
This thesis was submitted to the
Chair of Information Systems & Databases

at RWTH Aachen University

Extending Estimation of Parking Occupancy
to Untracked City Areas using City

Background Information

Master’s Thesis

Andrei-Eugeniu Ionit,ă
Matriculation Number 319298

First Examiner: Prof. Dr. Stefan Decker
Information System & Databases

Second Examiner: Prof. Dr.-Ing. Tobias Meisen
Information Management in Mechanical Engineering

First Supervisor: Dr. Michael Cochez
Fraunhofer Institute for Applied Information Technology

Second Supervisor: André Pomp M.Sc.
Information Management in Mechanical Engineering

Aachen, 04.12.17

ii

Copyright @ 2017, Andrei-Eugeniu Ionit,ă, Some Rights Reserved

This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 3.0 Unported”
license.

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en

Declaration

I hereby affirm that I composed this work independently and used no other than the
specified sources and tools and that I marked all quotes as such.

Aachen, 04.12.17

Andrei-Eugeniu Ionit,ă

v

Acknowledgements

I would like to thank Prof. Dr. Stefan Decker for being the main examiner and
supporting this thesis. Furthermore, I want to thank Prof. Dr.-Ing. Tobias Meisen
for being the second examiner on behalf of the Institute of Information Management
in Mechanical Engineering.

I also want to express my gratitude to my supervisors, Dr. Michael Cochez and
André Pomp M.Sc., for the their numerous suggestions, constructive feedback and the
continuous support throughout this thesis.

My current employer, Knowledge Exchange AG, I would like to thank for being flexible
regarding my working hours and granting me time off to finish this work.

Last but not least, I would like to thank the S O NAH start-up team, Christian
Bartsch, Thomas Grimm, and Victor ter Smitten that got me started on this project
in the first place.

vii

Abstract

Several smart cities around the world have begun monitoring parking areas in order to
estimate free spots and help drivers that are looking for parking. The current results
are indeed promising, however this approach is limited by the high cost of sensors that
need to be installed throughout the city in order to achieve an accurate estimation rate.
This work investigates the extension of estimating parking information from areas
equipped with sensors to areas that are missing them. To this end, similarity values
between city neighborhoods will be computed based on background data, i.e., from
geographic information systems. Using the derived similarity values, the adaptation
of occupancy rates from monitored- to unmonitored parking areas will be analyzed.

ix

Contents

Declaration v

Acknowledgements vii

Abstract ix

1. Introduction 1
1.1. Motivation . 1
1.2. Approach . 2
1.3. Contribution . 3
1.4. Thesis Organization . 3

2. Problem Defintion 5
2.1. Parking Profiles . 5
2.2. Transferring Parking Models . 6

3. Background 7
3.1. Resource Description Framework . 7
3.2. Machine Learning . 9

3.2.1. Decision Trees . 10
3.2.2. Support Vector Machines . 10
3.2.3. Multilayer Perceptrons . 11
3.2.4. Gradient Boosted Trees . 12
3.2.5. Cross-Validation . 13
3.2.6. Scoring Functions . 14
3.2.7. Grid Search . 14

3.3. Cosine Similarity . 15
3.4. Earth Mover's Distance . 15
3.5. Clustering . 16
3.6. Correlation Coefficients . 17
3.7. Coordinate Reference System . 18
3.8. OpenStreetMap . 18
3.9. Google Visit Duration . 19
3.10. Leaflet . 20
3.11. The SFpark Project . 20

xi

Contents

4. Related Work 23
4.1. Smart Parking Overview . 23
4.2. Vacancy Prediction Systems . 25

5. Design & Implementation 35
5.1. Parking Data . 35

5.1.1. Parking Occupancy Data . 37
5.1.2. Traffic Data . 38
5.1.3. Events Data . 38
5.1.4. Weather Data . 39
5.1.5. Fuel Price Data . 39
5.1.6. Parking Revenue Data . 40

5.2. City Data . 41
5.3. RDF Annotation . 42
5.4. Merging City and Park Data . 42
5.5. Clustering . 42
5.6. Urban Measure . 43

5.6.1. Cosine Vectors . 43
5.6.2. EMD Gaussians . 44

5.7. Similarity Functions . 45
5.7.1. Cosine Similarity . 45
5.7.2. Earth Mover's Distance . 45

5.8. Machine Learning Models . 45
5.9. Parking Occupancy Estimations . 46
5.10. Data Processing and Persistence . 47

6. Evaluation 49
6.1. SFpark Parking Data . 49
6.2. OpenStreetMap for San Francisco . 50
6.3. Merging Parking and City Data . 51
6.4. Clustering . 51

6.4.1. Urban Measure . 52
6.5. Model Training . 54
6.6. Model Evaluation for Clusters with Parking Data 55

6.6.1. Clustered- vs. Total Models 56
6.6.2. Best Model Method . 58
6.6.3. Similarity Values vs. Estimation Errors 58

6.7. Estimations for Clusters without Parking Data 59

7. Conclusion & Future Work 61
7.1. Future Work . 62

A. Appendix 65
A.1. Evaluation . 65

xii

Contents

Bibliography 73

xiii

1. Introduction

1.1. Motivation

Parking is a known problem in cities. Worldwide we are experiencing an increase
in the number of cars [21]. Currently, about 30% of the traffic in cities is caused by
cars that are actively searching for parking [12]. Drivers often end up double-parking
their cars, which blocks other cars, thus causing unneeded stress. Drivers that are
circling for a parking space may cause safety issues, as they are often distracted and
are not paying attention to cyclists and pedestrians. When circling for parking spaces,
additional fuel is consumed, which, moreover, affects the environment as a result.

The solution to the parking problem is leveraging the advanced technology that we
have access to. Existing parking spaces can be more efficiently occupied if the drivers
know about their availability. Driving in congested car parks or busy streets to find
out whether parking is available is not an option. The information about existing
parking spaces needs to be available in advance, so that drivers can take the decision
to drive towards a highly probable free parking space early enough and not get stuck
in a traffic bottleneck.

A system for this purpose would, ideally, take into account factors such as current
parking space availability, traffic, events, and weather. The driver would then be able
to choose the driving routes and plan in advance accordingly. They might need to
take an umbrella with them, if the found parking space is too far away from their
actual destination and outside it is raining. If need it be, they may even forget about
the car and take the public transportation to arrive on time and without hassle at
the destination.

Obtaining the piece of information about future free parking spaces arguably requires
a complex system and the approaches to achieve it vary greatly. Many such forecasting
systems start by collecting statistics on the free parking spaces. Usually, it is mounted
sensors that observe when a car occupies and leaves a parking space.

Various statistics draw on parking information collected over a reasonable amount of
time, such as, for example, the probability that a parking space is free at a certain
time of day, that on weekends the location is less occupied than on weekdays, that on

1

1. Introduction

rainy days there are more parking spaces occupied, but the parking duration and the
waiting time is shorter too. Or that, when a concert is taking place not far away from
the parking location, virtually all parking spaces get occupied during the respective
time period.

Forecasting systems can hence derive various facts that prove useful to drivers searching
for a parking space. Arriving at statistical conclusions about parking is relatively
easy, when we know, what we are after. Acquiring the required data, however, be it
on the parking spaces themselves or the complementary information, is, most of the
time, the bottleneck for these approaches.

There have been many attempts that dealt with the scarcity of parking data with
reasonable success. For car parks, there are numerous systems that hold an overview at
any time of the individual parking space occupancy. These systems provide real-time
parking monitoring and are able to guide a car to a precise parking space, once
it has entered the car park. On the other hand, car parks are rather controlled
environments, exclusively dedicated to parking and whose optimization is often
economically motivated by commercial affiliations. Keeping track of occupancy and
making predictions in this case is relatively straightforward.

Roadside parking is, in comparison, a jungle when it comes to parking space prediction.
There are various hazards that occur here: not all spaces on the street are for parking,
parking places are often used by stopped vehicles that load/unload, etc. Moreover,
their occupancy is not necessarily motivated by shopping and there is no economic
incentive for the managing municipality to monitor them. It is understandable that
municipalities do not want to go to the lengths of monitoring all roadside parking
spaces with sensors. The on-street parking problem continues to be a challenge, for
which currently there is no standard solution.

1.2. Approach

The current approach is motivated by the insufficiencies of on-street parking prediction
systems. It sets out to address the shortage of available parking data and the hard-to-
anticipate parking situation on city streets.

This work will follow up on similar approaches in the area of smart parking. We
will look at existing systems that have gathered on-street parking data for certain
cities. Additionally, we will make use of additional city data, obtained from sources
not related to parking. We aim to offer answers to the following questions:

1. Are parking occupancy rate predictions more precise when realized on small
city areas rather than for the whole city?

2

1.3. Contribution

2. Can parking profiles of city areas be created and quantified by taking into
account city background data?

3. Can a parking prediction system based on parking data from a city area be
transferred to another city area without parking data by taking into account
the “parking profiles” of the respective city areas?

4. Can the processing of the collected data for such an approach be standardized,
so that it is extensible and generally applicable to parking in cities?

To realize this approach and verify the hypotheses, we need access to relevant data.
Our requirements for this system are:

1. on-street parking data, preferably collected over multiple months

2. additional city data relevant to parking, such as types of services and their
localization

1.3. Contribution

Despite the relative large number of systems that already exist, which are tackling
the parking problem, the approach presented in this work is original and goes about
the problem differently, to the best knowledge of the author. First of all, it sets out
to compute parking occupancy rates for locations where no parking data has been
recorded. Secondly, it uses data from an independent source to the parking data itself
to compute the parking predictions. Thirdly, it proposes the concept of “parking
demand profile” and quantifies it, before applying it to calculate parking predictions.
Fourthly, it deals with semantically annotated information for all its data sources.

1.4. Thesis Organization

The thesis is structured as follows:

1. Introduction (cf. Chapter 1) states the motivation for the problem and
formulates the research questions.

2. Problem Definition (cf. Chapter 2) elaborates the goals set in the introduction
by means of examples and bridges the understanding path towards the rest of
the work.

3

1. Introduction

3. Background (cf. Chapter 3) introduces the reader to the concepts that are
needed for understanding the proposed approach.

4. Related Work (cf. Chapter 4) presents similar contributions to the field of
smart parking and compiles an inventory of their characteristics.

5. Design & Implementation (cf. Chapter 5) presents the proposed solution
in-depth by including theoretical and implementation details.

6. Evaluation (cf. Chapter 6) carries out the instantiation of the proposed
approach with a concrete use case, presents the results and analyzes them.

7. Conclusion & Future Work (cf. Chapter 7) summarizes the outcome of the
approach and points out aspects that could be further pursued.

8. Appendix (Appendix A) contains supplementary evaluation information that
otherwise does not fit in the respective chapter.

4

2. Problem Defintion

This section will help to better understand the problem we are solving. It will start
by addressing the main goals formulated in Section 1.2 and derive further subgoals.
The subgoals discussion acts as a bridge towards the rest of the work.

2.1. Parking Profiles

Building parking profiles for city areas is one of the goals set in Chapter 1. Such a
parking profile is reflected by the parking demands throughout the city. Since we
are looking for a way to quantify parking, we will look for indicators that attract or
assume parking.

Office buildings areas, for instance, are places where the parking demand is high.
Dedicated car parks, usually, do not manage to provide enough supply of parking, so
many drivers end up leaving their cars on the side of the street. For office building
areas, this happens during working hours, generally between 8 – 18. If there would be
a way to localize the office buildings, we could conclude that two such areas, perhaps
in different parts of a city, or even in two different cities, have a similar parking
situation, i.e., that during 8 – 18 on weekdays there is a high demand in parking for
both. In case of restaurants, on the other hand, we see a spike in parking demand
in the evening, usually from 18 – 22, and more so on weekends. In residential areas,
the cars are parked in the evening and leave again early morning. A measure that
would capture the parking demand will therefore be based on the stay duration of
customers or employees of the particular services.

Getting access to data about establishments and services in the city would therefore
enable us to quantify the parking demand. We shall call this type of data city data or
city background data.

5

2. Problem Defintion

2.2. Transferring Parking Models

By parking models we understand machine learning systems that statistically forecast
parking occupancy. In order to build such models, data on parking occupancy is
needed. Also, data about relevant circumstances such as parking price, traffic, events,
and weather is beneficial. We shall call the collection of both these data types parking
data.

Instead of creating a machine learning model for the whole city area that has parking
data, there are chances to achieve better approximations when considering models
for smaller areas. Smaller areas are more specialized and produce models that are
transferable to other city areas.

Once parking models are created, we will define how to apply them on areas different
that their original ones. Areas that do no have parking data are not suitable for
building such a prediction model. These areas will need to “import’ a model from
another area that has parking data. The two areas might be different in terms
of parking demand, so applying an imported model would only make sense if the
difference in parking profiles is taken into account.

Summarizing, for transferring parking models the following elements are needed:

1. a city area A that has parking data, with which a parking model is built

2. a city area B that has no parking data

3. both city areas have a parking profile created based on their corresponding
parking demands

4. applying the parking model from A to B will need to take the areas’ parking
profiles into consideration

Note that, in order to obtain good results from model transferring, the city and the
parking data need to be independent. If the two sources would have elements in
common, then the application of model A to area B would be biased.

Finally, we will aim to make our solution extensible and generally applicable to
parking in cities. In order to establish a common format, all the processed data will be
considered in RDF format, which will make it more easy to distribute and process.

6

3. Background

This chapter introduces some prerequisite theoretical foundations. It also includes
concepts and systems that are being referenced throughout the rest of this work.

3.1. Resource Description Framework

The Resource Description Framework (RDF) [48] [47] [49] expresses semantical infor-
mation about resources. A resource is an abstract concept, it can be a document, a
person, an object, etc. RDF is a format designed to be used between applications, yet
there are tools that make RDF human-friendly. RDF acts as a standard format for
exchanged information, so that the sender and recipient align when formatting and
parsing the data.

RDF uses the Web to publish information. A resource has an identifier to which
various other resources link to. The identifiers are called International Resource
Identifiers (IRIs) and can be thought of as abstract Universal Resource Locators
(URLs). The links between resources are called properties. Resources can also link to
basic information called literals, i.e., strings, numbers, dates, or booleans. A collection
of data about resources that are interlinked together is referred to as Linked Data
[40].

RDF is used for a number of reasons. It provides mark-up information for search
engines and makes indexing websites easier. RDF also builds a vocabulary of data for
certain domains, hence acting as a compendium and providing access to comprehensive
information about the respective domains for applications that want to use them.
RDF also makes for a data interface between communication partners. For more
practical uses of RDF, see the official documentation linked above.

