
Creating differentiable graph metrics to improve link prediction

Simone Colombo
Department of Computer Science
Vrĳe Universiteit Amsterdam

De Boelelaan 1105, 1081 HV Amsterdam
s2.colombo@student.vu.nl

Abstract

Relational Graph Convolutional Networks (R-GCNs) have
been shown to be effective inmodelingMulti-relational graphs
for different base completion tasks; node classification and
link prediction. In addition, the R-GCN provides a way of
learning graph node embedding by successfully exploiting
the graph connectivity structure as result of the underlying
message passing mechanism. We further focus on enhanc-
ing the R-GCN link prediction power by utilizing its message
passing mechanism with multi-task learning. We modify the
R-GCN factorization method for link prediction, DistMult, by
including the Potential Energy as additional feature. To the
best of our knowledge, we are the first to introduce a new
version of the R-GCN by including a knowledge base-specific
metric in its decoder. Furthermore, we demonstrate that the
vanilla version of RGCN lacks the ability to generalize for the
knowledge base-specificmetric we include in the factorization
method, namely the Potential Energy.

1 Introduction
Nowadays, knowledge graphs are widely used in a variety
of different fields (Abu-Salih 2021), and they have become
the backbone of different AI-driven applications which are
employed in diverse domains (Gao et al. 2020; Nickel et al.
2016; Futia and Vetrò 2020; Ji et al. 2021). Moreover, since
knowledge graphs were first officially announced by Google
(Singhal 2012), and then other companies followed the trend
(R.J. Pittman 2017; Krishnan 2018; Socher et al. 2013a;
Noy et al. 2019; Devarajan 2017), they continued to evolve
and they are now in their proliferation phase; where the pace
of research and development is skyrocketing (KGI 2021;
KGD 2020; KGC 2021).

The rapid increase of interest in knowledge graphs led
to the emergence of a broader landscape of research hori-
zons in different fields (Abu-Salih 2021), leveraging the
application of knowledge graphs for new tasks; recommen-
dation systems (Nayyeri et al. 2020; Yao et al. 2019;
Ayala-Gómez et al. 2018), literature surveys generation (Oe-
len et al. 2020), question answering (Jaradeh, Stocker, and
Auer 2020) and knowledge discovery (Vahdati et al. 2018).
Moreover, this build-up period led to the development of
new graph-tailored neural network models, namely graph
neural network (GNN) (Wu et al. 2021). Following pre-
vious research on knowledge graphs, we assume that the

Michael Cochez

VU Amsterdam

Rosaline De HaanDimitrios Alivanistos

Knowledge Graph

Wouter Beek

Triply

work_at

work_at work_at

work_at

: researcher

: researcher : employee

: CEO

:affiliation

:affiliation

interested_in

interested_in

: topic

interested_in

interested_in

working_with working_with

friend_with friend_with

Figure 1:A2-hopmessagepassingmechanism:Thenodes
are entities, the edges are relations labeled with their
types, the nodes are labeled with entity types (e.g., :re-
searcher). The coloredmessages are the information gath-
ered from the 2-hop neighbours to build the Knowledge
Graph entity embedding. The topological structure of the
entire graph is not learnt since the messages are from the
2-hop neighbours.

state-of-the-art GNN models, Graph Convolution Networks
(GCNs) (Kipf andWelling 2017), use the node-related Mes-
sage Passing mechanism (Gilmer et al. 2017) to create infor-
mative node embeddings. This approach considers individual
knowledge bases as directed labeled multigraphs; where the
entities are nodes and the triples are encoded with labeled
edge between subject and object nodes. Furthermore, this
approach ignores the overall graph topological structure (see
Figure 1).

2 Problem Definition
We consider as our main statistical relational learning (SRL)
task, inductive link prediction (recovering ofmissing triples).
Thus, missing triples can be deemed to exists within the
knowledge graph encoded through the neighborhood struc-
ture,i.e. knowing that Michael Cochez works with a person
with whom Wouter Beek works too, implies that there is
high probability that the triple (Michael Cochez, friend_with,
Wouter Beek) must belong to the knowledge graph. Our
link prediction model follows the work of Schlichtkrull et

al. (2017) which utilizes the R-GNC architecture as main
model. Furthermore, we enhance the R-GCN architecture
with the Potential Energy (PE) (Kumar and Sharma 2020)
of the knowledge bases to include the topological graph struc-
ture in our model. Our link prediction model can be regarded
as an autoencoder made up of (1) encoder, the R-GCN, and
an enhanced decoder version of (2) DistMult (Yang et al.
2015) by leveraging the Potential Energy. The model, in-
cluding the R-GCN parameters, is learnt by using Multi-task
learning (MTL). Hence, a multi-layer perceptron (MLP) is
trained by optimizing L1 loss. Successively, the PE is fed as
input to DistMult which maximises it. Finally, the eR-GCN
(enhanced R-GCN) is optimized for cross-entropy loss.

2.1 Contributions
Our contributions are as follows.
• introducing a R-GCN architecture which considers both
the neighborhood information and the overall topologi-
cal structure of the knowledge graph to enhance the link
prediction task,

• introducing the theoretical idea to enhance the message-
passing neural networks (MPNNs) by leveraging the PE
graph metric,

• showing that our enhanced R-GCN (eR-GCN) does not
improve in performance due to the inability of the vanilla
version of the RGCN to generalize knowledge for the Po-
tential Energy.

3 Potential Energy Modeling
We introduce the 2 following notations: (1)letL be a bipartite
graph L = (V,U,R), whereU andV are two disjoint and
independent sets of vertices andR is set of edges at timestamp
)1. The inductive link prediction aims to predict new link
among nodes that can be observed at)2 |)2 >)1. (2)
Let G labeled multi-graph and G = (V1, E,R1) with nodes
(entities) �8 ∈ V1 and labeled edges (relations) (�8 , A, � 9) ∈
E, where A ∈ R1 is a relation type.

3.1 Potential Energy for a Bipartite Graph
Defined in Kumar and Sharma (2020), a pair of nodes,
(�, �) ∈ V, is considered as an object and the product of
degree of between the two nodes, � (�,�)? , as its mass. The
force 6 between the nodes is represented by the sum of the
clustering coefficient of their common neighbours, ((�,�)

�I
,

and the inverse of the shortest distance between, � (�,�)
B3

the
the pair of nodes (�, �) representing the distance between
(�, �). The aforementioned terms as follows.

