∑
j∈N r

i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i

 (3)

Where h
(l)
i ∈ Rd(l) denotes the hidden state of a node vi in the l -th layer of the R-

GCN network, d(l) represents the dimensionality of the representations of this layer. In our
experiments the dimensionality of the input embeddings remains preserved. N r

i represents
the set of neighbor indices of node i under relation r ∈ R. ci,r is a normalization constant
(chosen to be ci,r = |N r

i | in our case). Additionally, different edge types use different weights

and only the same relation type r is associated with the same weight matrix W
(l)
r . We

use the RGCNConv Pytorch Geometric implementation (Fey and Lenssen, 2019) that is
based on the work done by (Schlichtkrull et al., 2017). In our experiments we do not use
the basis-decomposition regularization nor the block-diagonal-decomposition regularization
scheme.

4 Model Description

We will be using the tuple definition of a Knowledge Graph introduced in (Daza and Cochez,
2020) (V , E ,R, T ), with V representing a set of entities of a given dataset with E representing
typed edges between individual entities (nodes). A function τ : V → T that assigns a type
to every node, where T is a set of entity types. Additionally, we denote r(vi, vj) a relation
between two nodes of a graph(vi and vj) where r ∈ R represents a relation (edge) type.

The two models used in our experiments both follow the work done by (Daza and
Cochez, 2020), two Relational Graph Convolutional Network layers (RGCN)(Schlichtkrull
et al., 2017) are used to propagate information across the graph while accounting for node
neighbors and edge types. During this process the network trains on a input matrix of
shape Mn ∈ R|V|×d where each row contains the embedding of one node of the query and d
represents the dimension of the embedding space. The generated query embedding is then
used by the loss function during training together with all of the entity embeddings of a
given dataset.
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Figure 3: Graphic representation of MPQE. The R-GCN of the model takes as input
a query graph (1hop and 1hop-2i in the figure only serve as illustrative examples, this
concept applies to any query structure) in the form of a matrix of node embeddings, these
embeddings are then updated accordingly during forward passes and backpropagation of
the neural network layers. The output of the convolutional layers is then pooled together
by means of an aggregation function to produce a vector embedding of the query.

4.1 Node Embeddings

To allow a graph to be embeded in a vector space the individual graph entities are represented
as vectors of size d (dimension of the embedding space). These vectors represent features
of each node and are then taken as input to the R-GCN layers of our model while being
saved and trained throughout the backpropagation process. The model solely trained on
entities (Model 1) begins training with randomly initialized embeddings sampled following
the Xavier initialization which is very popular choice when it comes to training a feedforward
neural network as it helps maintain near identical variances of weight gradients across layers
as seen in (Glorot and Bengio, 2010). This results in a evenly dispersed set of embeddings
that were sampled from a random uniform distribution. Model 2 uses the identical Xavier
initialization approach for generating initial type embeddings.
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4.2 Loss function

Our model uses a Binary Cross Entropy Loss function implemented by (Alivanistos et al.,
2021) which is based on the Pytorch BCEWithLogitsLoss function (Paszke et al., 2019).
BCELoss creates a criterion that measures the binary cross entropy between the target and
the output which can be described by the following expression:

`(x, y) = L = {l1, . . . , lN}>, ln = −wn [yn · log σ(xn) + (1− yn) · log(1− σ(xn))]

where N is the batch size. The loss function also adds a Sigmoid layer to the binary
cross entropy. Combining the operations into one layer leads to the operation being more
numerically stable by taking advantage of the log-sum-exp trick. The loss function takes
as input a matrix of pair-wise similarity scores between the query embeddings and all
other entity embeddings and a list of query targets of a given batch. The matrix scores
are generated by means of a dot product similarity function (Alivanistos et al., 2021).
Stochastic gradient descent is replaced by the Adam optimizer (Kingma and Ba, 2017)
which combines the Adaptive Gradient Algorithm (AdaGrad) and the Root Mean Square
Propagation (RMSProp), both of these maintain per-parameter learning rates that are
adapted based on the average of recent magnitudes of the gradients for the weight. In
the field of deep learning Adam is a very popular algorithm because it achieves considerably
good results quickly.

