
RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN
Information Systems

Prof. Dr. Stefan Decker
Prof. Dr. Matthias Jarke

Master Thesis

The Pragmatics and Logic
of Knowledge Representation

with Prototypes

Martha Hannah Gesche Gierse

September 29, 2017

Advisor: Dr. Michael Cochez
Supervisors: Prof. Dr. Stefan Decker

Prof. Dr. Matthias Jarke

© Gesche Gierse. This work is licensed under Creative Commons
Attribution-ShareAlike 4.0 International:
https://creativecommons.org/licenses/by-sa/4.0/deed.en

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

CONTENTS 1

Contents
1 Introduction 3

2 Background 6
2.1 Semantic Web . 8
2.2 Inheritance . 8

2.2.1 Class-based Inheritance . 9
2.2.2 Prototypical Inheritance . 10
2.2.3 Discussion . 13
2.2.4 Syntax and Semantics of Prototypes for the Semantic Web 13

2.3 Frames and Description Logics . 19
2.3.1 Open and Closed World Assumption 20

2.4 Integrity Constraints . 22
3 Constraints 24

3.1 Types of Constraints . 24
3.2 Constraint Representation . 25

3.2.1 Graphical Representation of Prototypes with Constraints 30
3.2.2 Syntactic Abbreviations for Constraints 30

4 Specialization Relation 32
4.1 Examples . 34
4.2 Definition . 38

4.2.1 Inheritance Free Fixpoint State of a Knowledge Base 38
4.2.2 Semantics of Composed Prototypes 40
4.2.3 Semantics of Specialization . 42

4.3 Properties . 45
4.3.1 Transitivity . 46
4.3.2 Specialization Reduces the Number of Further Specializations . . 47
4.3.3 Consistent Prototypes . 48

5 Implementation 49
5.1 Complexity Analysis . 53

6 Future Work 55
6.1 Data Types and Ranges . 55
6.2 Recursion . 55
6.3 Boolean Operators . 56

7 Conclusion 57

8 References 58

1 INTRODUCTION 3

1 Introduction

A central purpose of the internet is sharing information. That information is usually stored
and presented in human-readable form. However, it is often not (easily) processable for a
machine. If the information becamemoremachine-readable, it would be easier to write ap-
plications that are able to utilize the vast knowledge collected on the web. Knowledge rep-
resentation mechanisms are used to represent information in machine-processable ways.
This movement is called Semantic Web [1, 2].

A basic representation used is the Resource Description Framework (RDF) [3]. The
RDF describes information in strict subject-predicate-object triples. In contrast to natural
language these simplified statements are much better processable for machines.

The Web Ontology Language (OWL) [4, 5] is another standard for the Semantic Web.
It uses ontologies to model knowledge hierarchically. With this approach, data can be
structured in classes and relations can be described. OWL is based on logic and therefore
also allows to reason about the represented knowledge.

In the Semantic Web movement, data is shared between different entities. RDF and
OWL files are provided online and can be read, downloaded and modified or referenced
by other files.

Cochez et al. [6] discuss a distinction between two different modes of sharing: First,
vertical sharing, where an authority shares a graph or ontology and others use it. The
second mode of sharing is horizontal sharing, where pieces of data are shared and reused
by peers. The authors of [6] describe that currently, sharing on the Semantic Web is rather
done vertically than horizontally, even though the spirit of the web is peer-based.

To ease vertical sharing, they introduce a prototype-based approach to knowledge rep-
resentation on the web. This enables more types of reuse than class-based systems, since
with prototype-based inheritance new prototypes can be derived from any kind of existing
ones. In a class-based system there is a distinction between classes and instances, and only
classes can be used for inheritance.

For example, consider the hierarchy of animals given in Figure 1. Mammals and fish
are animals. A whale is a mammal, while a shark is a fish. Figure 1a represents these facts
with a class-based approach (as for example used by OWL). The yellow rectangles rep-
resent classes and red circles instances. The double arrow shows inheritance and the line

Animal

Mammal Fish

Whale Shark

(a) Class-based inheritance and instances.
Whale Shark
(b) Prototypical inheritance.

Figure 1: Hierarchy of animals illustrating different approaches to knowledge representa-
tion.

4

indicates that an instance has a class as its type. The idea of the hierarchical representation
is that all animals share some properties that mammals and fish inherit. In this represen-
tation, whales and sharks are represented as instances and are thereby concrete instances
of the classes. Depending on the use-case they could instead be modeled as classes.

In contrast, Figure 1b shows a prototypical representation. The double arrow indicates
prototypical inheritance. In contrast to classes and instances, prototypes are represented
as purple ellipses. Whales and Sharks may have a lot in common because they both live
in the water. So, starting from the properties of the whale it might be easy to remove and
add a few properties such that they instead represent a shark. This approach to inheritance,
where every object may be used to inherit from, is called prototypical [7].

In class-based systems the class hierarchy provides useful means for modeling do-
mains and describing knowledge. Ontologies like OWL can also reason about represented
knowledge using class specifications. This can be useful for applications using the Se-
mantic Web. For example, terms similar to a search query could be exchanged using
ontologies. Furthermore, it enables an agent to reason about class membership.

One possibility to model knowledge is by constraints. For example, the animal classes
can be characterized by the following statements: “All mammals feed their babies with
milk” and “all fish can breathe underwater”. Notice the constraining factor all on the
property of feeding and breathing. If a whale was specified as an animal that feeds its
babies with milk and cannot breathe underwater, then it could be reasoned that a whale is
not a fish. However, with this information it is not possible to conclude that a whale is a
mammal since there might be other animals that also feed their babies with milk and are
not mammals.

To use data, an application needs methods to ensure that the data is consistent and
fits a schema. This can be provided by integrity constraints. For example, an application
handling animal data may require that each animal has a property that describes in what
environment the animal can breathe. One could also define that fish need to be able to
breathe underwater. Many of the constraints used to check integrity are similar to the
constraints used in knowledge representation. With integrity constraints the focus lies on
determining whether given data fits a description. In contrast, knowledge representation
can reason about what further information may or may not be possible given the already
known facts.

For the Semantic Web it is useful to combine knowledge representation and reasoning
capabilities with the possibility to define integrity constraints that ensure that data satisfies
defined requirements. In addition, the pursued approach should enable vertical as well as
horizontal sharing.

As stated in [6], vertical sharing between peers is not well established with RDF and
OWL. To ease vertical sharing they introduce a prototypical approach. This allows to
represent data similar to RDF. However, the objects are prototypes and may be reused
arbitrarily. The prototypical inheritance proposed even allows to remove properties during
inheritance.

In contrast to class-based inheritance, prototypical inheritance does notmodel the same
clear hierarchies. Since the properties of the parent might be changed arbitrarily, parents
and children do not necessarily have anything in common. With the loose connection that
prototypical inheritance forms the hierarchical representation is lost.

In addition, the approach described in [6] does not feature knowledge representation
paradigms beyond the definition of properties. In contrast to OWL it lacks the expressive-

1 INTRODUCTION 5

Animal

Mammal Fish

Whale Shark
Figure 2: Hierarchy of animals represented through prototypical inheritance with special-
ization.

ness to define constraints and reason about them. While there are approaches to define
integrity constraints for RDF and OWL (e.g., [8, 9, 9]) there are currently none for the
prototypical representation in [6].

Thus, the goal of this thesis is to explore possible knowledge representation mecha-
nisms for prototypes. These will then be used to introduce basic reasoning and integrity
checking on prototypes. Constraints will be introduced as knowledge representationmech-
anism since they are common to knowledge representation and integrity checking. These
are integrated with the existing prototypical approach. To model hierarchical relation-
ships between prototypes, a new relation called specialization will be introduced. It will
be based on constraint satisfaction. In contrast to inheritance the relation will be observed
rather than defined. This means that whenever the constraints of a prototype are satisfied
by another prototype, that prototype will be a specialization of the former prototype. It is
not necessary to define that they are in a specialization relation. The programming lan-
guage Go1 has a similar, observant behavior regarding interfaces. A type implements an
interface whenever the methods of the interface are present. It is not necessary to explicitly
define that a type has an interface.

The animal example from Figure 1b is extended by the specialization relation in Fig-
ure 2. In addition to inheritance for reuse, specialization describes the animal hierarchy.
The specialization relation is indicated by arrows with a single line and an empty trian-
gle as head (⇾). The idea behind specialization is to formulate prototypes that describe
requirements for a class. For example, a constraint to describe mammals would be: All
mammals feed their babies with milk. Then it can be checked which other prototypes sat-
isfy that requirement. Whales feed their babies with milk while sharks do not. Thus, a
whale is a specialization of a mammal whereas a shark is not. Similarly, common proper-
ties of fish and mammals can be defined and making it possible to check which prototypes
have these common properties. We will choose a part of the constraints present in existing
systems to explore the general possibilities for knowledge representation primitives with
prototypes.

In the following, we will first explore the background for the thesis in Section 2. Here,
we will look at the Semantic Web movement and the differences between class-based and
prototypical inheritance in detail. Frames, description logics and integrity constraint sys-
tems will be introduced. In later parts of the present work these concepts will be drawn
from to decide what requirements are useful for a specialization relation. Section 3 dis-

1 https://golang.org/

https://golang.org/

6

cusses which constraints are selected for this thesis, as well as how to represent constraints
in the prototype system. The specialization relation is explained and described formally
in Section 4. Furthermore, properties of the relation are presented. Section 5 presents the
results obtained from an exploratory implementation of the proposed system. This thesis
is a first exploration of possible definitions of a specialization relation for prototypes. This
opens up many further possibilities, which are discussed in Section 6. Finally, in Section 7
the obtained results are reviewed.

2 Background
Figure 3 shows an overview of related technology and background. This thesis uses three
main components:

1. Inheritance as a means to model and reuse objects.

2. Frames and Description Logics as examples of knowledge representation systems
and a guide to what kind of knowledge representation paradigms are useful.

3. Integrity constraints as a paradigm for describing data formats in such a way that
applications can use them.

Since the goal is to apply the knowledge representation to the Semantic Web, the Se-
mantic Web plays a major role. This can also be seen in the related background. The parts
in Figure 3 highlighted in green are closely related to the Semantic Web. An overview of
this movement is given first in Section 2.1. The Figure also shows the names of different
technologies. These will be explored in more detail in the respective sections.

The differences between prototypical and class-based inheritance are described in Sec-
tion 2.2. In particular, we will discuss examples of prototypical inheritance and of course
the prototypical system for the Semantic Web which this thesis extends, shown in green
with a green circle around it.

Section 2.3 then explores Frames and Description Logics. Frames are a knowledge
representation system that does not have formal semantics. Description Logics are related
to Frames but they have clear semantics. Especially the Web Ontology Language (OWL)
is a widely used system that builds on Description Logics. Therefore, we will investigate
what kind of knowledge representation paradigms are used there.

Integrity Constraints are means to describe the format of valid data. They are discussed
in Section 2.4. In relational databases integrity constraints are used to ensure that updates
and new data do not violate defined rules. Later on web technologies such as the Ex-
tensible Markup Language (XML) and the Resource Description Framework (RDF) also
introduced means to define what schema data should have. This part of the background is
related to the goal of describing data formats and finding matching data such that appli-
cations can use the data. Knowledge representation paradigms could be used to describe
how valid data has to look like. So a selection of systems providing Integrity Constraints
are explored to see what kind of constraints they use and how these might be applied to a
prototypical approach.

2 BACKGROUND 7

Inheritance

class-based

prototypical

SELF

Javascript
Prototypes for
the Semantic

Web

Integrity
ConstraintsXML

DTD

XML
Schema

RELAX NG Schematron

Relational
Databases

RDF

OWL
(with CWA
and UNA)

ShEx

SHACL

SPIN

Desciption
Set ProfilesResource

Shapes

Frames and
Description
Logics

Frames

KL-ONE

OWL

Figure 3: Overview of relevant technology. The green nodes are related to the Semantic
Web. The green node with a green circle around it represents the approach that is extended
in this thesis.

8 2.1 Semantic Web

2.1 Semantic Web
The internet consists of interlinked pages that are mostly accessed through search engines.
The idea of the Semantic Web is to enhance information from the internet in a machine-
readable and processable format [2]. The World Wide Web Consortium (W3C) makes
recommendations for web standards. It also offers recommendations regarding the Se-
mantic Web. The basis of the Semantic Web recommendation is the Resource Description
Framework (RDF) [3]. It can be used to describe domains in terms of subject-predicate-
object triples. For example, the fact that Tim Berners-Lee was born in London can be
expresses as the triple “TimBerners-Lee isBornIn London”. The parts of the triples
are Internationalized Resource Identifiers (IRI). In contrast to the example usually URLs
like http://www.example.org/isBornIn are used.

An extension of RDF is RDF Schema (RDFS) [10]. It provides basic means to model
semantic meaning to RDF triples. With RDFS classes can be defined to structure resources
together. In addition IRIs can be defined as properties and the domain and codomain can
be restricted to be from some class. For example, the property isBornIn can be defined
to take as subject resources from the class Person and as object either a City or Country.

RDF and RDFS data sources can be queried by the SPARQLQuery Language for RDF
(SPARQL) [11]. For example, it could be used to list all persons that are born in London
and are computer scientists. The syntax is similar to SQL.

More complicated knowledge can be expressed using the Web Ontology Language
(OWL) [12]. Ontologies are hierarchies of concepts. For example, a ontology could ex-
press that a mammal is an animal. OWL will be discussed in more detail in Section 2.3.

RDF as well as OWL data can be interlinked. A public ontology maintained by one
party can be referenced and extended by another, much like links on webpages. OWL has
a strict is-a relation for their classes. Because of this, interlinking or extending ontologies
can be difficult. It could be that an ontology is nearly what is needed for an application,
but some things need to be changed. Since the is-a relation is strict, the data can be copied
over and changed but linking the data and removing parts of the defined concepts is not
possible.

To ease sharing and extending a prototypical approach to the Semantic Web has been
presented in [6]. Instead of a strict is-a relation prototypical inheritance is used. The next
section describes the difference between these kinds of inheritance in more detail.

2.2 Inheritance
In this section different kinds of inheritance are discussed. Inheritance, prototypes and
classes are means to model a domain. How (parts of) the world can be described system-
atically has been explored in many fields.

Philosophers have long since discussed what categories exist in the world and how
they can be classified. In philosophy the term ontology describes this field of study [13].
One example of things for which a classification is explored are different concepts. The
classical theory states that a concept consists of a definition built on other concepts. For
example, the concept bachelor is said to be unmarried and male [14]. The idea of clas-
sification has influenced object oriented programming languages as well as description
logics.

The idea of prototypical inheritance originates from linguistics. In linguistics the pro-
totype theory states that humans form categories of things and that some examples of that

http://www.example.org/isBornIn

2 BACKGROUND 9

category are more typical for the class while others cannot be clearly classified. For ex-
ample, it was found by Eleanor Rosch that a typical prototype for the category furniture
is for example chair, while other things, like a lamp or a telephone were not associated as
strongly with the category [15]. With the emerging of the prototype theory in the 1970s an
alternative to the strict definitional classification was introduced. Instead of a clear defini-
tion, something belongs to a concept, if it has sufficient many properties that are associated
with the concept [14].

In computer science it is important to be able to model parts of the world that are rel-
evant for an application. According to [16] inheritance is used to base new objects on
existing ones. The mechanism is incremental, i.e., the new object (child) inherits proper-
ties from the original object (parent) and only new, modified or removed properties need
to be defined. Not all kinds of inheritance allow all these steps. For example, the removal
of properties is not necessarily allowed in all systems. Inheritance relations are transitive
[16]. Thus, a child will not only inherit properties from its parent but also from their par-
ents and all other ancestors. In programming languages class-based inheritance is widely
used, especially in object oriented programming languages. Class-based inheritance dis-
tinguishes between two kinds of objects: classes and instances. Only classes can inherit
from another while instances are concrete objects of a class. The authors of [16] regard
removing properties from the parent as a variation of inheritance which is an exception
rather than the normal case. Some programming languages also use prototypical inher-
itance mechanisms. In contrast to class-based inheritance, prototypical approaches have
only one kind of object, namely a prototype [7]. It is a concrete object but may also serve
as blueprint for inheritance. In the following these two mechanisms will be discussed in
more detail.