The building block of RDF is the statement, also a called a triple. A statement tells
something about a resource. It contains a subject, a predicate, and an object. The
subject is a resource, the predicate is a property, while the object can be a resource
or a literal. A collection of triples may state information about a resource several
times (cf. Listing 3.1) and the entire linked data can be visualized as a graph (cf.
Figure 3.1). Given such a collection of statements and the fact that RDF documents

7

3. Background

are not necessarily human-readable, one can extract the information they are looking
for by using SPARQL [50]. SPARQL is a RDF query language that resembles SQL in
concept. Its syntax is somewhat different from standard SQL but it can be learned
relatively easily when knowing the latter.

Listing 3.1: A simple collection of RDF statements written in informal syntax
<Max > <is a> <Student >.
<Max > <writes > <Paper >.
<Paper > <is due on > <01 -03 -2018 >.
<Max > <likes > <hiking >.
<hiking > <is activity ?> <true >.

Student Max
is a

Paper

writes

01-03-2018 is due on

hikinglikes

true

is activity?

Figure 3.1.: The graph visualization of the statements in Listing 3.1

RDF statements about objects in the world need to comply to an RDF schema in order
to be properly understood by the party they are communicated to. An RDF schema
defines a vocabulary. Such a vocabulary can be easily understood by following the
analogy to the word dictionary, which imposes type restrictions on words. There are
only certain IRIs (identified words) that can be used as resources (nouns, pronouns),
as there can be only some IRIs that are valid as properties (verbs), as there can be
only be some literals that qualify as nouns or numerals.

The very first, and still most well-known RDF vocabularies are Dublin Core1,
schema.org (the vocabulary for search engine mark-up)2, SKOS (vocabulary on
thesaurus information)3. RDF vocabularies are meant to be reused and to become a
lingua franca for information exchange in the field they represent. Large collections of
RDF data being used today are Wikidata4, a collaborative and multilingual platform
run by the Wikimedia foundation, DBpedia5, WordNet6.

1Dublin Core: http://dublincore.org/documents/dcmi-terms/
2schema.org: http://schema.org/
3SKOS: https://www.w3.org/2004/02/skos/
4Wikidata: https://www.wikidata.org/wiki/Wikidata:Main_Page
5DBpedia: http://wiki.dbpedia.org/
6WordNet: https://www.w3.org/2006/03/wn/wn20/

8

http://dublincore.org/documents/dcmi-terms/
http://schema.org/
https://www.w3.org/2004/02/skos/
https://www.wikidata.org/wiki/Wikidata:Main_Page
http://wiki.dbpedia.org/
https://www.w3.org/2006/03/wn/wn20/

3.2. Machine Learning

In practice, RDF appears under different formats. N-Triples, Turtle, N-Quads have
specific syntaxes and can be used to exchange large sets of RDF information, while
not intended to be human-readable. In other formats, such as JSON-LD, RDFa, or
RDF/XML, the statements appear encoded in JSON or XML syntax respectively.

As a consequence of its statement-centered definition, RDF statements can also be
seen as mathematical logic statements. Hence, logical reasoning can be applied on
them and new information can be inferred about resources in a given collection. Some
entailments can however lead to inconsistencies.

An implementation of the RDF standard is provided by Apache Jena [1]. Its Java
API enables developers to create RDF models and extract information using SPARQL
queries.

3.2. Machine Learning

Machine Learning can be loosely defined as a collection of techniques through which
an application learns from “experience” and without having to be programmed to
do so. The term was coined in 1959 by Arthur Samuel, an IBM computer gaming
pioneer [17]. Machine learning applications can be categorized into supervised and
unsupervised.

In supervised learning, applications are first presented with inputs for variables called
features, alongside the desired outputs, whose variables are known as target variables.
The phase in which the application processes this data is called training. Afterwards,
the applications are asked to compute outputs for unseen inputs, a phase called testing.
This is realized by determining rules in the data that map inputs to outputs and build
a model from them. In unsupervised learning, applications are only presented with
inputs for which a structure needs to be found. Examples of unsupervised learning
methods are clustering and dimensionality reduction.

Supervised applications are of two types: classification and regression. Classifiers are
models that have discrete outputs, i.e., labels. A classifier will therefore typically
assign one out of multiple labels to future inputs, after having been trained with a
collection of inputs and their corresponding labels. A common example of classifiers
are spam filters, where the applications are trained to categorize e-mails into spam or
non-spam, based on its subject, sender and content.

Regression applications are models for which the output is a real number. Such models
are therefore typically represented in Cartesian coordinates. An example is linear
regression, where the model estimates y-axis values that are a linear combination of
its x-axis counterparts.

9

3. Background

In the present work, we will deal with supervised methods when training parking
occupancy estimation models, but also with unsupervised models when clustering the
parking location units.

3.2.1. Decision Trees

Decision trees is a form of classification model that learns to determine the target
variable by modeling it as a decisional process. The process resembles a connected
acyclic graph, i.e., tree, where decisions are made at the vertices and the edges are
the decisional paths. The classification of a new instance begins at the root and drops
down the tree, ending in a leaf. Each vertex represents subsets of the feature value
domains which are established in the trained phase. The values of the leafs are the
target variables. For an example of decision tree, see Figure 3.2.

Figure 3.2.: An example of a decision tree applied on the famous Iris dataset [8]

3.2.2. Support Vector Machines

Support vector machines are a class of machine-learning algorithms used in classifi-
cation and regression problems. They are applicable both in linear and non-linear
settings. The idea behind the main algorithm is finding boundaries between points
belonging to different classes, so that the nearest points to the boundary are as far as

10

3.2. Machine Learning

possible from each other. More rigorously, the algorithm finds so-called maximum-
margin hyperplanes in the multidimensional space of points. The hyperplanes cannot
be further apart from either class of points. The instances that are closest to a
maximum-margin hyperplane are called support vectors. Each class has at least one
support vector. The support vectors uniquely define a maximum-margin hyperplane
and all other instances are hence redundant in this respect. See Figure 3.3 for an
example of SVM line separation in the bidimensional case.

Support vector machines are often used to train non-linear models. By replacing the
dot products of the vectors with a higher-degree kernel function, the instances are
mapped into a higher dimensional space. A hyperplane that is furthest away from the
class points it separates assigns different classes to the respective instances. Common
kernel function are the polynomial kernel, the Gaussian radial basis function, and the
hyperbolic tangent.

Figure 3.3.: SVM hyperplane separates two classes of points in 2D. Circled are the support
vectors [38]

3.2.3. Multilayer Perceptrons

Multilayer perceptrons are graph structures that process data and are organized
as oriented graphs. The edges are typically represented from left to right and the
vertices are vertically aligned as in layers (cf. Figure 3.4). Each node is a perceptron,
a structure that is activated by some specific input and that fires an output. The
inputs are the weights of the incoming edges, while the outputs are weights of the

11

3. Background

corresponding outgoing edges. The leftmost nodes are the input nodes. These contain
the feature values of the model. Additionally, there is a bias node among the input
nodes. The right-most node is the output, it contains the target value. The in-between
layers are called hidden layers and their network is only controllable though model
meta-parameters. The decision based on which the perceptrons fire is typically derived
from the features of the model. However, the decisional processes of the multilayer
perceptrons are often viewed as black-boxes.

+1

x1

x2

x3

x4

x5

Bias

Features
(X)

+1

h1

h2

h3

Bias

f(X)
Output

Figure 3.4.: An example of MLP with one hidden layer

3.2.4. Gradient Boosted Trees

Gradient boosted trees are a fairly recently developed regression method [44]. The
algorithm relies on two parts: boosted trees and the gradient descent algorithm.

When training a decision tree model to minimize a loss function, residuals are inevitably
resulting, i.e., absolute differences between the model and the target values. However,
the residuals can be seen as training data for a new model, i.e., another decision tree,
that would, in turn, try to approximate the new training values. Nevertheless, a new
round of residuals emerge. Continuing the process, further decision tree models will
try to fill in the gaps. The sum of all the models will, in the meantime, approach the
original goal function asymptotically. The approach is called tree boosting and an
example can be seen in Figure 3.5.

12

3.2. Machine Learning

Figure 3.5.: Boosted trees regression approximates a sinusoidal dataset [7]

The approach above has something in common with the gradient descent algorithm.
The gradient descent optimization algorithm attempts to find the minimum of a given
function. It proceeds by taking steps towards the steepest slope of the function in
order to move closer to the minimum. After some iterations, it will eventually reach a
local minimum.

To see the similarity to the boosted trees approach, consider the residuals from the
tree boosting approach above as negative gradients in the gradient descent algorithm.
The solving of the initial problem would then boil down to applying a gradient descent
strategy, while iteratively producing decision trees until a local optimum is reached
and the overall resulting model cannot be improved any longer.

3.2.5. Cross-Validation

Cross-validation is technique for evaluating the performance of a predictive model
[5]. It is used to assess a model before it has been applied on a test dataset. Cross-
validation starts by splitting the original training set into P subsets. In one round
of cross-validation, the model is trained on the data from P − 1 subsets and then
tested against the target output of the remaining subset. In order to reduce variability,
multiple rounds of cross-validation are performed and the result is averaged.

13

3. Background

3.2.6. Scoring Functions

Model evaluation techniques such as cross-validation may use various metrics to arrive
at a performance measure of a model. Some of the scoring functions are designed for
classifiers, such as accuracy and precision-recall.

As this work deals with regressions models, we are interested in regression metrics.
The coefficient of determination, R2, establishes the degree in which the model can
correctly predict future values [28]:

R2(y, ŷ) = 1−
∑nsamples−1

i=1 (yi − ŷ)2∑nsamples−1
i=1 (yi − ȳ)2

. (3.1)

where y and ŷ are the vectors of real and, respectively, predicted values.

The mean absolute error (MAE) computes the expected value of the absolute error
loss [18]

MAE(y, ȳ) = 1
nsamples

nsamples−1∑
i=0

|yi − ȳi|, (3.2)

where ȳ is the mean of the y value.

The root mean squared error (RMSE), similar to the mean squared error, computes
the expected value of the squared error [19]

RMSE(y, ŷ) =

√√√√ 1
nsamples

nsamples−1∑
i=0

(yi − ŷi)2 (3.3)

We shall use RMSE later on for model testing, as it generally more intuitive than R2

[20].

3.2.7. Grid Search

Training a machine learning model in practice requires some tuning. Model training
is conditioned to specific hyper-parameters, depending on the model, that determine
its learning. Certain combinations of hyper-parameters yield better models, i.e., with
a lower training error. However, since tuning hyper-parameters requires an in-depth

14

3.3. Cosine Similarity

knowledge of the theory behind every model, we will use grid search for training. The
input for grid search are value sets for the hyper-parameters, which are subsets of
the value domains of the hyper-parameters. On one iteration, grid search will take a
sample value for each hyper-parameter and assign it to the model. A variant of grid
search runs up to the point that models are trained with the Cartesian product of the
hyper-parameters, provided the value sets are discrete. A randomized version of grid
search runs by generating a specified number of models by randomly selecting values
from the hyper-parameter values sets.

In Python's scikit-learn package, the grid search functions are called GridSearchCV
and RandomizedSearchCV, whose behavior matches the ones described above.

3.3. Cosine Similarity

The cosine similarity between two vectors is defined as the cosine of the angle between
the two vectors. It therefore varies between -1 and 1. The larger it is, the less is the
angle between the two vectors. Expressed mathematically, the cosine similarity cos(θ)
between two vectors A and B is [4]:

cos(θ) = A ·B
‖A‖2‖B‖2

=
∑n

i=1 AiBi√∑n
i=1 A

2
i

√∑n
i=1 B

2
i

(3.4)

where Ai and Bi are the components of vector A, respective B. The power of the
cosine similarity lies in wide-range of vector representations, to which many concepts
can be reduced.

3.4. Earth Mover's Distance

The earth mover’s distance (EMD) is a measure used in statistics that roughly
expresses the difference between position and magnitude of two curves. It is best
explained by regarding the curves as the hull of earth piles. For two separate earth
piles, EMD computes the minimum effort of rearranging a pile so that the shape of
the other pile is obtained. Moving P particles over a distance D is equal to the effort
P × D. A prerequisite for this operation is that the two piles need to contain the
same quantity of earth.

More rigorously, the earth mover's distance is better known in mathematics under
the name Wasserstein Metric. Given two normal distributions µ1 = N (m1, C1) and
µ2 = N (m2, C2), where m1 and m2 ∈ Rn are their respective expected values and C1
and C2 ∈ Rn×n. Then, the 2-Wasserstein distance between µ1 and µ2 is [39]:

15

3. Background

W2(µ1, µ2)2 = ‖m1 −m2‖2
2 + trace(C1 + C2 − 2(C1/2

2 C1C
1/2
2)1/2) (3.5)

In practice, we will not apply the Wasserstein metric directly in practice, but rather
resort to some levels of discretization. First off, a number of so-called bins is determined.
Each bin represents a unit on the X axis, the same on which the visiting duration
is expressed. We will take a number of buckets equal to the maximum amenity
mean and add 3× the largest standard deviation to it, as it is known that within 3×
standard deviation on both sides of the mean over 99% of the Gaussian sum is covered.
Moreover, an offset on the X-axis equal to 3× the maximum standard deviation is
used. This way, we are sure the landscape of summed Gaussians will easily fit into
the number of bins.

3.5. Clustering

Clustering are data mining techniques that seek to group data instances together
based on some natural ordering. The natural ordering can vary and is specific to
the problem to be solved. Here, a clustering method called k-means will be briefly
described, as it makes the subject of its application later on.

The domain of application of k-means is numeric, i.e., the data instances need to have
a (multidimensional) numeric representation. A prerequisite for the application of
k-means is the number of final clusters that are sought, which we will denote by k.
The method starts by initially selecting k points at random from the data points. The
k points are the initial cluster centers. The points that are nearest to a cluster center
are assigned to that cluster. The distance metric is considered the Euclidean distance.
Next, for the formed clusters, the centroids are calculated based on the containing
points. The cluster centers are re-assigned to the calculated centroids and the process
is repeated. The process stops when the points do not change their assigned cluster
for two iterations in a row.

The advantages of k-means lie in the fact that it is simple and effective. Each cluster
minimizes the sum of squared distances from its points to the centroid. The entire
point space is partitioned in a so-called Voronoi diagram. However, the distance
minimum is a local minimum. This means, there may exist a clustering for which the
total sum of distances for all clusters is smaller. It is the initial selection of seeds, i.e.,
cluster centers, that has an impact on the resulting clusters.

To overcome the suboptimal result, one can either apply the algorithm multiple times
and then choose the best result, i.e., the one that has the minimal total squared
distance. Or, one uses an improved version of k-means, k-means++. This chooses the
first seed with a random uniform probability and the second seed with a probability

16

3.6. Correlation Coefficients

proportional to the square of the distance from the first seed. All further seeds are
chosen with a probability proportional to the distance to the nearest already chosen
seed.

An application example of the algorithm yields the results in Figure 3.6.