�
(�,�)
? = 3�3� (1)

where 3� and 3� represent the degree of nodes � and �,

(
(�,�)
�I

=
∑

I∈Γ(�)∩Γ(�)
�I (2a)

�I =
2CI

3I (3I − 1) (2b)

(a) PE for Bipartite Graph (b) PE for Non-bipartite graph

Figure 2: (a) Depiction of the potential energy, repre-
sented as a light blue lightning , for nodes G and H. in a
Bipartite graph.(b)Depiction of the potential energy, rep-
resented as a light blue lightning , for nodes G and H in a
Non-bipartite graph. The green and red links represent
the triangles used in the calculation of the clustering co-
efficients for the common neighbours of node G (i.e. VU
Amsterdam) and H (i.e. Triply)

where Γ(�) and Γ(�) represent the set of neighbours of �
and �, CI represents the number of triangles passing through
node I, and 3I represents the degree of node I,

'
(�,�)
B3

=
1

B3 (�, �) (3)

where B3 (�, �) represents the shortest distance between the
pair of nodes (�, �). Consequently, the PE is defined as
follows

%��� = �
(�,�)
? (

(�,�)
�I

�
(�,�)
B3

(4)

One constraint is imposed for one edge case, if I = ∅, the
value of �I will be constant and 0.1. Another important re-
mark is that in case a knowledge graph has disconnected
components, it is necessary to isolate such components,
and calculate the PE for the nodes in each component in-
dividually. That it to avoid having ;8<

'
(�,�)
B3

→∞, while the
B3 (�, �) → 0.

3.2 Potential Energy for a Non-Bipartite Graph
As previously mentioned,in order to calculate the Potential
Energy of a knowledge base, we are interested in the infor-
mation shared by the subject and the object nodes of such, i.e.
(�1, �1) ∈ V1 forming the knowledge base (�8 , A, � 9) ∈ E.
Compared to a bipartite graph, in this second case, there is
a link, A ∈ R1 between the subject and object of the knowl-
edge base(see Figure and 2b for comparison). The PE is
still calculated in the same way as previously shown in For-
mula 4, however, the conceptual interpretation of PE slightly
changes. In a Bipartite graph, the PE is seen as an imaginary
pulling force, or traction, between two disconnected nodes,
i.e. (�, �) ∈ U. In the case of a non-bipartite graph, besides
the same way of calculating the graph metric, the PE is con-
strued to be representative of the strength of the connection
between the subject and the object nodes of the considered
knowledge base. Hence, the higher the value of the PE, the
higher the strength of the relation. This information can be

useful during link prediction since it can be utilized to add
the extra topological information of the graph. Additionally,
it can also be considered as an attribute to characterize the
knowledge base relation.

4 Neural Topological Modeling
Our model is primarily motivated as an extension of the R-
GCN (Kipf andWelling 2017) enhanced with the PEmetric.

4.1 Graph Convolutional Networks
Graph Convolutional Netoworks (GCNs) have the main goal
to learn a function of signals/features on a structured graph
G = (V, E) which takes as inputs (1st) a feature vector G8 for
each node 8; encoded in a # ×� feature matrix, where and #
is the number of nodes and � is the number of input features,
and (2nd) the graph structure represented as adjacencymatrix
�. As output / , at node-level, is an # × � feature matrix,
where � number of output features. Every neural network
layer follows a very simple propagation rule

� (;+1) = 5 (� (;) , �) (5)

where � (0) is the node feature matrix -8 for node G8 , while,
� (!) = Z and ! is the number of layers (Kipf and Welling
2017). In specific terms, these and related models can be
viewed as special cases of the node-related Message Passing
mechanism introduced by Gilmer et al. (2017):

ℎ
(;+1)
8

= f(
∑
<∈M

6< (ℎ (;)8 , ℎ
(;)
9
), (6)

where ℎ (;)
8
∈ R3 (;) is the hidden state of node E8 in the ;-th

layer with 3 (;) being the dimensionality of ;-th’s represen-
tations. The incoming messages per node E8 ,M8 , are of the
form 6< (·, ·) are accumulated and passed via a non-linear ac-
tivation function f, i.e. '4!* (·). 6< (·, ·) is typically picked
to be neural-network like function or simply a linear trans-
formation, i.e. ,ℎ8 where , denotes the weight matrix as
shown in (Kipf and Welling 2017).

4.2 Relational Graph Convolutional Networks
The Relational graph convolutional networks (RGCNs) are
an extension of the GCNs that operate on large-scale rela-
tional data instead of local graph neighborhoods. The main
difference resides in the definition of the propagation model
for calculating the forward-pass update of an entity denoted
by E8

ℎ
(;+1)
8

= f

(∑
A ∈R

∑
9∈NA

8

1
28,A

,
(;)
A ℎ

(;)
9
+, (;)0 ℎ

(;)
8

)
, (7)

whereNA
8
denotes the set of neighbor indices of node 8 under

relation A ∈ R. As explained by (Kipf and Welling 2017),
7 accumulates the transformed feature vectors of neighbors
via a normalized sum, however, in addition to the standard
GCNs, a relation-specific transformation is added. In general
terms, a neural network update consist of evaluating 7 for
each node in the graph.

R-GCN forLinkPrediction The link prediction task deals
with the prediction of new facts; formally, letG = (V, E,R),
and given an incomplete set of edges, Ê, the objective is to
assign scores to potential existing edges (B, A, >) in order to
determine how likely they are to belong to E, the complete
set of edges of G. The R-GCN tackles this problem by the
introduction of an auto-encoder model, made up of an entity
encoder and a decoder as scoring function. The encoder each
entity E8 ∈ V to a real-valued vector 48 ∈ R3 , meanwhile,
the decoder, which in this case is the DistMult factorization,
scores each predicted new triple as

5 (B, A, >) = 4)B 'A 4>, (8)

where 'A is a diagonal matrix associatedwith each relation A,
4)B is the transpose of the output of the encoder for the subject,
meanwhile, 4> is the output of the encoder for the object.
Then, the cross-entropy loss is used as main optimization
objective.

4.3 Message-passing Neural Networks
Neural networks on graphs can be classified as message-
passing neural networks (MPNNs). There are two main dif-
ferent variants: anonymous MPNNs whose Message Passing
(MP) functions depend on only on the labels or the considered
vertices; and degree-aware MPNNs whose message func-
tions can use the information regarding the degrees of ver-
tices (Geerts, Mazowiecki, and Pérez 2020). In our research,
we treat degree-aware MPNNs; so, our R-GCN deploys an
iterative neighbourhood aggregation of features combined
with the vertex-degree information. It is important to remark
that by using these kind of networks and by taking the com-
putation rounds of the Weisfeiler-Lehman (WL) algorithm
into consideration, the degree information may boost the
distinguishing power of these MPNNs models (Geerts, Ma-
zowiecki, and Pérez 2020). Nevertheless, the WL algorithm
still misses to capture the connected components and cycles,
topological features known for characterising graphs (Rieck,
Bock, and Borgwardt 2019). Moreover, some promising re-
sults already showed that by learning the structural informa-
tion of a KG, conjointly with the learning of the centrality
and positional properties of the KG entities in one model,
it improves the expressive power of some MPNNs models
by being specifically beneficial for the link prediction task
(Sadeghi et al. 2021).

