
Bachelor Thesis: Finding a good set of anchors

for NodePiece

Renske Diependaal
Supervisor: Michael Cochez

Vrije Universiteit van Amsterdam

July 2022

Abstract

This paper is based on the NodePiece paper written by Galkin et. al.
(2022) and builds on it. The goal of NodePiece is to save computational
power and storage space. This is done by creating a fixed-size vocabulary,
consisting of anchor nodes and relations. The goal of this paper is to
find a good strategy to select anchor nodes, which performs better than
picking random anchors. The tried strategy uses Personalized PageRank
and clustering. For each node, the Personalized PageRank score from that
node to all nodes is stored. This gives a co-occurrence matrix, in which
each i,jth entry represents the PPR score from node i to node j. This
is done using the KGloVe implementation from Cochez et al. (Cochez,
Ristoski, Ponzetto, & Paulheim, 2017). The rows from this matrix are
then grouped together in n clusters. This is done using k-means clustering
and agglomerative clustering. Once the clusters are formed, an anchor
node is picked from each cluster, producing n anchor nodes. This is then
compared with the original anchor selection strategies from NodePiece,
based on: degree, PageRank and random. As an additional test to see if
this strategy works, a counter-intuitive strategy is implemented as well.
Instead of picking an anchor from each cluster, anchors are picked from the
least amount of clusters possible. To test performance, a link prediction
task is done. The results suggest that the newly introduced strategy might
only make a small difference in finding good anchor nodes.

1 Introduction

A knowledge graph (KG) is a graph consisting of several nodes and edges. The
nodes are entities, often relating to instances in the real world. The edges
depict relations between the several nodes. A KG stores data in a structured
way and this data can be used in machine learning. Common tasks include link
prediction, entity resolution and link-based clustering(Nickel, Murphy, Tresp, &
Gabrilovich, 2016). To train on these knowledge graphs, a parametrization of
all nodes and edges is often necessary (Galkin, Denis, Wu, & Hamilton, 2022).

1

To do so, all nodes and edges are mapped to a d-dimensional vector. In large
graphs, the storage of all parametrizations can take up a lot of space.

To save space, NodePiece takes a different approach (Galkin, Denis, et al.,
2022). Instead of encoding all nodes and edges with a d-dimensional vector, it
creates a fixed-size vocabulary. The vocabulary V consists of anchor nodes A
and all relation types R (V = A+R), where the number of anchor nodes |A| is
much smaller than the number of nodes |N | in the graph. This gives |V | ≪ |N |.
Each node can be encoded using the k-nearest anchors and the relation types.
This reduces the number of parameters needed.

Anchor nodes are nodes selected from the KG. In their paper, Galkin et.
al. try three different strategies to select good anchor nodes. The first strategy
is based on the degree of the nodes, one strategy based on PageRank and the
last strategy is to select nodes randomly. Testing these strategies with a link
prediction experiment shows that PageRank and degree perform only slightly
better than random.

The goal of this paper is to find a strategy to select anchor nodes that
performs better than random selection. The strategy that was tried is based
on Personalized PageRank (PPR). Using the KGloVe implementation, a sparse
rank vector is created for each node in the knowledge graph. These vectors form
the rows of a co-occurrence matrix. The rows are grouped together in a number
of clusters, from which the anchor nodes are selected. To test performance
of the anchor nodes, a (transductive) link prediction experiment is conducted.
Two knowledge graphs are used, FB15k-237 and WN18RR (Toutanova & Chen,
2015).

2 NodePiece

NodePiece has three different strategies to pick n anchor nodes. The first one
is based on the degree of each node. All graphs have inverse edges added, so
there is no difference between the in-degree and out-degree. This strategy picks
the n nodes with the highest degree as anchor nodes. The second strategy looks
at PageRank. The PageRank for the graph is calculated, giving every node a
PageRank score. The n highest scoring nodes are picked as anchors. The third
strategy is to randomly pick n nodes.