Figure 3.6.: An application of k-means with 3 clusters in Python using the scikit-learn
package [9]

3.6. Correlation Coefficients

In the evaluation chapter, we make use of correlation measures to analyze the results.
In statistics, correlation is a relationship between two sets of variables X and Y that
establishes whether there is a linear relationship between X and Y [3]. The Pearson
coefficient [27] takes into account the absolute values of X and Y when calculating
correlation:

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

(3.6)

where xi and yi are single samples of X and Y respectively, while x̄ and ȳ are X
and Y 's means. The resulting value ranges between −1 and +1. The end points

17

3. Background

are achieved when X are perfect monotone functions of Y , i.e. either X correlates
positively with Y , when the function is ascending, or X correlates negatively with Y ,
when the function is descending. A coefficient of 0 indicates no correlation at all.

The Spearman's rank coefficient [35] takes into account only the ranks of the samples
in X and Y when calculating the correlation. A rank is the assignment of a label to a
value within a set according to an ordering relation, i.e., “first”, “second”, “third”,
etc. [29]. Spearman's rank coefficient is equal to the Pearson coefficient for the ranks
in X and Y .

3.7. Coordinate Reference System

A Coordinate Reference System (CRS) is a projection of the globe surface, or parts of
it, onto a two-dimensional map surface. CRSs are defined by the Open Geospatial
Consortium (OGC) and are represented in well-known text (WKT) format. CRSs are
referenced by a Spatial Reference System Identifier (SRID) or EPSG codes defined by
the International Association of Oil and Gas producers [34]. CRSs typically differ in
the type of projection, the area covered and their units of measure. Spatial operations
between them can be performed by first using coordinate system transformations. We
shall work with EPSG 4326, which expresses points in latitude and longitude and has
the degree as its unit of measure [10].

3.8. OpenStreetMap

OpenStreetMap (OSM) is a collaborative mapping service [23]. Users can annotate
various locations and add informational metadata, e.g., one can mark any shop,
the fact that it sells drinks and snacks, and its daily schedule. Or, a building can
be annotated as hosting a restaurant, its specific cuisine, price range, whether a
reservation is needed, and when it is open. Just about any public amenity is marked
on the map. This data is being saved by OSM in layers. There are points-, lines-, and
polygons layers. Points of interest (POIs) contain solely metadata concentrated in
points on the map (cf. Figure 3.7), lines stand for routes and street-related content
and polygons describe buildings and areas such as, e.g., university campuses or parks.
POIs represent public amenities, various services, conveniences that are of general
interest. The amenity information will be used as city data in our approach.

18

3.9. Google Visit Duration

Figure 3.7.: Points of interest in OpenStreetMap [24]

3.9. Google Visit Duration

Google Places determines the visit length of customers while they are located in
various businesses in the city [13]. The information is displayed in Google Places and
is based on the mobile phone localization feature. This information is crowdsourced
from people that have entered the same shops, restaurants, etc. and based on their
length of stay, the average visit duration was derived. Usually, the minimum and
maximum time of stay are provided, sometimes only the latter (cf. Figure 3.8). This
Google feature is not available in every location and is offered only in places that have
received enough crowd data. We shall use the Google visit duration to complement
the amenity information provided in the OSM POIs.

Figure 3.8.: Example of visit duration information displayed in Google Places [14]

19

3. Background

3.10. Leaflet

Leaflet is a JavaScript library optimized for displaying interactive maps [16]. Its
clearly structured API and easy-to-follow tutorials make it a recommended library
among GIS developers. We will use Leaflet to display our results and highlight city
areas.

3.11. The SFpark Project

The SFpark project was undertaken by the San Francisco Municipal Transporation
Agency (SFMTA), the city agency that manages the city's transportation, which
includes on-street parking [31] [33]. The SFMTA establishes parking rates for on-
street parking meters. Before the project started, parking rates were the same all
day, every day, independent of the parking demand. By implementing a demand
responsive pricing scheme, parking availability improved dramatically. The facts listed
in Table 3.1 show the improvements on parking after the project completed.

. the amount of time parking areas were too full de-
creased by 16%

. the amount of time to find a parking space decreased
by 43%

. parking citations decreased by 23%

. traffic volume decreased by 8% in the pilot areas

. the average hourly rate was overall decreased by 11
cents, from $2.69 to $2.58

. double-parking decreased by 22%

. there was a 30% drop of greenhouse gas emissions per
day (originally 7 cubic meters tons)

. there was an increase in $1.9M annual revenue, al-
though raising revenue was not a goal of the project

Table 3.1.: The main results from the SFpark project

In conducting the project, 9 pilot areas were chosen for monitoring. Out of these
areas, 7 were selected to have new pricing policies, while 2 were control areas. The
number of metered spaces used was 6000, which amounts for 25% of the city’s total.

20

3.11. The SFpark Project

The meters allow rates to be deployed remotely and they transmit data to a central
server through a wireless connection.

The data was collected using parking sensors. These provided the central server with
the information needed to calculate the demand-responsive parking rates and provided
real-time parking availability information. A parking sensor is a magnetometer that
detects changes in the earth’s electromagnetic field. A total of 11700 sensors were
deployed, resulting in 8000 spaces that were equipped with one or two sensors. The
sensors delivered valid data from April, 2011 to December, 2013. The issues with
sensors were noise from the environment, which reflected in the electromagnetic
interference, early battery degradation, and street construction.

SFpark made available real-time information on parking rates and parking occupancy
though a smartphone app. See Figure 3.9 for a view from the SFpark website.

As the main provider of data used in this work, the SFpark project and its success
played an important role when choosing to base our project on it.

Figure 3.9.: An overview of the SFpark map [31]

21

4. Related Work

Smart parking and its connected field of smart city are growing fields that currently
produce a significant number of academic publications. In this chapter we shall briefly
describe the research in the area of smart parking, while concentrating on the status
quo of parking prediction systems.

4.1. Smart Parking Overview

With the rapidly emerging technology, especially after year 2000, the field of smart
parking has risen within the area of smart city. Smartphones and vehicle-integrated
navigation systems have made access to city street information very convenient to the
user. On the other end, the smart infrastructure is able to deliver alerts whenever a
road was blocked or a traffic event is happening.

A significant part of what makes a city smart is parking. Being able to have an
overview of parking spaces availability, either on-street or in a car park, makes driving
in the city much easier. A person may decide from home, when looking at such an
overview, whether to take the car in the city or not, based on the chances that they
have to find a parking space. For an overview of smart parking projects, including
development cost and the number of parking spaces covered, see Figure 4.1.

In the scientific literature there have been an increased number of publications on
smart parking. We only touch upon some topics, such as parking reservation and
resource allocation, our main focusing being occupancy prediction. We refer to a
recent smart parking survey completed in 2017, that presents the developments in
the field. The survey [57] is a follow-up to the main author's PhD thesis published in
2015 on the same topic [58]. It presents the relevant developments on smart parking
solutions since 2000. We shall use this survey to briefly describe the research landscape.
Afterwards, we will focus on parking prediction and we will go in depth on the relevant
work done in that department.

As the research and development have been going in all directions, Lin et al. split the
available results in information collection, system deployment, and service dissemina-
tion.

23

4. Related Work

Figure 4.1.: Large-scale smart parking projects [57]

Under information collection, the authors include all techniques to acquire parking
information. Be it static or mobile, in the form of sensors or as parking meters, the
infrastructure here is diverse. Most of the time, the deployed sensors are managed
through a wireless network infrastructure. The sensors are present inside cars, such as
taxis, which travel through the city and collect roadside information on parking. The
piece of information transmitted is an occupancy change bit: either the car has left or
arrived at a parking space. A number of types of sensors are usually being used in the
process: infrared sensors, ultrasonic sensors, accelerators, optical sensors, inductive
loops, piezoelectric sensors, cameras, acoustic sensors. Most of the time, the captured
data requires post-processing in the form of image or audio recognition before arriving
at the target occupancy information. Some of the captured information also raises
privacy issues, at it contains sensitive data about the car and driver. Smartphones
provide the means to collect data and can have a great impact through crowdsourcing,
if the users are given incentives to enable the respective smartphone functions. On
the other hand, there are systems where the driver initiates the data transmission.
By using a mobile application, the driver may choose to report that he or she just left
a parking space, respectively has arrived at a parking space.

In the system deployment section, the survey refers to the varieties of parking systems,
looks into how well they scale, and touches upon their data analysis side. The parking
systems software is the interface between the data sources and the users. Software
systems are often in the form reservation systems, typically run by municipalities.
Other systems also may provide guiding assistance in arriving at the desired parking
space. Their vacancy prediction component informs the drivers about the availability
of parking spaces at the destination. In this way, they contribute to the decision of
the driver, of whether to take the car to the destination or not. Prediction systems
recommend parking locations that have at least one parking space free.

24

4.2. Vacancy Prediction Systems

Under data dissemination, the authors of the survey address the ways in which
parking data is exchanged between drivers. This scenario often occurs in decentralized
parking systems, when the drivers find out about free parking spaces in an area where
other cars drove by. Dynamic pricing is often used to control parking occupancy:
parking prices are raised in areas that are almost fully occupied, whereas areas with
low parking rates get assigned a lower price. A more advanced version adjusts the
prices when enough demands received by the parking system would point to a future
parking overload in the respective area. These approaches take into account parking
competition: multiple drivers are looking to park in the same parking location.

4.2. Vacancy Prediction Systems

On the topic of prediction, there are a number of papers that approach the problem.
The circumstances differ in each case, so that it is worth mentioning the papers
individually first. Afterwards we will attempt to compare these approaches by
extracting the most relevant aspects, e.g. method, type of data, features, error,
deployment location, etc., in a table.

Xu et al. [71] makes real-time parking availability estimations based on a system that
aggregates the data coming from mobile phones. The system uses algorithms based
on statistical weighted schemes and Kalman filters. Additionally, the authors create
parking availability profiles based on historical data and using statistical algorithms.

Chen et al. [46] develop an Android application that finds a parking location at
park-and-ride facilities by calculating the probability of parking availability and taking
in consideration the shortest travel time. The authors employ fuzzy logic to model
the uncertainty of parking availability. The fuzzy membership function was chosen
to be linear. The authors proposed multiple criteria in finding the best parking
location, such as train frequency, service quality, parking-and-ride price, which should
be considered in further investigations. The use case and parking data were set in
Perth, Australia.

Vlahogianni et al. [68] define prediction measures to find out the duration of free
parking spaces. Additionally, they calculate 1-hour parking availability forecasts. The
authors use neural networks for time-series in the form of a multilayer perceptrons to
accurately predict occupancy up to one hour ahead. Their findings show a Weibull
distribution for the duration of free parking spaces. The system developed was
incorporated into the routing service of the city of Santander, Spain.

Rajabioun and Ioannou [62] introduce an information system for parking guidance
that enables communication between vehicles and the infrastructure. It proposes a
prediction algorithm that forecasts the availability for parking locations based on

25

4. Related Work

Paper Year System Data Sources On/Off -Street Location

Caliskan [43] 2007 VANET vehicle sensors off-street Brunswick,
Germany

Klappenecker [54] 2010 VANET vehicle sensors off-street -
Wu [70] 2014 parking guidance municipality off-street Taipei City

Tiedemann [67] 2015 parking prediction sensors on-street Berlin

Rajabioun [62] 2013 parking guidance

on-site sensors:
infrared,

image-processing cameras,
inductor loops

both Los Angeles,
San Francisco

Rajabioun [63] 2015 parking guidance sensors
(cf. SFpark [31])

both Los Angeles,
San Francisco

Vlahogianni [68] 2014 routing system IoT nodes:
car presence

on-street Santander

Z. Chen [46] 2013 Location-based service
for parking finding

manual collection parking lots Perth, Australia

Xu [71] 2013 parking prediction mobile phone on-street San Francisco
X. Chen [45] 2014 parking prediction SFpark sensors on-street San Francisco

Hössinger [52] 2014 parking prediction
parking tickets
manual counts
traffic flow

on-street Vienna

Caicedo [42] 2012 parking reservation in-cars sensors both Barcelona
Nandugudi [60] 2014 parking prediction smarphone surface lots Buffalo
Szczurek [66] 2010 VANET GPS in car both -

Ji [53] 2014 parking guidance - off-street Newcastle
Koster [55] 2014 parking recommender smartphone both New York
Kotb [56] 2016 parking reservation occupancy sensors - -
Pullola [61] 2007 parking prediction GPS in car on-street Ottawa
Richter [64] 2014 - SFpark sensors [31] on-street San Francisco

Shin [65] 2014 -
sensors

parking facilities
cruising cars

both Luxembourg

Zheng [72] 2015 - parking sensors on-street San Francisco
Melbourne

Table 4.1.: Overview of all the systems introduced in individual articles

real-time parking information. It takes into account parameters such as parking
duration, arrival time, destination, pricing, walking distance, parking capacity, rates of
vehicles occupying and leaving parking spots, time restrictions, parking rules, events
that disrupt parking availability, etc. Their algorithm uses a probabilistic density
distribution model. The parking data was collected both from on-street parking
meters and off-street garages in Los Angeles and San Francisco, USA. In a following
paper, Rajabioun and Ioannou [63] propose a multivariate autoregressive model that
considers the temporal and spatial correlations of parking availability when making
predictions (cf. Figure 4.2). The authors hold that the model, which is integrated

26

4.2. Vacancy Prediction Systems

Paper Approach Features Methods Evaluation

Caliskan [43] parking prediction

age of parking info,
arrival time,
total capacity,
occupancy,
arrival rate,
parking rate

Markov chains probability density,
relative deviation

Klappenecker [54] parking prediction

total capacity,
occupancy,
arrival rate,
parking rate

Markov chains -

Wu [70] parking recommendation occupancy probabilistic historical mean,
moving average

Tiedemann [67] parking prediction occupancy data threads -

Rajabioun [62] parking prediction

pricing,
events,
location,

total capacity,
occupancy rate,
leaving rate

probabilistic mean error

Rajabioun [63] parking prediction occupancy,
total capacity

multivariate-
autoregressive

model

orthogonality error
differential covariance

mean absolute
-percentage error

Vlahogianni [68] parking prediction

free space duration,
occupancy,

traffic volume,
type of day,
time period

genetically optimzed,
multilayer perceptron Weibull distribution

Z. Chen [46] parking prediction parking times fuzzy logic occupancy error
shortest travel time

Xu [71] real-time estimation parking times Kalman
adaptive linear memory filter RMSE

X. Chen [45] parking prediction
events,
distance,
price

ARIMA,
linear regression,

SVM,
feed forward neural network

MAPE

Hössinger [52] parking prediction occupancy rate linear regression,
average RMSE

Caicedo [42] parking prediction
capacity,
price,

occupancy
probabilistic models average error

Nandugudi [60] parking prediction parking times probabilistic model absolute error

Szczurek [66] parking prediction parking times MALENA algorithm,
Naive Bayes

average discovery
time improvement

Ji [53] parking prediction parking times wavelet neural network MSE
Koster [55] parking recommendation parking times Markov chains Pearson coefficient

Kotb [56] - - Mixed-integer
Linear Programming -

Pullola [61] parking prediction parking times Poisson process absolute error
Richter [64] parking prediction see SFpark [33] time series model absolute error

Shin [65] parking prediction

driving duration,
distance,

walking distance,
parking cost,

traffic

heuristic

average driving duration,
average walking distance,

parking fail rate,
parking utilization rate,

average occupancy

Zheng [72] parking prediction parking occupancy
regression trees,
neural network,

SVM
MSE, R2

Table 4.2.: Overview of all the prediction methods used in related work

into a parking guidance and information system, recommends parking locations with
high accuracy.