4.4 Enhanced R-GCN
The R-GCN for link prediction provided by (Kipf and
Welling 2017), as stated previously, can be seeing as a sub-
class of message passing neural networks (Gilmer et al.
2017), as such it can be enhanced by leveraging the graph
topological information obtained with the PE. In order to
leverage the topological information given by the PE we use
Multi-task learning (MTL).

Multi-Task Learning We define Multi-task learning
(MTL) as the improvement of learning a task by the addition
of an external source of knowledge via the same learning
protocol (see Figure 3). In our case, the task is inductive link
prediction, the additional source or knowledge added to our

Figure 3: a) shows the standard ML workflow b) shows
the Accelerated Learning ML workflow. The task defini-
tion remains the same, however, throughout the learning
protocol, an additional knowledge source is leveraged to
get improved final results.

model is the PE, and the learning protocol we adopt consists
of the steps in Figure 4. In general terms, the learning proto-
col should include the model weight freezing (Brock et al.
2017) in order to include the additional knowledge source
(see Figure 4 for an example). Similarly to Transfer Learning
(TL) Torrey and Shavlik (2009),MTL helps by improving the
overall model performance by having either a higher initial
performance achievable, a steeper increase, thus, reducing
the learning time, or by having higher asymptotic conver-
gence, so, a higher final performance achievable.
Topological Modeling The PE is used as Source-Task
Knowledge for TL with the R-GCN for link prediction. We
use a Multilayer perceptron, stacked on top of the R-GCN,
as a feedforward artificial neural network (ANN) to transfer
the topological information to the R-GCN. In addition, we
also add an initial Dense Layer, for dimensionality reduction,
before the R-GCN encoder to create more informative node
embeddings by including also textual information (see Fig-
ure 4). As our initial node representation, we use the linearly
transformed BERT embeddings(see Appendix B) (Devlin et
al. 2019).

The R-GCN decoder is enhanced with the output of the
MLP as additional knowledge source regarding the topolog-
ical graph structure as follows

5 (B, A, >) = (1 − U)4)B 'A 4> + U/>DC , (9)
where />DC is the resulting MLP output node embedding
including the potential energy information and U is a scaling
factor.

5 Link Prediction Use Case
We use the R-GCN as an effective encoder for relational
data and our decoder model with a scoring function - Dist-
Mult augmented with the PE information - to score candidate
triples for scholarly link prediction.

5.1 Data Preprocessing
We evaluate our model on one Scholarly Knowledge Graph,
namely the IOS LD Connect Scholarly Knowledge Graph1

1http://ld.iospress.nl

Figure 4: a) shows the R-GCN for link prediction with
the additional Dense Layer for the creation of the tex-
tual embeddings, b) shows the R-GCN with the added
MLP. After the initial R-GCN training, the parameter in
the R-GCN for link prediction are frozen, shown by the
light blue box around the Dense Layer, the R-GCN and
DistMult, then the MLP is added and trained with the
PE. c) Show the final training with the enhanced Dist-
Mult decoder optimized for " with the MLP perceptron
output.

Figure 5: Visual representation of the IOS Press LDCon-
nect Knowledge Graph

(see Figure 5). All the metadata about the papers are serial-
ized and published as Linked Data by following the biblio-
graphic ontology 2 and a SPARQL endpoint 3 and a deref-

2http://bibliontology.com/#sec-sioc-rdf
3http://ld.iospress.nl:3030

erence interface 4 are provided. We use the TriplyDB in-
terface5 to retrieve the relevant knowledge bases with the
SPARQL service. As first data cleaning step, we remove
all the Geometric triples which are not relevant for our use
case. After this initial cleaning step, we proceed with gath-
ering all the relevant triples for scholarly link prediction.
We retrieve the following entities: authors, articles and af-
filiations, with their respective textual attributes; author’s
full name, article’s titles, keywords and abstract, and affili-
ation names. Hence, we specifically select the instances of
class ontology:Organization, ontology:Contributor and on-
tology:Publication. In addition to the selected entities with
their respective textual features, we also want to retrieve the
owl:sameAs relations between same ontology:Contributors
and the ontology:publicationAuthorList attribute for each
entity of class ontology:Article. Therefore, we retrieve all
the relevant data with a CONSTRUCT SPARQL query, see
Appendices A.4 and A.5 for the code. We decide to re-
trieve the 2 extra pieces of information, owl:sameAs and
ontology:publicationAuthorList, for the instances of ontol-
ogy:Contributor and ontology:Publication respectively (see
Appendix A.1 and tables 2 for the graph visualization and
its statistics). The main use of this information is to iden-
tify and reduce the equivalence relations, owl:sameAs, in
order to find the authors who collaborate in the same ar-
ticle; who belong to in the same author list. The merg-
ing of the data is necessary in order not to have duplicate
authors in the dataset, meanwhile, the instances of ontol-
ogy:publicationAuthorList are used to add the co-authorship
relations during the data ’smushing’ phase.As it is possible
to see from Appendix A.2, applying the "smushing" iden-
tifies the instance of the ontology:sameAs relation and add
a new relation by merging the two entities connected by
the equivalence relation/ It is important to notice that the
"smushing" does not remove the instances of owl:sameAs re-
lations, but it omits them by using owl:sameAs quads that link
the entities connected by the sameAs relations to the main
URI for that entity created at the start of the "smushing"
(see graph statististics in 3). It also applies the transferring
of the relations to the main URI for one entity identify-
ing the nodes connected to it with the equivalence relation.
This is represented by the red dotted line in Appendix A.2.
On the other hand, by running the CONSTRUCT SPARQL
query we also add a new relation between the instances of
ontology:Contributor and the ontology:Organization. This
is performed in order to have extra information for the in-
stances ontology:Contributors. Therefore, different authors
have different affiliations they worked with. The "smush-
ing" of the data is performed with rdfpro (Corcoglioniti et
al. 2014). More specifically, we run the following command
on the terminal:rdfpro -V read file_with_sameAs..ttl smush
write withoutSameAs.ttl. The "smushed" data is then further
cleaned and processed by removing all the entities without
any textual description, which would not provide any addi-
tional information in our specific case, and by adding the

4http://ld.iospress.nl/browse/#iospress-
organization:Publisher.IOS_Press

5https://triplydb.com/SimoneColombo/CleanedLDConnect/sparql

co-authorship relations between authors in the same author
list. Further cleaning is applied by removing the author lists
and the sameAs relations, which would not serve any use
since they do not provide any extra relevant information.
Moreover, it is important to notice that by using the CON-
STRUCT SPARQL query we also add the relation hasArticle
between each instance of ontology:Contributor and its re-
spective ontology: Publication. The final data before feeding
it to the R-GCN is shown in Appendix A.3 with its stats in
Table 4.

The data format after the data preprocessing of the data is
Turtle. The turtle format allows to write triples in a compact
and natural way, with text abbreviations for frequently recur-
ring patterns. An example of turtle triples is given in snippet
of code 6.

@prefix ns0: <https://schema.org/> .

@prefix ns1: <http://ld.iospress.nl/artifact/>.