Once the anchor nodes are selected, they can be used to tokenize nodes.
Each node is tokenized using the k nearest anchors, the distance from the node
to these anchors and the outgoing edges related to the node. A visualization
of this is shown in Fig 1. The k nearest anchors are found using Breadth First
Search. The distance from the node to the anchors and the added relations help
to maintain a sense of the underlying graph structure.

After tokenization, NodePiece trains for the link prediction task using a
stochastic local closed world assumption training approach, a SLCWA training
loop from the pykeen library. The training loop makes use of the NodePiece-
Rotate model. Just as in the original RotatE model (Sun, Deng, Nie, & Tang,
2019), NodePiece-Rotate makes use of the Hadamard product between the head

2

Figure 1: Illustration of the tokenization of nodes in NodePiece.

and the relation in the complex space. Using the Hadamard product allows the
model to identify symmetric/antisymmetric, inversion, and composition pat-
terns. The embedding of head h is rotated using the following formula:

hrot = [hre ∗ rre − him ∗ rim, hre ∗ rim + him ∗ rre]

Where h is the embedding of the head of a triple and r the embedding of the
relation. The first part corresponds to the real part of the rotated head, and
the second part to the imaginary part. The scoring function is then given by
hrot − t, where t is the embedding of the tail. The closer this score is to zero,
the better.

The embedding of the head, relation and tail is created by passing the to-
kenization through a two-layered multilayer perceptron. It consists of a Linear
layer, followed by a DropOut layer, an activation ReLu layer and then another
Linear layer.

In the NodePiece paper, several experiments are conducted: transductive
link prediction, inductive link prediction, out-of-sample link prediction, node
classification and relation prediction. This paper focuses on transductive link
prediction. Performance in a link prediction task says something about the abil-
ity of being able to predict a link between nodes. This task tries to predict the
head and tail (separately) based on the triple < head, relation, tail >. Either
head or tail is unknown.

For transductive link prediction, training is done on part of the graph and
testing on a disjoint part of the same graph. For inductive link prediction,
training is done on a graph and testing is done on part of a new (disjoint)
inference graph with entities unseen in training. Fig 2 shows a visualization of
this.

3

Figure 2: Illustration of the difference between transductive- and inductive link
prediction (Galkin, Berrendorf, & Hoyt, 2022).

For out-of-sample link prediction, the validation and test set contain entities
that are not in the training set. These entities do have a few edges connected
to nodes in the training set. Relation prediction is similar to link prediction,
in that they both try to complete a triple < head, relation, tail >. Relation
prediction tries to predict the relation in the triple, given a head and tail.
Node classification tries to predict the value of a node, based on the labels of
neighbouring nodes.

To perform well in the link prediction experiment, the model should be able
to tell the nodes and relations apart. To be able to distinguish between all
nodes, the tokenization should be as unique as possible. Not focusing on the
relational context, this means that the sequence of k nearest anchors and their
distances should be as unique as possible for each node. This paper aims to find
such anchor nodes using Personalized PageRank as an anchor selection strategy.

3 Personalized PageRank

Personalized PageRank is a variant of PageRank (Page, Brin, Motwani, & Wino-
grad, 1999). The PageRank score of a node is a measure for the centrality of
the node. The more incoming edges a node has, the higher the rank. Rank for a
node is also increased if the nodes with a relation to the node have a high rank.
The PageRank paper explains that the simple version of PageRank can be seen
as the probability distribution of a random surfer on the internet. The web
pages correspond to nodes in the graph, links to the edges. The surfer starts at
some node and moves to the next node using a random out-going edge, then to
the next node, etc. The random walk takes as many steps as needed, until the
difference in probability distribution between two steps changes less than some
value β.