27

4. Related Work

Figure 4.2.: Left: Temporal correlation for parking occupancy Right: Spatial correlation
for parking occupancy. Data collected from on-street locations in San Francisco [63]

Tiedemann et al. [67] present the development of a prediction system that gives
estimated occupancies for parking spaces. The occupancy data is collected online
via roadside parking sensors and the prediction is realized using neural gas machine
learning combined with data threads. The authors notice that some factors play
a significant part in the predictions, such as holidays, weather and use the neural
gas clustering to separate the data, before the data thread method is applied (cf.
Figure 4.3). The system is developed by the DFKI Robotics Innovation Center, while
the sensors are manufactured by Siemens AG and are installed in street lights. The
pilot region for the project is Berlin, Germany.

Figure 4.3.: Visualization of data threads that are used for predicting occupancy. Class 1
(dashed blue curve) and Class 2 (solid red curve) are two learned time series. When
the user queries for the occupancy prediction at tq for time tp, the curve that is closest
to the current data curve (dotted green) up to that point is chosen [67]

28

4.2. Vacancy Prediction Systems

Wu et al. [70] present a information system that recommends parking options in
the city, in order to reduce the vehicle emissions and decrease traffic. The system
constructs an optimal parking sequence based on the forecasted parking availability.
For the latter, probabilistic algorithms are used, i.e., shift prediction, thread estimation
and probability estimation. The data and experimental results have been carried out
in Taipei City in 2011.

Caliskan et al. [43] model the prediction of available parking spaces as a vehicular ad-
hoc network (VANET). The network disseminates parking data in order to help with
the estimation of future occupancy of parking lots. The pieces of disseminated data are
timestamp, total capacity of parking lot, number of parking spaces that are currently
occupied, the arrival rate, and the parking rate. The latter two are used in the modeling
of continuous-time homogeneous Markov chains. The approach is otherwise based on
queuing theory. The evaluation was carried out in Brunswick, Germany, where about
10000 vehicles were connected in the ad-hoc network. Klappenecker et al. [54] builds
on the result of Caliskan and uses an improved version of continuous-time Markov
chains for predicting availability of parking spaces. Predictions are communicated
between cars in an ad-hoc network. The approach simplifies the computations of
transitional probabilities inside a Markov chain model. The system applies to parking
lots that are connected to the ad-hoc network. These communicate the number of
occupied spaces, capacity, arrival and parking rate. Also based on VANETs is Szczurek
et al. [66] work, which propose a novel approach that combines machine learning with
the information disseminated in ad-hoc vehicular networks. The building block of the
system are parking reports, which are issued by vehicles leaving a parking space and
comprise a report identifier, a location, and a timestamp. The parking reports are
being learned by a model, which then indicates whether a parking is available for a
specific vehicle. A conditional relevance is used to determine whether a particular
report is useful for a specific vehicle. This is modeled using a Naive Bayes method.
A parking availability report R is labeled relevant by vehicle V, if the parking space
referenced in R is available when V reaches it. Upon evaluation of the methods, the
authors reported an improvement in parking discovery times for vehicles.

PocketParker is a crowdsourcing system, proposed by Nandugudi et al. [60], that
uses smartphone data to predict parking availability. The system is used for parking
lots. It requires no input from the user, it notices automatically when a user starts
to drive or stops, i.e., departure and arrival events (cf. Figure 4.4). Based on these
two events, the system builds a probability distribution model that is used to answer
queries about parking availability. PocketParker has proved robust to hidden parkers,
i.e., parking vehicles that are not using the application. In the authors’ simulation, it
has reached 94% rate for parking availability prediction with 105 users over 45 days.

Caicedo et al. [42] develop a methodology for predicting real-time parking space
availability. The probabilistic algorithm consists of three subroutines: allocating
simulated parking requests, estimating future departures, and forecasting parking
availability. The forecast has been reported to improve as the system registers arrivals

29

4. Related Work

Figure 4.4.: PocketParker detects a parking event using accelerometer data from the
driver's smartphone [60]

and departures. Further factors taken into account were duration of stay and capacity
of every operating parking facility. The system was tested in Barcelona, Spain, with
very satisfactory results.

Hössinger et al. [52] present a simple real-time occupancy model based on various
pieces of data collected in the city of Vienna, Austria. An average day curve model
was built using the ticket data from mobile-phone parking, the counts of car parks,
and the traffic flow volumes in the city. The data was collected following agreements
with the respective mobile phone companies, through surveys and by accessing a
dedicated traffic website, respectively. The predictions are valid for short-time spans
and applicable to the above mentioned city.

Chen [45] tackles the parking problem by aggregating parking lots. The paper shows
that the prediction error of parking occupancy decreases by combining multiple parking
lots. The trained models take into account factors such as day, time, event, distance,
parking price, etc. The author tries out multiple models, such as ARIMA, linear
regression, support vector regression and feed forward neural network. It turns out
that the neural networks algorithm scores the best when the model is evaluated on
the SFpark data [32]. Furthermore, the paper investigates the specifics of aggregated
parking lots (cf. Figure 4.5) and finds certain artifacts in the occupancy graph when
clustering the respective parking locations.

30

4.2. Vacancy Prediction Systems

Figure 4.5.: Increasing aggregation levels of parking lots. The more parking spaces are
included, the smoother is the emerging pattern [45]

Richter et al. [64] address the parking prediction problem with the focus on model
storage in vehicles. The authors train models of various granularity that would
predict parking availability based on the information contained: a one-day model
per road segment, a three-day model per road segment, and a seven-day model per
road segment. Additionally, models based on regions and time intervals computed by
clustering are tried out. Hierarchical clustering with complete linkage is employed.
The models are evaluated on street data from the SFpark project [32]. The application
of clustering before building the models shows a 99% decrease of model storage space.
The prediction success rate is at about 70%.

With iParker, Kotb et al. [56] propose a system that handles parking reservations. It
achieves resource allocation so that drivers will pay less for parking, while parking
managers receive more resource utilization and hence reach higher revenue. The system
is based on mixed-linear programming (MILP). The system uses dynamic resource
allocation and pricing models to achieve its goal. At its evaluation, it was reported
to cut the cost for drivers by 28%, achieving a 21% increase in resource utilization,
and it increased the total revenue for parking management by 16%. Although this
work only indirectly deals with parking occupancy, it makes use of it in a system that
could include prediction models in the future.

ParkNet, developed by Mathur et al. [59] is a system made up of vehicles that captures
parking space information while driving. Every ParkNet vehicle is equipped with a
GPS receiver and an ultrasonic sensor facing sideways (cf. Figure 4.6). The latter
determines whether it passes by parking spaces and whether they are occupied. The
data is sent to a central server that aggregates it, in order to build parking space

31

4. Related Work

Figure 4.6.: The ultrasonic sensor mounted sideways on cars in the ParkNet system [59]

occupancy maps in real-time. The information is queried by clients that search for a
free parking space. The system was evaluated in Highland Park, New Jersey and San
Francisco on 500 miles road-side parking data and yield 95% accurate parking maps
and 90% parking occupancy accuracy. The authors show that the system can further
be improved if the sensors are fitted into taxicabs or city buses.

Ji et al. [53] presents a forecasting method based on wavelet neural networks. These
are feed-forward neural networks that have continuous wavelet function as activation
function for the hidden layers. The system was tested in Newcastle upon Tyne, England
and evaluation was performed using real-time data of up to 1 day in advance.

Koster et al. [55] propose a smartphone-based solution that recognizes when drivers
arrive or leave parking spaces. A “Bayesian approach” and Hidden Markov Models
(HMM) are used to model the parking spaces and respond to user queries for the
next parking space. The HMM are based on gathered historical data. As answer
to the user query is a parking space nearby and the probability of it being free at
the respective time. The authors emphasize the non-intrusive nature of the solution,
where drivers only have to minimally interact with their phones to get a recommended
free parking space.

Pullola et al. [61] propose a solution to determine the availability of parking lots
by modeling the occupancy as a non-homogeneous Poisson process. Past occupancy
information of the parking lots is stored and leveraged. The data and the computation
are made inside the GPS system of the vehicle, in order not to depend on the quality
of the transmitted signal.

Zheng et al. [72] investigates the results of a proposed prediction mechanism on

32

4.2. Vacancy Prediction Systems

the parking data collected in San Francisco and Melbourne. The three algorithms
proposed employ regression trees, support vector regression and neural networks. The
feature sets included the historical occupancies alongside the time and day of the
week.

Shin and Jun [65] propose an algorithm for smart parking that assigns cars to
parking facilities in the city. The criteria based on which the assigning is realized
includes driving distance to the parking facility, walking distance from the parking
facility to the destination, parking cost, and traffic congestion. The real-time data
is collected from parking facilities and from sensors that are integrated in cruising
cars. The data is transferred from the central server, where it is managed through
a wired/wireless telecommunication network. The authors test their approach in
Luxembourg City. The results of the simulations showed improved figures for average
driving duration, average walking distance, parking failing rate, parking utilization
rate, average standard deviation on the number of guided cars to each parking facility,
average occupancy ratio of parking facility, and for the parking facility occupancy
rate.

In order to summarize the relevant related literature, we have gathered the benchmark
data into two tables. Table 4.1 shows an overview of the systems presented in the
papers, alongside the data sources used, whether the system is dedicated to on- or
off-street parking, and the location where it was evaluated. Table 4.2, on the other
hand, emphasizes the prediction character of the papers by highlighting their general
approach, features, methods, and evaluation.

33

5. Design & Implementation

This chapter describes the approach that solves the problem defined in Chapter 1.
The solution detailed here is a standard one, agnostic to any particular city and use
case, as our goal is to have it suitable for various scenarios. Both theoretical and
implementation aspects will be discussed.

We start by defining the parking data used, followed by the city data. Both types of
data are processed in RDF format. The merging of the two sets of data is shortly
discussed.

Furthermore, the clustering process is tackled in the smart parking setting. The parking
profile is concretely defined as an urban measure, to which two representations are
assigned: cosine vectors and EMD Gaussians. These lead us to defining the similarity
functions: cosine similarity and EMD. Finally, the machine learning training process
is explained and the estimations for clusters without parking data are defined.

A brief account of implementation aspects is also given, including database organization
and data processing. An overview of the process can be visualized in Figure 5.1.

5.1. Parking Data

In solving the parking problem, the parking data is essential. In our case, as outlined
in Section 2.2, we need parking data for estimating the parking occupancy in the
city.

Parking data typically is found as comma-separated-value (CSV) files. We assume it
to generally contain the following information.

1. Parking occupancy contains information on the availability of parking spaces.
See Section 5.1.1.

2. Traffic data contains information regarding the city traffic, which is relevant for
parking. See Section 5.1.2.

35

5. Design & Implementation

Figure 5.1.: Concept Visualization

3. Weather data contains weather information for the same area as for the parking
problem. See Section 5.1.4.

4. Event data contains event information which may have an impact on parking.
See Section 5.1.3.

5. Parking revenue data contains economic information on parking, whose relevance
may influence parking prediction. See Section 5.1.6.

6. Fuel price data contains prices of fuel in the region where our problem lies. See
Section 5.1.5.

Alongside the parking data above, we expect to have a infrastructure map that
identifies the locations in the city, the location data. It contains location ids and their
corresponding geometries. This may be available either as shape file or as CSV file.
Tabular information can be extracted from shape files using GIS applications, such a
QGIS or ArcGIS. All the pieces of information enumerated above will reference the
locations found in this file.

36

5.1. Parking Data

5.1.1. Parking Occupancy Data

Parking occupancy is typically available in comma-separated-value (CSV) format. See
Figure 5.2 for an example snippet. For convenience, we have included the parking
price information here. A row from such a file typically contains the following pieces
of information:

. location unit id – usually expressed as block id, street name, or district name.
This information references the location id data. The lower the level of the
location unit, the more precise the data is.

. date – expressed in a particular date format.

. time – usually as full hours. However, parking data may also be provided when
a car has just parked or left. The time is sometimes delivered together with
the date, as timestamp. Note that it is likely that the parking occupancy data
has not been recorded over a continuous time period, hence some time intervals
might be missing.

. parking capacity – the total number of parking spaces at the given location.

. parking price – the price of a ticket at the certain location and the given time.
Values are expressed in US dollars, Euro or any other currency.

. parking occupancy – expressed either as rate (subunitary fraction or percent) or
in absolute numbers.

Figure 5.2.: Snippet of SFpark parking occupancy data

37

5. Design & Implementation

5.1.2. Traffic Data

The traffic data generally contains information about the volume of traffic at a certain
location, at a certain time. See Figure 5.3 for an example snippet.

. location unit id – the same as for Section 5.1.1, ideally at the same granularity
level.

. date and time – recorded usually at full hours or in periodic time intervals.
Ideally, the times coincide at least partially with the times from the parking
occupancy data.

. traffic value – typically expressed as average traffic road occupancy, average
vehicle count, median speed, or average speed of the travelling cars.

Figure 5.3.: Snippet of SFpark traffic data

5.1.3. Events Data

Data on events is the information that the municipality makes public, when road
blocks occur due to open air events. It may also include construction work, or is an
indication that the parking demand is rising because of a concert, sports game, etc.
See Figure 5.4 for an example snippet.

. location unit id – the same as for Section 5.1.1, ideally at the same granularity
level.

. date and time interval – expressing the time interval during which a road is
closed or is believed to be subject to sudden rise of parking demand.

38

5.1. Parking Data

. event name class – the name of the event and its class (road closure, rise of
parking demand).

Figure 5.4.: Snippet of SFpark events data

5.1.4. Weather Data

The weather data generally contains values for temperatures and precipitation for a
certain city on a certain day. See Figure 5.5 for an example snippet.

. location unit id – the scope here is usually a whole city or a suburb.

. date and time – either hourly or for 24 hours intervals.

. temperature – depending on the time intervals, it may be current temperatures.
If the scope is a whole day, it is usually the maximum and minimum temperatures
that are provided. The values are expressed in either Celsius or Fahrenheit.

. precipitation – expressing the quantity of rain or snow for the corresponding
time interval. The value is provided in millimeters or inches.