@prefix ns2: <http://ld.iospress.nl/Author:0.ID:> .

ns2:BD160230 ns0:fullName "Megha Tandon" ;
ns0:hasAffiliation ns242:BD160230 ;
ns0:hasArticle ns1:bd-v38-i3-4-BD160230 .

Figure 6: Example of the Turtle rdf compact format

Hence, the next step is to adapt the data retrieved with the
SPARQL CONSTRUCT QUERY in order to extract the rel-
evant information to feed to the R-GCN. For this task, we use
the python RDFlib 6, which is very useful for our goal since
it has built-in functions to analyze RDF graph characteristics
(e.i. # of predicates, # of objects, # of subjects).

5.2 Results
Baseline Since our specific choice of data set, the IOS
Press LDConnect, leads to comparison constrains, as a base-
line of our experiments, we compare against the standard
R-GCN version for link prediction (Kipf and Welling 2017)
without the enhanced DistMult decoder. The train-val-test
edge split for the edges in the IOS Press LD Connect graph
is 65%(13330), 20%(2525) and 0.15%(1893) over the total
amount of edges (17748). More specifically, we sample one
negative edge for each positive edge for each split. Hence,
we first evaluate the standard R-GCN for link prediction on
the IOS Press LD Connect and we gather the train loss and
test AUC and ROC values. Second, we continue the train-
ing for the R-GCN with the MTL mechanism and the MLP.
Lastly, we re-evaluate the enhanced R-GCN with the new
optimized DistMult decoder, and we gather the test AUC and
ROC values for such model(see Table 1 for the comparison
of the results). In addition, we tune the hypeparameters of
our model with Optuna (Akiba et al. 2019)(see Appendix D
for more details).

Experimental Design For the vanilla R-GCN, we report
performance of a 3-layer model with 14, and 32 hidden units
per layer, basis function decomposition, and trained with

6https://rdflib.readthedocs.io/en/stable/

AdamKingma and Ba (2017) for 300 epochs using a learning
rate of 0.01. For the eR-GCN, we run a 3-layer model equal to
the vanilla R-GCN in terms of hidden units and optimizer pa-
rameters, but with the different factorization method, namely
DistMult with the PE. We train and evaluate the R-GCN, the
MLP and the eR-GCN for the scholarly link prediction task.
We report the averages of the train loss, validation and test
accuracies over 10 runs in the Tables 1 and 2. Our main goal
is to prove that the PE actually improves the overall perfo-
mance of the R-GCN for the link prediction task. Further
details on (baseline) models and hyperparameter choices are
provided in the Appendix D and C.

Model train loss val AUC/ROC score test AUC/ROC score
R-GCN 0.3782 ±0.0252 0.8923 ±0.0191 0.8912 ±0.0173
eR-GCN 0.3665 ±0.0001 0.8997 ±0.0001 0.8993 ±0.0001
scaling factor (U) ≈ 0.0

Table 1: Comparison between the train loss, validation
and test AUC and ROC curves of the R-GCN and the
eR-GCN with the MLP over 30 runs

Retrospective Experiment Successively, we continue by
running a retrospective experiment to deepen our understand-
ing on the performance of the eR-GCN.We decide not to use
the MLP for the PE prediction (see Figure 7), but to directly
feed the PE values for each knowledge base into the DistMult
decoder and still optimize for the scaling factor U (the results
for comparison can be seen in Table 2).

Model train loss val AUC/ROC score test AUC/ROC score
R-GCN 0.3782 ±0.0252 0.8923 ±0.0191 0.8912 ±0.0173
eR-GCN 0.2014 ±0.0352 0.9186 ±0.0230 0.9209 ±0.0221
scaling factor (U) 0.2925 ±0.0097

Table 2: Retrospective comparison between the train loss,
validation and test AUC and ROC curves of the R-GCN
and the eR-GCN by including the PE directly in the de-
coder without using the MLP over 30 runs

Figure 7: It shows the model used in the retrospective
experiment. The eR-GCN is optimized for al pha and
the PE is directly fed to the DistMult decoder without the
use of the MLP. The light blue box around the Dense
Layer, the R-GCN decoder and the DistMult decoder
indicates that all the parameters of the final model are
frozen besides the scaling factor "

6 Related Work
6.1 Topological modeling
Our encoder-decoder model approach to link prediction is
based on DistMult in the decoder (Yang et al. 2015), en-
hanced by the Potential Energy as knowledge base graph
metric (Kumar and Sharma 2020). Other alternatives fac-
torization methods have been proposed (Bordes et al. 2013;
Socher et al. 2013b; Trouillon et al. 2016), many of which
are based on the tensor decomposition techniques (Kolda and
Bader 2009). Link prediction methods can be split in 3 differ-
ent categories; 1) predicting new auxiliary triples to add the
the factorization method (Guu, Miller, and Liang 2015), 2)
path-based methods have been used for predicting edges (Lin
et al. 2015) and 3) both at the same time (Toutanova and
Chen 2015). Our eR-GCN tends more towards the first direc-
tion, by extending the original decoder, DistMult, with the
PE graph metric. The second direction, is relatively orthog-
onal to ours since our main focus is the addition of the new
feature to the factorization method, however, the R-GNC en-
coder can be regarded as a computationally cheaper option
than the path-based methods (Kipf and Welling 2017).

6.2 Neural Networks on graphs
Our eR-GCN is closely related to the R-GCN by Kipf and
Welling (2017), and more specifically it focuses on the theo-
retical understanding of the concept ofMPNNs (Gilmer et al.
2017), by enhancing it with the use of graph metrics. Previ-
ous research on graphs used graph metrics in Graph Neural
Networks in two direction; 1) by enhancing the GCNs di-
rectly with the use of graph metrics (Li et al. 2020) and 2)
by including graph information in the embeddings creation
(Sadeghi et al. 2021). However, from the best of our knowl-
edge, none of these directions considered the main GCNs
underlying mechanism of Message Passing (MP) and the
graph metric specifically related knowledge base structure,
the PE.

7 Conclusions
We have introduced energized relational graph convolutional
networks (eR-GCNs) and demonstrated its improvementwith
the Potential Energy as enriching factor in the DistMult de-
coder. We have also highlighted the downside of the gen-
eralization power of the Vanilla RGCN in modelling the
knowledge base-specific graph metric. Moreover, enriching
the factorization model with an PE metric proved especially
valuable for the link prediction task, yielding a 0.3% im-
provement over the R-GCN baseline.