The simple version of PageRank can get stuck at a node with no out-going
edges. To prevent this, a random jump was introduced. The surfer can make a
jump to any page, with probability α. In this paper, α = 0.3. The jump is given
by the probability distribution v over all nodes. In PageRank, this distribution
is uniform. The jump also prevents the walk from getting stuck in so-called
spider traps (Leskovec, Rajaraman, & Ullman, 2020). A spider trap is a group

4

of nodes that have links between them, but no out-going edges to other nodes.
Personalized PageRank is similar to PageRank, the difference is in the way

the walk jumps to a random node. In PageRank, the walk can jump to any node
with uniform probability. In Personalized PageRank, these probabilities can be
changed. In this paper, all jumps teleport back to the starting node. This means
that each starting node produces a different probability distribution, see Fig 3
for an example. In the figure, the probability distributions are shown below the
graph in vector form.

(a) Start node A (b) Start node C (c) Start node D

Figure 3: Example of the difference in probability distribution in different start-
ing nodes. On the left, node A is the start node. In the middle, node C and
on the right node D as indicated by the blue squares. Below the graph, the
probability distribution is shown in form of a vector.

This paper makes use of the Fast All-Pairs PPR Algorithm introduced in
the Global RDF Vector Space Embeddings paper (Cochez et al., 2017). This
algorithm is based on the Bookmark-Coloring Algorithm (Berkhin, 2006). BCA
gives an approximation of PPR, but only for the nodes that will receive a sig-
nificant rank. The algorithm is described as distributing a unit amount of paint
to the start node. This paint is partly retained by the node and the other
part is distributed over the out-going edges. This process repeats for the nodes
attached to those out-going edges. At one point the amount of paint being dis-
tributed is smaller than ϵ = 0.00001, then the algorithm stops and any nodes
without paint get rank 0. This creates a sparse rank vector.

Cochez et al. make the BCA algorithm more efficient by changing the order
of nodes for which the rank vector is calculated. The rank vector (BCV) for
a node is dependent on the BCV of the nodes that are reachable with one
hop. These BCVs are calculated before the BCV of the node that is dependent
on them. This allows the algorithm to re-use calculations of BCV, instead of
calculating some BCVs multiple times.

Using this algorithm, the PPR vector is calculated for each node in the
graph, using that node as starting node. These vectors together form the rows
of a PPR matrix. The same is done for the graph with reversed edges, giving
a PPR matrix as well. Using the KGloVe algorithm, these two matrices are
then summed and together form a co-occurrence matrix (Cochez et al., 2017).

5

Since the vectors used to form this matrix are sparse, this matrix is sparse as
well. This leads to better scalability. Following the example from Figure 3, the
co-occurrence matrix is shown in Figure 4.

Figure 4: Example illustration of a sparse matrix containing PPR scores, for
nodes A. B, C and D. Each row corresponds to the rank vector calculated using
the corresponding node as start node.

PPR is a way of measuring node-to-node proximity (Page et al., 1999). If
two nodes have a similar PPR vector, they are likely to be able to reach the
same the nodes in the same way. Intuitively, picking similar nodes as anchor
nodes would give a tokenization of nodes that is also similar and it would be
hard to distinguish between nodes. To prevent this, the next step in the anchor
selection is to group the vectors in the matrix together in a number of clusters,
using a distance metric. That is, the rows are grouped.

4 Clustering

Data clustering algorithms combine data points into clusters, such that the
points in a cluster are similar to each other according to some metric (Madhulatha,
2012). In this case, all nodes are clustered, based on the corresponding PPR
vectors. In this paper, the number of clusters is the same as the number of an-
chors wanted. According to Madhulatha(2012), clustering algorithms are either
hierarchical or partitional. Partitional algorithms build all clusters at the same
time. Hierarchical algorithms build clusters by merging or splitting them suc-
cessively (Pedregosa et al., 2011). In this paper, two clustering algorithms were
used. The first one is k-means clustering, which is a partitional algorithm. The
second is agglomerative clustering, which is a bottom-up hierarchical algorithm

4.1 K-means

K-means clustering requires a number n of clusters as input (Pedregosa et al.,
2011). The algorithm initially picks n so-called centroids, distant from each
other. Then each sample in the data is assigned to the nearest centroid. This
gives n clusters, which then get assigned a new centroid based on the mean of
the cluster. Samples are again assigned to the nearest centroid and the clusters
are updated until the centroids change less than a given threshold. The aim is

6

to minimize the inertia of the clusters, given by:

n∑
i=0

min
µj∈C

(||xi − µj ||2)

Where n is the number of samples, x is a sample and C is the set of all clusters,
each with a mean µ.