2.2.1 Class-based Inheritance

Class-based inheritance is common in object oriented programming languages. Gener-
ally, these approaches distinguish between classes and instances. A class is a definition of
an object, while an instance is a concrete thing that has as a class as type. For example
consider the simple class diagram shown in Figure 4. The class Computer has two vari-
ables, namely a processor name and a list of video outputs. It has functions to boot and to
shutdown the computer. The Laptop class inherits from it, thus it will have all variables
and functions from the Computer class but also the variable monitorSize.

An instance of the Laptop class is shown in Figure 5. It has concrete values for the
different variables of the Laptop class and its parent.

Class-based inheritance is strict. A value or method that a parent possesses is also
inherited by every subclass. It can be overwritten but it cannot be erased. Furthermore,
inheritance is only formed between classes. Instances cannot be used to inherit from. An
instance always needs to belong to a class and it cannot have variables and functions that
are not defined in its class.

In the following, a short overview of criticism to class-based inheritance as presented
in [7] is described: One objection is that it is not always possible to model the reality based
on strict class inheritance. However, it may be sufficient for a given application. Further-
more, for most applications classes can be modeled in many ways with different benefits
and drawbacks. Often there is no optimal solution because of trade-offs like reusability and
space-efficiency. Modeling class hierarchies also faces the problem that usually classes in

10 2.2 Inheritance

Computer

+ processorName : String
+ videoOutput: ArrayList<String>
+ boot() : void
+ shutdown() : void

Laptop

+ monitorSize : Float

Figure 4: Class diagram of computers

≪instance≫
myLaptop: Laptop

+ processorName : “i7”
+ videoOutput: [“HDMI”, “VGA”]
+ monitorSize : 12.0
+ boot() : void
+ shutdown() : void

Figure 5: Example instance of the Laptop class

the middle of a hierarchy are the most important ones. For example, in a hierarchy of
computers there might be more objects that inherit from the Computer class. There might
be classes for servers, desktop PCs, smartphones and another for embedded computers.
And they each in turn could have subclasses of specific models of servers, laptops, smart-
phones and so on. For many use cases the middle layer of different kind of computers
is of most interest. While the computer class might be too general, the others will be to
specific. When trying to model a domain it is often clear what classes are needed in the
middle. However, the development of a hierarchy cannot easily start with concepts in the
middle. Thus, the process of developing class hierarchies needs to be iterative.

2.2.2 Prototypical Inheritance

Prototypical inheritance works different than class-based inheritance. Prototype-based
inheritance usually forms an inheritance relation between instances. An instance is seen
as a prototype, where others can derive from. However, the relation does not have to
be strict. The inheriting prototype may also modify or even remove functionality. Thus,
prototypical systems do not have a clear class hierarchy.

When using prototype-based inheritance there aremany decisions that have to bemade.
An overview of questions and possible answers is presented in [17]. The authors focus on
programming languages. They discuss what primitive mechanisms, like inheritance, cre-
ation, extension or delegation are possible and how they are done. We will only look at the

2 BACKGROUND 11

criteria defined that are relevant to knowledge representation systems. Many criteria are
relevant to a programming language and not directly transferable to a knowledge represen-
tation system. For example, whether objects or the parent link of an object can be modified
dynamically is not of importance in static knowledge representation system. However, the
following criteria introduced in [17] are relevant to both programming language and static
knowledge representation systems:

1. Is it possible to create elements from nothing? That is, need every object be cloned
from an existing one or have a prototypical inheritance relation to another?

2. Is multi-inheritance possible? That is, can one prototype have more than one proto-
type as its parent?

As examples for systems with prototypical inheritance we will look at two program-
ming languages and the proposed prototypical knowledge representation system for the
web upon which this thesis builds.

SELF SELF [18] was designed in the 1980s. It is one of the earliest programming lan-
guages that use prototypical inheritance. Another specialty about the language is that it
does not allow object variables to be accessed directly. To read or change a variable the
object can send a message to itself. The language is named “SELF” because of the many
messages that are passed to “self”.

With SELF objects can be created from nothing but they may also be cloned. Multi-
inheritance is possible. SELF allows to modify properties of an object dynamically and
objects can even change their parent dynamically. If an object lacks the functionality to
handle a message it delegates the message to its parents. In this fashion variables and
functions are resolved upwards in the inheritance chain.

Javascript Another programming languages that uses prototypes is Javascript [19]. The
language was originally intended to be used in web browsers where it is very widely used.
In addition, also server side applications can be written in Javascript. Beside prototypical
inheritance it also features imperative and functional programming paradigms.

In Javascript each object has a link to another object that is its prototype. The in-
heritance chain ends when an object has null as its prototype. Thus, formally objects
are created from null and thus not from nothing. The language does not feature multi-
inheritance, but there are workarounds. As in SELF, it is possible modify properties dy-
namically and the parent of the inheritance relation can be changed dynamically. If a
property is not found by the object itself, it is delegated to the parent of the object until it
is found or the end of the inheritance chain is reached.

Prototypes in Knowledge Representation There are different approaches that use pro-
totypes for knowledge representation. As examples we will discuss two of them. An early
example for a prototypical approach in knowledge representation is the framework Theo
[20]. Theo is based on frames and used to represent beliefs, meta-beliefs and problems to
be solved. It uses only one kind of frame to represent all these different parts. The authors
argue that it is not always clear what is an instance and what is a class. Thus, they do
not make the distinction. The Theo framework stores available methods for interference

12 2.2 Inheritance

as beliefs. One of the possible methods is inheritance, which is applied to search for so-
lutions in the generalizations of a frame. Another approach to knowledge representation
with prototypes has been proposed recently [6, 21]. This approach focuses on sharing data
in the context of the Semantic Web. Since this thesis will build upon the system presented
by Cochez et al. a more detailed overview of the prototype system is given. As the formal
syntax and semantics will be needed later they are presented in Section 2.2.4. For now, a
general overview of the system is introduced.

In the approach described in [6] a prototype has a unique identifier and a base from
which it inherits prototypically. Thismeans that properties and their values can be removed
and added. The possibility to change values arbitrarily from the parent is of major interest
for the Semantic Web. Exchanging and reusing data can be done in many different ways
because of the gained freedom. Since arbitrary changes can be made, data can be freely
adapted by inheritance to suite different applications.

With the presented approach a prototype always inherits from another prototype. If a
new prototype should not be copied from an existing one, it may inherit from a special
empty prototype from which all prototypes recursively inherit. However, formally this
means that there is no element creation from nothing. Multi-inheritance is not supported
by the approach.

myLaptop
i7hasProcessor
12"hasMonitorSize

HDMI
hasVideoOut

VGA
hasVideoOut

Pi 2 ARM Cortex-A7
hasProcessor

− hasProcessor ∗
− hasMonitorSize ∗
− hasVideoOutput VGA

(a) Graphical Representation

myLaptop
base p r o t o : P_0
add h a s P r o c e s s o r i 7
add ha sMon i t o rS i z e 12
add hasVideoOut HDMI
add hasVideoOut VGA
ex : Pi_2
base myLaptop
rem h a s P r o c e s s o r ∗
rem ha sMon i t o rS i z e ∗
rem hasVideoOutpu t VGA
add h a s P r o c e s s o r ARM_Cortex−A7

(b) Concrete Syntax
Figure 6: Deriving a Raspberry Pi from a laptop by removing and adding properties.

Figure 6 shows an example of prototypical inheritance. The computer MyLaptop is
definedwithmultiple properties. Figure 6a shows a graphical representation. In the figures
throughout this thesis prototypes are always represented as purple structures. Thus, the
ellipses are prototypes and the single arrows describe property relations. The arrows are
labeled with the property name. The nodes pointed to by the arrows represent the values
of the property relation. These are the identifiers of prototypes and are thus colored light
purple. For example the prototype myLaptop has the property hasVideoOutput which
has HDMI as well as VGA as values. The values themselves are prototypes but are only
referenced to, thus the different kind of node. A Raspberry Pi inherits from the laptop.
The inheritance relations is shown by the double arrow and the white box. In the box
each property that is removed during inheritance is named. The value of the processor
is completely removed (indicated by “*”). Since a Raspberry Pi has no own monitor the
respective property is also removed. In addition, one video output is removed, namely,

2 BACKGROUND 13

VGA. In the graphical representation the added values are represented as properties of the
Raspberry Pi node.

The concrete syntax shown in Figure 6b starts with the name of the prototype de-
scribed. Then, the base defines the inheritance relation by naming the parent of the pro-
totype. All prototypes eventually inherit from P_0, a special prototype that is empty. After-
wards the properties removed (indicated by rem) and added (indicated by add) are listed.
The Raspberry Pi will have all properties of its parent that were not removed. Thus, it
inherits the video output HDMI. Notice, how this approach only uses instances in contrast
to the class-based computer hierarchy presented in Section 2.2.1. There is no hierarchy
here just objects that can be inherited from and thereby may be arbitrarily modified.

2.2.3 Discussion

Inheritance and classes serve multiple purposes during the design of an application [22]:
“As part of the high-level design phase, inheritance serves as a means of mod-
eling generalization/specialization relationships. [..] In the low-level design
phase, inheritance supports the reuse of an existing class as the basis for the
definition of a new class. ”

The mixture of specialization and reuse is not necessarily beneficial and the approach
presented in this thesis aims to untangle these two parts. Reuse is optimally supported
by prototypical inheritance, since everything can be reused and modified in completely
unrestricted ways. As a trade-off prototypical inheritance does not have the same expres-
siveness in modeling generalization/specialization relations. Since prototypes can vary so
much from their parent, inheritance does not necessarily convey any information about the
classification of the objects that are in inheritance relations to another. With class-based
inheritance on the other hand the specialization relation from parent to child is clear.

In order to keep reusability advantages of the prototypical system and gain the ability
to model specialization, we will propose an additional specialization relation that deals
only with this aspect of modeling.

2.2.4 Syntax and Semantics of Prototypes for the Semantic Web

The work in this thesis is an extension of the prototype system described in [6] and has
been briefly summarized in Section 2.2.2. The general idea of the prototypical system is
that each prototype has an identifier, a base fromwhich it inherits and two sets of properties
and values that should be removed, respectively, added. For future reference and extension
the syntax and semantics of that system are introduced in the following.

Prototype Syntax Prototypes consist of an identifier, a base (the prototype to inherit
from) and a set of add and remove instructions for the inheritance. These instructions will
be referred to as simple change expressions that assign a property with a set of values.

Consider the example given in Figure 7. TheSmallHotel has the property hasRoom
with three different values. The prototype AnotherHotel inherits from it and removes the
value RoomNo3. Furthermore, the property hasRating with value 3 is added. The graph
representation shown in Figure 7a is the original graphical representation used in [6]. The
prototypes are represented by elliptical nodes. The added values are nodes connected to

14 2.2 Inheritance

TheSmallHotel
RoomNo1hasRoom
RoomNo2hasRoom

RoomNo3hasRoom

AnotherHotel 3hasRating

− hasRoom RoomNo3

(a) Graph Representation

TheSmallHotel
base proto : P_0
add hasRoom RoomNo1
add hasRoom RoomNo2
add hasRoom RoomNo3

AnotherHotel
base TheSmallHotel
rem hasRoom RoomNo3
add hasRating 3

(b) Concrete Syntax
Prototype TheSmallHotel

proper ty hasRoom
value RoomNo1,

RoomNo2,
RoomNo3

Prototype AnotherHotel
proper ty hasRoom

value RoomNo1,
RoomNo2

proper ty hasRating
value 3

remove hasRoom RoomNo3
add hasRating 3

(c) Block Representation
Figure 7: Example of prototypical inheritance in three representations: AnotherHotel
inherits from TheSmallHotel by removing RoomNo2 and adding a property hasRating
with value 3.

the prototypes by edges with the property name as label. Properties and values that are
removed are annotated to the arrow indicating inheritance. The concrete prototype syntax
(Figure 7b) describes the same example. First, the prototype identifier is written, then the
base to inherit from, followed by remove and add expressions. Both notations only de-
scribe the changes. In contrast, the block representation shown in Figure 7c describes the
results of the inheritance. The information used for the process of inheritance is displayed
by remove and add operations that are both written on the inheritance edge. The properties
and their values are written in a textual form.

The formal definition introduced in [6] is tightly linked to the concrete syntax.

Definition 2.2.1 (Prototype Expressions [6]). Let ID be a set of absolute IRIs according
to RFC 3987 [23] without the IRI proto:P_0. The IRI proto:P_0 is the empty prototype
and will be denoted as P∅. We define expressions as follows:

proto:P_0
proto:P_0

2 BACKGROUND 15

• Let p ∈ ID and r1,… , rm ∈ ID with 1 ≤ m. An expression (p, {r1,… , rm}) or
(p, ∗) is called a simple change expression. p is called the simple change expression
ID, or its property. The set {r1,… , rm} or ∗ are called the values of the simple
change expression.

• Let id ∈ ID and base ∈ ID∪P∅ and add and remove be two sets of simple change
expressions (called change expressions) such that each simple change expression ID
occurs at most once in each of the add and remove sets and ∗ does not occur in the
add set. An expression (id, (base, add, remove)) is called a prototype expression.
id is called the prototype expression ID.

Let PROTO be the set of all prototype expressions. The tuple PL = (P∅, ID, PROTO) is
called the Prototype Language.

For brevity we assume that the IRIs used here are unique. In a realistical setting longer
IRIs or IRIs with prefixes would be used as in RDF. An example for a simple change
expression would be:

(hasRoom, {RoomNo1, RoomNo2, RoomNo3}) (1)
And the syntax of TheSmallHotel is written as:

(TheSmallHotel, (P∅, {(hasRoom, {RoomNo1, RoomNo2, RoomNo3})}, ∅) (2)
AnotherHotel has this syntax:

(AnotherHotel, (TheSmallHotel, {(hasRating, {3})}, {(hasRoom, {RoomNo3})})
(3)

For future definitions the domain of a subset of all prototype expressions is needed:
Definition 2.2.2 (dom [6]). The domain of a finite subset S ⊆ PROTO, i.e., dom(S) is the
set of the prototype expression IDs of all prototype expressions in S.

The domain of the example fromFigure 7 is the set {TheSmallHotel, AnotherHotel}.
In order to ensure that there are no inheritance cycles in a knowledge base and that

every inheritance chain originates from P∅, groundedness is introduced.
Definition 2.2.3 (Grounded [6]). Let PL = (P∅, ID, PROTO) be the Prototype Language.
Let S ⊆ PROTO be a finite subset of PROTO. The set is defined as:

1. P∅ ∈

2. If there is a prototype (id, (base, add, remove)) ∈ S and base ∈ then id ∈ .

3. is the smallest set satisfying (1) and (2).

S is called grounded if and only if = dom(S) ∪ {P∅}. This condition ensures that all
prototypes derive (recursively) from P∅ and hence ensures that no cycles occur.

16 2.2 Inheritance

So by this definition the set for Figure 7 is {P∅, TheSmallHotel, AnotherHotel},since TheSmallHotel and AnotherHotel are all prototype expression IDs in the example
and their respective base is also in. Since this is the domain of the example plus the empty
prototype it follows that the example is grounded.

An example with cycles in it is:
S = {(A, (B, ∅, ∅))

(B, (A, ∅, ∅))}

Here the set (which is minimal) would only contain P∅, since neither A nor B could be
added to it because their bases are not inG. However, dom(S) = {A,B} and thus S is not
grounded.

A knowledge base is defined as a grounded subset of all possible prototype expressions.
In addition each referenced ID has to be represented by a prototype in the knowledge base.
Definition 2.2.4 (Prototype Knowledge Base [6]). Let PL = (P∅, ID, PROTO) be the Pro-
totype Language. Let KB ⊆ PROTO be a finite subset of PROTO. KB is called a Pro-
totype Knowledge Base if and only if 1) KB is grounded, 2) no two prototype expres-
sions in KB have the same prototype expression ID, and 3) for each prototype expression
(id, (base, add, remove)) ∈ KB, each of the values of the simple change expressions in
add are also in dom(KB).

Because of the third rule, the example given in Figure 7 alone is not a knowledge
base. It would be necessary to add prototypes for each value of the add expressions, like
(RoomNo1, (P∅, ∅, ∅)).To access a prototype in a knowledge base given its ID a syntactical resolve function
is introduced.
Definition 2.2.5 (R [6]). Let KB be a prototype knowledge base and id ∈ ID. Then, the
resolve function R is defined as: R(KB, id) = the prototype expression in KB which has
prototype expression ID equal to id.