4.3 Aggregation Function

After passing the node embeddings of a query through two RGCN layers the output embeddings
get aggregated by a simple pooling function that sums the nodes together to produce a single
vector of dimension d. The pooled output then represents the embedding of the given query.

4.4 Model 1: Entity MPQE Model

Given a query graph, we start off by initializing each of the nodes of the query with a
vector representation, this matrix of embeddings is then stored by the model throughout the
training process. Parts of this matrix then serve as the input to the model and are used to
train all of the stored embeddings. Particularly for our first model this is a matrix of the
shape Me ∈ R|V|×d with each row of the matrix containing the embedding of a single entity
of a given query. V represents number of entities of the query and d the dimension of the
embedding space. The model then proceeds with an application of the RGCN layers and
aggregation function to obtain a query embedding and subsequently calculate the loss and
update the vector representation of different nodes of the graph.

4.5 Model 2: Combined MPQE Model

The second, Combined MPQE Model used in our experiments uses the exact same MPQE
implementation as Model 1 with the only difference being that instead of initializing entity
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embeddings randomly we first randomly initialize the embeddings of a type matrix Mt ∈
R|T |×d. We then proceed to train the network while only considering the types of entities (as
illustrated in Figure 4). Afterwards, we initialize a matrix of entity embeddings Me ∈ R|V|×d
by taking the vector embedding of the corresponding type from Mt ∈ R|T |×d which results in
an identical vector representation being assigned to entities that share the same type before
training begins. The process of transfering weights between the two models is described in
more detail in the upcoming sections. Afterwards, we recommence training the network in
the same way as described in the previous subsection.
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Figure 4: Comparison of the MPQE Model 1 that trains on entity embeddings (left) and
the part of the Comibed MPQE model 2 that only trains on types instead (right).
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5 Experiments

Figures throughout the rest of this document will be referring to Model 1 as ”Entity MPQE
Model” and Model 2 as ”Combined MPQE Model”. The experiments have been conducted
three times for each dataset (except AM, which is addressed in the Discussion section).

5.1 Datasets

The datasets that were used to generate queries for our experiments are publicly available
knowledge graphs previously used in (Daza and Cochez, 2020; Hamilton et al., 2018; Ristoski
et al., 2016):

AIFB
Knowledge base describing the AIFB research institute in terms of its staff, research
group, and publications. Entities are of the following types: ”class”, ”organization”,
”person”, ”topic”, ”project” and ”publication”.

AM
Dataset containing information about artifacts in the Amsterdam Museum. Entities
are of type: ”web resource”, ”aggregation”, ”physical thing”, ”proxy”.

MUTAG
A knowledge base of complex molecules, some of which potentially carcinogenic.
Entities are of type: ”structure”, ”bond”, ”atom”, ”compound”.

For a more detailed description of the datasets refer to (Ristoski et al., 2016)

Dataset AIFB AM MUTAG
Entities 2601 372584 22372
Relation Types 19 11 4
Entity Types 6 4 4

Table 1: Overview of relevant data of the subset of the datasets that were part of our
generated queries that were used in our experiments.

5.2 Experimental Setup

We use an embedding dimension d of 128 for initialization of entity and type embeddings
which then get passed through 2 R-GCN layers which have their in channels and out channels
set to the embedding dimension d. As described in previous sections, to calculate loss we
use dot product similarity as a scoring function and binary cross entropy as the loss function
combined with an Adam optimizer with the learning rate set to 0.0001 and weight decay of
.0005.
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Model 1 (Entity MPQE Model) trains for 1000 epochs while Model 2 (Combined MPQE
Model) firstly trains for 100 epochs solely on types. After transfering the trained weights
and re-initializing the entity embeddings of Model 2 with their corresponding trained type
embedding we proceed to train for 1000 epochs on entities only. The performance of Model
1 and Model 2 during their entity training phases (1000 epochs) is then used to compare the
two models and draw results of our experiments. We use a batch size of 32 queries during
training. The queries we used are allowed to have multiple targets, however during training
on types duplicate targets were removed (i.e. targets that shared the same entity type and
therefore were representing the same embedding) so we could continue to use the same loss
function when training on entities as well as types.