4.2 Agglomerative clustering

Agglomerative clustering starts of with all samples as individual clusters (Pedregosa
et al., 2011). Then, at each step, the two closest clusters are merged together.
This process repeats until the desired number of clusters has been reached. In
this paper, the single linkage metric was used. This means that the two clos-
est clusters get determined by comparing the smallest distance between pairs
of clusters, and this distance is minimized. The smallest distance is calculated
using Euclidean distance.

5 Anchor selection strategy

After the clusters have been created, the anchors are picked. This is done in
two strategies for this project: Spread and Focused.

Spread picks anchor nodes spread over all the clusters as much as possible.
Given n clusters, it will pick a random node from cluster 1, cluster 2, ..., cluster
n. Focused does the opposite and tries to pick as much anchor nodes from
one cluster as possible. It picks the largest cluster and focuses on this cluster,
selecting all nodes in this cluster. If the cluster has less nodes than anchors
needed, Focus moves on to the second largest cluster and picks nodes from this
cluster, until enough anchors have been selected.

The goal of Spread is to have anchor nodes that differ a lot from each other
and this strategy follows the intuition described earlier. The more different the
nodes are, the more distinguishable the tokenized nodes are and the better the
model should perform. Focused seems counter-intuitive to this logic and is also
not designed to perform well. The expectation is that Focused performs worse
and this would show that the strategy of picking anchors from these clusters
has an impact on performance.

To summarize, the anchor selection strategy consists of first running Person-
alized PageRank for each node in the graph. This gives a sparse co-occurrence
matrix, whose vectors are then clustered using two different techniques: k-means
and agglomerative clustering. From these clusters, the anchor nodes are selected
in two different ways as well: Focused and Spread. A sketch of the complete
anchor selection strategy is shown in Fig 5. This figure also shows the different
ways in which clustering and anchor selection are combined.

7

Figure 5: Anchor Selection strategy. Starting with a knowledge graph, PPR is
applied to all nodes in the knowledge graph, giving a matrix. The vectors in
the matrix are clustered using k-means and agglomerative clustering separately.
From the clusters, anchor nodes are selected, either by Focused or Spread.

6 Link prediction experiment

After a selection of anchor nodes has been made, their performance is tested
using a link prediction experiment. This experiment consists of two parts, head
prediction and tail prediction (Berrendorf, Faerman, Vermue, & Tresp, 2020).
For each triple < head?, relation, tail > in the test set, head prediction tries
to predict which entity is the head. All entities get a score for how likely they
are the head and are then ranked accordingly. The final rank is the rank of the
true head. The same is done in tail prediction, except that the tail is predicted
instead of the head. The final rank is given by combining the rank of tail- and
head prediction. A realistic rank is used. So if multiple entities have the same
prediction score as the true entity, the true entity is assumed to be ranked in
the middle.

Several evaluation metrics are used. The first one is mean rank. This is the
computed rank, averaged over all triples in the test set. The lower, the better.

The second one is mean reciprocal rank. This is the multiplicative inverse
of the mean rank and is given by the following formula:

1

|R|
∑
r∈R

1

r

Where R is the set of all mean ranks r. This formula gives a number between 0
and 1. An advantage of this metric is that it is less influenced by outliers (Liu
et al., 2019). The closer to one, the better.

The third metric is hits@k, for k = 1 and k = 10. This represents the
percentage of triples, for which the true entity was ranked in the top k. For this
metric, the place of triples not ranked in the top k does not matter. it does not
make a difference if a triple was ranked at 11 or 100 (Berrendorf et al., 2020).

The last metric is the adjusted mean rank. This is defined to be the mean

8

rank, divided by the expected value of the mean rank (Berrendorf et al., 2020).
So this metric represents the mean rank, except it is adjusted to the size of the
model. This makes it easier to compare different models.