5.1.5. Fuel Price Data

The fuel price contains the prices of gasoline or diesel in a city region on a certain
day. See Figure 5.6 for an example snippet.

39

5. Design & Implementation

Figure 5.5.: Snippet of SFpark weather data

. location unit id – usually given as city.

. date and time – usually provided as day.

. type of fuel – gasoline, diesel, etc.

. price per unit – provided as the price per liter or per gallon.

Figure 5.6.: Snippet of SFpark fuel price data

5.1.6. Parking Revenue Data

Parking revenue data provides information on the amount of money being raised from
parking in a certain area. See Figure 5.7 for an example snippet. The data is usually
comprised of:

. location unit id – either the area belonging to a parking meter, a whole neigh-
borhood, or a larger parking area.

. date and time – typically provided per day.

40

5.2. City Data

. payment type – the way the driver opted to pay for parking, e.g., cash, credit
card, etc.

. payed amount – the amount in US dollars, Euro or other currency.

Figure 5.7.: Snippet of SFpark parking revenue data

5.2. City Data

In Section 2.1 we established that city data reflects parking demand in a city area.
The plan is to collect public amenity information, as provided in OpenSteetMap (cf.
Section 3.8), and enrich it with visit duration values, available from Google Places (cf.
Section 3.9).

The OpenStreetMap data is available as layers. The layers are stored together in
an .osm file, which is typically downloaded from OSM. Extracting the single layers
involves using a tool called osm2pgsql [26], which imports the POIs in a database
table. For our purpose, the points layer will suffice, as the POIs contain the public
amenity information we are after.

41

5. Design & Implementation

5.3. RDF Annotation

In Chapter 1 we emphasized that our approach should be relevant for any city that
wants to solve its parking problem. We will consider all input data used in the present
approach to be in RDF format, in order to establish a common format that can be
used for other cases.

When the actual parking- and city data is only available as raw values, we need to
annotate it as RDF in the first place. The default process involves the extraction of
data, which is afterwards available for further processing. We shall use Apache Jena
to encode the parking and city data. The ontologies used in the process belong to the
CityPulse project [2]. The extraction of the data will be performed using SPARQL
queries.

5.4. Merging City and Park Data

In order to reference the parking- and city data from and to each other, both sets of
data should have a common location unit. For parking data, the the location units are
provided in the location dataset. The city data references the POI geometries, which
are points expressed in a particular reference system. We first need to establish the
coordinate systems of both geometries and afterwards define a merge distance that
would match a parking space to a public amenity. In fact, the relationship should be
one to many. As this process depends on the concrete data, we shall continue it later
on.

5.5. Clustering

The available parking data does not cover the whole city surface. In fact, it is a
fraction of it and, as assumed in Section 1.2. We shall conceptually separate the area
with parking data from the area without parking data. The reason for clustering is,
as argued in Section 2.2, that splitting both these regions into smaller areas leads to
more representative parking profiles and parking estimations later on. As we want an
exclusively location-based separation, we shall employ K-Means to cluster the city
regions.

There are two clustering processes, one for the city area with parking data, another
one for the city area without parking data. The number of the clusters chosen in each
area should be kept proportional to the number of total location units that each city
area contains.

42

5.6. Urban Measure

Implementation-wise, a Python module will perform K-Means++ by using the scikit-
learn package.

5.6. Urban Measure

An expression of the parking demand of a city area can be obtained using city data, as
already established in Section 2.1. We shall use both the public amenity information
from OpenStreetMap and the visit duration values from Google Places to define urban
measures for each cluster. Urban measures have two representations: cosine vectors
and EMD Gaussians.

5.6.1. Cosine Vectors

To form the cosine vectors, we shall first divide all amenities into categories Cat1, Cat2, ..., Catn.
The criteria for division will be their average visit duration. For example, a short
duration category of up to 30 minutes, a medium duration between 31 and 90 minutes
and a large duration of above 90 minutes stay. Each cluster gets represented by an
n-dimensional vector, whose components correspond to the amenity categories. The
magnitude of component i is equal to the number of amenities of category Cati that
can be found in that particular cluster. See Figure 5.8 for a general representation.

Cat 1
Cat 2

Cat 3

Cluster Vector

Figure 5.8.: An example of cluster vector for three categories

43

5. Design & Implementation

5.6.2. EMD Gaussians

To construct this particular measure, we shall first collect the average visit duration and
standard deviation for the individual amenities. A cluster that contains one amenity
A is represented as a Gaussian curve, i.e., normal probability distribution. The curve's
center is at the average duration of the amenity A and its standard deviation is the
one of the amenity. When n amenities A exist in the cluster, the representation will
be an A curve multiplied n times. Multiple amenities, each appearing multiple times,
will result in a curve that is the linear combination of the individual representations
of the amenities as normal distribution curves. See Figure 5.9 for a visualization of
the summing process.

EMD(Ci) =
|amenities|∑

j=1
Kij × Aj (5.1)

∀i ∈ {1, ..|clusters|} and ∀j ∈ {1, ..|amenities|}

where Aj is an amenity that appears Kij times in the cluster Ci.

Figure 5.9.: The summing of Gaussians resulting in an EMD Gaussian

44

5.7. Similarity Functions

5.7. Similarity Functions

The option of transfering parking profiles involves a similarity function that quantifies
how “close” two parking configuration are. Having defined urban measures for clusters,
we need functions that take pairs of such measures and return a similarity or distance
value. The metrics that we define are cosine similarity and EMD.

5.7.1. Cosine Similarity

We introduced the mathematical cosine similarity in Section 3.3. In our use case, the
cosine vectors are the urban measure vectors just defined.

In practice, the function is calculated in PostgreSQL, which takes all combinations of
pairs of cluster and performs the computation for their vectors.

5.7.2. Earth Mover's Distance

The background on earth mover's distance was given in Section 3.4. With the EMD
Gaussian curves between which the distance is measured having just been defined,
recall that EMD is applicable only when the sum under both Gaussian curves is equal.
Therefore, all EMD Gaussians will get normalized before EMD is computed.

Unlike cosine similarity, EMD is externalized in a Python script, as its computation is
more involved. The code first calculates EMD Gaussians for each cluster, afterwards
it determines the EMD distance for each pair of clusters. For each cluster, discrete
Gaussians will be created for the bin representation, as explained in Section 3.4. The
pair-wise EMD is afterwards computed using the pyemd Python library. The results
are written in the cluster_similarity table.

5.8. Machine Learning Models

The prediction of parking occupancy is realized using machine learning. We choose to
explore this methodology, following the solid results machine learning models have
delivered for the various smart parking setting investigated (cf.Section 4.2). A machine
learning model will be trained for every cluster with parking data.

The training data features are composed of the parking data enumerated in Section 5.1.

45

5. Design & Implementation

We shall aggregate feature values around the location unit id, as on the cluster level
this is irrelevant. The occupancy rate is set as the target variable. The model training
and evaluation is performed in Python via the scikit-learn libraries. Training makes
use of grid search (cf. Section 3.2.7) to determine the best model for the training
data. The error metric used is RMSE. Furthermore, a model is evaluated on the other
clusters with parking occupancy data. The model will be persisted and saved on the
system as a .pkl file, while the model metadata is saved in the database. On testing
the models, the user can decide whether new models will be built, or if the persisted
ones will be used.

5.9. Parking Occupancy Estimations

Once models have been built for the clusters with parking data, making estimations on
parking occupancy in these areas is straightforward. We want to apply these models,
however, on the clusters that are missing parking data. Based on the logic presented
in Section 2.2, we derive the estimation interval for cluster Cj

wout based on the model
of cluster Ci

with as:

EI(Ci
with, C

j
wout) =M(Ci

with)(X) ? sim(Ci
with, C

j
wout) (5.2)

∀i ∈ {0, ..., |Cwith| − 1} and ∀j ∈ {0, ..., |Cwout| − 1}

.

X is a parking data record containing feature values. The result is an estimation
interval that “stretches” the punctual estimation into an interval depending on the
similarity measure value. The lower the similarity value is, the larger the length of
the resulting estimation interval will be.

Notice that X should be valid for both Ci
with and Cj

wout. Given that we have excluded
the location unit id, specific to the training cluster, this is not a problem. The averaged
values used for features related to the location unit id will be transferred as they are
to the target cluster Cj

wout.

Furthermore, we define an estimation intersection interval, whose purpose is to narrow
down the computed estimation interval. An estimation intersection interval for the
clusters Ci

with and Cj
wout is computed by intersecting the estimation intervals that have

a better similarity among the clusters with data C0
with, ..., Ci−1

with and the same cluster
without data Cj

wout.

46

5.10. Data Processing and Persistence

EII(Ci
with, C

j
wout) =

i−1⋂
k=0

EI(Ck
with, C

j
wout) (5.3)

where

sim(Ck
with, C

j
wout) < sim(Ci

with, C
j
wout), k ∈ {0, .., i− 1} for EMD

sim(Ck
with, C

j
wout) > sim(Ci

with, C
j
wout), k ∈ {0, .., i− 1} for cosine

(5.4)

∀i ∈ {0, ..., |Cwith| − 1} and ∀j ∈ {0, ..., |Cwout| − 1}
.

5.10. Data Processing and Persistence

Here we shall give a brief account of the implementation.

The backend system consists of a PostgreSQL database, whose table overview can
be seen in Figure 5.10. The database has PostGIS extensions, in order to natively
perform GIS-specific operations.

The initialization starts by importing the parking data. The occupancy and blocks
data are available as CSV files and are imported directly into the blocks, i.e. location
data table, and respectively occupancy tables. Acquiring the city data from the
downloaded OSM layer file is performed using the osm2pgsql tool. Only points of
interest with a few attributes will be retained, however, among which the amenity
column. The points of interest will be merged with the blocks for a specified merge
distance.

The clustering process is started as a bash script that relies on a Python module to
perform the clustering itself. For each urban measure there is table where information
about cosine vectors, respectively EMD Gaussians are stored. cluster_vectors holds
information on each cluster, amenity categories, and number of amenities that fall
into the respective category. The table cluster_gaussians stores cluster id, amenity
name, and the amenity count that is to be found in the respective cluster. The EMD
computation has been externalized in Python, while the cosine similarity is performed
directly in PostgreSQL. The table cluster_similarities stores pairs of cluster ids,
together with boolean flags indicating parking data. The computed similarity values
are stored together with their type of similarity function, e.g., cosine or EMD.

The process of building machine learning models is a bash script that first calls a
Python module, then exports the model results and similarity values in JSON format.

47

5. Design & Implementation

In the respective Python module, the training data is acquired from the database and
the models are built as described in Section 5.8 using the scikit-learn library. The
models metadata are stored in the table models, which contains information such as
source cluster id, training error, training timestamp, training duration, target cluster
id, and testing error. The models themselves are persisted as .pkl files.

The visualization of the results happens in Leaflet, which accesses the exported JSON
objects representing the clusters, similarity values, and model information. The JSONs
are stored in Javascript files.

Figure 5.10.: A diagram of the database tables

48

6. Evaluation

This chapter discusses a concrete use case, on which the defined approach is applied.
In Chapter 5, the proposed solution has been treated in a general manner, agnostic to
the exact data location of parking and city data. Various parameters used throughout
the process, such as merge distance or the number of clusters have been ignored
up to now. In this chapter, we shall provide concrete inputs and set parameters in
order to get actual results. To highlight particular artifacts and emphasize trends,
the application is run repeatedly for different inputs and parameters. User-interface
aspects shall be presented as well.

First, we take parking data from the SFpark project and determine the datasets that
are relevant for our purposes. Second, we instantiate the city data with OpenStreetMap
data from San Francisco and obtain the available public amenity information. Google
Places provides the visiting duration values for the amenities. Subsequently, we discuss
relevant values for the merge distance. Remarks about the clustering process, urban
measure, similarity values, as well as about the model training will follow.

The main evaluation will take place among the clusters with parking data, as estimation
errors can be calculated in this case for the built models. Finally, concrete estimations
for clusters without parking data will be shown.

6.1. SFpark Parking Data

In Section 5.1, the types of parking data that our approach supports have been
presented in detail. We shall instantiate this collection of data with the parking
data used in the SFpark project. An overview of the project has been presented
in Section 3.11. The general form of the parking data presented already has been
originally modeled after the SFpark data, thanks to the its large diversity and detail.
We will therefore find all types of parking data: occupancy, traffic, events, weather,
parking revenue, and fuel price.

The actual SFpark data has some particularities. While the occupancy data (cf.
Section 5.1.1) is provided with reference to blocks as location units, all the other data
sets use different location units. For the traffic and events datasets, the location units

49

6. Evaluation

are street names. For parking revenue, it is districts. In case of weather and fuel price,
the location reference is the whole city of San Francisco.

The SFpark data can be visualized in Figure 6.1 using Leaflet.

Figure 6.1.: The blocks accounted for in SFpark. The light blue ones are blocks without
parking data, the light red ones are with parking data.

6.2. OpenStreetMap for San Francisco

Following the selection of SFpark data as parking data, the city data is found in the
corresponding OpenStreetMap layer for San Francisco. The actual public amenity
information, collected from POIs, is listed in Table 6.1.

arts_centre dojo marketplace shelter
bank embassy music_rehearsal_place shop
bar fast_food music_school spa
biergarten grocery nightclub stripclub
bureau_de_change gym pet_grooming_shop studio
cafe hookah_lounge pharmacy training
clinic ice_cream police veterinary
clothes_store karaoke post_office vintage_and_modern_resale
community_centre lan_gaming_centre pub
dentist laundry restaurant
doctors library salon

Table 6.1.: List of all OSM amenities found in the SFpark blocks

50

6.3. Merging Parking and City Data

6.3. Merging Parking and City Data

We explained in Section 5.4 that the merging of parking and city data depends on
the geometrical reference systems of both datasets. In case of SFpark, the blocks are
given in latitude and longitude. In OpenStreetMap, the geometry is set to EPSG
4326. With both systems using the same reference, we can therefore set a merge
distance. The distance d should express the impact that a POI P has on the block
B, when dist(P,B) = d, e.g., the parking demand that the restaurant induces on a
parking block situated at d meters away. We assign to it distances of 100m, 200m,
and 400m. Note, that in the implementation, we have used a point distance function
that calculates distances in terms of latitude and longitude degrees. Given that we
are using EPSG 4326, the coordinate distance takes into account the absolute latitude
and longitude values for San Francisco.

6.4. Clustering

We will apply K-Means to cluster the city areas. In the evaluation, we will refer
to the number of clusters with parking data as the number of clusters. The area
without parking data is going to be split into a proportional number of clusters, as
the sizes of clusters should be kept roughly equal for both sides. It turns out that the
proportion is approximately 2.6, following the division between the total number of
blocks from each group (cf. Table 6.2). We have chosen two number of clusters to run
the evaluation, namely 8 clusters and 16 clusters. The area without parking data will
therefore have 20 and 41 clusters, respectively.