18% of our dataset was removed from the graph for validation and testing purposes before
sampling the queries that were used during the training process.

Training on Types To be able to train a model on types instead of entities the
following steps were taken: Firstly, each model was now training a matrix of embeddings of
shape Mt ∈ R|T |×d instead of Me ∈ R|V|×d as described in section 4.6. Secondly, for each
dataloader batch of queries entity ID’s were remapped to their corresponding type ID’s, this
was done for the entity ids, edge index tensors as well as the tensor which contained query
targets of the current batch. These remapped tensors were then used as input to our MPQE
model.

5.3 Query Sampling

The code for the query generation process we have used in our experiments can be found in
(Alivanistos et al., 2021). We use Docker1 (Merkel, 2014) to deploy the AnzoGraph2 database
as our triple store. Afterwards, we generate queries in textual form in the SPARQL query
language3. The queries are then converted into a more compact binary format, the binary
files are then used to generate dataloaders used in our experiments.

Our datasets consist of up to 1000 samples of each query structure type seen in Figure 2.
However, each dataset contains a different amount of queries per query structure type and
in some cases they can contain less than 1000 or even 0 queries of a given type. For instance
the MUTAG dataset does not contain 3hop and 2i-1hop queries. It is important to consider
these facts when drawing conclusions from our experiments.

5.4 Visual Exploration

Each node embedding vector represents a point in the embedding space, these vectors are
then used by the MPQE model during the query answering training process. We also observe

1https://docs.docker.com/
2https://www.cambridgesemantics.com/anzograph/
3https://www.w3.org/TR/sparql11-query/
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that the MPQE model tends to cluster individual nodes in the embedding space according
to their types without explicit supervision as can be seen in Figure 5.

T-SNE We visualize node embeddings using t-SNE which is a technique for visualizing
high dimensional data. More specifically, we use the implementation of (Ulyanov, 2016)
which is based on the modified t-SNE algorithm developed by (van der Maaten, 2014). This
is a modified version of the algorithm which achieves acceleration and better performance
by using two tree-based algorithms: Barnes-Hut algorithm and of the dual-tree algorithm.
The t-SNE algorithm was run for 1000 iterations with perplexity set to 30.

PCA Before inputting the embeddings to t-SNE we use the sklearn implementation of
the Principal Component Analysis algrithm (PCA) (Buitinck et al., 2013) to linearly reduce
the dimensionality of the node embeddings to significantly reduce the running time and
computational intensity of the visualization process.

Figure 5: Visualization of how embeddings change during 1000 epochs of MPQE Model 1
training:
On the left, randomly initialized entity embeddings of the MUTAG dataset before training.
On the right, entity embeddings learned by MPQE during training. Nodes are colored
according to their individual entity types.

5.5 Code

The code in our experiments is based on the MPQE (Daza and Cochez, 2020) and HQE
(Alivanistos et al., 2021) models. The code is written in Python 3.8.5 together with PyTorch
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1.9.0 and cuda 10.2 and can be found on Github4. A large part of the experiments were
performed using the DAS5 system of clusters5 (Bal et al., 2016). Results were evaluated
using the implementation of (Alivanistos et al., 2021) that uses the Pykeen Rank Based
Evaluator (Ali et al., 2021) as its base.