7.1 Future Work and Discussion
There are several ways in which our work could be extended.
First, the vanilla structure of the R-GCN could be modified
aiming to increase its generalization power towards knowl-
edge base-specific graph metrics, as the PE. Hence, a poten-
tial research direction would be to analyze the depth of the
R-GCN in correlation with its performance over the gener-
alization power. Additionally, other graph metrics, e.g. node
degrees, nodes shortest distance, etc., could be tested as ad-
ditional values to the factorization method of the Vanilla

R-GCN, DistMult. This would aim to understand whether
the R-GCN is not able to generalize for any external addi-
tional metric or whether it was a problem related to the PE
specifically. To a wider spectrum, it could also be useful to
understand the overall capacity of the R-GCN to general-
ize for external features added to the factorization method.
Furthermore, the correlation between different factorization
methods and the R-GCN ability to generalize new informa-
tion could also be tested. Lastly, in order to further strengthen
our findings it would be necessary to run more extensive ex-
periments on data sets of different sizes for the task of link
prediction. In turn, it would be possible to understand the
effect of the data set size on the ability of the R-GCN to
generalize new knowledge.

8 Acknowledgements
I would like to thanks my two mainsupervisors Michael
Cochez and Dimitris Alivanistos for the guidance and the in-
teresting discussion and the people at Triply for help through-
out the data preprocessing phase and the useful comments.

References
[Abu-Salih 2021] Abu-Salih, B. 2021. Domain-specific
knowledge graphs: A survey.
[Akiba et al. 2019] Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.;
and Koyama, M. 2019. Optuna: A next-generation hyperpa-
rameter optimization framework.
[Ayala-Gómez et al. 2018] Ayala-Gómez, F.; Daróczy, B.;
Benczúr, A.; Mathioudakis, M.; and Gionis, A. 2018. Global
citation recommendation using knowledge graphs. J. Intell.
Fuzzy Syst. 34:3089–3100.
[Bordes et al. 2013] Bordes, A.; Usunier, N.; Garcia-Durán,
A.; Weston, J.; and Yakhnenko, O. 2013. Translating em-
beddings for modeling multi-relational data. In Proceedings
of the 26th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’13, 2787–2795. Red
Hook, NY, USA: Curran Associates Inc.
[Brock et al. 2017] Brock, A.; Lim, T.; Ritchie, J. M.; and
Weston, N. 2017. Freezeout: Accelerate training by progres-
sively freezing layers.
[Bronstein et al. 2021] Bronstein, M. M.; Bruna, J.; Cohen,
T.; and Veličković, P. 2021. Geometric deep learning: Grids,
groups, graphs, geodesics, and gauges.
[Corcoglioniti et al. 2014] Corcoglioniti, F.; Rospocher, M.;
Amadori,M.; andMostarda,M. 2014. Rdfpro: An extensible
tool for building stream-oriented rdf processing pipelines. In
Proceedings of the 2014 International Conference on Devel-
opers - Volume 1268, ISWC-DEV’14, 49–54. Aachen, DEU:
CEUR-WS.org.
[Devarajan 2017] Devarajan, D. 2017. Happy
birthday watson discovery. IBM Cloud Blog.
https://www.ibm.com/cloud/blog/announcements/happy-
birthday-watson-discovery.
[Devlin et al. 2019] Devlin, J.; Chang, M.-W.; Lee, K.; and
Toutanova, K. 2019. Bert: Pre-training of deep bidirectional
transformers for language understanding.

[Fey and Lenssen 2019] Fey, M., and Lenssen, J. E. 2019.
Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs
and Manifolds.
[Futia and Vetrò 2020] Futia, G., and Vetrò, A. 2020. On the
integration of knowledge graphs into deep learning models
for a more comprehensible ai—three challenges for future
research. Information 11(2).
[Gao et al. 2020] Gao, Y.; Li, Y.-F.; Lin, Y.; Gao, H.; and
Khan, L. 2020. Deep learning on knowledge graph for
recommender system: A survey.
[Geerts, Mazowiecki, and Pérez 2020] Geerts, F.; Ma-
zowiecki, F.; and Pérez, G. A. 2020. Let’s agree to
degree: Comparing graph convolutional networks in the
message-passing framework.
[Gilmer et al. 2017] Gilmer, J.; Schoenholz, S. S.; Riley, P. F.;
Vinyals, O.; and Dahl, G. E. 2017. Neural message pass-
ing for quantum chemistry. In Precup, D., and Teh, Y. W.,
eds., Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine
Learning Research, 1263–1272. PMLR.
[Guu, Miller, and Liang 2015] Guu, K.; Miller, J.; and Liang,
P. 2015. Traversing knowledge graphs in vector space.
[Jaradeh, Stocker, and Auer 2020] Jaradeh, M. Y.; Stocker,
M.; and Auer, S. 2020. Question answering on scholarly
knowledge graphs.
[Ji et al. 2021] Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; and
Yu, P. S. 2021. A survey on knowledge graphs: Representa-
tion, acquisition and applications.
[KGC 2021] 2021. Knownledge graph conference.
https://www.knowledgegraph.tech.
[KGD 2020] 2020. Workshop: Deep learning for knowledge
graph. https://alammehwish.github.io/dl4kg_eswc_2020/.
[KGI 2021] 2021. International conference on knowl-
edge graph. https://kmeducationhub.de/ieee-international-
conference-big-knowledge-icbk/.
[Kingma and Ba 2017] Kingma, D. P., and Ba, J. 2017.
Adam: A method for stochastic optimization.
[Kipf and Welling 2017] Kipf, T. N., and Welling, M. 2017.
Semi-supervised classification with graph convolutional net-
works.
[Kolda and Bader 2009] Kolda, T. G., and Bader, B. W.
2009. Tensor decompositions and applications. SIAM Rev.
51(3):455–500.
[Krishnan 2018] Krishnan, A. 2018. Making search
easier: How amazon’s product graph is helping
customers find products more easily. Amazon
Blog. https://blog.aboutamazon.com/innovation/making-
search-easier.
[Kumar and Sharma 2020] Kumar, P., and Sharma, D. 2020.
A potential energy and mutual information based link pre-
diction approach for bipartite networks. Scientific Reports
10.
[Li et al. 2020] Li, X.;Wei,W.; Feng, X.; Liu, X.; and Zheng,