. total number of blocks in the clusters with parking
data: 409

. total number of blocks in the clusters without parking
data: 1054

. proportion of cluster sizes: 1054/409 = 2.58

Table 6.2.: The number of clusters between the parking data divide

After running the K-Means clustering process, the Leaflet map shall reveal the
individual clusters by highlighting them on mouseover. The clusters with parking
data will turn dark red, while the clusters without parking data will appear in dark
blue (cf. Figure 6.2 and Figure 6.3).

When hovering over any red cluster, we see that cluster turning dark red. Additionally,
another red cluster turns dark red. This is its most similar cluster with parking data

51

6. Evaluation

based on the current similarity value. When hovering over a blue cluster, it turns dark
blue. Additionally, three red clusters will turn dark red. These clusters with parking
data are the most similar to the highlighted blue cluster. The cosine similarity values
are used here.

Figure 6.2.: Highlighted cluster with parking data and its pop-up information

Figure 6.3.: Highlighted cluster without parking data and its pop-up information

Following the clustering of block, the resulting number of aggregated blocks per
cluster is shown in Table 6.3. This is worth taking into account when training the
machine learning models, as these will average over pieces of information contained in
individual blocks.

Minimum: 8
Maximum: 86
Mean: 40.9

St. deviation: 19.7

Minimum: 8
Maximum: 116
Mean: 44.8

St. deviation: 24.3

Table 6.3.: Number of blocks that have been clustered.
Left: clusters with parking data. Right: clusters without parking data.

6.4.1. Urban Measure

Before computing cosine vectors and EMD Gaussians, we will establish the visit
duration in every amenity. For this, we use information gathered from Google Places

52

6.4. Clustering

(cf. Section 3.9).

We collected information from 470 places in San Francisco, for which a maximum
duration of stay was provided (the minimum duration is not always given, as indicated
earlier). The data was obtained by manually navigating to every business place and
writing the duration visit information in a spreadsheet. This piece of information is
not accessible yet via the Google Places API1. The results are shown in Table 6.4. The
numbers have been rounded to the nearest integer. We have included only amenities
for which at least two stay duration sources were found.

amenity name mean stdev cat amenity name mean stdev cat
arts_centre 110 37 3 laundry 78 16 2
bank 42 65 2 library 83 13 2
bar 121 38 3 music_school 120 30 3
cafe 76 39 2 nightclub 189 20 3
clinic 100 29 3 pharmacy 25 20 1
clothes_store 41 37 2 post_office 16 2 1
community_centre 119 40 3 pub 135 21 3
dentist 104 35 3 restaurant 135 32 3
doctors 60 42 2 salon 141 53 3
embassy 75 24 2 shelter 90 0 2
fast_food 31 15 2 shop 43 21 2
grocery 20 10 1 spa 161 54 3
gym 100 22 3 stripclub 140 46 3
hookah_lounge 130 17 3 studio 60 0 2
ice_cream 23 7 1 veterinary 67 29 2
karaoke 188 15 3 vintage_modern_resale 38 32 2

Table 6.4.: All amenities listed with their corresponding mean visit duration and standard
deviation, as collected from Google Places. The assigned category for cosine vectors is
included.

Alongside this information, we need the amenity categories in order to derive the
cosine vectors. As defined in Section 5.6.1, the categories are based on the visit
duration mean. We decided for the category values shown in Table 6.5. The assigned
partitions for every amenity are shown in Table 6.4.

Thresholds on mean stay duration:
Category 1: 0 to 30 minutes
Category 2: 31 to 90 minutes
Category 3: above 91 minutes

Table 6.5.: The amenity categories

The calculation of EMD Gaussians relies on both the mean and standard deviation of
the amenity visit duration, as defined in Section 5.6.2. For 8 clusters, the Gaussians
produced for the clusters with parking data are shown in Figure 6.4.

1Google Feature Request: https://issuetracker.google.com/issues/35827350

53

https://issuetracker.google.com/issues/35827350

6. Evaluation

Figure 6.4.: Example of EMD Gaussians for clusters with parking data for 8 clusters.

6.5. Model Training

We use four methods to train models for the clusters with parking data: decision
trees, support vector machines, multilayer perceptrons, gradient boosted trees. As
for training data, the SFpark occupancy data is used in its integrity, following the
general description in Section 5.1.1 and having blocks as location unit. It turns out
that training on the additional SFpark data, traffic and events, encounters some
problems.

The traffic data do not share the same location unit with the main occupancy data, i.e.,
block. When aggregating traffic data on the district level, which is available for the
occupancy data as well, does not provide an additional value to the training. Indeed,
using scikit-learn's feature selection method to rank feature impact on training [11],
the traffic's features (average road occupancy, the average vehicle count, the median
speed, and the average speed of cars) ranks significantly lower than the occupancy
features.

The SFpark events data encounters the same problem as the traffic data: the location
unit does not match the block. In fact, the events are marked for streets, whose
association to blocks is not determinable. Parking revenue data is provided for districts,
which again are too general to make a difference in training. Finally, weather data
and fuel data are given per city, hence making even less an impact to improve the
model.

54

6.6. Model Evaluation for Clusters with Parking Data

As indicated in Section 5.8, the training data is averaged on all blocks so that it can
be applied later on other clusters. The averaging is performed per timestamp, i.e., if
multiple blocks have an occupancy record for the same time and block, the occupancy
rate will be averaged for both of these. Features such as price and parking capacity
per block are averaged as well. This means that the original collection of data records
shrinks. In Table 6.6, the number of training records per cluster is shown, together
with the number of occupancy records for that cluster. On average, there are 10.5
blocks that share the same datapoints.

Cluster ID Data Points Occupancy Points Blocks
per Timestamp

0 9879 120 320 12.2
1 12 387 203 728 16.4
2 8713 61 839 7.1
3 6134 22 371 3.6
4 9586 110 463 11.5
5 9112 87 316 9.6
6 10 244 118 096 11.5
7 9500 115 588 12.2
8 9051 112 245 12.4
9 8713 76 230 8.7

Average 9332 102 820 10.5

Table 6.6.: Number of training points per model alongside the initial occupancy points
within the containing blocks

6.6. Model Evaluation for Clusters with Parking Data

As foundation for this section, recall the background section that we have provided for
understanding machine learning errors (cf. Section 3.2.6). In the following, we shall
use root mean square to evaluate both the training and the testing errors of the built
models. We investigate the built models among the clusters with parking data.

To visualize the training and testing results, we will use Leaflet (cf. Section 3.10). By
clicking on a cluster with parking data, a pop-up will be shown containing a table
with information on the models. The user can opt to see the model of the clicked
cluster which is applied to all the other clusters, i.e., source mode, or one can see the
results of all the other clusters'models being tested on the clicked cluster, i.e., target
mode. In each mode, shown are both the training and test errors of the respective
models. See Figure 6.5 for an example.

55

6. Evaluation

Figure 6.5.: Selected cluster with parking data and the pop-up table in Leaflet

Figure 6.6.: The pop-up table for the previous Leaflet view (cf. Figure 6.5)

6.6.1. Clustered- vs. Total Models

One assumption of our approach is that models originating from smaller clusters are
better at predicting occupancy than models trained with the entire city area. We
have compared the two types of models during our tests.

For each target cluster Ctarget, we shall determine the source cluster Csource whose
model has the best estimation error when applied on Ctarget. Also, we will train a
model containing the entire city area with parking data A minus Ctarget's data and
compute this model's estimation error on Ctarget. As it can be seen in Table 6.7 in the
case of 8 clusters, and in Table 6.8 for 16 clusters, the cluster's models estimations

56

6.6. Model Evaluation for Clusters with Parking Data

are superior to the ones of the total model with very few exceptions.

Ctarget M(A \ Ctarget) errortotal errorcluster M(Csource) Csource

0 xgb 18.20 16.10 xgb 6
1 dt 17.44 12.14 xgb 7
2 xgb 20.33 17.45 svm 5
3 xgb 17.59 13.35 xgb 1
4 dt 17.49 17.30 xgb 6
5 xgb 18.44 16.08 xgb 2
6 xgb 16.00 15.92 svm 0
7 dt 16.38 10.87 xgb 3

Table 6.7.: Comparison between the estimations of the total models versus the ones of
clustered models, in case the city are with parking data is split into 8 clusters. Errors
are expressed as RMSE.

Ctarget M(A \ Ctarget) errortotal errorcluster M(Csource) Csource

0 mlp 19.53 13.40 xgb 15
1 xgb 17.82 17.18 xgb 7
2 xgb 20.79 17.97 svm 6
3 xgb 16.44 13.25 xgb 0
4 xgb 17.58 16.40 xgb 8
5 dt 17.59 10.93 xgb 0
6 xgb 18.44 16.29 xgb 2
7 xgb 16.73 16.38 xgb 9
8 xgb 13.57 14.14 xgb 10
9 xgb 16.90 15.95 xgb 10
10 xgb 16.25 16.45 xgb 7
11 mlp 21.73 14.95 xgb 11
12 xgb 20.33 15.42 xgb 0
13 dt 14.52 11.39 xgb 15
14 dt 22.93 18.73 svm 6
15 dt 20.63 13.33 xgb 0

Table 6.8.: Comparison between the estimations of the total model versus the ones of
clustered models. In case the city are with parking data is split into 16 clusters. Errors
are expressed as RMSE.

57

6. Evaluation

6.6.2. Best Model Method

Models were trained using four methods: decision trees, support vector machines,
multilayer perceptrons, gradient boosted trees. We shall now find out, which method
yields the best estimation errors, when the corresponding models are applied on
clusters with parking data. Table 6.9 shows the distribution of best machine learning
methods in case of 8 and 16 clusters. The values were obtained by summing up the
number of times a method produced the least estimation error, i.e., RMSE, among
the four methods for all combinations of clusters with parking data (Csource, Ctarget).
Intermediate results can be seen in Appendix A. Extreme gradient boosting claims
the first spot in both cases.

dt svm mlp xgb
8 clusters 24.6% 17.5% 12.3% 45.6%

16 clusters 14.6% 13.8% 13.8% 57.9%

Table 6.9.: The proportion of best models by means of machine learning method

6.6.3. Similarity Values vs. Estimation Errors

Recall that the goal of our approach was to replace occupancy estimations for clusters
where no parking data is available with estimations based on cluster similarity values.
Among clusters with parking data, the real occupancy values are known. This enables
us to compute estimation errors for cluster models, which can then be correlated with
the similarity values between clusters.

We shall use two correlation coefficients: the Pearson correlation coefficient and
Spearman's rank correlation coefficient, which were introduced in Section 3.6.

We have evaluated both cosine and EMD similarity values in configurations of 8 and
respectively 16 clusters. Additionally, we varied the merge distance to see how the
correlation behaves. The similarity values are hence calculated for 100m, 200m, and
400m merge distance respectively. In Table 6.10 the final results are shown. For each
correlation measure, the percent of similarity values were calculated that correlated
positively, in case of EMD distance, or negatively, for cosine similarity, with the
estimation errors. The models taken were trained with gradient boosted trees. For
intermediate results, see Appendix A.

We notice that the cosine similarity achieves better results than EMD for the same
testing configuration, peaking at 100% negative correlation for 8 clusters and 100m
merge distance. Its average Pearson coefficient is −0.55, while the mean Spearman
rank coefficient is −0.49. EMD positively correlates the most for the same testing

58

6.7. Estimations for Clusters without Parking Data

configuration, when the average Pearson coefficient is at 0.28 and Spearman's rank
coefficient equals 0.23. There is a clear descending trend in correlations, as the merge
distance increases. Also, the results for 8 clusters are superior to the ones when the
city is split in 16 clusters.

8 clusters 16 clusters
cosine rank_cosine emd rank_emd cosine rank_cosine emd rank_emd

100m 100% 100% 87.5% 75% 75% 75% 68.75% 62.5%
200m 75% 75% 75% 75% 75% 75% 56.3% 56.3%
400m 62.5% 50% 75% 75% 68.8% 68.8% 62.5% 62.5%

Table 6.10.: Correlations between similarity values and model estimations errors for pairs
of clusters with parking data (Csource, Ctarget). For cosine similarity, the proportions
show the negative correlation, while for EMD, they express the positive correlation.
The Pearson coefficient and Spearman's rank coefficient were used.

6.7. Estimations for Clusters without Parking Data

Following the procedure in Section 5.9, we apply the models trained on SFpark data
on clusters without parking data. The testing data records are composed of values
equal to the averages of the respective data types in all clusters with parking data.
This is the case for parking price and parking capacity. One piece of data that still
needs to be provided so that the estimation is computed, however, is the date and
time. For convenience, we choose the next day at the point when the user starts the
model training. On the Leaflet map, the time is offered as a drop-down list inside the
pop-up for a cluster without data. The user can choose between eight different times
throughout the day for which the estimations are calculated.

The estimation is displayed as an estimation interval, as defined in Section 5.9. The
estimation intersection interval is displayed in a separate column. In Leaflet, the
estimations can be visualized as in Figure 6.7 and Figure 6.8.

59

6. Evaluation

Figure 6.7.: Selected cluster without data and its table pop-up in Leaflet

Figure 6.8.: The pop-up table of a cluster without data. Notice the drop-down list from
which the time can be selected.

60

7. Conclusion & Future Work

In this work, we have presented an attempt at approximating street parking occupancy
in cities. Under the assumption that parking data is lacking, in order to build
scalable occupancy prediction systems, we proposed an alternative solution to the
ones previously developed for this problem.

We built parking profiles by using complementary city data, which localize various
types of public amenities and indicate the average visit duration there. All data has
been made available in an established RDF format, so that it can be easily reused.
We merged the parking data with the city data by matching parking location units to
points of interest, split the city into clustered areas, and built machine learning models
for them. K-Means was used to cluster the location units, while four methods were
employed to train models for the clusters: decision trees, support vector machines,
multilayer perceptrons and extreme gradient boosting. Based on the city data, urban
measures were built in the form of cosine vectors and EMD Gaussians, both of which
took advantage of the mean visit duration and its standard deviation. The vectors
were part of the cosine similarity computation, while Gaussians contributed to the
earth mover's distance calculation. The occupancy estimations for clusters without
parking data were defined in terms of model estimations from clusters with parking
data and the corresponding cluster similarity values. The estimations are expressed as
intervals which extend the model prediction values by the magnitude of the similarity
values.

As use case, we chose the SFpark project from San Francisco, which gathered parking
data for more than 2 years starting in 2011 and now offers it for free usage. The city
data was collected from OpenStreetMap as amenity information, and from Google
Business as stay duration values. Both sources are open and free of charge. Over 30
types of public amenities were found in the San Francisco blocks, which corroborated
with over 470 Google Places sources, lead to building the urban measures and similarity
values.