So if we had a prototype knowledge base KB for the example in Figure 7 which in-
cluded prototypes for all values of add expressions as described above then an example
resolve would be:

(KB,TheSmallHotel) =
(TheSmallHotel, (P∅, {(hasRoom, {RoomNo1, RoomNo2, RoomNo3})}, ∅)

Prototype Semantics The semantics of the prototype system are also defined in [6].
Basically, a prototype structure is introduced that consists of a set of identifiers, a repre-
sentation of the prototypes and an interpretation that maps the IDs from the syntax to the
identifiers in the semantics. Then multiple interpretation functions are introduced to de-
fine the semantics of the various syntactical constructs (simple change expressions, change
expressions, property values, prototype expressions, knowledge bases). The structure un-
derlying the semantics is based on a prototype that consists of an object with an identifier
and a set of properties and their values. The inheritance is computed into the properties
and values of the prototype.

2 BACKGROUND 17

Definition 2.2.6 (Prototype-Structure [6]). Let SID be a set of identifiers. A tuple pv =
(p, {v1,… , vn}) with p, vi ∈ SID is called a Value-Space for the ID-Space SID. A tu-
ple o = (id, {pv1,… , pvm}) with id ∈ SID and Value-Spaces pvi, 1 ≤ i ≤ m for the
ID-Space SID is called a Prototype for the ID-Space SID. A Prototype-Structure O =
(SID,OB, I) for a Prototype Language PL consists of an ID-Space SID, a Prototype-
Space OB consisting of all Prototypes for the ID-Space SID and an interpretation func-
tion I , which maps IDs from PL to elements of SID.

The IDs from the syntax are mapped to the SIDs of the Prototype Language with a
Herbrand-Interpretation.
Definition 2.2.7 (Herbrand-Interpretation [6]).
Let O = (SID,OB, Iℎ) be a Prototype-Structure for the prototype language PL =
(P∅, ID, PROTO). Iℎ is called a Herbrand-Interpretation if Iℎ maps every element of
ID to exactly one distinct element of SID.

Next the interpretation functions for the different syntactical expressions are defined,
starting with the basic building blocks up to whole knowledge bases.
Definition 2.2.8 (Is [6]). Interpretation for the values of a simple change expression. Let
KB be a prototype knowledge base and v the values of a simple change expression. Then,
the interpretation for the values of the simple change expression Is(KB, v) is a subset of
SID defined as follows:

SID, if v =∗
{Iℎ(r1), Iℎ(r2),… , Iℎ(rn)}, if v = {r1,… , rn}

Thus, the interpretation of the values of the simple change expressions given in Exam-
ple 1 is

{Iℎ(RoomNo1), Iℎ(RoomNo2), Iℎ(RoomNo3)},

where Iℎ maps these elements to distinct elements in SID.
Definition 2.2.9 (Ic [6]). Interpretation of a change expression. Let KB be a prototype
knowledge base and a function ce = {(p1, vs1), (p2, vs2),…} be a change expression with
p1, p2,⋯ ∈ ID and the vsi be values of the simple change expressions. Let W = ID ⧵
{p1, p2,…} . Then, the interpretation of the change expression Ic(KB, ce) is a function
defined as follows (We will refer to this interpretation as a change set, note that this set
defines a function):

{(Iℎ(p1), Is(KB, vs1)), (Iℎ(p2), Is(KB, vs2)),…} ∪
⋃

w∈W
{(Iℎ(w), ∅)}

One change expression is the add from Example 2:
{(hasRoom, {RoomNo1, RoomNo2, RoomNo3})}

18 2.2 Inheritance

The interpretation of this change expression is:

{(Iℎ(hasRoom), Is({RoomNo1, RoomNo2, RoomNo3}))}∪
⋃

w∈(ID⧵{hasRoom})

{(Iℎ(w), ∅)}

={(Iℎ(hasRoom), {Iℎ(RoomNo1), Iℎ(RoomNo2), Iℎ(RoomNo3)})}∪
⋃

w∈(ID⧵{hasRoom})

{(Iℎ(w), ∅)}

Notice, that for each property that is not explicitly stated, the interpretation will yield the
empty set as value of these properties.

In the following, the change expressions are applied to determine the value of a prop-
erty.

Definition 2.2.10 (J [6]). The value for a property of a prototype. Let KB be a prototype
knowledge base and id, p ∈ ID. Let R(KB, id) = (id, (b, r, a)) (the resolve function
applied to id). Then the value for the property p of the prototype id, i.e., J (KB, id, p) is:

Ic(KB, a)(Iℎ(p)), if b = P∅
(J (KB, b, p) ⧵ Ic(KB, r)(Iℎ(p))) ∪ Ic(KB, a)(Iℎ(p)), otherwise

As example for the computation of the property values, consider the property hasRoom
of the prototype expression with the ID AnotherHotel:

J (KB, AnotherHotel, hasRoom)
=(J (KB, TheSmallHotel, hasRoom)⧵

Ic(KB, {(hasRoom, {RoomNo3})})(Iℎ(hasRoom)))
∪ Ic(KB, {hasRating, {3}})(Iℎ(hasRoom))

=(Ic(KB, {(hasRoom, {RoomNo1, RoomNo2, RoomNo3}))})}(Iℎ(hasRoom)))⧵
Ic(KB, {(hasRoom, {RoomNo3})})(Iℎ(hasRoom)))

∪ Ic(KB, {hasRating, {3}})(Iℎ(hasRoom))
= {Iℎ(RoomNo1), Iℎ(RoomNo2), Iℎ(RoomNo3)}⧵

{Iℎ(RoomNo3)}
∪ ∅

={Iℎ(RoomNo1), Iℎ(RoomNo2)}

With the interpretation function for values of properties, the interpretation of a proto-
type is defined:

Definition 2.2.11 (FP [6]). The interpretation of a prototype expression is also called its
fixpoint. Let pe = (id, (base, add, remove)) ∈ KB be a prototype expression. Then the
interpretation of the prototype expression in context of the prototype knowledge base KB
is defined as FP (KB, pe) = (Iℎ(id), {(Iℎ(p), J (KB, id, p))|p ∈ ID, J (KB, id, p)) ≠ ∅}),
which is a Prototype.

2 BACKGROUND 19

The prototype expression of AnotherHotel then has the semantics:
FP (KB, (AnotherHotel,

(TheSmallHotel, {(hasRating, {3})}, {(hasRoom, {RoomNo3})}))
=(Iℎ(AnotherHotel),

{(Iℎ(hasRoom), {Iℎ(RoomNo1), Iℎ(RoomNo2)}), (Iℎ(hasRating), {Iℎ(3)})})

The interpretation of a knowledge base is a mapping of each prototype expression
occurring in the knowledge base to the fixpoint interpretation of that prototype expression.
Definition 2.2.12 (IKB:Interpretation of Knowledge Base [6]). Let O = (SID,OB, Iℎ)
be a Prototype-Structure for the Prototype Language PL = (P∅, ID, PROTO) with Iℎ
being a Herbrand-Interpretation. Let KB be a Prototype-Knowledge Base. An interpre-
tation IKB for KB is a function that maps elements of KB to elements of OB as follows:
IKB(KB, pe) = FP (KB, pe)

This concludes the presentation of the syntax and semantics introduced in [6]. The
semantics will later be extended to contain constraints and a specialization relation.

2.3 Frames and Description Logics
The origin of description logic stems from frames. Frame systems were based on ideas
from psychology and linguistics. The first computer systems based on these ideas did not
have a formal model underneath. Later on description logic with a strong formal model
based on a subset of first-order logic emerged. An early description logic is KL-ONE.
More recently, the Web Ontology Language (OWL) evolved, which is of special interest
as it is the standard used in the Semantic Web movement.

To illustrate what can be described with description logics, consider the following
general example: A mammal is an animal. A fish is also an animal and lives in the water.
A whale is a mammal that lives in the water. This can be described in description logic by
the following formulas:

Mammal ⊑ Animal
Fish ⊑ Animal ⊓ ∀LivesIn.Water

Whale ⊑ Mammal ⊓ ∀LivesIn.Water

We distinguish between two types of object. For one, we have unary predicates like
Animal or Water. These are called concepts. In addition, we can have binary predi-
cates like LivesIn called roles. Semantically, each unary predicate is interpreted as set
of objects from the domain. The roles are interpreted as a set of tuples between objects
of the domain. The symbol “⊑” denotes a subset relation and A ⊓ B the intersection of
the interpretation of A and B. Writing ∀LivesIn.Water denotes that all concepts which
occur in the binary relation called LivesIn have the concept Water on the right side of the
relation (i.e., each concept A with LivesIn(A, Water) and not LivesIn(A, C), where
C ≠ Water). In this context the concept after the dot (here: Water) is called role-filler.
In the above example a whale might be a fish, because we did not specify that fishes and
mammals are disjoint concepts.

Next, Frames and two representatives of description logic are described in more detail.

20 2.3 Frames and Description Logics

Frames The term frame was first used by Marvin Minsky in his paper ’A Framework
for Representing Knowledge‘ [24]. There, he described a theory about how to perform
visual reasoning and language processing. A frame describes a general framework. It has
multiple properties called slots.

The term Frame Knowledge Representation System has been used to describe a family
of languages that represent knowledge bymeans of frames and slots attached to each frame.
Frames as originally proposed did not have a clear formal semantics. Only later systems
that borrowed ideas from Frames introduced strong formalisms.

KL-ONE This frame system is an early example with a strong formalism. Later on,
a whole family of similar languages developed [25]. In KL-ONE [26] frames are called
concepts and slots are named roles. The formalism used is based on logic. It uses a subset
of first-order logic.

OWL The W3C recommended OWL [4] in 2004. It is also based on a subset of first-
order logic. Also a newer version called OWL 2 [5] exists. There are different subsets of
OWL (and OWL 2). Most of them restrict the expressiveness in order to make reasoning
decidable or even efficient. The names of the relations change again with OWL. Concepts
are called classes and roles are called properties.

For the purpose of this thesis the detailed differences between these systems are not of
high importance. Rather, the similarities between them are most interesting, as we are
looking for the most important knowledge representation primitives.

All these systems allow to define classes by composing different restrictions. These re-
strictions typically include value restriction and number restrictions. Value restrictions im-
pose what kinds of values a property might have. In the example above ∀LivesIn.Water
is a value restriction. We will refer to this kind of constraint as allValuesFrom. The
name is chosen because the values that are allowed as value of the property have to come
from the class defined as value of the constraint. In the above example all values of the
property LivesIn have to be of class Water. Similarly, it can be required that there is
some value of a property is of some class. For example ∃hasChildren.Doctor would
denote that there is at least one child who is a doctor. Wewill refer to this kind of constraint
as someValuesFrom. An example for a number constraint would be ≥ 3 hasChildren.
Only objects that have a property hasChildren with at least three values will satisfy this
restriction. We will refer to this kind of constraint as cardinality. Many other kinds
of restrictions can be expressed. For example, the binary predicates (roles) can also be
restricted. To explore basic knowledge representation primitives we will concentrate on
simpler constraints. The constraints considered in this thesis will be illustrated in more
detail in Section 3.

2.3.1 Open and Closed World Assumption

When using logic to represent the world there are two major modes of reasoning, namely
the open and closed world assumption. With the open world assumption it is assumed that
the knowledge is not complete. Things can be left open and could be either true or false.
For example, the class MultipleParent could be defined as:

MultipleParent ⊑ ≥ 2 hasChildren

2 BACKGROUND 21

In addition a knowledge base could contain the fact that Alice is a MultipleParent.
With the open world assumption (OWA) the answer to the question whether Alice has
at least two children will be true. However, we do not know the names of the children
and how many there are exactly. If asked what the name of one of Alice children is, the
knowledge base would answer do not know. Notice, that statements under the open world
assumption (e.g., OWL statements) are axiomatic. They are taken to be true, even if the
exact facts, like which children Alice has, are not known.

Reasoning under the closed world assumption (CWA) will come to different conclu-
sions given the same information. The assumption is that only what is known and the
literals than can be interfered from that are true and that everything else is false. Thus, on
one hand it is asserted that Alice is a MultipleParent. On the other hand, since the chil-
dren of Alice are not known to the knowledge base, it is assumed under the closed world
assumption that Alice has no children. This leads to an inconsistency and this knowledge
base would not be useful under the closed world assumption.

However, if the knowledge base also contained the assertion of two children of Alice,
say John and Tom, then it would be consistent both with OWA and CWA. If it is then asked
whether Alice has three children, the answer under the OWAwould be do not know, while
under the CWA it is not possible that there are any children that are not know, so the answer
would be no.

As another example, consider the following minimal formula which uses only propo-
sitional logic. If the formula a ∨ b is a knowledge base then it is possible that either only
a is true or only b is true or both could be true. So under the OWA knowing a ∨ b does
not allow to deduce that a must be true. Also it cannot be deduced from it that b must be
true. It is simply not known which of the variables are true, only that at least one of them
has to hold.

In contrast, with closed world reasoning knowing a ∨ b leads to knowing ¬a and ¬b
because neither a nor b can be concluded from a ∨ b. This is of course an inconsistency,
similar to the example above: There is no model that can satisfy these combined condi-
tions. Different variants of closed world assumptions exist that tackle such problems. For
example the generalized closed world assumption only assumes a literal to be false if it is
part of a conjunction and the knowledge base still entails the rest of the conjunction with-
out the literal. In the previous example a ∨ b is a conjunction. Assuming that it is in the
knowledge base, it is entailed. However, neither a nor b is entailed on its own, so by the
generalized closed world assumption they are not considered false. If we had a knowledge
base with the formulas a∨ b∨ c and b∨ c then the knowledge base would entail b∨ c and
thus with the generalized closed world assumption ¬a can be interfered. Notice, that this
does not lead to an inconsistency, but in an open world there might as well be models of
the both formulas where a is true.

Description logics usually use the open world assumption as it is more accurate to
model the real world: New information can be added without leading to an inconsistency
with previously inferred knowledge. When starting with an empty knowledge base every-
thing is possible. Adding facts to the knowledge base then restricts what is possible. A
property of this kind of reasoning ismonotonicity, i.e., if something can be interfered to be
true given some knowledge it can also be interfered if more knowledge is added. Adding
something that does not play a role in the interference is no problem in the OWA. Adding
a contradicting fact will lead the knowledge base to be inconsistent and then everything is
interfered to be true (so the rule for monotonicity holds but of course in practice an incon-

22 2.4 Integrity Constraints

sistent knowledge base is of no use). In comparison, the CWA assumes that everything not
explicitly known is false. Thus, with an empty knowledge base the answer to each query
under CWA would be no. Adding facts to the ones interfered by the empty knowledge
base will always lead to an inconsistency. This kind of reasoning is not monotone. If we
look again at the basic propositional example from above then the formula a ∨ b can be
used to interfere ¬a. However, if the formula a is added, then ¬a can no longer be derived.

A disadvantage of the open world assumption is that there might be no clear yes or
no answer to a question because the answer is simply not known. In some use-cases this
behaviour is not desirable and a definite answer is required. For example, when checking
integrity constraints (which will be discussed in detail in Section 2.4) we want to know
whether or not the data is according to the constraints. The answer that with some addi-
tional data which might or might not be true the integrity constraint could possibly hold
is not useful. Instead, a clear line which data is acceptable and which is not is needed. So
the decision which assumption to make depends on the use-case.

2.4 Integrity Constraints
Many applications use data and need to ensure that the data is according to some stan-
dard or schema. In relational databases the structure of the data is clearly defined by the
database schema. Still, updates in the database may violate the schema and thus the input
needs to be checked. Other data representation formats do not by themselves have a strict
schema. There, schema languages using integrity constraints are important to ensure that
data is suitable for given applications. XML is one of these data representation formats
with few restrictions. RDF is used widely in the Semantic Web community and also needs
such constraint validation methods. In the following integrity constraints for these systems
are shortly described with a focus on RDF.

Relational Databases Relational databases [27] typically have a strong data schema,
namely the tables the data is arranged in. Deleting elements in one table may lead to
problems because the element could be referenced in other tables. To detect problems
like these integrity checking is done when changing data in a database. Other integrity
constraints are for example regarding the primary key. Each table has to have one, it needs
to be unique and not null. Many databases also feature additional schemas that can be
defined by the developer.

XML The Extensible Markup Language (XML) [28] is a data format to exchange doc-
uments over the internet. It is intended to be machine-readable as well as human-readable
and is widely used.

To ensure that data is of a required format for an application or in general according
to some specification there are many different constraint validation systems for XML. It is
possible to add a Document Type Description (DTD) to an XML file to define a grammar
to which the XML file should comply. Other validation system are XML Schema, RELAX
NG, or Schematron. Some formulate the constraints in XML, others use other languages
for the specification. Typically, regular expressions can be used to describe value con-
straints. Schematron on the other hand focuses on the existence or absence of paths in the
XML Tree.