Z. 2020. Representation learning of graphs using graph
convolutional multilayer networks based on motifs.
[Lin et al. 2015] Lin, Y.; Liu, Z.; Luan, H.; Sun, M.; Rao, S.;
and Liu, S. 2015. Modeling relation paths for representation
learning of knowledge bases.
[Nayyeri et al. 2020] Nayyeri, M.; Vahdati, S.; Zhou, X.;
Yazdi, H. S.; and Lehmann, J. 2020. Embedding-based rec-
ommendations on scholarly knowledge graphs. In European
Semantic Web Conference, 255–270. Springer.
[Nickel et al. 2016] Nickel, M.; Murphy, K.; Tresp, V.; and
Gabrilovich, E. 2016. A review of relational machine
learning for knowledge graphs. Proceedings of the IEEE
104(1):11–33.
[Noy et al. 2019] Noy, N.; Gao, Y.; Jain, A.; Narayanan, A.;
Patterson, A.; and Taylor, J. 2019. Industry-scale knowl-
edge graphs: Lessons and challenges. Commun. ACM
62(8):36–43.
[Oelen et al. 2020] Oelen, A.; Jaradeh, M. Y.; Stocker, M.;
and Auer, S. 2020. Generate fair literature surveys with
scholarly knowledge graphs. Proceedings of the ACM/IEEE
Joint Conference on Digital Libraries in 2020.
[Rieck, Bock, and Borgwardt 2019] Rieck, B.; Bock, C.; and
Borgwardt, K. 2019. A persistent weisfeiler-lehman proce-
dure for graph classification. In Chaudhuri, K., and Salakhut-
dinov, R., eds., Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, 5448–5458. PMLR.
[R.J. Pittman 2017] R.J. Pittman, Amit Srivastava, S. H.
2017. Cracking the code on conversational commerce. eBay
Blog. https://blog.aboutamazon.com/innovation/making-
search-easier.
[Sadeghi et al. 2021] Sadeghi, A.; Collarana, D.; Graux, D.;
and Lehmann, J. 2021. Embedding knowledge graphs atten-
tive to positional and centrality qualities.
[Schlichtkrull et al. 2017] Schlichtkrull, M.; Kipf, T. N.;
Bloem, P.; van den Berg, R.; Titov, I.; and Welling, M. 2017.
Modeling relational data with graph convolutional networks.
[Singhal 2012] Singhal, A. 2012. Introducing the
knowledge graph: things, not strings. Google Blog.
https://blog.google/products/search/introducing-knowledge-
graph-things-not/.
[Socher et al. 2013a] Socher, R.; Chen, D.; Manning, C. D.;
and Ng, A. Y. 2013a. Reasoning with neural tensor networks
for knowledge base completion. In Proceedings of the 26th
International Conference on Neural Information Processing
Systems - Volume 1, NIPS’13, 926–934. Red Hook, NY,
USA: Curran Associates Inc.
[Socher et al. 2013b] Socher, R.; Chen, D.; Manning, C. D.;
and Ng, A. Y. 2013b. Reasoning with neural tensor networks
for knowledge base completion. In Proceedings of the 26th
International Conference on Neural Information Processing
Systems - Volume 1, NIPS’13, 926–934. Red Hook, NY,
USA: Curran Associates Inc.
[Torrey and Shavlik 2009] Torrey, L.A., and Shavlik, J. 2009.
Chapter 11 transfer learning.

[Toutanova and Chen 2015] Toutanova, K., and Chen, D.
2015. Observed versus latent features for knowledge base
and text inference.
[Trouillon et al. 2016] Trouillon, T.; Welbl, J.; Riedel, S.;
Gaussier, E.; and Bouchard, G. 2016. Complex embeddings
for simple link prediction. In Balcan, M. F., and Weinberger,
K. Q., eds., Proceedings of The 33rd International Confer-
ence on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, 2071–2080. New York, New
York, USA: PMLR.
[Vahdati et al. 2018] Vahdati, S.; Palma, G.; Nath, R. J.;
Lange, C.; Auer, S.; and Vidal, M.-E. 2018. Unveiling
scholarly communities over knowledge graphs.
[Wu et al. 2021] Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang,
C.; and Yu, P. S. 2021. A comprehensive survey on graph
neural networks. IEEE Transactions on Neural Networks and
Learning Systems 32(1):4–24.
[Yang et al. 2015] Yang, B.; tau Yih, W.; He, X.; Gao, J.; and
Deng, L. 2015. Embedding entities and relations for learning
and inference in knowledge bases.
[Yao et al. 2019] Yao, S.; Wang, R.; Sun, S.; Bu, D.; and Liu,
J. 2019. Joint embedding learning of educational knowledge
graphs.

A Further details about the dataset preprocessing

Tables 1 represent the IOS Press Data set after removing the Geometric triples.

IOS PRESS ENTITIES
Class Name # of Instances %
ontology:Organization 325.487 ≈42%
ontology:Contributor 318.116 ≈41%
ontology:Publication 92.000 ≈11%
ontology:GeocodedLocation 42.023 ≈5%
ontology:Issue 8.843 ≈0,8%
ontology:Volume 2.433 ≈0,3%
ontology:Journal 128 <0,1%
ontology:Category 9 <0,1%
ontology:Publisher 8 <0,1%

IOS PRESS FEATURES
Class Name Relation Type # of Feature Instances
ontology:Organization ontology:OrganizationName 167.321
ontology:Contributor ontology:ContributorFullName 318.116
ontology:Publication ontology:publicationIncludesKeywords 63.668
ontology:Publication ontology:publicationAbstract 75.322
ontology:Publication ontology:publicationTitle 92.000

IOS PRESS EXTRA INFO
Class Name Relation Type # of Feature Instances
ontology:Contributor owl:sameAs 105.271
ontology:Publication ontology:publicationAuthorList 84.044

Table 1: Entities statistics and features for the IOS Press LD Connect knowledge graph before preprocessing
.

A sample visual representation of the data we want to retrieve can be seen in Figure A.1.

Figure A.1: IOS PRESS data after initial cleaning and with the selected entities and features

Overall, Table 2 summarizes the entity and feature statistics after the initial preprocessing.

IOS PRESS ENTITIES
Class Name # of Instances %
ontology:Organization 2946 ≈49%
ontology:Contributor 2031 ≈33%
ontology:Publication 1077 ≈18%

IOS PRESS FEATURES
Class Name Relation Type # of Feature Instances
ontology:Contributor ontology:OrganizationName 2946
ontology:Organization ontology:ContributorFullName 2031
ontology:Publication ontology:publicationIncludesKeywords 1077
ontology:Publication ontology:publicationAbstract 1077
ontology:Publication ontology:publicationTitle 1077

IOS PRESS EXTRA INFO
Class Name Relation Type # of Feature Instances
ontology:Contributor owl:sameAs 2031
ontology:Publication ontology:publicationAuthorList 7300

Table 2: Entity and feature statistics for the IOS Press LD Connect knowledge graph after the initial preprocessing
.

Among initial data set, we specifically select the instances of class ontology:Organization, ontology:Contributor and ontol-

ogy:Publication. The visual representation of the data after the "smushing" is shown in Figure A.2.

Figure A.2: IOS PRESS data after CONSTRUCT SPARQL query and the "smushing"

The respective entity and feature statistics for the data set after the smushing are shown in Table 3

IOS PRESS ENTITIES AFTER SMUSHING
Class Name # of Instances %
ontology:Organization 2946 ≈50%
ontology:Contributor 1907 ≈32%
ontology:Publication 1077 ≈18%

IOS PRESS FEATURES
Class Name Relation Type # of Feature Instances
ontology:Organization ontology:OrganizationName 2946
ontology:Contributor ontology:ContributorFullName 1907
ontology:Publication ontology:publicationIncludesKeywords 1077
ontology:Publication ontology:publicationAbstract 1077
ontology:Publication ontology:publicationTitle 1077

IOS PRESS EXTRA INFO
Class Name Relation Type # of Feature Instances
ontology:Contributor owl:sameAs 1907

Table 3: Entity and feature statistics for the IOS Press LD Connect knowledge graph after smushing
.