The results confirmed that clustering the city into smaller areas yields better occupancy
estimations than those of entire city area models. Following our tests, the best machine
learning model turned out to be extreme gradient boosting. We used the clusters with
parking data for the evaluation of the similarity values and calculated correlation
coefficients between the similarity values and the estimation errors, using both absolute
values and ranks. The best correlation were reached for the 100m merge distance

61

7. Conclusion & Future Work

for 8 clusters, averaging at −0.55 as Pearson Coefficient and −0.49 as Spearman's
rank coefficient. In the same configuration, both cosine similarity and EMD distance
reached their best results from all the test configurations. Overall, cosine similarity
achieved better correlations than emd. Finally, the models for 8 clusters produced
superior results over the models for 16 clusters.

7.1. Future Work

To further investigate parking occupancy prediction given the assumptions in this work,
there are several improvements or alternative approaches that can be undertaken.

1. Use more parking data. This point makes sense for any kind of system
that estimates parking occupancy, as machine learning models return better
estimations when the parking data is relevant, i.e. not too specific so that it
leads to overfitting. In the present work, several pieces of data could not be
integrated because of merging issues, i.e., the location unit did not coincide
with the occupancy data’s block. Traffic, events, weather, etc. could improve
estimation results and hence the final estimations for clusters without parking
data. Other sources for parking occupancy data can be found for the cities
of Cologne [22], Zurich [37], Santa Monica [30]. In Germany, Deutsche Bahn
provides an API to data from parking around train stations [6]. Data pertaining
to street occupancy is however hard to find. At the time of writing, open data
portals mostly provide the location of parking lots, parking meters, parking
price and opening times, if applicable.

2. Use more city data. The parking profiles in the present work are relying
on the public amenities from OpenStreetMap. OSM has great potential as
a collaborative map service but it lacks many pieces of information that are
available in Google Maps. Data such as opening hours would be interesting
to include into the urban measure. The parking profile could then take into
account the number of public amenities that are available at a certain point in
time. Furthermore, the stay duration data collected for the present approach
is currently limited, as Google does not provide an API to access this data.
Adding more stay duration data may fine tune the emerging similarity values.
Overall, more and finer city data, together with an appropriate representation
and similarity function could eventually improve the occupancy estimations for
clusters without parking data.

3. Integrate city data in machine learning models. An alternative to build-
ing urban measures and similarity functions is to let machine learning figure
out the similarities by itself. One can add the city data as further training infor-
mation for clusters. The models are then applied on clusters without parking

62

7.1. Future Work

data and return occupancy estimations. The difference here is that models will
be built for all clusters, including the ones without parking data. This also has
the disadvantage of not using most of the parking data for training. The benefit
of finding better similarities by leveraging unknown patterns in the city data
may, however, outweigh this drawback.

4. Apply semi-supervised machine learning. Another relevant machine learn-
ing approach in this case is based on organizing the city areas as an undirected
graph. The vertices represent the clusters with their respective occupancy data,
while the edges between them are assigned similarity values. Initially, only a part
of the vertices have the occupancy value known, i.e. the clusters with parking
data, while the rest has undetermined occupancy, i.e., the clusters without
parking data. At each step, the value for a vertex whose value is undetermined
is being computed by considering the occupancies of the linked vertices and
their corresponding similarity values. See Figure 7.1 for an simplified example.

(a) Propagation Step 0 (b) Propagation Step 1

(c) Propagation Step 2 (d) Propagation Step 3

Figure 7.1.: Process of inferring occupancy values for untracked zones using occupancy
values from tracked zones and their pair-wise similarity values as edges

63

A. Appendix

A.1. Evaluation

Cluster ID Cosine EMD
Correlation Correlation Rank Correlation Correlation Rank

0 -0.21 -0.03 0.12 0.21
1 -0.89 -0.76 0.66 0.53
2 -0.42 -0.49 0.42 0.46
3 -0.35 -0.38 -0.83 -0.64
4 -0.79 -0.81 0.59 0.43
5 -0.87 -0.73 0.71 0.54
6 -0.26 -0.10 0.07 0.00
7 -0.63 -0.63 0.48 0.32

Positive/Negative (abs) 8 8 7 6
Positive/Negative (%) 100.0 100.0 87.5 75.0

Mean correlation -0.55 -0.49 0.28 0.23

Table A.1.: The correlations coefficients between similarity values and estimation errors
for a configuration of 8 clusters and 100m merge distance.

65

A. Appendix

Cluster ID Cosine EMD
Correlation Correlation Rank Correlation Correlation Rank

0 -0.39 -0.22 0.40 0.36
1 -0.85 -0.79 0.64 0.60
2 -0.20 -0.29 0.41 0.39
3 -0.21 0.04 -0.82 -0.83
4 0.39 0.44 0.64 0.68
5 -0.93 -0.91 0.70 0.61
6 0.01 -0.15 -0.35 -0.29
7 -0.55 -0.56 0.49 0.36

Positive/Negative (abs) 6 6 6 6
Positive/Negative (%) 75.0 75.0 75.0 75.0

Mean correlation -0.34 -0.30 0.26 0.23

Table A.2.: The correlations coefficients between similarity values and estimation errors
for a configuration of 8 clusters and 200m merge distance.

Cluster ID Cosine EMD
Correlation Correlation Rank Correlation Correlation Rank

0 -0.53 0.00 0.58 0.57
1 -0.71 -0.68 0.57 0.67
2 0.39 0.43 0.27 0.25
3 0.00 0.41 -0.73 -0.79
4 0.37 0.51 0.58 0.71
5 -0.71 -0.65 0.67 0.64
6 -0.09 0.04 -0.39 -0.29
7 -0.58 -0.69 0.43 0.36

Positive/Negative (abs) 5 4 6 6
Positive/Negative (%) 62.5 50.0 75.0 75.0

Mean correlation -0.23 -0.08 0.25 0.27

Table A.3.: The correlations coefficients between similarity values and estimation errors
for a configuration of 8 clusters and 400m merge distance.

66

A.1. Evaluation

Cluster ID Cosine EMD
Correlation Correlation Rank Correlation Correlation Rank

0 -0.34 -0.43 0.36 0.36
1 -0.41 -0.49 0.19 0.25
2 -0.39 -0.40 0.30 0.43
3 -0.43 -0.36 0.33 0.35
4 -0.26 -0.17 0.32 0.34
5 -0.31 -0.27 0.26 0.16
6 -0.34 -0.24 -0.25 -0.08
7 0.30 0.45 -0.10 -0.21
8 -0.40 -0.46 -0.24 -0.11
9 -0.11 -0.18 0.30 0.37
10 0.15 0.04 -0.15 -0.19
11 -0.57 -0.44 0.30 0.30
12 0.53 0.67 -0.51 -0.50
13 -0.22 -0.19 0.06 -0.10
14 0.27 0.30 0.08 0.10
15 -0.66 -0.59 0.41 0.36

Positive/Negative (abs) 12 12 11 10
Positive/Negative (%) 75.0 75.0 68.8 62.5

Mean correlation -0.20 -0.17 0.10 0.11

Table A.4.: The correlations coefficients between similarity values and estimation errors
for a configuration of 16 clusters and 100m merge distance.

67

A. Appendix

Cluster ID Cosine EMD
Correlation Correlation Rank Correlation Correlation Rank

0 -0.33 -0.31 0.16 0.30
1 -0.30 -0.41 0.08 0.20
2 -0.27 -0.32 0.26 0.29
3 -0.45 -0.37 0.28 0.29
4 -0.33 -0.30 0.25 0.30
5 0.42 0.33 0.16 0.05
6 -0.38 -0.39 -0.20 -0.06
7 0.54 0.69 -0.25 -0.32
8 -0.27 -0.28 -0.35 -0.35
9 -0.24 -0.32 0.30 0.33
10 -0.04 -0.14 -0.03 -0.19
11 -0.55 -0.49 0.26 0.31
12 0.60 0.71 -0.48 -0.42
13 -0.30 -0.22 -0.03 -0.16
14 0.47 0.58 -0.41 -0.46
15 -0.58 -0.48 0.35 0.20

Positive/Negative (abs) 12 12 9 9
Positive/Negative (%) 75.0 75.0 56.3 56.3

Mean correlation -0.13 -0.11 0.02 0.02

Table A.5.: The correlations coefficients between similarity values and estimation errors
for a configuration of 16 clusters and 200m merge distance.

68

A.1. Evaluation

Cluster ID Cosine EMD
Correlation Correlation Rank Correlation Correlation Rank

0 -0.47 -0.58 0.38 0.38
1 -0.02 -0.15 -0.23 -0.04
2 0.42 0.47 0.07 0.25
3 -0.53 -0.52 0.35 0.37
4 -0.42 -0.31 0.13 -0.01
5 0.31 0.24 0.30 0.30
6 -0.15 -0.19 -0.24 -0.01
7 0.02 0.19 -0.05 0.05
8 -0.32 -0.53 -0.16 0.10
9 -0.43 -0.47 0.33 0.36
10 -0.44 -0.16 0.25 0.02
11 -0.61 -0.55 0.29 0.20
12 0.46 0.43 -0.48 -0.37
13 -0.45 -0.43 0.07 -0.05
14 0.45 0.33 -0.06 -0.20
15 -0.55 -0.51 0.38 0.38

Positive/Negative (abs) 11 11 10 10
Positive/Negative (%) 68.8 68.8 62.5 62.5

Mean correlation -0.17 -0.17 0.08 0.11

Table A.6.: The correlations coefficients between similarity values and estimation errors
for a configuration of 16 clusters and 400m merge distance.

Ct

Cs 0 1 2 3 4 5 6 7

0 dt dt dt dt dt dt xgb
1 svm dt svm xgb svm dt dt
2 xgb mlp xgb xgb xgb mlp xgb
3 xgb xgb xgb mlp xgb xgb xgb
4 svm svm svm dt dt svm xgb
5 xgb mlp xgb svm dt svm xgb
6 dt xgb xgb xgb dt xgb xgb
7 mlp mlp svm xgb xgb mlp xgb

Table A.7.: Best machine learning method among the four (decision trees, support vector
machines, multilayer perceptrons, extreme gradient boosting) for a 8 cluster test
configuration. A model is trained on cluster’s Cs data and applied on cluster Ct.

69

A. Appendix

dt svm mlp xgb
Absolute 14 10 7 26
Percent 24.6 17.5 12.3 45.6

Table A.8.: Overall number of machine learning methods that produced best estimations
on the cluster pair level (Cs, Ct) for an 8 cluster test configuration.

Ct dt svm mlp xgb
0 4 3 2 6
1 3 0 0 12
2 1 0 1 13
3 2 1 1 11
4 3 1 1 10
5 6 0 0 9
6 1 3 3 8
7 1 3 6 5
8 2 6 2 5
9 2 3 3 7
10 2 3 1 9
11 3 5 3 4
12 1 1 4 9
13 2 0 4 9
14 0 3 1 11
15 2 1 1 11

Absolute 35 33 33 139
Percent 14.6 13.8 13.8 57.9

Table A.9.: The number of best machine learning methods whose models achieved best
estimation errors for a 16 cluster test configuration. A model is trained on cluster’s Cs

data and applied on cluster Ct. Due to space limitations, the Cs dimension was summed
up.

70

A.1. Evaluation

71

Bibliography

[1] Apache Jena. https://jena.apache.org/

[2] City Pulse. http://www.ict-citypulse.eu/page/

[3] Correlation and dependence - Wikipedia, the free encyclopedia. https://en.
wikipedia.org/wiki/Correlation_and_dependence

[4] Cosine similarity - Wikipedia, the free encyclopedia. https://en.wikipedia.
org/wiki/Cosine_similarity

[5] Cross-validation (statistics) - Wikipedia, the free encyclopedia. https://en.
wikipedia.org/wiki/Cross-validation_(statistics)

[6] DB - Parkplätze API. http://data.deutschebahn.com/dataset/
api-parkplatz

[7] Decision Tree Regression with AdaBoost. http://scikit-learn.org/stable/
auto_examples/ensemble/plot_adaboost_regression.html

[8] Decision Trees. http://scikit-learn.org/stable/modules/tree.html

[9] Demonstration of k-means assumptions. http://scikit-learn.org/stable/
auto_examples/cluster/plot_kmeans_assumptions.html

[10] EPSG:4326. https://epsg.io/4326

[11] Feature Seleciton. http://scikit-learn.org/stable/modules/feature_
selection.html

[12] Free parking or free markets. https://www.accessmagazine.org/spring-2011/
free-parking-free-markets/

[13] Google - Popular times, wait times, and visit duration. https://support.google.
com/business/answer/6263531?hl=en

73

https://jena.apache.org/
http://www.ict-citypulse.eu/page/
https://en.wikipedia.org/wiki/Correlation_and_dependence
https://en.wikipedia.org/wiki/Correlation_and_dependence
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://data.deutschebahn.com/dataset/api-parkplatz
http://data.deutschebahn.com/dataset/api-parkplatz
http://scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_regression.html
http://scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_regression.html
http://scikit-learn.org/stable/modules/tree.html
http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html
http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html
https://epsg.io/4326
http://scikit-learn.org/stable/modules/feature_selection.html
http://scikit-learn.org/stable/modules/feature_selection.html
https://www.accessmagazine.org/spring-2011/free-parking-free-markets/
https://www.accessmagazine.org/spring-2011/free-parking-free-markets/
https://support.google.com/business/answer/6263531?hl=en
https://support.google.com/business/answer/6263531?hl=en

Bibliography

[14] Google - Visit Duration Image. https://8ms.com/wp-content/uploads/2016/
11/Popular-Times-Live.png

[15] Google My Business. https://www.google.com/business/

[16] Leaflet - an open-source JavaScript library for mobile-friendly interactive maps.
http://leafletjs.com/

[17] Machine Learning - Wikipedia, the free encyclopedia. https://en.wikipedia.
org/wiki/Machine_learning

[18] Mean absolute error. http://scikit-learn.org/stable/modules/model_
evaluation.html#mean-absolute-error

[19] Mean squared error. http://scikit-learn.org/stable/modules/model_
evaluation.html#mean-squared-error

[20] Mean squared error. http://blog.minitab.com/blog/
adventures-in-statistics-2/regression-analysis-how-to-interpret-s-the-standard-error-of-the-regression

[21] The number of cars worldwide is set to double
by 2040. https://www.weforum.org/agenda/2016/04/
the-number-of-cars-worldwide-is-set-to-double-by-2040

[22] Öffene Daten Köln. https://www.offenedaten-koeln.de/dataset/
taxonomy/term/52/field_tags/Transport%20und%20Verkehr-52?query=
park&sorting=changed%7CDESC

[23] Open Street Map. https://www.openstreetmap.org/

[24] Open Street Map POI Image. http://wiki.openstreetmap.org/w/images/8/
8a/Condado-pois.PNG

[25] OpenStreetMap. https://www.openstreetmap.org/

[26] Osm2pgsql. http://wiki.openstreetmap.org/wiki/Osm2pgsql

[27] Pearson correlation coefficient - Wikipedia, the free encyclopedia. https://en.
wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