2 BACKGROUND 23

RDF Integrity constraints for RDF check properties of the graph. Different systems
allow for different things to be checked. In general, the existence of properties can be
required and that values of the properties are of a specific datatype or according to specified
values.

Some approaches use OWL to describe schemas. However, OWL usually has open
world reasoning, which is not suitable for integrity checking. Consider again the example
of Alice from Section 2.3.1. It is defined that she has at least two children but neither the
exact number nor the names of the children are known. If the requirement to have at least
two children is viewed as an integrity constraint then it should assert whether or not the
data given about Alice satisfies this requirement. Since the data regarding Alice does not
contain information about the children the data should not satisfy the constraint that she has
at least two children. However, under the open world assumption this cannot be concluded.
The statement about the two children is not considered a requirement but an axiom. It has
to be true, otherwise it would not be in the knowledge base. Therefore, when using OWL
for integrity constraints the closed world assumption is used. Furthermore, OWL usually
does not have a unique name assumption. This assumption means that every name is
unique and therefore if two things have a different name they cannot be the same. Using
these two assumptions, OWL can be used to describe schemas [8]. However, this approach
can be misleading because the semantics are different from normal OWL semantics.

There are different drafts in the W3C regarding RDF validation. One of them is the
Shape Expression Schema (ShEx) [9]. It uses an extra schema language to specify graph
properties and values. A shape is a requirement for a node. It can specify what links
there are and how the values of these links (properties) should look like. It is possible
to specify the number of values a property can have. The values of the properties can be
required to be of a certain data type or match a pattern. Furthermore, the values can be
required to match at least one of a set of options or required to all match a set of options. In
addition, the values of properties can also be specified to match another shape and boolean
connectives can be used to combine all these parts.

The Shapes Constraint Language (SHACL) is another proposal for the W3C [29]. It
also uses extra schema files, however, they are also written as RDF graph and do not use an
extra format as ShEx. These RDF graph schemas are called shapes and they differ between
Node Shapes and Property Shapes. Nodes can reference to property shapes to ensure that
the node has a specific link. They can also combine things with and, or and not. Properties
can have a cardinality restriction and the values of a property can be required to be of a
certain RDFS class or datatype. In addition, patterns can be used to describe the data
format. As opposed to ShEx they cannot express some-of and all-of constraints.

Another approach to consistency checking is SPIN2. It uses the SPARQL Protocol
and RDF Query Language (SPARQL). SPARQL is a query language that works on RDF
Graphs. Its syntax is similar to SQL and it is commonly used to access RDF data sets.
SPIN stores SPARQL Queries in RDF Syntax and can be used as constraint language.
Constraints are formulated in terms of SPARQL queries. Because they are written in
SPARQL they are more complicated to write than the other languages that define high
level constraint languages [30]. The benefit is that they can be validated using SPARQL
engines typically already running for many data sets. RDF data itself is a graph pattern
and SPARQL works on these graphs. Extensions like RDFS and OWL have a semantic
that allows to interfere information that is not explicitly represented in the RDF graph. So

2http://spinrdf.org/

http://spinrdf.org/

24

called entailment regimes [31] are used to extend graph pattern matching with entailment.
So, using SPARQL it is not only possible to query RDF Graphs but also take into account
entailments from RDFS or OWL.

To define how data has to be formulated for an application the Dublin Core Application
Profile (DCAP) [32] can be used. The term profile refers to the description of requirements
necessary for an application to use the data provided. Description Set Profiles [33] are a
formalization of the DCAP. It is defined for XML but can also be extended to RDF. It can
specify which properties are used and how the values of the properties have to look like.
Cardinality constraints can be also be made. It cannot express allValuesFrom constraints.

Resource Shapes (ReSh) [34] are another means to define shapes of an RDF graph. The
constraints are themselves expressed in RDF. Properties and which values are allowed can
be constrained. Data types are included but property cardinality can only be restricted
in limited ways (zero, one, many and combinations of these). The constraints cannot be
combined by boolean connectives.

3 Constraints
In this section, it is discussed which constraints to use as knowledge representation prim-
itives for the specialization relation and how to represent these constraints.

In the following different possible types of constraints are discussed in Section 3.1.
Section 3.2 then presents different ways of representing constraints and the advantages
and disadvantages of these representations are evaluated.

3.1 Types of Constraints
Section 2.3 and 2.4 showed examples of systems with constraints. The prototypical system
proposed in [6] does not feature a data type system. In the implementation discussed in
[21] a minimal type system is introduced. While this is an interesting extension, it is not
included in the scope of this thesis. However, the possibilities that would arise with a
type system are discussed in Section 6.1. For now, we will focus on constraints that are
independent of data types. Therefore, constraints formulated by regular expressions on
strings or restricting values to be from a range of integers will not be included here.

As discussed in Section 2.3 OWL and other description logic systems have the follow-
ing common constraints:

• allValuesFrom (OWL: Class, Prototypes: Set of IRIs): All values of a property have
to be from the specified class (respectively, the specified set of IRIs).

• someValuesFrom (OWL: Class, Prototypes: Set of IRIs): At least one value of a
property has to be from the specified class (respectively, the specified set of IRIs).

• Cardinality (OWL: Integer, Prototypes: Interval): A specified property has to fit a
cardinality restriction.

• hasValue (OWL: Individual, Prototypes: IRI]): The property has a specified value.
Many integrity constraint systems for RDF discussed in Section 2.4 also use these

constraints. They provide strong expressiveness to restrict values of properties and the
number of properties.

3 CONSTRAINTS 25

A special constraint for “hasValue” is not needed in our approach, because it will be
possible to express this with values (a value itself will serve as a constraint). Of course
there are many more possibilities how to restrict subsumption in OWL or how integrity
constraints can be formulated. In this thesis we focus on this small set of constraint types
and explore how specialization can be build based on these. In Section 6 possible exten-
sions beyond these constraints are explored.

The constraints are defined as follows:
Definition 3.1.1 (Constraint). A constraint c consists of two parts, namely a type and
constraining value. We distinguish the following constraint types on properties:

• All values have to come from a set of values (type: allValuesFrom)

• Some value has to be one from a set of values (type: someValuesFrom)

• The number of values is within an interval (type: cardinality)

The type of a constraint c is written as c.type and the constraining value as c.cval.

Semantically, constraint satisfaction is defined as follows:
Definition 3.1.2 (Constraint Satisfaction). Given a Constraint c and a set of values V , we
say that V satisfies c if

∀v ∈ V ∶ v ∈ c.cval, if c.type = allV aluesF rom
∃v ∈ V ∶ v ∈ c.cval, if c.type = someV aluesF rom

|V | ∈ c.cval, if c.type = cardinality.

In the next section, the integration of the above constraints into the prototype language
is discussed.

3.2 Constraint Representation
While we defined how constraints can be written down, they need to be represented in
the prototype system. Especially integrity constraint systems often use extra syntactical
representations to represent constraints. We aim at a tight integration of constraints with
the prototypical system, as does description logic. Therefore, constraint representation
should be integrated with the prototype system.

Beside this requirement, a good representation should have certain properties. An
optimal representation would be human-readable and short. It should also distinguish
between values and constraints on a syntactical level. This will make it easier to assign
semantics to the constraints.

As discussed above, a prototype should be allowed to have constraints and values at
the same time. The values will be understood as a constraint themselves to express that a
certain value has to be present. In addition, it should be easy to connect the values for one
property and its constraints, i.e., they should be close to another in the representation. This
will ease the connection of values and constraints which is useful if values are themselves
a part of the constraining factors. If the existing syntax of the prototype system does not
need to be modified then it is easier to integrate the constraints. Furthermore, if constraints
are represented in such a way that they can be reused by using prototypical inheritance it

26 3.2 Constraint Representation

would be a handy benefit. Thereby constraints could be reused and modified for different
contexts.

In the following, we will explore three possibilities to represent constraints, discuss
their benefits and select one for the remainder of this thesis. The three variants will be
representing constraints as

• values of a property,
• properties,
• prototypes.

Representation 1: Constraints as Values of a Property Figure 8 shows an example of
values and constraints mixed as values of a property.

G
someValuesFrom({a,b})prop1

dprop1

someValuesFrom({1})
prop2

Figure 8: Example of a prototype with constraints where the constraint types and con-
straining values are represented as prototype value.

The prototype G has two properties named prop1 and prop2. The property prop1 has
the value d and the constraint that some value has to be either a or b. The other property,
prop2, has to have the value 1.

This approach is simple to understand and human-readable. The values and constraints
of a property are in one place and thus easy to connect. However, it is not easy to distin-
guish between values and constraints, which will be necessary to define the specialization
relation. In addition, the combined representation of constraint type (here: someValues-
From) and constraint values (here: {1} and {a,b}) is hard to formalize. The presented
graphic would be written down as shown in Listing 1.

However, this would lead to very long and unreadable IRIs for constraint expressions
and the defined sets would not be easily reusable. It would be needed to introduce parsing
of the constraint IRIs and thus also to distinguish such IRIs from regular IRIs in the syntax.
It would be necessary to extend the syntax each time a new constraint is introduced.

ex :G
base proto : P_0
add ex : prop2 ex : someValuesFrom#ex :1
add ex : prop1 ex : someValuesFrom#ex : a , ex : b
add ex : prop1 ex : d

Listing 1: Syntax example of Representation 1, where constraints are represented by val-
ues of properties.

3 CONSTRAINTS 27

G
_b1someValuesFrom bprop1

aprop1

1prop2dprop1

Figure 9: Example of a prototype with constraints where the constraint types are repre-
sented as prototype property and the constraining values as property value.

Representation 2: Constraints as Properties Figure 9 shows the same example but
constraints are represented as properties. The representation of values and constraints is
separated. The values of a property are directly linked to the prototype as in the previous
representation. The constraint types are written as property names and lead to another
prototype that in turn defines the constraining values for the constraint type. So, the con-
straint type and constraint values can be distinguished easily. Notice, that the property to
which a constraining value is applied is expressed by the property name between _b1 and
the constraining values. In the example a and b are both linked to the property prop1.
Thus, they form the constraint that some value of the property prop1 is either a or b. The
syntax of this example is shown in Listing 2.

ex :G
base proto : P_0
add proto : someValuesFrom : _b1
add ex : prop1 ex : d

: _b1
base proto : P_0
add ex : prop1 ex : a
add ex : prop1 ex : b
add ex : prop2 ex :1

Listing 2: Syntax example of Representation 2, where constraints are represented by prop-
erties.

The main difference to the previous representation is that constraint type and con-
straining value are stored in distinguished parts of the prototypes: The constraint types
are represented as name of a property and the constraining values as values of another
property. The representation is still fairly human-readable and a major advantage is that
constraints and values can be clearly distinguished and that no modification of the pro-
totype syntax is necessary. In addition, since each constraint type has its own prototype
inheritance can be used to reuse parts of the constraint values. This is not optimal for reuse
because there is one prototype for each type but most likely one would rather like to reuse
constraints for one property only. Furthermore, property values and constraints are not
in the same place. A connection between the value of e.g. prop1 and the constraints of
prop1 needs to follow different properties of the prototype G.

Representation 3: Constraints as Prototypes Figure 10 shows the example from above
with constraints defined as prototypes.

28 3.2 Constraint Representation

G
_prop1hasProperty

prop1
hasID

_const1
hasTypeConstraint

dhasValue

avalue
someValuesFromtype

b
value

_prop2hasProperty

prop2
hasID

_const2

hasTypeConstraint

1value
someValuesFromtype

Figure 10: Example of a prototype with constraints where the properties are represented
as composed prototypes. The constraints are linked to the respective property prototype
and are themselves prototypes. The constraint types and values are represented by the
properties type and value of the constraint prototypes.

ex :G
base proto : P_0
add proto : hasProper ty : _prop

: _prop1
base proto : P_0
add proto : hasID prop1
add proto : hasValue ex : d
add proto : hasTypeConstraint : _const1

: _const1
base proto : P_0
add proto : type someValuesFrom
add proto : value ex : a
add proto : value ex : b

: _prop2
base proto : P_0
add proto : hasID prop2
add proto : hasTypeConstraint : _const2

: _const2
base proto : P_0
add proto : type someValuesFrom
add proto : value ex :1

Listing 3: Syntax example of Representation 3, where constraints are represented by com-
posed prototypes.

Each property is defined as a prototype which has an identifier and might have values

3 CONSTRAINTS 29

and constraints. The constraints are also prototypes and consist of a type and values. In
the prototype syntax the example would be written as shown in Listing 3.

This representation is much less readable than the two previous ones. However, it has
many other advantages. As with the previous representation the syntax does not need to
be modified, only the semantics of the constraints needs to be added. Furthermore, values
and constraints are clearly distinguished. The values of a property and its constraints are
in one place, that is, they are not mixed with values or constraints of other properties.
Since each property and each constraint is an prototype by themselves it is easy to reuse
properties and constraints with prototypical inheritance. In addition, if the same constraint
should be applied to multiple properties (even in different prototypes), the same prototype
can be referenced.

Desired Constraint as
value

Constraint as
property

Constraint as
prototype

human-readable yes yes a bit less involved
distinguish values and
type of constraint

yes no yes yes
property value and
constraint in one place

yes yes no yes
syntax modification
necessary

no yes no no
constraints reusable
(modifiable with
inheritance)

yes no only con-
straint values

yes

Table 1: Comparison of the different constraint representations presented previously.

Comparison A summary of the different properties of the presented representations is
shown in Table 1. The “Desired” column describes what is the desired outcome for each
property as discussed at the beginning of this section. Not all binary combinations of
properties where explored because some of them are not independent of each other. Most
notably, there is a trade-off between being able to reuse constraints with inheritance and
human readability. If a constraint should be reusable independent of the prototype it is
applied to the constraint itself needs to be represented as a prototype. Representing con-
straints as values does not allow for this kind of reuse. However, this representation is
shortly representable and human-readable. Defining constraints as properties allows to
reuse types of constraints for different properties, but it does not allow to reuse a con-
straint independent of the property it is applied to. However, since it allows some kind
of reuse it is already longer to specify and less readable. Representing constraints as pro-
totypes needs a lengthy representation, but the constraints are fully reusable independent
of their property and even whole properties can be easily reused. As discussed before,
distinguishing values and constraints will make it easier to define the semantics of con-
straints and is therefore highly desired. Also having values and constraints of one property
together will make defining the semantics easier and increases readability. Not needing to
modify the syntax is also a benefit because it will ease extendability if the syntax needs
not be modified for new constraints.

30 3.2 Constraint Representation

Prototype G
proper ty prop1

con s t r a i n t s someValuesFrom (a , b)
values d

proper ty prop2
con s t r a i n t s someValuesFrom (1)

Figure 11: Block Representation of prototypes with constraints.

In the spirit of the prototypical system that should ease sharing and reusing data, rep-
resenting constraints as prototypes is chosen. It is not as easy to read as other options but
it will allow for full reuse and sharing of constraints and properties. Furthermore, it ful-
fills all other desired properties. The different presented representations are transferable
from one to another. If another representation is desired for an application, it could be
automatically converted.

The two other constraints that are chosen for this thesis are represented as follows:
The constraint allValuesFrom is also a type constraint and is syntactically handled like
someValuesFrom except assigning the type accordingly. Cardinality constraints are a
different kind of constraint. Instead of the value of a property they restrict the num-
ber of values a property might have. Therefore, cardinality constraints use the prop-
erty hasCardinalityConstraint instead of hasTypeConstraint. Instead of type and
value they only have the properties min and max to describe the lower and upper bound
of the cardinality constraint.

Since the chosen representation is not very readable we will introduce a shortened
graphical representation in Section 3.2.1. This notation will abstract the different proto-
types used to represent properties and constraints. In addition, syntactic abbreviations are
introduced in the following section to formally define the representation of constraints.

3.2.1 Graphical Representation of Prototypes with Constraints

Since the chosen representation is by its composed nature more complex it is not very
readable. Thus, we introduce a compact graphical representation for these prototypes. The
representation is an extension of the Block Representation introduced in Section 2.2.4.

Consider Figure 11 which shows the running example of this section in the Block
Representation. One Block describes one composed prototype with all its properties, con-
straints and values. The representation starts with the keyword Prototype followed by
the name of the prototype, in this case G. Afterwards properties are described one after
another by the keyword property followed by the property name. Below the property
name constraints and values are listed. Constraints are represented by their type and the
constraining values are listed in parentheses afterwards.