7 Datasets

Two datasets are used in this paper. The first one is WN18RR, loaded using
the pykeen library. It has a vocabulary size of 40k and an embedding dimension
of 1000. It is a sparse graph. It uses 500 anchors and nodes are tokenized using
50 anchors per node.

The second one is FB15k-237, also loaded using pykeen. It has a vocabulary
size of 15k and an embedding dimension of 2000. It is a denser graph than
WN18RR. It uses 1000 anchors and tokenizes nodes using 20 anchors per node
(Galkin, Denis, et al., 2022). This graph uses less anchors per node as WN18RR,
because it is more dense. The nodes are more easily connected to the anchor
nodes.

In Figure 5, the degree distribution is given for both graphs. FB15k-237 has
a few nodes with a high degree, whereas WN18RR has a lot of nodes with a
low degree. This also shows the difference in density. The high degree nodes in
FB15k-237 make the graph more connected than WN18RR.

(a) FB15k-237 (b) WN18RR

Figure 6: The degree distribution of graphs FB15k-237 and WN18RR. Note the
difference in scale on the x-axis.

8 Results

The experiment was run on two pykeen datasets: FB15k-237 and WN18RR. All
metrics are calculated for tail prediction, head prediction and both combined.
Below are the raw results for both combined. Table 1 contains the results for
FB15k-237, Table 2 for WN18RR. The tables also reports the scores for the
anchor selection strategies used in the NodePiece paper. For the raw results of
head and tail prediction separately, see appendix B.

9

Table 1: Table containing the results of the link prediction experiment for
FB15k-237. Degree, PageRank and random are anchor selection strategies used
in NodePiece. A downwards arrow indicates that a lower score is better for
this metric, an upwards arrow indicates the higher the score, the better. MRR
stands for mean reciprocal rank, AMR for adjusted mean rank.

FB15k-237 both Mean rank ↓ MRR ↑ H@1 ↑ H@10 ↑ AMR ↓
k-means spread 302.0184 0.2585 0.1747 0.4221 0.0442
k-means focused 310.0953 0.2556 0.1732 0.4161 0.0453
agglomerative spread 303.745 0.2569 0.1741 0.4185 0.0444
agglomerative focused 309.0503 0.2526 0.1679 0.4184 0.0452
degree 307.532 0.2536 0.1697 0.4179 0.0451
pagerank 310.3791 0.2558 0.1697 0.4188 0.0455
random 311.6496 0.2563 0.1734 0.4169 0.0457

Table 2: Table containing the results of the link prediction experiment for
WN18RR. Degree, PageRank and random are anchor selection strategies used
in NodePiece. A downwards arrow indicates that a lower score is better for
this metric, an upwards arrow indicates the higher the score, the better. MRR
stands for mean reciprocal rank, AMR for adjusted mean rank.

WN188RR both Mean rank ↓ MRR ↑ H@1 ↑ H@10 ↑ AMR ↓
k-means spread 1455.0205 0.3931 0.3264 0.5111 0.0718
k-means focused 1445.0489 0.381 0.3104 0.4979 0.0713
agglomerative spread 1421.5518 0.4026 0.3423 0.5058 0.0702
agglomerative focused 1522.1948 0.3541 0.2842 0.4749 0.0751
degree 1475.477 0.3958 0.3309 0.5026 0.0728
pagerank 1490.6216 0.396 0.329 0.5127 0.0736
random 1502.8004 0.4014 0.3391 0.5087 0.0742

Presenting these two tables differently makes it easier to compare the per-
formance of the Spread and Focused strategy. See Table 3.

Comparing the results of the two different clustering techniques in FB15k-
237, k-means performs slightly better than agglomerative clustering on all met-
rics. This could be explained by the fact that (in this setup) agglomerative
clustering tries to minimize the minimal distance between two clusters, while
k-means focuses on the inertia of the clusters. The inertia is targeted at all
vectors in a cluster, making all vectors more similar, instead of finding a pair of
clusters for which two vectors happen to have a low distance between them.