6 Results

In our results section we will be focusing on the AIFB dataset, the results of experiments
conducted using the MUTAG and AM knowledge bases are included in the Appendix. Each
figure illustrates 3 runs of the experiment with the blue and orange areas representing
standard deviation across the runs.
We compare the performance of the two models by analysing the following metrics:

Average mean rank
The rank of a query is the position on which a query target can be found in the ranked
pair-wise scores matrix. The mean rank (MR) computes the arithmetic mean over all
individual ranks. It is given as:

score =
1

|I|
∑
r∈I

r

The advantage of this metric over hits @ k is that it considers the entire knowledge
graph not just a subset of top k results. Consequently, the evaluation metric reflects
the average performance. It has the advantage over hits @ k that it is sensitive to any
model performance changes, not only what occurs under a certain cutoff and therefore
reflects average performance. With PyKEEN’s standard 1-based indexing, the mean
rank lies on the interval [1, infinity) where lower is better.

Hits @ K
After calculating individual pair-wise scores between the query embedding and all other
entities in the graph we proceed to analyze the number of hits. The hits @ k describes
the fraction of true entities (targets) that appear in the first k entities of the sorted
rank list. It is given as:

scorek =
1

|I|
∑
r∈I

I[r ≤ k]

For example, if we consider the 10 nodes that are the closest to a query embedding in
the embedding space. Then the percentage of results that are the true targets of the
query is the hits @ 10. The hits @ k, regardless of k, lies on the [0, 1] where closer to
1 is better.

In our analysis of the results we will be considering :

4https://github.com/KenMikoviny/BachelorThesisKen
5https://www.cs.vu.nl/das5/home.shtml
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• Average hits at 3

• Average hits at 10

• Worst hits at 3

• Worst hits at 10

During evaluation we use the filtered rank (Bordes et al., 2013) between the query
embedding and other entities. This is achieved by ignoring all other correct scores while
computing the rank of a given correct entity. For additional information about the evaluation
metrics refer to the PyKEEN documentation6.

6.1 Convergence Speed

The evaluation metrics discussed above are plotted for both Model 1 & Model 2 and compared
together over 1000 epochs of training on entities. Figure 6 shows that the Combined MPQE
Model converges noticeably faster compared to the Entity MPQE Model. During the final
10 epochs Model 1 finishes training by obtaining an average mean rank of ≈ 430 where as
Model 2 reaches a rank of ≈ 416. However we observe that Model 2 reaches the rank of ≈ 430
around epoch 250 which is approximately 350 epochs faster than it takes Model 1 to reach
the same average mean rank value. The change in convergence speed is not by any means
colossal nevertheless it illustrates how improvements can be achieved with this approach.
Proper automated hyperparameter tuning and ideal model settings would be necessary to
achieve optimal and significant results. We observe similar results for the MUTAG and AM
datasets as can be seen in the Appendix.

6https://pykeen.readthedocs.io/en/latest/tutorial/understanding evaluation.html
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Figure 6: Average mean rank.

(a) Average hits at 3. (b) Average hits at 10.

Figure 7: Average hits @ K.
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Observing Figure 7 we see that in both cases the Combined MPQE Model improves
convergence speed of the training process. In Figure 7a we see that the Combined model
already begins to plateau around period 250 where as the Entity MPQE model achieves
the same number only after 200 more epochs of training. We detect a very similar result
for average hits at 10 (Figure 7b). We also observe that the combined model peaks around
epoch 250 and then starts to trend down, this is most likely a result of overfitting during
the training process. As with the average mean rank, we speculate that these results can be
significantly improved with proper model settings and hyperparameter tuning.

(a) Worst hits at 3. (b) Worst hits at 10.

Figure 8: Worst hits @ K.

Figure 8 presents us with similar results, we notice that there is a noticeable convergence
speed increase when taking into consideration the worst hits at 3 and 10 (i.e. fraction of
targets that appear in the first k entities of the sorted rank list of the worst performing
query).

All figures containing the results of our experiments are included in the Appendix.