3.2.2 Syntactic Abbreviations for Constraints

In the following abbreviations are introduced to define the syntax of proper constraints
and property prototype expressions.

Figure 12 shows the previously used example with only one property. In blue the
names given to the different prototypes are shown. The prototype expression for a prop-
erty is called property prototype expression and includes that prototype and its properties

3 CONSTRAINTS 31

and values. A prototype expression that is a type constraint is called type constraint proto-
type expression or cardinality constraint prototype expression if it represents a cardinality
constraint.

G _prop1hasProperty

prop1
hasID

_const1
hasTypeConstraint

d
hasValue

someValuesFrom
type

avalue

bvalue

property prototype expression
type constraint prototype expression

Figure 12: Illustration of syntactical structures of composed prototypes with constraints.
Prototypes that represent a property are called property prototype expression and proto-
types that represent type constraints are called type constraint prototype expressions.

Formally, the expressions for type constraints and cardinality constraints need to have
these formats:
Definition 3.2.1 (Type Constraint Prototype Expression). Let PL = (P∅, ID, PROTO)
be a Prototype Language. Let p ∈ PROTO be a prototype expression. We call p =
(id, (base, add, remove)) a type constraint prototype expression if and only if

(proto: type , ids) ∈ add,
ids = {proto: allValuesFrom } ∨ {proto: someValuesFrom },
(proto: value , vals) ∈ add.

Definition 3.2.2 (Cardinality Constraint Prototype Expression). LetPL = (P∅, ID, PROTO)
be a Prototype Language. Let p ∈ PROTO be a prototype expression. We call p =
(id, (base, add, remove)) a cardinality constraint prototype expression if and only if

(proto: max , max) ∈ add,
max ∈ ℕ ∪ {proto: infty },
(proto: min , min) ∈ add,
min ∈ ℕ.

A property prototype expression is then a prototype that defines exactly one identifier
and may have values and constraints. The constraints need to be valid type or cardinality
constraint prototype expressions.
Definition 3.2.3 (Property Prototype Expression). Let PL = (P∅, ID, PROTO) be a Proto-
type Language. Let pe ∈ PROTO be a prototype expression.

proto:type
proto:allValuesFrom
proto:someValuesFrom
proto:value
proto:max
proto:infty
proto:min

32

We call pe = (id, (base, add, remove)) a property prototype expression if and only if
(proto: hasID , {pname}) ∈ add, and
[(proto: hasValue , vals) ∈ add, or
(proto: hasTypeConstraint , tconst) ∈ add, or
(proto: hasCardinalityConstraint , cconst) ∈ add],

where the elements in tconst must be type constraint prototype expressions and the ele-
ments in cconst must be cardinality constraint prototype expressions.

To be able to easily access all the property prototype expressions of a prototype the
function property_expressions is introduced.
Definition 3.2.4 (Property Expressions). Let PL = (P∅, ID, PROTO) be a Prototype Lan-
guage and FKB be a fixpoint knowledge base for PL. Let id ∈ ID and R(FKB, id) =
(id, (base, add, remove)). We define property_expressions(FKB, id) to denote the set

{ppe ∣(proto: hasProperty , props) ∈ add ∧ prop ∈ props ∧ R(FKB, prop) = ppe
∧ ppe is a property prototype expression}.

4 Specialization Relation
The goal of the thesis is to extend the prototypical approach to knowledge representation on
the web with knowledge representation primitives. It should allow hierarchical grouping
like subsumption in description logic or inheritance in class-based systems.

Prototypical inheritance does not define a clear hierarchy itself because the inheritance
link is purely focused on re-use. The children can remove properties of their parent. Thus,
a hierarchical relation cannot be deduced from a prototypical inheritance link. Still, ex-
pressing hierarchies is a major part of knowledge representation and should be expressible
in a prototypical system. Furthermore, applications that use a knowledge base need to en-
sure that the data used conforms with the expectations of the application. Many systems
use integrity constraints and schemas to ensure this.

In summary, a knowledge representation system needs have two functionalities:
1. Define abstract concepts and express hierarchies.
2. Define and validate integrity constraints.
To address these demands, we will introduce a new relation called specialization (writ-

ten: s ⪯ g if s is a specialization of g). It will define hierarchies as well as allow the
definition and validation of integrity constraints.

To enable the first functionality, constraints can be used to define abstract concepts
that should be on the top of the hierarchy. Prototypes that should be below this concept in
the hierarchy can be modeled in such a way that they satisfy the constraints. Intermediate
concepts that belong in the middle of a hierarchy can be expressed by imposing stricter
or more constraints than the generalizations they should be sorted under. Defining hierar-
chies in such a way allows to discover which prototypes fit the concepts. Notice, that in
contrast to class-based inheritance it is not defined which prototypes are a specialization

proto:hasID
proto:hasValue
proto:hasTypeConstraint
proto:hasCardinalityConstraint
proto:hasProperty

4 SPECIALIZATION RELATION 33

of another. Instead, specialization is a property between two prototypes that depends on
constraint satisfaction. Class-based inheritance defines a hierarchy by passing properties
to the children such that the children are like their parents. We already have a notion of
inheritance with the prototypical system and do not want to further modify prototypes.
Therefore, the specialization relation that will be introduced in this thesis is an observa-
tion rather than a definition: A prototype is a specialization of its generalization because
it is observed that it satisfies the constraints of the generalization.

This also has a major benefit for using the system on the web. Given a knowledge
base one can define an abstract prototype with constraints and then check which data is a
specialization of it. Thus, it is possible to discover what prototypes are already defined by
others that are hierarchically below a new defined concept.

Regarding the second functionality, the samemechanism can be used to define abstract
prototypes with constraints to describe integrity constraints. Existing prototypes can then
be checked to validate that they satisfy the constraints.

So in general, we need a relation between two prototypes that checks if either
1. the values of a specializing prototype satisfy the constraints of a generalized proto-

type (satisfaction) or
2. the constraints of a specializing prototype are stricter than the constraints of a general

prototype (matching).
As discussed in Section 3, a prototype is allowed to have constraints and values at

the same time and values are also considered to be a kind of constraint, namely, that a
specialization has to have at least the same values as its generalization.

Besides the two ways to specialize a prototype (satisfaction and matching), there are
two other properties that the specialization relation should possess:

1. Transitivity: If s is a specialization of t and t is a specialization of g, then s is a
specialization of g, written: s ⪯ t, t ⪯ g ⟹ s ⪯ g.

2. Multi-specialization: It is possible that s is a specialization of g1 and g2 at the same
time, while the relation between g1 and g2 is not fixed (they are not necessarily a
specialization of one another).
Formally: s ⪯ g1, s ⪯ g2 ⟹̸ g1 ⪯ g2 ∨ g2 ⪯ g1.

For modeling ontological connections between prototypes, transitivity is useful. Is-
a relations in ontologies are typically transitive and it seems that humans expect such
a relation to be transitive. In addition, other knowledge representation systems model
similar relations (e.g., subclasses) as transitive. Thus, the specialization relation is chosen
to be transitive to allow modeling of similar relations.

Multi-specialization is an useful feature with regard to knowledge bases that are con-
nected and shared over the internet. If it were only possible to be a specialization of one
prototype (and recursively its generalizations), this would limit the reusability of proto-
types for other modeling purposes. If we think of specialization as a relation that defines
which prototypes can be used for a program (because they satisfy some constraints needed
by the program), we might want to use one prototype for multiple programs. This would
not be possible if we did not feature multi-specialization. In addition, the intended ob-
servative nature (instead of declarative) of the specialization relation suggest allowing
multi-specialization.

34 4.1 Examples

Prototype Lodging
proper ty hasRoom

con s t r a i n t s c a r d i n a l i t y ([1 ,∞])

Figure 13: A lodging prototype that restricts the property hasRoom to have at least one
value, i.e., a lodging has at least one room.

Prototype Lodging
proper ty hasRoom

con s t r a i n t s c a r d i n a l i t y ([1 ,∞])

Prototype TheSmallHotel
proper ty hasRoom

values RoomNo1,
RoomNo2,
RoomNo3

Prototype TheColorfulHostel
proper ty hasRoom

values BlueDorm ,
RedDorm,
GreenDorm

Figure 14: TheSmallHotel and TheNiceHostel are both specializations of the Lodging
prototype because they satisfy the cardinality restriction on the hasRoom property.

The remainder of this section is structured as follows: To foster the understanding of
the nature of the specialization relation, different examples are discussed in Section 4.1.
Afterwards, the specialization relation and everything needed for it is defined formally in
Section 4.2. In Section 4.3 properties of the specialization relation are explored.

4.1 Examples
In this section an extended example of the intended specialization relation is described.
The specialization hierarchy is applied to the domain of lodgings and hotels. As a simple
example, consider a lodging prototype that specifies that it has at least one room (shown
in Figure 13), but does not specify which.

Then a specific lodging, like a concrete hotel or a hostel could have some specific rooms
which are named in someway. Figure 14 shows TheSmallHotel and TheColorfulHostel
which have only concrete values for the property hasRoom. Since they both satisfy the con-
straint imposed by the Lodging prototype, TheSmallHotel and TheColorfulHostel are
each a specialization (symbol: ⇾) of the Lodging prototype.

In contrast consider Figure 15, which shows prototypical inheritance. Prototypical in-
heritance (symbol: ⇨) copies all values from the parent to the child, except those that are
removed. Afterwards properties that should be added are added. In contrast to inheritance,
the specialization relation between the Lodging prototype and TheSmallHotel prototype
in Figure 14 does not include any inheritance. The Lodging prototype did not specify a
concrete value for the property hasRoom. Thus, TheSmallHotel and TheColorfulHostel
prototypes do not inherit any value from the Lodging prototype. Instead, they are fill-
ing the specified property hasRoom with values that are satisfying the restriction of the
Lodging prototype. With prototype inheritance, we could even remove the hasRoom prop-
erty entirely, while a specialization of the prototype has to have the hasRoom property.

Another difference to the inheritance relation used for prototypes is, that it is possi-

4 SPECIALIZATION RELATION 35

Prototype TheSmallHotel
proper ty hasRoom

values RoomNo1,
RoomNo2,
RoomNo3

Prototype AnotherHotel
proper ty hasRoom

values RoomNo1,
RoomNo2

proper ty hasRating
values 3

remove hasRoom RoomNo2
add hasRating 3

Figure 15: Example of prototypical inheritance: AnotherHotel inherits from
TheSmallHotel by removing RoomNo2 and adding a property hasRating with value 3.

Prototype Hotel
proper ty hasRoom

con s t r a i n t s c a r d i n a l i t y ([1 ,∞])
proper ty hasRating

c on s t r a i n t s
allValuesFrom (1 ,2 ,3 ,4 ,5)

Prototype HamburgerRestaurant
proper ty se rves

c on s t r a i n t s
someValuesFrom (Lemonade ,

Water)
values Cheeseburger , Hamburger

Prototype TheConferenceHotel
proper ty se rves

values Cheeseburger , Hamburger ,
Lemonade , Veggieburger

proper ty hasRoom
value RoomNo1, RoomNo2,

RoomNo3, . . .
p roper ty hasRating

values 3

Figure 16: A Hotel has at least one room and a rating between one and five.
A HamburgerRestaurant serves lemonade or water and cheeseburger and ham-
burgers. TheConferenceHotel is a specialization of both the Hotel and the
HamburgerRestaurant prototype, because it satisfies the constraints imposed by these
prototypes.

36 4.1 Examples

Prototype Hotel
proper ty hasRoom

con s t r a i n t s c a r d i n a l i t y ([1 ,∞])
proper ty hasRating

c on s t r a i n t s
allValuesFrom (1 ,2 ,3 ,4 ,5)

Prototype BudgetHotel
proper ty hasRoom

con s t r a i n t s c a r d i n a l i t y ([1 ,∞])
proper ty hasRating

c on s t r a i n t s
allValuesFrom (1 ,2)

Figure 17: A prototype is a specialization of another if it makes constraints stricter and
keeps the others unchanged. Here, the BudgetHotel may have a rating of either one or
two, which is stricter that a value from one to five imposed by the Hotel prototype.

ble for one prototype to be a specialization of multiple prototypes while a prototype can
only have one base. For example, Figure 16 shows multi-specialization. The hotel pro-
totype specifies that it has at least one room and that it has a rating from one to five. The
HamburgerRestaurant is modeled such that it serves cheeseburgers and hamburgers and
has to offer water or lemonade in addition. A concrete hotel like TheConferenceHotel
can be a specialization of both prototypes since it satisfies all constraints imposed by each
of the prototypes.

In addition to filling in concrete values that satisfy the constraints it will also be possi-
ble to specialize a prototype by matching. This means making at least one of the imposed
constraints stricter. For example consider the BudgetHotel defined in Figure 17. The
BudgetHotel prototype restricts the property hasRating stronger than the Hotel proto-
type. Thus, it is a specialization of the Hotel prototype.

Furthermore, specializations may add additional properties without interfering with
the specialization relation as long as the constraints for the specified properties are sat-
isfied. For example, Figure 18 shows that the previously defined TheConferenceHotel
prototype is a specialization of the Hotel prototype which is in turn a specialization of the
Lodging prototype.

That TheConferenceHotel has the additional property serves does not interfere
with specialization, since neither the Lodging nor the Hotel prototype imposed any con-
straints on that property. Notice, that the specialization relation is transitive. Therefore,
TheConferenceHotel is also a specialization of Lodging.

It is also possible to mix constraints and values and to add additional values or con-
straints to specialize a prototype. For example one could describe that a certain kind of
lodging has to have one specific kind of room as well as a fixed number of others that are
not specified. This can be described by combining constraints and concrete values for one
property: For example, a BigLodging prototype is defined to have at least 20 rooms and
one of them is named RoomNo42 (shown in Figure 19).

4 SPECIALIZATION RELATION 37

Prototype Lodging
proper ty hasRoom

con s t r a i n t s c a r d i n a l i t y ([1 ,∞])

Prototype Hotel
proper ty hasRoom

con s t r a i n t s c a r d i n a l i t y ([1 ,∞])
proper ty hasRating

c on s t r a i n t s
allValuesFrom (1 ,2 ,3 ,4 ,5)

Prototype TheConferenceHotel
proper ty se rves

values Cheeseburger , Hamburger ,
Lemonade , Veggieburger

proper ty hasRoom
values RoomNo1, RoomNo2,

RoomNo3, . . .
p roper ty hasRating

values 3

Figure 18: TheConferenceHotel is a specialization of the Hotel prototype, which is a
specialization of the Lodging prototype. Specialization is transitive and only constraints
in properties that occur in the generalization have to be satisfied in the specialization.

Prototype Lodging
proper ty hasRoom

con s t r a i n t s c a r d i n a l i t y ([1 ,∞])

Prototype BigLodging
proper ty hasRoom

con s t r a i n t s c a r d i n a l i t y ([20 ,∞])
va lues RoomNo42

Figure 19: A BigLodging has a room named RoomNo42 and at least 20 rooms overall.
It is a specialization of the Lodging prototype because it imposes a stronger cardinality
restriction and the added value restriction also makes it a stronger constraint.

38 4.2 Definition

4.2 Definition
In this section, the specialization relation will be defined. However, we will first take a
closer look at prototypical inheritance. The specialization relation considers the results
of inheritance, i.e., the properties that a prototype actually has after taking inheritance
into account. In Section 4.2.1 we will describe how inheritance can be applied syntac-
tical instead of semantically (and show that the applied operations leave the semantics
unchanged).

Afterwards, in Section 4.2.2 the composed prototypes introduced in Section 3.2 are
given a unifying semantic such that they can be easily accessed.

With these definitions in place the details of the specialization relation can be defined
in Section 4.2.3. It is discussed, how the guiding principles defined at the beginning of
this section are transformed to a definition.

4.2.1 Inheritance Free Fixpoint State of a Knowledge Base

Currently, the semantics of the prototype system define the meaning of the inheritance re-
lation. The interpretation of a prototype expression transforms it to an object that does not
contain any information about inheritance, it just has an identifier and a set of properties
and values (that are the result of applying inheritance). The semantics of the specialization
relation will be based on that object. Since the transformation from prototype expressions
with inheritance to the prototype objects obtained after applying inheritance is in the se-
mantics, it is not easily visible for a knowledge base designer. To spot mistakes in the de-
sign of the knowledge base regarding the specialization relation it is necessary to view the
prototypes resulting from applying inheritance. Thus, a new syntactical state of knowl-
edge bases is introduced where the inheritance has already happened. Every prototype
expression will be syntactically transformed such that it inherits from P∅ and contains all
properties and values it would gain through inheritance. This different state also empha-
sizes one of the differences between the specialization relation and inheritance, namely,
that inheritance is applied before specialization.