The final data for the RGCN is shown in Figure A.3 and the entity and feature statistics can be found in Table 4.

Figure A.3: IOS PRESS data after final preprocessing ready to feed to the RGCN

IOS PRESS ENTITIES AFTER SMUSHING
Class Name # of Instances %
ontology:Organization 2946 ≈50%
ontology:Contributor 1907 ≈32%
ontology:Publication 1077 ≈18%

IOS PRESS FEATURES
Class Name Relation Type # of Feature Instances
ontology:Organization ontology:OrganizationName 2946
ontology:Contributor ontology:ContributorFullName 1907
ontology:Publication ontology:publicationIncludesKeywords 1077
ontology:Publication ontology:publicationAbstract 1077
ontology:Publication ontology:publicationTitle 1077

IOS PRESS EXTRA INFO
Class Name Relation Type # of Feature Instances
ontology:Contributor ontology:coAuthorOf 1569
ontology:Contributor ontology:hasArticle 1907

Table 4: Entity and feature statistics for the IOS Press data after the final preprocessing
.

All the statistics above are retrieved by the use of the TriplyDB interface 7.

SPARQL Construct Query

PREFIX sd: <http://www.w3.org/ns/sparql-service-description#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX ios: <http://ld.iospress.nl/rdf/ontology/>
PREFIX sdo: <https://schema.org/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

CONSTRUCT {

?article sdo:hasKeywords ?pubKeywords.
?article sdo:hasPubTitle ?pubTitle.
?article sdo:hasPubAbstract ?pubAbstract.
?article sdo:hasPubDate ?pubDate.
?author sdo:hasArticle ?article.
?author sdo:inAuthorList ?pubAuthorList.
?author sdo:hasAffiliation ?authorAffiliation.
?authorAffiliation sdo:hasName ?label.
?author sdo:fullName ?fullName.
?author owl:sameAs ?author_.
?author_ sdo:hasAffiliation ?authorAffiliation_.

}
WHERE {
?article rdf:type ios:Article.
?article ios:publicationIncludesKeyword ?pubKeywords.
?article ios:publicationDate ?pubDate.
?article ios:publicationTitle ?pubTitle.
?article ios:publicationAbstract ?pubAbstract.
?article ios:publicationAuthorList ?pubAuthorList.
?pubAuthorList ?p ?author.
?author ios:contributorAffiliation ?authorAffiliation.
?author ios:contributorFullName ?fullName.
?author owl:sameAs ?author_.
?author_ ios:contributorAffiliation ?authorAffiliation_.
?authorAffiliation ios:organizationName ?label.
filter (?pubDate >= "2017-11-01"^^xsd:dateTime).

}

Figure A.4: SPARQL Construct Query used to retrieve all the data from the IOS Press LD Connect Knowledge Graph

7https://triplydb.com/ios-press/ld-connect/insights/classFrequency

SPARQL Construct Query with JS
It is important to remark that we specifically use the TriplyDB in combination with the javascript service 8 in order to return
more than 10K triples; otherwise not possible due to a Virtuoso limit with the CONSTRUCT SPARQL queries. The query A.5
shows how we use the TriplyDB service with JS.

"use strict";
var __importDefault = (this && this.__importDefault) || function (mod) {

return (mod && mod.__esModule) ? mod : { "default": mod };
};
Object.defineProperty(exports, "__esModule", { value: true });
exports.run = void 0;
require("source-map-support/register");
const triplydb_1 = __importDefault(require("@triply/triplydb"));
async function run() {

const app = triplydb_1.default.get({ token: process.env.TRIPLY_API_TOKEN });
// get organization that contains the to query Dataset.
const user = await app.getUser("SimoneColombo");
// Get query information
const query = await user.getQuery("IOS-Press-K-Gfor-RGCN");
// for construct and describe queries
const results = query.results().statements();
// saving the results to file
await results.toFile(`./more_than_10K.ttl`);

}
exports.run = run;
run().catch((e) => {

console.error(e);
process.exit(1);

});
process.on("uncaughtException", function (err) {

console.error("Uncaught exception", err);
process.exit(1);

});
process.on("unhandledRejection", (reason, p) => {

console.error("Unhandled Rejection at: Promise", p, "reason:", reason);
process.exit(1);

});

Figure A.5: SPARQL CONSTRUCTQuery call with NodeJS by using the Triply interface in order to retrieve more than
10K triples

B Further information about the use of the pretrained BERT model
BERT uses an attentionmechanism to learn contextual relations betweenwords, or sub-words, in a text; this is called Transformer.
In its simplest form, the vanilla form, a Transformer includes two separate parts — an encoder that reads the text input and a
decoder that outputs a prediction for the task. Since BERT’s task is to generate a language model, the only necessary part is
the decoder. Differently from directional models, that read the text input sequentially, the Transformer encoder reads the whole
text sequence at once. Hence it is considered bidirectional, even if it would be more accurate to define it as non-directional.
This essential characteristic of BERT allows it to learn the context of a word based on all of its surrounding words, hence, it is
regarded as one of the best model to encode textual information (Devlin et al. 2019). The structure of the R-GCN model we
propose in our research has an initial dense layer used for the dimensionality reduction of the BERT input embeddings. The
dense layer is added in order to check whether the BERT embeddings can be reduced in dimension while still retaining their
encoded information. We detach the computational graph for the BERT-embedding creation from the R-GCN computational
graph. We found this step essential for the R-GCN for link prediction with textual information since without this detachment
the backward pass for the loss retains the entire computational graph. Nevertheless, in order reduce memory usage, PyTorch,

8https://triply.cc/docs/triplydb-js

during the ’.backward()’ call, deletes all the intermediary results when they are not needed anymore. In our specific case, the
weight matrices for the embeddings can be calculated only once, without having the need to free or delete them, hence we detach
the BERT computational graph. In more details, the error we obtained was the following: "RuntimeError: Trying to backward
through the graph a second time, but the buffers have already been freed. Specify retain_graph=True when calling backward
the first time" 9, and we solved it with ’.detach()’ (see B.6)

def get_bert_embedding(list_of_strings):
tensor_length = len(list_of_strings)
result_embedding = torch.zeros(tensor_length, 768)
for sentence in list_of_strings:
input_ids = torch.tensor(tokenizer.encode(sentence[:512])).unsqueeze(0) #batch size 1
outputs = model(input_ids)
embeddings_of_last_layer = outputs[0]
cls_embeddings = embeddings_of_last_layer[0]
result_embedding[list_of_strings.index(sentence)] = torch.sum(cls_embeddings, dim=0)

return torch.sum(result_embedding, dim=0)

def create_entities_embeddings(rdf_graph, entities_dict, embedding_dimension):
entities_IDs_to_embeddings = torch.zeros(len(entities_dict), embedding_dimension)
#for loop through all unique entities and their IDs
for rdf_entity, entity_ID in entities_dict.items():
entity_textual_information = []
#for loop through all the triples in the graph which have as entity the
#entity for entity_ID and where the entity e2 is a textual attribute for e1
for e1,r,e2 in rdf_graph.triples((rdf_entity, None, None)):
#check for literal attribute for entity e1
if type(e2) == rdf.term.Literal:
#create embedding for entity embeddings
entity_textual_information.append(e2)

if len(entity_textual_information) > 0:
entities_IDs_to_embeddings[entity_ID] = get_bert_embedding(entity_textual_information)

return entities_IDs_to_embeddings.detach()