Comparing the Spread and Focused strategy, Spread seems to do better on all
metrics, for all clustering strategies. The difference is not very large. Intuitively,
the two strategies should have the opposite effect of each other. Spread chooses
anchors that should not be similar, whereas Focused picks anchors that should
be similar. The small difference between them could suggest that the use of
PPR and clustering has only a small impact on finding good anchors.

10

Table 3: Tables containing the results of the link prediction experiment for the
newly implemented strategies.

(a) Mean reciprocal rank ↑

MRR ↑ Spread Focused
Agglo FB 0.2569 0.2526
Agglo WN 0.4026 0.3541
K-means FB 0.2585 0.2556
K-means WN 0.3931 0.381

(b) Adjusted mean rank ↓

AMR ↓ Spread Focused
Agglo FB 0.0602 0.0618
Agglo WN 0.0702 0.0751
K-means FB 0.0601 0.0611
K-means WN 0.0718 0.0713

(c) hits@1 ↑

H@1 ↑ Spread Focused
Agglo FB 0.1741 0.1679
Agglo WN 0.3423 0.2842
K-means FB 0.1747 0.1732
K-means WN 0.3264 0.3104

(d) hits@10 ↑

H@10 ↑ Spread Focused
Agglo FB 0.4185 0.4184
Agglo WN 0.0.5058 0.4749
K-means FB 0.4221 0.4161
K-means WN 0.5111 0.4979

Using Table 1 and 2 to compare the Focused strategy with the random strat-
egy used in NodePiece, focused performs better than random on mean rank, ad-
justed mean rank and once on H@10. On the other metrics, it performs slightly
worse. The expectation was that the Focused strategy would have a negative
influence on selecting good anchor nodes, but the differences are actually very
small.

The Spread strategy seems to perform slightly better than the strategies
used in NodePiece (degree, PageRank and random) on the FB15k-237 KG. On
the WN18RR KG, the Spread strategy has a better mean rank and adjusted
mean rank, but it performs worse on the mean reciprocal rank and on hits@1.
This suggests that Spread has less triples that are very high ranked, but a better
mean performance.

It is also worth to note the large difference between head and tail prediction
results. See Tables 4 and 5. In the FB15k-237 dataset, tail prediction performs
much better than head prediction. Mean rank differs from around 400 to a little
above 200. For WN18RR, tail prediction performs better than head prediction
as well, but the difference is smaller.

The difference between head and tail prediction is caused by the relational
context. The smaller difference between head and tail prediction for WN18RR
seems to enforce the idea that relational context plays a larger role in FB15k-
237 than it does for WN18RR. This was also found in an ablation study in the
NodePiece paper. After leaving out the anchor nodes and only using relational
context, performance of FB15k-237 was only slightly impacted, in contrast to
WN18RR. The H@10 performance of WN18RR dropped to zero. This could be
explained by the fact that FB15k-237 has more unique relations than WN18RR,
giving a more unique hashing of nodes.

11

Table 4: Tables showing the difference between head and tail prediction results
for FB15k-237, k-means clustering strategy

FB15k-237 Mean rank ↓ MRR ↑ H@1 ↑ H@10 ↑ AMR ↓
k-means spread head 399.8853 0.1727 0.1061 0.3069 0.0601

tail 204.1514 0.3444 0.2432 0.5372 0.0293

k-means focused head 406.8995 0.1671 0.0996 0.30144 0.0611
tail 213.2912 0.344 0.2469 0.5307 0.0296

Table 5: Tables showing the difference between head and tail prediction results
for WN18RR, k-means clustering strategy

WN188RR Mean rank ↓ MRR ↑ H@1 ↑ H@10 ↑ AMR ↓
k-means spread head 1716.4501 0.3897 0.3249 0.5062 0.0847

tail 1193.591 0.3966 0.328 0.5161 0.0589

k-means focused head 1716.4754 0.3725 0.3068 0.4818 0.0847
tail 1173.6224 0.3893 0.314 0.514 0.0579

9 Future work

In this paper, only one of the five tasks of NodePiece was performed. To compare
the performance of the strategies more, the newly introduced strategy could also
be tested using the other tasks: inductive link prediction, relation prediction,
out-of-sample link prediction and node classification.