Wewill define how a knowledge base can be transformed to an inheritance free fixpoint
state and prove the soundness of that new state, i.e., that the interpretation of the original
and the transformed knowledge base are identical. First, we define how we can access
values of properties of sets of change expressions (namely, add and remove).
Definition 4.2.1 (Access Values of Simple Change Expression Sets). Given a set of simple
change expressions called changes. To access the values {r1,… , rm} of a simple change
expression (p, {r1,… , rm}) ∈ cℎanges we write cℎanges[p].

With the capability to access property values we define a recursive function to com-
pute the inherited property values of a property. The function is defined with regard to a
prototype identified by its ID and a knowledge base.
Definition 4.2.2 (Inherited Property Values). Let KB be a prototype knowledge base
and id ∈ ID, p ∈ ID. Let R(KB, id) = (id, (base, remove, add)) (the resolve func-
tion applied to id). Then the inherited value for the property p of the prototype id, i.e.,
V alues(KB, id, p) is:

add[p], if base = P∅
(V alues(KB, base, p) ⧵ remove[p]) ∪ add[p], otherwise

4 SPECIALIZATION RELATION 39

The fixpoint state of a knowledge base can then be defined by rewriting the inherited
property values for each property of every prototype.
Definition 4.2.3 (Fixpoint State of a Knowledge Base). A knowledge base FKB is the
fixpoint state of a knowledge base KB if and only if

• Each prototype in FKB has P∅ as its base.

• It holds that
pe = (id, (base, add, remove)) ∈ KB if and only if fpe = (id, (P∅, properties, ∅)) ∈
FKB, where properties = {(p, V alues(KB, id, p)) ∣ p ∈ ID, V alues(KB, id, p) ≠
∅}. We call such a tuple (pe, fpe) an inheritance pair of KB and FKB (since fpe
is the result of applying inheritance to pe).

Note that the “if and only if” ensures that the IDs of the original knowledge base are
exactly the same as the IDs of the fixpoint knowledge base.

We will now show that a knowledge base and its fixpoint state have the same inter-
pretation. To arrive at that conclusion, it is first proven that the interpretation of inherited
property values is the same as the interpretation function J (Definition 2.2.10). To prove
this, a induction on the depth of inheritance is needed. The function J (Definition 2.2.10)
as well as the function V alues (Definition 4.2.2) assume that each prototype is of the form
(id, (b, r, a)). It distinguishes the cases where the base b is P∅ and where it is not. Thus,
we define the depth of inheritance as zero if the base is P∅.
Definition 4.2.4 (Depth of Inheritance). The depth of inheritance of a prototype p (written
deptℎ(p)) is the number of inheritance steps necessary to access a prototype that has P∅
as base:

deptℎ(p) = 0, if p = (id, (P∅, add, remove))
deptℎ(p) = deptℎ(base) + 1, if p = (id, (base, add, remove))

Lemma 4.2.1. Let O = (SID,OB, Iℎ) be a Prototype-Structure for the Prototype Lan-
guage PL = (P∅, ID, PROTO) with Iℎ being a Herbrand-Interpretation. Let KB be
a knowledge base. Then {Is(v) ∣ v ∈ V alues(KB, id, p)} = J (KB, id, p) for any id
occurring in KB and any property p.

Proof. Given a knowledge baseKB and an id ∈ ID occurring as a prototype identifier in
KB. Let R(KB, id) = (id, (b, a, r)) = pe. Proof by induction on the depth of inheritance
of pe.

Basis. n=0 Thus, b = P∅.
{Is(v) ∣ v ∈ V alues(KB, id, p))}

={Is(v) ∣ v ∈ a[p]}
=Ic(KB, a)(Iℎ(p))
=J (KB, id, p)

Inductive Hypothesis. Let {Is(v) ∣ v ∈ V alues(KB, id, p)} = J (KB, id, p) hold for
all prototypes where the depth of inheritance is at most n.

40 4.2 Definition

Inductive Step.
Let R(KB, id) = (id, (b, a, r)) = pe, where deptℎ(pe) = n + 1.

{Is(v) ∣ v ∈ V alues(KB, id, p)}
={Is(v) ∣ v ∈ (V alues(KB, b, p) ⧵ r[p]) ∪ a[p]}
=({Is(v) ∣ v ∈ V alues(KB, b, p)} ⧵ {Is(v) ∣ v ∈ r[p]}) ∪ {Is(v) ∣ v ∈ a[p]}
I.H.
=(J (KB, b, p) ⧵ Ic(KB, r)(Iℎ(p))) ∪ Ic(KB, a)(Iℎ(p))
=J (KB, id, p)

With this lemma it can then be shown that a fixpoint state knowledge base has the same
interpretation as its origin.
Theorem 4.2.1. Let O = (SID,OB, Iℎ) be a Prototype-Structure for the Prototype Lan-
guage PL = (P∅, ID, PROTO) with Iℎ being a Herbrand-Interpretation. Let KB be a
knowledge base and FKB its fixpoint state. Then

IKB(KB, pe) = IKB(FKB, fpe) for all inheritance pairs (pe, fpe) of KB and FKB.

Proof. LetKB be a knowledge base andFKB its fixpoint state. Let (pe, fpe) be an inheri-
tance pair ofKB andFKB and the prototype expressions are pe = (id, (base, add, remove))
and fpe = (id, (P∅, properties, ∅)).
IKB(KB, pe)

=FP (KB, pe)
=(Iℎ(id), {(Iℎ(p), J (KB, id, p)) ∣ p ∈ ID, J (KB, id, p) ≠ ∅})

L4.2.1
=(Iℎ(id), {(Iℎ(p), {Is(v) ∣ v ∈ V alues(KB, id, p)}) ∣ p ∈ ID, V alues(KB, id, p) ≠ ∅})
=(Iℎ(id), {(Iℎ(p), {Is(v) ∣ v ∈ properties[p]}) ∣ p ∈ ID, properties[p] ≠ ∅})
=(Iℎ(id), {(Iℎ(p), Ic(FKB, properties)(Iℎ(p))) ∣ p ∈ ID, Ic(FKB, properties)(Iℎ(p)) ≠ ∅}
=(Iℎ(id), {(Iℎ(p), J (FKB, id, p)) ∣ p ∈ ID, J (KB, id, p) ≠ ∅})
=FP (FKB, fpe)
=IKB(FKB, fpe)

So we have shown that prototypical inheritance can be executed on a syntactical level.
In contrast to inheritance the specialization relation will work on top of the inheritance
free fixpoint state of a knowledge base. Furthermore, specialization will not be assigned
like the base for prototypical inheritance but it is a relation that is computed based on
comparing two prototypes with each other.

4.2.2 Semantics of Composed Prototypes

Given a knowledge base in its fixpoint state which contains composed prototypes as de-
scribed in Section 3.2.2 we define semantic abbreviations to access the interpretations of
the different prototype expressions. In the definitions below, we always assume that O,
PL, Iℎ and FKB are defined as follows:

4 SPECIALIZATION RELATION 41

Let O = (SID,OB, Iℎ) be a Prototype-Structure for the Prototype Language PL =
(P∅, ID, PROTO) with Iℎ being a Herbrand-Interpretation. Let FKB be a fixpoint knowl-
edge base for PL.

In addition to the existing interpretation of knowledge bases that maps a knowledge
base and an expression to a prototype we define an additional interpretation that maps the
knowledge base to the set of prototypes that correspond to the prototype expressions in the
knowledge base.
Definition 4.2.5 (Knowledge Base Interpretation as Set). LetKB be a knowledge base for
the Prototype Language PL. We define an interpretation of knowledge bases that maps a
knowledge base to a set of prototypes:

IKBS(KB) = {p|pe ∈ KB ∧ IKB(KB, pe) = p}

With the composed representation of prototypes a property prototype expression is
used to describe each property of a prototype. To easily use this representation, we define
the set of properties of a prototype to be the interpretation of the property expressions of
that prototype.
Definition 4.2.6 (Properties). Let pe = (id, (b, a, r)) ∈ FKB with IKB(FKB, pe) = p.
The function properties is defined by:
properties(FKB, p) = {IKB(FKB, ppe) ∣ ppe ∈ property_expressions(FKB, id)}.

There is a Herbrand-Interpretation Iℎ which maps every element of ID to an element
of SID. For the specialization relation and the interpretation of composed prototypes we
need to reference to some elements in SID that respond to special identifiers in ID. In the
following, we assume that each Herbrand-Interpretation Iℎ includes the following map-
pings:

Iℎ(proto:hasConstraintValue) = ℎasConstraintV alue
Iℎ(proto:hasTypeConstraint) = ℎasT ypeConstraint

Iℎ(proto:max) = max
Iℎ(proto:min) = min

Iℎ(proto:infty) = ∞
Iℎ(proto:allValuesFrom) = allV aluesF rom

Iℎ(proto:someValuesFrom) = someV aluesF rom
Iℎ(proto:hasValue) = ℎasV alue

Iℎ(proto:hasID) = id
Iℎ(proto:hasTypeConstraint) = ℎasT ypeConstraint

Iℎ(proto:hasCardinalityConstraint) = ℎasCardinalityConstraint

We introduce shorthand notations to access type and cardinality constraints. These
allow to access the constraint values (either a set of SIDs or an interval of integers) of the
prototype and the type of constraint.
Definition 4.2.7 (Type Constraints). Let pce ∈ FKB be a type constraint prototype
expression with IKB(FKB, pce) = pc and the prototype pc = (id, propvals), where

proto:hasConstraintValue
proto:hasTypeConstraint
proto:max
proto:min
proto:infty
proto:allValuesFrom
proto:someValuesFrom
proto:hasValue
proto:hasID
proto:hasTypeConstraint
proto:hasCardinalityConstraint

42 4.2 Definition

id ∈ SID and propvals is a Value-Space for SID as defined in Definition 2.2.6. We
write pc.cval to denote the set

{v ∣ (ℎasConstraintV alue, v) ∈ propvals}

And we define pc.type=c, where

(ℎasT ypeConstraint, c) ∈ propvals.

For cardinality constraints the interpretation will be an integer interval. The default
is the interval [0,∞] and if min and max are specified differently then they define the
interval.
Definition 4.2.8 (Cardinality Constraints). Let pce ∈ FKB be a cardinality constraint
prototype expression with IKB(FKB, cpe) = cp. We write cp.cval to denote the interval
[l, u], where cp = (id, propvals) and if (min, lv) ∈ propvals and lv is an integer then
l = lv, otherwise l = 0. If (proto ∶ max, uv) ∈ propvals and uv is an integer then u = uv,
otherwise u = ∞. And we define pc.type=cardinality.

To access the values and constraints of a prototype, we define the sets val and const.
Definition 4.2.9 (Values and Constraints of a Prototype). Let ppe ∈ FKB be a property
prototype expression with IKB(FKB, ppe) = pp. We define

val(pp) ={v ∣ pp = (id, propvals), (ℎasV alue, v) ∈ propvals}
const(pp) ={pc ∣ pp = (id, propvals), (ℎasT ypeConstraint, pc) ∈ propvals}∪

{pc ∣ pp = (id, propvals), (ℎasCardinalityConstraint, pc) ∈ propvals}

4.2.3 Semantics of Specialization

Now that we can easily access values and constraints and their constraint values and types
we can define the specialization relation.

We need to consider how to define this relation in detail. As discussed at the beginning
of this section, the specialization relation will follow three desired properties:

1. Specialization by constraint satisfaction or by constraint matching.
2. Transitivity.
3. Multi-specialization.
We will now discuss how the relation has to be defined to satisfy these properties.

Details of Specialization A prototype can have different properties with different con-
straints. To define specialization we have to decide under which circumstances a prototype
s is a specialization of a prototype g.

The example presented in Figure 16 shows multi-specialization. There, the properties
of the generalization are regarded independently. Properties that are not present in the
generalization can be arbitrary in the specialization. Thereby, TheConferenceHotel is

4 SPECIALIZATION RELATION 43

g s
s ⪯ g

possible Rule
1 {Constraints} {Values} ✓ each constraint satisfied by values
2 {Constraints} {Constraints} ✓ each constraint is matched
3 {Values} {Values} ✓ equality of values
4 {Constraints} {Constraints,

Values}
✓ {Constraints}-{Constraints},

Values ⊆ Values
5 {Values} {Constraints} – –
6 {Values} {Constraints,

Values}
– –

7 {Constraints,
Values}

{Values} ✓

{Constraints}-{Values},
Values ⊆ Values

8 {Constraints,
Values}

{Constraints} – –
9 {Constraints,

Values}
{Constraints,
Values}

✓ {Constraints}-{Constraints},
Values ⊆ Values

Table 2: Overview of specialization rules and allowed combinations of generalization and
specialization. The first three rows describe the base cases, the other rules follow from
these three.

allowed to be a specialization of both the Hotel and the HamburgerRestaurant proto-
type. If properties that are not present in the generalization were not allowed to be arbitrary
in the specialization (e.g., properties that are not named in the generalization may not oc-
cur in the specialization), then the specialization relation would be too restricted to allow
other prototypes to be also a generalization. If the specialization relation between Hotel
and TheConferenceHotel would forbid all other properties to be present then the prop-
erty serveswould not be allowed in the specialization. Thus, properties that do not occur
in the generalization may be arbitrary in the specialization.

Each property from the generalization will be checked independently from other prop-
erties. Each constraint is meant to restrict a property and nothing more. For example, the
constraints of the property hasRoom have no meaning for the property hasRating.

Thus, we will say that a prototype s is a specialization of a prototype g if all properties
of g are specialized by the corresponding property with same ID in s.

There are different cases for specialization that can be distinguished. Since each prop-
erty can be viewed independently, we consider only prototypes with one property here.
This property can be classified as one of the following:

1. {Values}: The property has concrete value(s) but no constraints.
2. {Constraints}: The property has constraint(s) but no values.
3. {Constraints, Values}: The property has both value(s) and constraint(s).

Table 2 lists the possible combinations of the above classification for prototypes g and
s. The third column describes whether or not such a combination could be a specialization
of another and the column labeled “Rule” gives an overview of the rule applied to check if

44 4.2 Definition

s is actually a specialization of g. In the following we will discuss the decisions described
in the table.

There are three base rules and the others are combinations of these. The first row
describes the base case where the generalization consists of only constraints and s has
only values. In this case the specialization relation should check that each constraint of
the generalization is satisfied by the values of the specialization.

In the case of both prototypes having only constraints the constraints should bematched,
that is the constraints should be either equal or stricter (for example allValuesFrom(2,3,4)
would be a stricter constraint than allValuesFrom(1,2,3,4,5)). This follows the guiding
principle that constraints can be made stricter by matching.

The third base case is that both s and g have only values. The values are required
to be equal, otherwise the following would be possible: Given prototypes s, g, g′ with
s ⪯ g ⪯ g′, where s, g have only values and g′ has values and constraints. Comparing
s and g does not contain any information about the constraints present in g′. Therefore,
if s was not required to be equal to g, s could be chosen such that it does not satisfy the
constraints of g′.

In general, wewill enforce values in the generalization as a kind of constraint, too. That
is, if a value occurs in the generalization it also has to be present in the specialization. So
in Case 4 we require that the values of the generalization are contained in the values of the
specialization. In addition the constraints are handled exactly as in Rule 1. Cases 7 and
9 are similar: The values of the generalization are required to be in a subset relation and
otherwise they behave as if there were no values present in the generalization.

Since we require values of the generalization to be present in the specialization, the
prototypes in Case 5 and 8 can never form a specialization relation. Case 6 is excluded
because allowing it would violate transitivity: Given prototypes s, g, g′ with s ⪯ g ⪯ g′,
where s has constraints and values, and g has only values (as in Case 6) and g′ has values
and constraints. Again, as in Case 3, comparing s and g does not contain any information
about the constraints present in g′, therefore if s is allowed to introduce new constraint
they could be chosen such that they do not match the constraints of g′.

In summary, we decide to define the specialization relation as follows: For each prop-
erty present in the generalization, the specialization has to check for specialization accord-
ing to the cases classified in Table 2.