7 Discussion

Future Research Due to time constraints, the results obtained from our experiments
were a result of manual hyperparameter tuning, an increase in convergence speed and
improvements of the training process could be achieved by adopting a more automated and
sophisticated approach. This also concerns other parts of the experimental setup including
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how many epochs of type training there are before the parameter transfer is done between
models as well as the random initialization of entity embeddings that occurs before training
starts. Different variations of the model

Multiple Types per Entity Our model only considered entities with a single entity
type (class) during the training and sampling process. An interesting area of future research
includes extending this model to work with entities that have multiple types or labels assigned
to them.

MUTAG Dataset Conducting the experiments using the MUTAG knowledge base
resulted in abnormalities. More specifically Model 2 which was pre-trained on types reached
a lower final performance (judged based on the chosen evaluation metrics described in Section
6). As we can see in Figure 9 Combined MPQE Model seems to reach a plateau instead of
continuing to improve its performance, the figures for the remaining metrics are included in
the Appendix. This might be due to the model reaching some kind of local optimum as a
result of pre-training. During our tests we have found that increasing the number of sample
queries, thus increasing the number of queries Model 2 trained on led to a performance
increase for all of the evaluation metrics.

(a) Average hits at 3. (b) Worst hits at 3.

Figure 9: Average hits at 3 & worst hits at 3 for the MUTAG dataset.

We found that increasing the number of queries sampled for each query structure as well as
increasing the number of epochs of pre-training on types helped combat these issues. As can
be seen in Figure 10 increasing the number of queries sampled for each query structure type
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from 1000 to 3000 led to an increase of performance and a higher ”ceiling” for the Combined
MPQE Model compared to the Entity MPQE Model as well as a higher overall ceiling for
both models. The figure uses the Average hits at 3 metrics to illustrate this phenomenon
but a similar increase in terms of evaluation metric performance was also observed for all of
the other metrics. This further underlines the need for hyperparameter tuning when aiming
for good results with the MPQE training on types approach.

(a) 1000 query samples of each type. (b) 3000 query samples of each type.

Figure 10: Average hits at 3 comparison for the MUTAG dataset.
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AM Dataset While examining the experiment results of tests conducted on the AM
dataset we observe relatively poor results. The hits @ K metrics show that the combined
model does converge faster however it reaches a lower performance ceiling compared to Model
1 as can be seen in Figure 11. The models performed especially poorly for the average mean
rank metric, in Figure 12 we see that the models fail to minimize this metric during the
training process.

These results are somewhat expected and are tied to the size of the AM dataset which
is considerably larger than the other two datasets used in our experiments (see Table 1).
We only sample a 1000 queries for each query structure type where as tens of thousands get
generated in the case of the AM dataset, this amount of queries used to train the model
is simply not enough in the case of a knowledge graph of this size. Furthermore, when
calculating loss we consider all other entities in the graph, minimizing the loss becomes
significantly more difficult with our approach. To combat these issues we emphasize the
need for proper automated hyperparameter tuning as well as exploring different variants of
the model and different number of queries sampled.

Due to time constraints, the AM dataset experiment was only run once and only features
900 epochs of training instead of 1000 as with the MUTAG and AIFB datasets.

(a) Average hits at 3. (b) Worst hits at 3.

Figure 11: Average hits at 3 & worst hits at 3 for the AM dataset.
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Figure 12: Average mean rank for the AM datset.

8 Conclusion

We have used a MPQE Model that draws its fundamentals from graph convolutions and
neural networks to demonstrate how training on entity types instead of individual entities
can potentially yield significant improvements in terms of training convergence speed. We
have observed high variance in terms of results depending on hyperparameter settings, choice
of dataset, number of sampled queries and pre-training epochs which emphasises the need for
hyperparameter tuning and exploration of different setups for the model. Hence, the results
of our research are by no means conclusive and offer space for further testing. Improvements
can be achieved by optimization of the model as well as exploration of different variants of the
model. This includes for example using a completely different loss function or introducing a
different similarity score calculation system.

Another area that requires further investigation is applying this concept to different
datasets as well as possibly considering different query structures as we have only used the
ones specified in Figure 2.
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