For future work within the Personalized PageRank and clustering strategy, it
could be useful to look at different distance metrics. Instead of using Euclidean
distance, Manhattan distance might make more sense. This distance metric
looks at the absolute difference between entries of vectors, instead of squared
difference (Madhulatha, 2012).

It could also be interesting to look at different ways to create the co-occurrence
matrix that was now created using PPR. One way could be to use only the dis-
tance to other nodes. This would not give nodes that are dissimilar, but the
distances that are eventually used to tokenize nodes should be different. Perhaps
just the distance to anchor nodes is enough to be able to distinguish nodes.

10 Conclusion

The anchor selection strategy introduced in this paper was applied to two knowl-
edge graphs, FB15k-237 and WN18RR. After the anchor selection, a link pre-
diction experiment was conducted. The new strategy seems to perform slightly
better than the strategies used in the NodePiece paper. The new strategy
performs better on all metrics, for the FB15k-237 knowledge graph. For the
WN18RR KG, the mean performance of the new strategy is better, but the
results suggest that the old strategies might have very high ranked triples more

12

often. The new strategy seems to perform slightly better than random.
The small difference between the Spread and Focused strategy could suggest

that Personalized PageRank combined with clustering has only a small effect
on picking good anchor nodes.

References

Berkhin, P. (2006). Bookmark-Coloring Algorithm for Personalized PageRank
Computing. Internet Mathematics, 3 , 41 - 62.

Berrendorf, M., Faerman, E., Vermue, L., & Tresp, V. (2020, February). On
the Ambiguity of Rank-Based Evaluation of Entity Alignment or Link
Prediction Methods. arXiv e-prints, arXiv:2002.06914.

Cochez, M., Ristoski, P., Ponzetto, S. P., & Paulheim, H. (2017). Global
RDF vector space embeddings. In C. d’Amato et al. (Eds.), The semantic
web - ISWC 2017 - 16th international semantic web conference, vienna,
austria, october 21-25, 2017, proceedings, part I (Vol. 10587, pp. 190–207).
Springer. doi: 10.1007/978-3-319-68288-4 12

Galkin, M., Berrendorf, M., & Hoyt, C. T. (2022). An Open Challenge for
Inductive Link Prediction on Knowledge Graphs. CoRR, abs/2203.01520 .
doi: 10.48550/arXiv.2203.01520

Galkin, M., Denis, E., Wu, J., & Hamilton, W. L. (2022). NodePiece: Composi-
tional and parameter-efficient representations of large knowledge graphs.
In International conference on learning representations. Retrieved from
https://openreview.net/forum?id=xMJWUKJnFSw

Leskovec, J., Rajaraman, A., & Ullman, J. (2020). Mining of mas-
sive datasets (3rd ed.). Cambridge University Press. Retrieved from
http://mmds.org/

Liu, Y., Li, H., Garćıa-Durán, A., Niepert, M., Oñoro-Rubio, D., & Rosenblum,
D. S. (2019). MMKG: multi-modal knowledge graphs. In P. Hitzler et al.
(Eds.), The semantic web - 16th international conference, ESWC 2019,
portorož, slovenia, june 2-6, 2019, proceedings (Vol. 11503, pp. 459–474).
Springer. doi: 10.1007/978-3-030-21348-0 30

Madhulatha, T. S. (2012). An overview on clustering methods. CoRR. doi:
10.48550/ARXIV.1205.1117

Nickel, M., Murphy, K., Tresp, V., & Gabrilovich, E. (2016). A review of rela-
tional machine learning for knowledge graphs. Proceedings of the IEEE ,
104 (1), 11-33. doi: 10.1109/JPROC.2015.2483592

Page, L., Brin, S., Motwani, R., & Winograd, T. (1999, Novem-
ber). The PageRank Citation Ranking: Bringing Order to the Web.
(Technical Report No. 1999-66). Stanford InfoLab. Retrieved from
http://ilpubs.stanford.edu:8090/422/ (Previous number = SIDL-
WP-1999-0120)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., . . . Duchesnay, E. (2011). Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12 , 2825–2830.