Each constraint can be viewed independently. A constraint is satisfied if the values
of the specialization satisfy the constraint condition. A constraint is matched if there is a
constraint in the specialization with the same type that has an equal or stricter constraint
value. In the case of sets this means a subset, in the case of intervals, stricter means a
subinterval. We discussed, that only the other cases can be handled as a combination of
the first three rules. Notice, that the cases can be clustered as follows: If g has only values
then only Case 4 is possible. So in this case we can simply check if s and g are equal. If
they are equal then s cannot have constraints since g has none. In the other cases we can
always check that the values of s are a superset of the values of g (either this needs to be
checked or the values of g are an empty set and thus the values s also are a superset of it).
We need then to distinguish whether we have to additionally check Case 1 or 2 (satisfaction
or matching).

Defining the specialization relation like this does allow for multi-specialization and
transitivity (the latter will be proved in Section 4.2).

4 SPECIALIZATION RELATION 45

Specialization Definition The definition is arranged from top to bottom as follows: first
prototypes are compared, then single properties are compared. If there are constraints in
the specialization property, then it is checked if all constraints are matched. Otherwise, if
there are no constraints in the specialization, the specializing property has to satisfy the
constraints of the generalization. A constraint matches another if it is of same type and the
constraining values are a subset of the other. In case of cardinality constraints the subset
relation is meant to be the subset on intervals, while for type constraints it is the subset
relation on sets. Satisfaction is checked according to Definition 3.1.1.
Definition 4.2.10 (Specialization Relation). Let IKB = IKBS(FKB) be the set of proto-
types in the interpretation of the knowledge base FKB. Given prototypes s, g ∈ IKB.
We say that s is a specialization of g, written:

s ⪯ g iff ∀G ∈ properties(FKB, g) ∶ ∃S ∈ properties(FKB, s) ∶
G.id = S.id and S ⪯ G

S ⪯ G iff

{

val(S) ⊇ val(G) ∧ accountFor(S, const(G)) if const(G) ≠ ∅
S = G if const(G) = ∅

accountFor(S,GC) =

{

∀gc ∈ GC ∶ isMatched(const(S), gc) if const(S) ≠ ∅
∀gc ∈ GC ∶ isSatisf ied(val(S), gc) if const(S) = ∅

isMatched(SC, gc) = ∃sc ∈ SC ∶ matches(sc, gc)
matches(sc, gc) = sc.type = gc.type ∧ sc.cval ⊆ gc.cval

isSatisf ied(V S, gc) =

⎧

⎪

⎨

⎪

⎩

∀v ∈ V S ∶ v ∈ gc.cval if gc.type = allV alF rom
∃v ∈ V S ∶ v ∈ gc.cval if gc.type = someV alF rom
|V S| ∈ gc.cval if gc.type = cardinality

We call two prototypes equivalent with regard to the specialization relation if they are
a specialization as well as a generalization of the other.
Definition 4.2.11 (Equivalencew.r.t. Specialization). Two prototypes x, y are called equiv-
alent with regard to specialization (written x ≃ y) iff

x ⪯ y ∧ x ⪰ y

Similarly, two property prototypesX, Y are called equivalent w.r.t specialization (writ-
ten X ≃ Y) iff

X ⪯ Y ∧X ⪰ Y

4.3 Properties
In this section, properties arising from the definition of the specialization relation are dis-
cussed. First, it is shown that the specialization relation is transitive. Then it is discussed
that the number of different specializations possible reduces with strict specialization.

46 4.3 Properties

4.3.1 Transitivity

Wewill show that the specialization relation is transitive. Since the relation symbol “⪯” is
defined on both prototypes as well as properties, we will first show that transitivity holds
for property prototypes and then use this to show transitivity of the specialization relation
regarding prototypes.
Lemma 4.3.1. The specialization relation ⪯ is transitive with regard to property proto-
types.

The general proof idea is to assume that X ⪯ Y and Y ⪯ Z and to shown then that
X ⪯ Z is also true. When Y has no constraints, it has to be equal to X, and is thereby a
specialization of Z. Otherwise, further distinguishing whether X has constraints decides
whether the constraints of Y are matched or satisfied. It then has to be shown that X also
matches, respectively satisfies the constraints of Z. Which it intuitively should, because
matching is based on a subset relation. Since Y has constraints it will match Z and thus
in the satisfaction case the values of X also have to satisfy a superset of the constraints of
Y . Formally, this is proven as follows:

Proof. Let X, Y ,Z be property prototypes with X ⪯ Y and Y ⪯ Z.
Case 1: const(Y) = ∅.

By X ⪯ Y , X = Y . Thus, Y ⪯ Z

Case 2: const(Y) ≠ ∅.
From this it follows that const(Z) ≠ ∅ because otherwise Y = Z but then const(Z) ≠
const(Y). Therefore, by Y ⪯ Z it holds that both accountFor(Y , const(Z)) and
accountFor(Y , const(Z)) are true because the following formula holds:
∀zc ∈ const(Z) ∶ isMatched(const(Y), zc).
By X ⪯ Y and Y ≠ ∅ it holds that accountFor(X, const(Y)).
Case 2.1: const(X) = ∅.

Since ∀yc ∈ const(Y) ∶ isSatisf ied(val(X), yc) is true it follows that
accountFor(X, const(Y)) is also true.
Let zc ∈ const(Z). Since isMatched(const(Y), zc) is true, there exists a yc ∈
const(Y) ∶ matches(yc, zc), that is yc.type = zc.type and yc.cval ⊆ zc.cval.
Since isSatisf ied(val(X), yc) is true and yc.cval ⊆ zc.cval, it also holds that
isSatisf ied(val(X), zc) is true. Thus, accountFor(X, const(Z)) is true.

Case 2.2: const(X) ≠ ∅.
Then accountFor(X, const(Y)) is true because it holds that ∀yc ∈ const(Y) ∶
isMatched(const(X), yc) is true.
Let zc ∈ const(Z). Since isMatched(const(Y), zc) is true, there exists a
yc ∈ const(Y) ∶ matches(yc, zc), that is yc.type = zc.type and yc.cval ⊆
zc.cval. Since isMatched(const(X), yc) is true there exists a xc ∈ const(X) ∶
matches(xc, yc). By yc.cval ⊆ zc.cval, yc.type = zc.type and xc.cval ⊆
yc.cval, xy.type = yc.type, it also holds that matcℎed(xc, zc) is true. Thus,
isMatched(const(X), zc) is true and thereby also accountFor(X, const(Z)).

4 SPECIALIZATION RELATION 47

It remains to be shown that val(X) ⊇ val(Z). Since Y ⪯ Z it holds that val(Y) ⊇
val(Z). And with X ⪯ Y it holds that val(X) ⊇ val(Y). By the transitivity of “⊇”
it follows that val(X) ⊇ val(Z). Thus, X ⪯ Z.

With the transitivity of the specialization for property prototypes it can be directly
extended to prototypes.
Theorem 4.3.1. The specialization relation ⪯ is transitive with regard to prototypes.

Proof. Let FKB be a fixpoint knowledge base with IKBS(FKB) = IKB. Let x, y, z ∈
IKB be prototypes with x ⪯ y and y ⪯ z.

Since y ⪯ z it holds that: ∀Z ∈ properties(FKB, z) ∶ ∃Y ∈ properties(FKB, y) ∶
Y .id = Z.id ∧ Y ⪯ Z. By x ⪯ y there must exist a X ∈ properties(FKB, x) s.t.
X.id = Y .id and X ⪯ Y for all such Y .

By transitivity of “⪯” on property prototypes it follows that X ⪯ Z. Thus: ∀Z ∈
properties(FKB, z) ∶ ∃X ∈ properties(FKB, x) ∶ X.id = Z.id ∧X ⪯ Z and thereby
x ⪯ z.

4.3.2 Specialization Reduces the Number of Further Specializations

Wewant to show that specialization reduces the number of possible further specializations.
Therefore, we need to distinguish property prototypes that are in a specialization relation
but that are not equal to one another with regard to the specialization relation. Thus, we
define strict specialization based on equivalence of prototypes with regard to specialization
as defined in Definition 4.2.11. Then it is shown that strict specialization reduces the
number of possible specializations.
Definition 4.3.1 (Strict Specialization). Let s, g be prototypes. We say s is a strict spe-
cialization of g (written s ≺ g) if and only if s ⪯ g and s ≄ g. The definition for property
prototypes is identical.

It can now be shown that strict specialization reduces the number of possible special-
izations. Figure 20 shows the idea of the theorem: Given prototypes g1, g2 and g2 is a strictspecialization of g1. Then it is to be shown that the set of all possible specializations of
g2, namely S2, is a proper subset of S1 (all possible specializations of g1).

g1 g2≻

S1

⪯

S2

⪯

⊋

Figure 20: Specialization reduces the number of possible further specializations

Theorem 4.3.2. Let g1, g2 be prototypes with g1 ≻ g2. Let S1 = {s ∣ s ⪯ g1}, S2 = {s ∣
s ⪯ g2} be sets of prototypes. It follows that S1 ⊋ S2

Notice, that the sets S1 and S2 are infinite, since properties not occuring in g1 or g2respectively can be present in arbitrary ways.

48 4.3 Properties

Proof. Let s ∈ S2. By definition of S2, s ⪯ g2. By transitivity of s ⪯ g2 ⪯ g1 it followsthat s ⪯ g1 and thus s ∈ S1. Therefore S1 ⊇ S2.To show that S1 ⊋ S2 it remains to show that S1 and S2 are not equal. Thus, it suffices
to show that there exists an element that is in S1 but not in S2. By definition g1 ∈ S1. We
will show that g1 ∉ S2: Since g1 ≻ g2 it follows that g1 ≄ g2. Thus, it has to hold that
g1 ⪰ g2 and g1 g2. By the definition of S2, each element in S2 has to be a specializationof g2. Therefore g1 ∉ S2.

4.3.3 Consistent Prototypes

The definition of the specialization relation only checks if the values of the specialization
satisfy the constraints once there are no constraints in the specialization. Thus, it can hap-
pen that in a chain of specializations the combination of constraints become unsatisfiable.
We would like to detect this property and call a prototype inconsistent if its constraints
cannot be satisfied.

Since partial value definitions are allowed, we cannot simply checkwhether a prototype
satisfies its own constraints. For example, the BigLodging in Figure 19 specified that
the property hasRoom has at least 20 different values. In addition, it fixes that one of
these values has to be RoomNo42. If we were to check whether the prototype satisfies its
own constraints this would result in false (nonetheless, by definition it is a specialization
of itself). It is also allowed for another prototype to specialize BigLodging by keeping
the cardinality constraint and adding another specified room. Still, that prototype would
neither satisfy its own constraint nor the constraint of BigLodging.

While these partial definitions are useful and can be satisfied, it is also possible to
define combinations of constraints, or of constraints and values that are not satisfiable. For
example, it could be required that all values are from the set {a, b} and another constraint
could say that all values need to be from {c, d}. While this is easily detectable, there are
also more complicated cases. Basically, the question is whether the combined constraints
are satisfiable. This question can be expressed in terms of the specialization relation.
Since constraint satisfaction is checked once the specialization has no constraints this can
be used to answer the satisfiability question. First, we name prototypes fully specialized
if they have no constraints. Notice, that by the definition of the specialization relation
they can be further specialized by introducing new properties. However, in terms of the
properties present in such a prototype, they are fixed because the property prototypes are
required to be equal in this case.
Definition 4.3.2 (Fully Specialized). Given a knowledge base KB with IKBS(KB) =
IKB. A prototype p ∈ IKB is called fully specialized if its properties only contain
values and no constraints, i.e.:

∀pp ∈ properties(KB, p) ∶ const(pp) = ∅

Consistency can then be formulated as the existence of a specialization that is a fully
specialized prototype.
Definition 4.3.3 (Consistency). A prototype g is called consistent if there exists a prototype
s with s ⪯ g and s is fully specialized.

This definition of consistency is not easily reducible to conditions that can be checked
only on a prototype g. It is easy to define some necessary conditions that each constraint

5 IMPLEMENTATION 49

of g has to fulfill to be consistent. For example, a single constraint may not be defined
in such a way that it is not satisfiable, e.g., a cardinality constraint with lower limit 5 and
upper limit 3 is not satisfiable. However, these simple conditions are not sufficient because
the combination of different constraints may lead to inconsistency.

Checking whether g is consistent is equivalent to the satisfiability of the combined
constraints of each property. It would be possible to transform the constraints and values
to first-order logic and check whether there exists a model for the formula. However, this
problem is as hard as checking the existence of a prototype according to Definition 4.3.3.

5 Implementation
This section discusses the implementation of the specialization relation3. The prototype
system presented in [6] has been implemented in Java4. The implementation details of that
implementation are described in [21]. While that implementation is intended to be pro-
duction ready the implementation of the specialization relation given here is exploratory
in nature. The intend of the implementation is to show that the presented approach is
feasible.

As language for the implementation Haskell was chosen because it is able to neatly
reassemble the defined formulas of the semantics. Furthermore, it allows quick modifica-
tions and is thereby especially useful for an exploratory, extendable first implementation.
In the following main excerpts of the implementation are presented.

1 −− Data Types for Syntax
2 data IRI = ID String
3 data Proper ty = Prop IRI
4 data Bases = Base IRI | P0
5
6 data SimpleChangeExpression = Change Proper ty (Set IRI)
7
8 data PrototypeExpress ion = Proto {
9 i d I r i : : IRI ,

10 base : : Bases ,
11 add : : Set SimpleChangeExpression ,
12 remove : : Set SimpleChangeExpression ,
13 remAll : : Set Proper ty }
14
15 type KnowledgeBase = Map IRI PrototypeExpress ion
16
17 −− Data Types for Fixpoin t Knowledge Base / Semantics
18 type PropertyMap = Map Proper ty (Set IRI)
19 data Prototype = PT {name : : IRI , props : : PropertyMap}
20 type FixpointKB propValueType = Map IRI Prototype

Listing 1: Data structure to represent prototypes

3The source code is available at: https://github.com/ggierse/kr-prototype
4https://github.com/miselico/knowledgebase

https://github.com/ggierse/kr-prototype
https://github.com/miselico/knowledgebase

50

Listing 1 shows the data structures used in the implementation. For readability au-
tomatic Haskell typeclass assertions have been left out. An IRI is defined to be a string
preceded by ID to identify it as such. In a production ready version this would need to
conform to RFC 3987 [23] but for exploration a string will suffice. Properties consists of
IRIs. A Base is an IRI or a special token P0 which represents the empty prototype P∅.

A SimpleChangeExpression consists of a property and a set of IRIs. Based on the
previous definitions, a PrototypeExpression is defined. It has an IRI as ID, a base
and sets of simple change expressions that are to be added or removed (remAll is used
to remove everything of one property). A KnowledgeBase is defined as a mapping from
IRIs to prototype expressions.

The data types defined below Line 17 are used to represent fixpoint knowledge bases
that already computed their inheritance relations. In Definition 4.2.3 a fixpoint state of a
knowledge base is defined on a syntactical level and uses prototype expressions as basis.
As discussed, this is also closely related to the semantics of a prototype expression. To
be able to easily distinguish the two kinds of knowledge bases and for efficiency reasons
different data types are used here. Because the base will always be P0 and remove and
remAll will always be empty sets a representation which only represents the add set is
used. Since these are the properties that a prototype actually has the data structure to rep-
resent this is called PropertyMap. Instead of using a set of properties and IRIs a mapping
between them is used. A prototype is then represented with an IRI as name and a property
map. A FixpointKB is a mapping between IRIs and prototypes.

Listing 2 shows the internal representation of constraints. Constraints and values are
represented as discussed in Section 3.2. In terms of the semantics the constraints are
internally represented by the data structure ConstraintInfo shown in Lines 3 to 9 from
Listing 2.

1 data ConstraintName = AllValuesFrom | SomeValuesFrom | Ca rd ina l i t y
2
3 data Cons t r a in t In fo = TypeConst {
4 constType : : ConstraintName ,
5 constValues : : Set IRI
6 } | Card ina l i tyCons t {
7 constType : : ConstraintName ,
8 con s t I n t e r v a l : : I n t e g e r I n t e r v a l
9 }

10
11 val : : Prototype −> Set IRI
12 −− . . . l e f t out fo r b r e v i t y
13
14 cons t s : : FixpointKB −> Prototype −> Set Cons t r a in t In fo
15 −− . . . l e f t out fo r b r e v i t y

Listing 2: Data structure for internal representation of constraints

A constraint is either a TypeConst or a CardinalityConst. Both have a constType
which is simply the name of the constraint type. Type constraints have a set of IRIs as val-
ues of the constraints while a cardinality constraint has an integer interval as constraining
element. The values of a property prototype are returned by the function val. In addi-

5 IMPLEMENTATION 51

tion, the constraints of a property prototype are looked up and transformed into a set of
ConstraintInfo by the function consts. The details of their implementation are left out
for brevity. The function simply looks up the prototypes of the constraints and transforms
the there found properties and values into the ConstraintInfo data structure.