[28] R2 score. http://scikit-learn.org/stable/modules/model_evaluation.
html#r2-score

[29] Rank correlation - Wikipedia, the free encyclopedia. https://en.wikipedia.
org/wiki/Rank_correlation

74

https://8ms.com/wp-content/uploads/2016/11/Popular-Times-Live.png
https://8ms.com/wp-content/uploads/2016/11/Popular-Times-Live.png
https://www.google.com/business/
http://leafletjs.com/
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
http://scikit-learn.org/stable/modules/model_evaluation.html#mean-absolute-error
http://scikit-learn.org/stable/modules/model_evaluation.html#mean-absolute-error
http://scikit-learn.org/stable/modules/model_evaluation.html#mean-squared-error
http://scikit-learn.org/stable/modules/model_evaluation.html#mean-squared-error
http://blog.minitab.com/blog/adventures-in-statistics-2/regression-analysis-how-to-interpret-s-the-standard-error-of-the-regression
http://blog.minitab.com/blog/adventures-in-statistics-2/regression-analysis-how-to-interpret-s-the-standard-error-of-the-regression
https://www.weforum.org/agenda/2016/04/the-number-of-cars-worldwide-is-set-to-double-by-2040
https://www.weforum.org/agenda/2016/04/the-number-of-cars-worldwide-is-set-to-double-by-2040
https://www.offenedaten-koeln.de/dataset/taxonomy/term/52/field_tags/Transport%20und%20Verkehr-52?query=park&sorting=changed%7CDESC
https://www.offenedaten-koeln.de/dataset/taxonomy/term/52/field_tags/Transport%20und%20Verkehr-52?query=park&sorting=changed%7CDESC
https://www.offenedaten-koeln.de/dataset/taxonomy/term/52/field_tags/Transport%20und%20Verkehr-52?query=park&sorting=changed%7CDESC
https://www.openstreetmap.org/
http://wiki.openstreetmap.org/w/images/8/8a/Condado-pois.PNG
http://wiki.openstreetmap.org/w/images/8/8a/Condado-pois.PNG
https://www.openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Osm2pgsql
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://scikit-learn.org/stable/modules/model_evaluation.html#r2-score
http://scikit-learn.org/stable/modules/model_evaluation.html#r2-score
https://en.wikipedia.org/wiki/Rank_correlation
https://en.wikipedia.org/wiki/Rank_correlation

Bibliography

[30] Santa Monica - Open Data. https://data.smgov.net/Transportation/
Parking-Lot-Counts/ng8m-khuz

[31] SFpark. http://sfpark.org

[32] SFpark - Open Data. http://sfpark.org/how-it-works/open-data-page/

[33] SFpark - Pilot Project Evaluation Summary. http://sfpark.org/wp-content/
uploads/2014/06/SFpark_Eval_Summary_2014.pdf

[34] Spatial Reference System - Wikipedia, the free encyclopedia. https://en.
wikipedia.org/wiki/Spatial_reference_system

[35] Spearman's rank correlation coefficient - Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

[36] stackoverflow - world’s largest developer community. https://stackoverflow.
com/

[37] Stadt Zürich - Open Data. https://data.stadt-zuerich.ch/dataset/
parkleitsystem

[38] SVM: Maximum margin separating hyperplane. http://scikit-learn.org/0.
18/auto_examples/svm/plot_separating_hyperplane.html

[39] Wasserstein Metric - Wikipedia, the free encyclopedia. https://en.wikipedia.
org/wiki/Wasserstein_metric

[40] Berners-Lee, Tim: Linked Data. https://www.w3.org/DesignIssues/
LinkedData.html. Version: 2006

[41] Brink, Henrik ; Richards, Joseph ; Fetherolf, Mark: Real-world machine
learning. Manning Publications Co., 2016

[42] Caicedo, Felix ; Blazquez, Carola ; Miranda, Pablo: Prediction of parking
space availability in real time. In: Expert Systems with Applications 39 (2012),
Nr. 8, S. 7281–7290

[43] Caliskan, Murat ; Barthels, Andreas ; Scheuermann, Bjorn ; Mauve,
Martin: Predicting parking lot occupancy in vehicular ad hoc networks. In:
Vehicular Technology Conference, 2007. VTC2007-Spring. IEEE 65th IEEE, 2007,
S. 277–281

[44] Chen, Tianqi ; Guestrin, Carlos: Xgboost: A scalable tree boosting system.

75

https://data.smgov.net/Transportation/Parking-Lot-Counts/ng8m-khuz
https://data.smgov.net/Transportation/Parking-Lot-Counts/ng8m-khuz
http://sfpark.org
http://sfpark.org/how-it-works/open-data-page/
http://sfpark.org/wp-content/uploads/2014/06/SFpark_Eval_Summary_2014.pdf
http://sfpark.org/wp-content/uploads/2014/06/SFpark_Eval_Summary_2014.pdf
https://en.wikipedia.org/wiki/Spatial_reference_system
https://en.wikipedia.org/wiki/Spatial_reference_system
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://stackoverflow.com/
https://stackoverflow.com/
https://data.stadt-zuerich.ch/dataset/parkleitsystem
https://data.stadt-zuerich.ch/dataset/parkleitsystem
http://scikit-learn.org/0.18/auto_examples/svm/plot_separating_hyperplane.html
http://scikit-learn.org/0.18/auto_examples/svm/plot_separating_hyperplane.html
https://en.wikipedia.org/wiki/Wasserstein_metric
https://en.wikipedia.org/wiki/Wasserstein_metric
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html

Bibliography

In: Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining ACM, 2016, S. 785–794

[45] Chen, Xiao: Parking occupancy prediction and pattern analysis. In: Dept.
Comput. Sci., Stanford Univ., Stanford, CA, USA, Tech. Rep. CS229-2014 (2014)

[46] Chen, Zhirong ; Xia, Jianhong C. ; Irawan, Buntoro: Development of fuzzy
logic forecast models for location-based parking finding services. In: Mathematical
Problems in Engineering 2013 (2013)

[47] Group, RDF W.: RDF 1.1 Concepts and Abstract Syntax. https://www.w3.
org/TR/2014/REC-rdf11-concepts-20140225/. Version: 2014

[48] Group, RDF W.: RDF 1.1 Primer. https://www.w3.org/TR/rdf11-primer/.
Version: 2014

[49] Group, RDF W.: RDF 1.1 Semantics. https://www.w3.org/TR/2014/
REC-rdf11-mt-20140225/. Version: 2014

[50] Group, SPARQL W.: SPARQL 1.1 Overview. https://www.w3.org/TR/
sparql11-overview/. Version: 2013

[51] Hackeling, Gavin: Mastering Machine Learning with scikit-learn. Packt
Publishing Ltd, 2014

[52] Hossinger, Reinhard ; Heimbuchner, Klaus ; Uhlmann, Tina: Development
of a Real-time Model of the Utilisation of Short-term Parking Zones. In: 19th
ITS World Congress, 2012

[53] Ji, Yanjie ; Tang, Dounan ; Blythe, Phil ; Guo, Weihong ; Wang, Wei:
Short-term forecasting of available parking space using wavelet neural network
model. In: IET Intelligent Transport Systems 9 (2014), Nr. 2, S. 202–209

[54] Klappenecker, Andreas ; Lee, Hyunyoung ; Welch, Jennifer L.: Finding
available parking spaces made easy. In: Ad Hoc Networks 12 (2014), S. 243–249

[55] Koster, Andrew ; Oliveira, Allysson ; Volpato, Orlando ; Delvequio,
Viviane ; Koch, Fernando: Recognition and recommendation of parking places.
In: Ibero-American Conference on Artificial Intelligence Springer, 2014, S. 675–
685

[56] Kotb, Amir O. ; Shen, Yao-Chun ; Zhu, Xu ; Huang, Yi: iParker—A New
Smart Car-Parking System Based on Dynamic Resource Allocation and Pricing.
In: IEEE Transactions on Intelligent Transportation Systems 17 (2016), Nr. 9, S.
2637–2647

76

https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/sparql11-overview/

Bibliography

[57] Lin, Trista ; Rivano, Hervé ; Le Mouël, Frédéric: A Survey of Smart Parking
Solutions. In: IEEE Transactions on Intelligent Transportation Systems (2017)

[58] Lin, Trista S.: Smart parking: Network, infrastructure and urban service, Lyon,
INSA, Diss., 2015

[59] Mathur, Suhas ; Jin, Tong ; Kasturirangan, Nikhil ; Chandrasekaran,
Janani ; Xue, Wenzhi ; Gruteser, Marco ; Trappe, Wade: Parknet: drive-by
sensing of road-side parking statistics. In: Proceedings of the 8th international
conference on Mobile systems, applications, and services ACM, 2010, S. 123–136

[60] Nandugudi, Anandatirtha ; Ki, Taeyeon ; Nuessle, Carl ; Challen, Geoffrey:
Pocketparker: Pocketsourcing parking lot availability. In: Proceedings of the 2014
ACM International Joint Conference on Pervasive and Ubiquitous Computing
ACM, 2014, S. 963–973

[61] Pullola, Sherisha ; Atrey, Pradeep K. ; El Saddik, Abdulmotaleb: Towards
an intelligent GPS-based vehicle navigation system for finding street parking
lots. In: Signal Processing and Communications, 2007. ICSPC 2007. IEEE
International Conference on IEEE, 2007, S. 1251–1254

[62] Rajabioun, Tooraj ; Foster, Brandon ; Ioannou, Petros: Intelligent parking
assist. In: Control & Automation (MED), 2013 21st Mediterranean Conference
on IEEE, 2013, S. 1156–1161

[63] Rajabioun, Tooraj ; Ioannou, Petros A.: On-street and off-street parking
availability prediction using multivariate spatiotemporal models. In: IEEE
Transactions on Intelligent Transportation Systems 16 (2015), Nr. 5, S. 2913–2924

[64] Richter, Felix ; Di Martino, Sergio ; Mattfeld, Dirk C.: Temporal and
spatial clustering for a parking prediction service. In: Tools with Artificial
Intelligence (ICTAI), 2014 IEEE 26th International Conference on IEEE, 2014,
S. 278–282

[65] Shin, Jong-Ho ; Jun, Hong-Bae: A study on smart parking guidance algorithm.
In: Transportation Research Part C: Emerging Technologies 44 (2014), S. 299–317

[66] Szczurek, Piotr ; Xu, Bo ; Wolfson, Ouri ; Lin, Jie ; Rishe, Naphtali:
Learning the relevance of parking information in VANETs. In: Proceedings of
the seventh ACM international workshop on VehiculAr InterNETworking ACM,
2010, S. 81–82

[67] Tiedemann, Tim ; Vögele, Thomas ; Krell, Mario M. ; Metzen, Jan H. ;
Kirchner, Frank: Concept of a Data Thread Based Parking Space Occupancy

77

Bibliography

Prediction in a Berlin Pilot Region. In: AAAI Workshop: AI for Transportation,
2015

[68] Vlahogianni, Eleni I. ; Kepaptsoglou, Kostanstinos ; Tsetsos, Vassileios
; Karlaftis, Matthew G.: Exploiting new sensor technologies for real-time
parking prediction in urban areas. In: Transportation Research Board 93rd
Annual Meeting Compendium of Papers, 2014, S. 14–1673

[69] Witten, Ian H. ; Frank, Eibe ; Hall, Mark A. ; Pal, Christopher J.: Data
Mining: Practical machine learning tools and techniques. Morgan Kaufmann,
2016

[70] Wu, Eric Hsiao-Kuang ; Sahoo, Jagruti ; Liu, Chi-Yun ; Jin, Ming-Hui ; Lin,
Shu-Hui: Agile urban parking recommendation service for intelligent vehicular
guiding system. In: IEEE Intelligent Transportation Systems Magazine 6 (2014),
Nr. 1, S. 35–49

[71] Xu, Bo ; Wolfson, Ouri ; Yang, Jie ; Stenneth, Leon ; Philip, S Y. ;
Nelson, Peter C.: Real-time street parking availability estimation. In: Mobile
Data Management (MDM), 2013 IEEE 14th International Conference on Bd. 1
IEEE, 2013, S. 16–25

[72] Zheng, Yanxu ; Rajasegarar, Sutharshan ; Leckie, Christopher: Parking
availability prediction for sensor-enabled car parks in smart cities. In: Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP), 2015 IEEE
Tenth International Conference on IEEE, 2015, S. 1–6

78

	Title
	Declaration
	Acknowledgements
	Abstract
	Table of Contents

	1 Introduction
	1.1 Motivation
	1.2 Approach
	1.3 Contribution
	1.4 Thesis Organization

	2 Problem Defintion
	2.1 Parking Profiles
	2.2 Transferring Parking Models

	3 Background
	3.1 Resource Description Framework
	3.2 Machine Learning
	3.2.1 Decision Trees
	3.2.2 Support Vector Machines
	3.2.3 Multilayer Perceptrons
	3.2.4 Gradient Boosted Trees
	3.2.5 Cross-Validation
	3.2.6 Scoring Functions
	3.2.7 Grid Search

	3.3 Cosine Similarity
	3.4 Earth Movers Distance
	3.5 Clustering
	3.6 Correlation Coefficients
	3.7 Coordinate Reference System
	3.8 OpenStreetMap
	3.9 Google Visit Duration
	3.10 Leaflet
	3.11 The SFpark Project

	4 Related Work
	4.1 Smart Parking Overview
	4.2 Vacancy Prediction Systems

	5 Design & Implementation
	5.1 Parking Data
	5.1.1 Parking Occupancy Data
	5.1.2 Traffic Data
	5.1.3 Events Data
	5.1.4 Weather Data
	5.1.5 Fuel Price Data
	5.1.6 Parking Revenue Data

	5.2 City Data
	5.3 RDF Annotation
	5.4 Merging City and Park Data
	5.5 Clustering
	5.6 Urban Measure
	5.6.1 Cosine Vectors
	5.6.2 EMD Gaussians

	5.7 Similarity Functions
	5.7.1 Cosine Similarity
	5.7.2 Earth Movers Distance

	5.8 Machine Learning Models
	5.9 Parking Occupancy Estimations
	5.10 Data Processing and Persistence

	6 Evaluation
	6.1 SFpark Parking Data
	6.2 OpenStreetMap for San Francisco
	6.3 Merging Parking and City Data
	6.4 Clustering
	6.4.1 Urban Measure

	6.5 Model Training
	6.6 Model Evaluation for Clusters with Parking Data
	6.6.1 Clustered- vs. Total Models
	6.6.2 Best Model Method
	6.6.3 Similarity Values vs. Estimation Errors

	6.7 Estimations for Clusters without Parking Data

	7 Conclusion & Future Work
	7.1 Future Work

	A Appendix
	A.1 Evaluation

	Bibliography