Figure B.6: Code snippet for the creation of the BERT embeddings for textual entities

C Further details about the R-GCN implementation

By using the rdflib Python library, we read the triples from the turtle file and we iterate through them in order to build the sets
for subjects, relations and objects. Successively, based on the aforementioned sets, we create the necessary arguments to feed as
input to the R-GCN. In order to implement the RGCN we use PyTorch Geometric (Fey and Lenssen 2019). PyTorch Geometric
is a geometric deep learning extension library for PyTorch. It provides various built-in methods for deep learning on graphs,
also called geometric deep learning (Bronstein et al. 2021), and it also provides a set of common benchmark datasets to use. The
PyTorch geometric implementation of the RGCN for link prediction 10 is based on the paper by (Schlichtkrull et al. 2017), and
it runs in a full-batch fashion on CPU. Our goal is to use the RGCN for link prediction on GPU with the additional necessary
embeddings for the textual information for each unique entity11. We achieve the former by running our program on the SURF
Sara Lisa computer cluster and by moving all the tensors on GPU, and the latter by the use the BERT bidirectional transfomer
(as explained in B). After the embeddings creation, we start generating the necessary arguments for the R-GCN. The R-GCN
initialization module can be seen in the code snippet C.7

9https://discuss.pytorch.org/t/runtimeerror-trying-to-backward-through-the-graph-a-second-time-but-the-buffers-have-already-been-
freed-specify-retain-graph-true-when-calling-backward-the-first-time/6795

10https://github.com/pyg-team/pytorch_geometric/blob/master/examples/rgcn_link_pred.py
11Our implementation of the R-GCN for link prediction in pytorch geometric can be found at https://github.com/simoneVU/EnhancedRGCN

def __init__(self, in_channels: Union[int, Tuple[int, int]],
out_channels: int,
num_relations: int,
num_bases: Optional[int] = None,
num_blocks: Optional[int] = None,
aggr: str = 'mean',
root_weight: bool = True,
bias: bool = True, **kwargs):

super(RGCNConv, self).__init__(aggr=aggr, node_dim=0, **kwargs)

Figure C.7: PyTorch Geometric R-GCN initialization module

The R-GCN has 3 non-optional arguments; in_channels, out_channels and num_relations,and 2 optional ones; the num_blocks
and the num_bases. The non-optional arguments represent the dimension of the input embedding for each node, the dimension
of the output embedding for each node and the total number of relations in the KG respectively. The optional arguments can be
set to a certain number of bases or blocks in order to use either tensor or block decomposition to create the R-GCN embeddings.
In addition, the aggregation function for the message passing is set to the ’mean’ and both the root_weight and the bias are
initialized.

D OPTUNA hyperparameters autotuning

Hyperparameters Autotuning
trial nr. in_channels out_channels hidden_channels learning_rate num_bases validation accuracy

0 192 16 8 6.0532e-06 6 0.7133
1 32 24 14 4.2222e-05 3 0.8082
2 32 4 12 1.2788e-06 2 0.9023
3 192 8 8 0.0001 5 0.9193
4 96 12 14 5.6398e-05 6 0.8335
5 224 16 14 4.0599e-06 6 0.8565
6 256 4 10 0.0006 4 0.8758
9 192 16 12 0.0001 5 0.8723
16 192 12 4 8.7679e-05 6 0.8659
30 224 8 6 4.5198e-06 6 0.8919
41 192 16 12 0.0001 6 0.8825
44 224 8 12 0.0001 6 0.9131
47 192 8 14 0.0001 6 0.9170
54 224 12 16 0.0002 6 0.9146
59 64 4 14 9.8440e-05 5 0.9209
62 64 8 14 0.0001 2 0.9242
67 96 12 16 0.0004 6 0.8965

Table 5: Hyperparameters autotuning with Optuna for the baseline R-GCN model

We tune the hyperparameters of the vanilla RGCN with Optuna Akiba et al. (2019). We run one study of 100 trials and we set
the input channels, output channels, hidden channels, learning rate, number of bases as hyperparameters to tune. The values
reported in Table are the non-pruned trials from Optuna. We find out that the best validation values are given by trial 62. The
most important hyperparameters to tune to improve the validation accuracy are the output number of channels and the learning
rate. The former defines the expressiveness of the output embedding, whereas, the latter shows how efficiently the network can
reach a local/global optimum in the search space. The importance on the hyperparameters is shown in the bar chart D.8.

Figure D.8: Hyperparameters and their importance relative to the objective value

Figures D.9b and D.9a show the different parameter values for the learning rate and number of input channel respectively. As
it is possible to see the best combination given from learning rate equal to 0.0001 and number of input channels equal to 64.

(a) Input number of channels against objective value (b) Learning rate against objective value

Figure D.9: In (a)is shown the comparison between different number of input channel for the R-GCN against the objective
value, whereas, in (b) is shown the comparison between learning for the R-GCN Adam optimizer against the objective
value.

Further experimental details on Link Prediction

The link prediction task is performed with the main aim to show a contribution of the PE for the overall performance of the
R-GCN. The following line plots show what explained in the results. Figure D.10 show the values for the training loss dna the
validation for the run of one experiment for the vanilla R-GCN. Furthermore, Figure D.11 shows that the scaling factor, U, is
positively correlated to the validation accuracy when the PE is used directly to the DistMult decoder without the use of the MLP.
Additionally, we also observe that the validation accuracy for the eR-GCN without the MLP reaches a higher value compared
to the one for the vanilla R-GCN and U equal to zero.

Figure D.10: R-GCN train loss and validation accuracy comparison

Figure D.11: Scaling factor against Validation accuracy for the eR-GCN without MLP

	Introduction
	Problem Definition
	Contributions

	Potential Energy Modeling
	Potential Energy for a Bipartite Graph
	Potential Energy for a Non-Bipartite Graph

	Neural Topological Modeling
	Graph Convolutional Networks
	Relational Graph Convolutional Networks
	Message-passing Neural Networks
	Enhanced R-GCN

	Link Prediction Use Case
	Data Preprocessing
	Results

	Related Work
	Topological modeling
	Neural Networks on graphs

	Conclusions
	Future Work and Discussion

	Acknowledgements
	Further details about the dataset preprocessing
	Further information about the use of the pretrained BERT model
	Further details about the R-GCN implementation
	OPTUNA hyperparameters autotuning