13

Sun, Z., Deng, Z.-H., Nie, J.-Y., & Tang, J. (2019). RotatE: Knowledge
graph embedding by relational rotation in complex space. arXiv. doi:
10.48550/ARXIV.1902.10197

Toutanova, K., & Chen, D. (2015, July). Observed versus latent features for
knowledge base and text inference. In Proceedings of the 3rd workshop
on continuous vector space models and their compositionality (pp. 57–66).
Beijing, China: Association for Computational Linguistics. Retrieved from
https://aclanthology.org/W15-4007 doi: 10.18653/v1/W15-4007

A Github

Link to the github repository: https://github.com/RenskeDiep/Bachelor Thesis

B Results of the head and tail prediction

The following tables present the results of head prediction and tail prediction
separately:

Table 6: Table containing the results of the head prediction experiment for
FB15k-237

FB15k-237 head Mean rank ↓ MRR ↑ H@1 ↑ H@10 ↑ AMR ↓
k-means spread 399.8853 0.1727 0.1061 0.3069 0.0601
k-means focused 406.8995 0.1671 0.0996 0.30144 0.0611
agglomerative spread 400.575 0.1686 0.1011 0.3028 0.0602
agglomerative focused 411.3362 0.1694 0.1027 0.301 0.0618
degree 409.1416 0.1692 0.1018 0.3039 0.0616
pagerank 414.9797 0.1702 0.1003 0.3058 0.0285
random 412.9332 0.169 0.1023 0.3013 0.0623

Table 7: Table containing the results of the tail prediction experiment for
FB15k-237

FB15k-237 tail Mean rank ↓ MRR ↑ H@1 ↑ H@10 ↑ AMR ↓
k-means spread 204.1514 0.3444 0.2432 0.5372 0.0293
k-means focused 213.2912 0.344 0.2469 0.5307 0.0296
agglomerative spread 206.9151 0.3453 0.2472 0.5342 0.0287
agglomerative focused 206.7644 0.3359 0.2329 0.5359 0.0287
degree 205.9232 0.3379 0.2376 0.5319 0.0285
pagerank 205.795 0.3405 0.2392 0.5319 0.0625
random 210.3607 0.3436 0.2445 0.5326 0.0292

14

Table 8: Table containing the results of the head prediction experiment for
WN18RR

WN188RR head Mean rank ↓ MRR ↑ H@1 ↑ H@10 ↑ AMR ↓
k-means spread 1716.4501 0.3897 0.3249 0.5062 0.0847
k-means focused 1716.4754 0.3725 0.3068 0.4818 0.0847
agglomerative spread 1674.3218 0.4002 0.3410 0.4983 0.0826
agglomerative focused 1804.3003 0.3618 0.2798 0.4600 0.0891
degree 1743.9767 0.3925 0.3297 0.4969 0.0861
pagerank 1797.3793 0.3929 0.328 0.5075 0.0887
random 1792.6053 0.3983 0.3393 0.4997 0.0885

Table 9: Table containing the results of the tail prediction experiment for
WN18RR

WN188RR tail Mean rank ↓ MRR ↑ H@1 ↑ H@10 ↑ AMR ↓
k-means spread 1193.591 0.3966 0.328 0.5161 0.0589
k-means focused 1173.6224 0.3893 0.314 0.514 0.0579
agglomerative spread 1168.7818 0.4049 0.3437 0.5133 0.0577
agglomerative focused 1240.0893 0.3619 0.2886 0.4897 0.0891
degree 1206.9764 0.3992 0.3321 0.5082 0.0596
pagerank 1183.8629 0.3991 0.33 0.5178 0.0585
random 1212.9956 0.4046 0.3389 0.5178 0.0599

15