The specialization relation is implemented to closely reassemble the Definition 4.2.10.
In the following, all parts of the definition are compared with their implementation.

To check whether two prototypes are in a specialization relation a function named
isSpecializationOf is called. In Definition 4.2.10 this part is defined as follows:

s ⪯ g iff ∀G ∈ properties(FKB, g) ∶ ∃S ∈ properties(FKB, s) ∶
G.id = S.id and S ⪯ G

This is exactly repeated in Haskell:
1 i sSpec i a l i z a t i onOf : : FixpointKB −> Prototype −> Prototype −> Bool
2 i sSpec i a l i z a t i onOf fkb spec i a l genera l =
3 f o r a l l e x i s t s Spe c i a l gprops
4 where gprops = p rope r t i e s fkb genera l
5 sprops = p rope r t i e s fkb spec i a l
6 ex i s t s Spe c i a l g = ex i s t s
7 (\ s −> proper ty IdIsEqua l s g && i sP rope r t ySpec i a l i z a t i o n fkb s g)
8 sprops

Listing 3: Computation of s ⪯ g, where s, g are prototypes
The functions forall and exists check whether all, respectively at least one value in a
set matches a given condition. The function isSpecializationOf checks whether for
all properties of the generalization there exists a specialization. A specialization exists
if there is an s in sprops (the properties of the specialization) such that the ID of the
properties are equal and they are a specialization of one another.

To compute whether something is a property specialization of another property the
function isPropertySpecialization is used:

1 i sP r ope r t ySpe c i a l i z a t i o n : : FixpointKB −> Prototype −> Prototype −>Bool
2 i sP r ope r t ySpe c i a l i z a t i o n fkb s g
3 | not (Set . nul l gConsts) =
4 val g ‘ Set . isSubsetOf ‘ val s && accountFor fkb s gConsts
5 | otherwise = isProper tyPro toEqua l s g
6 where gConsts = cons t s fkb g

Listing 4: Computation of S ⪯ G, where S,G are property prototypes

Haskell allows to write case distinctions with “|” followed by the condition and what
to do in that case after the equality sign. Notice again how the Haskell definition closely
connects to the respective part in Definition 4.2.10:

S ⪯ G iff
{

val(S) ⊇ val(G) and accountFor(S, const(G)) if const(G) ≠ ∅
S = G if const(G) = ∅

52

Similar, the accountFor function reassembles the formal definition:

accountFor(S,GC) =

⎧

⎪

⎨

⎪

⎩

∀gc ∈ GC ∶ isMatched(const(S), gc) if const(S) ≠ ∅

∀gc ∈ GC ∶ isSatisf ied(val(S), gc) if const(S) = ∅

1 accountFor : : FixpointKB −> Prototype −> Set Cons t r a in t In fo −> Bool
2 accountFor fkb s gConsts
3 | Set . nul l sConsts = f o r a l l (i s S a t i s f i e d $ val s) gConsts
4 | otherwise = f o r a l l (isMatched sConsts) gConsts
5 where sConsts = cons t s fkb s
Listing 5: Computation of accountFor(S,GC), where S is a property prototype and GC
is a set of constraints

In the source code there is again a case distinction and then the different cases are
exactly applied as in the function.

The implementation of isMatched differs a little from the formulas:
isMatched(SC, gc) = ∃sc ∈ SC ∶ matches(sc, gc)
matches(sc, gc) = sc.type = gc.type ∧ sc.cval ⊆ gc.cval

1 isMatched : : Foldable t => t Cons t r a in t In fo −> Cons t r a in t In fo −> Bool
2 isMatched sConsts gc =
3 case gc of
4 Card ina l i tyCons t _ _ −>
5 ex i s t s (\ sc −> constType sc == constType gc
6 && con s t I n t e r v a l sc ‘ I n t e r v a l . isSubsetOf ‘ c on s t I n t e r v a l gc)
7 sConsts
8 TypeConst _ _ −>
9 ex i s t s (\ sc −> constType sc == constType gc

10 && constValues sc ‘ Set . isSubsetOf ‘ constValues gc)
11 sConsts

Listing 6: Computation of isMatched(SC, gc), where SC is a set of constraints and gc is
a constraint

Since computing the subset of an actual set and an integer interval are different in
Haskell, it needs to be distinguished whether the constraint is a cardinality constraint or a
type constraint. Since the data structures use different constructors in these cases, Haskell
can do a case distinction based on which constructor is present. Except distinguishing
these cases the same conditions as in the formula are checked, namely that there exists a
constraint of the specialization property that has the same type and is a subset, respectively,
subinterval.

Finally, the implementation of isSatisfied is identical to its formal definition:

isSatisf ied(V S, gc) =

⎧

⎪

⎨

⎪

⎩

∀v ∈ V S ∶ v ∈ gc.cval if gc.type = allV alF rom
∃v ∈ V S ∶ v ∈ gc.cval if gc.type = someV alF rom
|V S| ∈ gc.cval if gc.type = cardinality

5 IMPLEMENTATION 53

1 i s S a t i s f i e d : : Set IRI −> Cons t r a in t In fo −> Bool
2 i s S a t i s f i e d sVals gc =
3 case constType gc of
4 AllValuesFrom −>
5 f o r a l l (\ v −> v ‘ Set .member ‘ constValues gc) sVals
6 SomeValuesFrom −>
7 ex i s t s (\ v −> v ‘ Set .member ‘ constValues gc) sVals
8 Ca rd ina l i t y −>
9 toInteger (Set . s i z e sVals) ‘ I n t e r v a l .member ‘ c on s t I n t e r v a l gc
Listing 7: Computation of isSatisf ied(V S, gc), where V S is a set IRIs and gc is a con-
straint

In conclusion, Haskell is a good choice to model the specialization relation. The close
similarity between definitions and program code is a major benefit, which made it easy to
adapt the implementation to modifications in the definitions during the thesis. To show
that the implementation is feasible, an analysis of the time complexity is presented.

5.1 Complexity Analysis
In this section, the time complexity of the function isSpecializationOf (Listing 3) and
the function it calls is analyzed. The complexity depends on a multitude of variables, for
example prototypes need to be found in the knowledge base, thus the size of the knowledge
base (i.e., the number of prototypes in the KnowledgeBase data type) is one constraint.
In addition, the number of properties of the generalization and specialization is relevant
because the function isSpecializationOf iterates over both. Another example would
be the number of constraint values of each constraint in each property that needs to be
accessed. The function isMatched needs to compute a subset on constraint values and
the complexity of function isSatisfied also depends on checking membership in the set
of constraint values.

While it is possible to analyze the complexity with regard to many specific different
variables it is not practical. Fortunately, all these variables are bound by the size of the
knowledge base: Because each property and each constraint and each value of a property
or value of a constraint is a prototype by itself it has to occur in the knowledge base. Thus,
it is not possible for any of these variables to grow beyond the size of the knowledge base.
In the following kb will denote the size of the knowledge base fkb (it is a Map containing
entries mapping form ID to prototype expression for each prototype in the knowledge
base). We start with the most basic functions first and then proceed to the functions that
call these.

The function isSatisfied shown in Listing 7 has three branches. Regarding com-
plexity the cardinality constraint can be computed in constant time because only the upper
and lower bounds need to be compared. In both other cases the membership of a set has to
be computed. This can be done in(log n), where n is the size of the set. In the worst-case
this needs to be done once for all elements in sVal (the values of a property of the spe-
cialization). Therefore, the worst-case runtime with regard to the size of the knowledge
base is: (log kb ⋅ kb).

The alternative function called by accountFor (Listing 5) is isMatched (Listing 6) .
That functions worst-case runtime is also occurring if the constraint is a type constraint.

54 5.1 Complexity Analysis

There, for each element in sConsts a subset relation has to be calculated. Determining
whether two things are a subset of another can be done in (n+m), where n and m are the
sizes of the two sets. In our case we use the size of the knowledge base as upper bound,
therefore determining the subset is in (kb). Doing this for each element in sConsts
results in the worst-case runtime (kb2) for isMatched.

The accountFor function (Listing 5) also has two cases which differ in complexity.
In one case isSatisfied is called on all gConsts (Line 3 in Listing 5) and in the other
it is isMatched (Line 4 in Listing 5). Since the runtime of isMatched is higher than
of isSatisfied only this case will be considered. The constraints of a property of the
generalization (gConsts) are at most of size kb. So, the complexity of isMatched gets
multiplied by the size of the knowledge base because the forall function applies it to all
elements in gConsts. Thus, the worst-case runtime for accountFor is (kb3). Notice,
that other parts of the function do not play a major role. The retrieval of sConsts (Line
5 in Listing 5) has only a complexity of (log2 kb) which is only computed once and thus
added to the complexity.

Then the worst-case complexity of isPropertySpecialization (Listing 4) depends
on computing the subset of the values of s and g (complexity: (kb)) and calculating
accountFor (complexity: (kb3)). Since these two complexities are added the overall
complexity for this function is (kb3).

The computation of the isSpecializationOf function (Listing 3) uses the forall
and the exists function. Computing existsSpecial computes for each property of
the specialization the function propertyIdIsEqual and isPropertySpecialization
(Line 6-8 in Listing 3). Computing whether the property ids are equal requires a lookup of
the property in the knowledge base (complexity: (log kb)). This is of lower complexity
than calling the function isPropertySpecialization. Thus, the complexity of the func-
tion described in Line 7 of Listing 3 is the complexity of isPropertySpecialization,
namely (kb3). This function is possibly called on each element of the knowledge base.
Thus, the existsSpecial function has complexity (kb4). Retrieving the properties of
the specialization and the generalization (Line 4 and 5 in Listing 3) is done only once and
therefore only adds a term with lower exponent to the complexity, which can be ignored.
The function existsSpecial is then called upon all properties of the generalization by the
forall function. Therefore, the overall worst-case complexity of isSpecializationOf
is (kb5).

In summary, determining whether one prototype is a specialization of another has poly-
nomial runtime in the size of the knowledge base. The complexity of this algorithm is not
necessarily a tight upper bound for the complexity of the problem. On the one hand, the im-
plementation presented here is a test of feasibility and is not optimized. Thus, the runtime
could be improved by optimization. On the other hand, the number of properties, con-
straints and values will in practice be a fragment of the size of the knowledge base. Only
the lookup of properties and constraint prototypes depends on the size of the knowledge
base. All other operations that increase the complexity depend on the number of proper-
ties, constraints or values. For example, the function isSpecializationOf iterates over
all properties of the generalization and for each of these it iterates over all properties of
the specialization. This accounts for the factor kb2 in the overall complexity. In practice
this part only depends on the number of properties. Furthermore, other parts depend only
on the number of constraints or values.

6 FUTURE WORK 55

6 Future Work
The specialization relation presented in this thesis is a first exploratory approach to knowl-
edge representation in prototypical systems for the Semantic Web. There are many ad-
vances possible and necessary to increase the expressiveness of the constraint system in
order to make it suitable for the Semantic Web movement. To integrate all these mech-
anisms was beyond the scope of this thesis. However, in the following, important exten-
sions are presented and the benefits and complications arising with integrating them are
discussed.

6.1 Data Types and Ranges
Currently, the prototype system does not feature a notion of data types. The implementa-
tion presented in [21] has a predefined knowledge base which contains literals to represent
data types. However, it is not a full type system. Adding more semantic to data types
would allow to define constraints based on data types. For example, numbers could be
constrained to be within a range or strings could be required to fit a regular expression.
Discussing the best possible representation of data types is left open. Range constraints
can be defined like cardinality constraints. The difference is that cardinality constraints
restrict the number of property values while range constraints would restrict the values that
each property value can have. Many other constraint systems allow checking for regular
expressions, for example [29, 9].

6.2 Recursion
In the presented system, the type constraints are not recursive. The constraint values are a
set of IRIs and the constraint is satisfied if the specialization has exactly the same IRI as
values.

It would advance expressiveness drastically, if one could specify that as a satisfying
value everything that is a specialization of another prototype is allowed. For example,
in OWL it is possible to express ∃hasChildren.Doctor. This means that there exists a
child who is a doctor. Notice, how Doctor references to a class in OWL. Similarly, the
specialization relation could specify that for the relation hasChildren there should be
someValuesFrom(Doctor), where Doctor is another prototype and meaning that each
specialization of that prototype is an allowed filler for this constraint.

There are different possibilities to represent this. We could say that we only have the
specialization of kind of values and that it is no longer possible to say that a value should
be exactly the same IRI. To keep and extend expressiveness, a distinction between fixed
IRIs and specializable IRIs can be made. For instance, one possible representation would
include three properties of a type constraint, namely, the type, the constraint values (these
would be fixed IRIs) and the specializable constraint values.

In the following we will assume this notion and define abbreviations as follows:
Definition 6.2.1. Given a fixpoint knowledge base FKB and a type constraint prototype
expression pce with IKB(FKB, pce) = pc. We write pc.type to denote the constraint
type, pc.cval to denote the set of fixed constraint values and pc.cspecs to denote the set of
specializable constraints values.

56 6.3 Boolean Operators

Specializable constraint values are only relevant for type constraints, as cardinality
constraints restrict only the number of values.

With this definition, we extend the definition of isSatisf ied to also check for constraint
values that may be specialized. Intuitively, we want to check whether a value is in the set
of concrete IRIs from the fixed constraint values. If this is not the case, it is checked if in
addition the value is a specialization of the specializable constraint values:

isSatisf ied(V S, gc) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∀v ∈ V S ∶ (v ∈ gc.cval
∨ ∃cs ∈ gc.cspecs ∶ v ⪯ cs)

if gc.type =
allV alF rom

∃v ∈ V S ∶ (v ∈ gc.cval
∨ ∃cs ∈ gc.cspecs ∶ v ⪯ cs)

if gc.type =
someV alF rom

|V S| ∈ gc.cval if gc.type =
cardinality

In addition, isMatched should be adapted. Currently, a constraint matches another
if the type is the same and the constraint values are a subset of another. As a minimum
modification, it should be defined that the constraint specializations can also bematched by
subset. In addition, it seems logical to allow a specialization of a specializable constraint
value to replace the generalization. The definition would then look as follows:

isMatched(SC, gc) =∃sc ∈ SC ∶ matches(sc, gc)
matches(sc, gc) =sc.type = gc.type ∧ sc.cval ⊆ gc.cval

∧ SpecsMatch(sc.cspecs, gc.cspecs)
SpecsMatch(sspecs, gspecs) =sspecs ⊆ gspecs ∨ ∀s ∈ sspecs ∶ ∃g ∈ gspecs ∶ s ⪯ g

When integrating this feature there might be cyclic recursion in checking the special-
ization. This could lead to non-termination. To address this cycles would need to be
detected. If satisfaction or matching is violated anywhere within a cyclic definition then
the whole cycle does not form a specialization relation. In contrast, if no violation can
be found within the cycle it means that everything is consistent as long as the other el-
ements in the cycle are also consistent. In this case the relation should be accepted as
specialization and the computation stopped as soon as a prototype is checked again.

Nonetheless the worst-case-runtime for computing specialization would be a lot worse.
When computing isSatisf ied we could have to check specialization for the whole knowl-
edge base multiple times. Depending on the knowledge base and the amount of recursion
this could be an exponential blowup. Still, in many practical cases the runtime would be
feasible and the gained simplicity in expressing complex concepts would be useful.

6.3 Boolean Operators
With the current formalization, constraints are combined with an “and” if there are multi-
ple constraints for one property. For functional completeness, negation needs to be intro-
duced. To ease constraint definition “or” should also be added.

Introducing this would yield two challenges. On one hand the representation needs
to be modified. Negation has to be introduced but more importantly the combination
of constraints together needs to be represented. This will pose a further blow-up of the

7 CONCLUSION 57

complexity of the representation in terms of prototypes or the need to introduce extra
syntax for formulating constraints.

On the other hand, combining negation and recursion can lead to problems. For ex-
ample consider the following example modified from [30]:

properties(g1) = {L1} L1.id = ex:p
properties(g2) = {L2} L2.id = ex:p
const(L1) = {¬L2} n1 ex:p n2
const(L2) = {¬L1} n2 ex:p n1,

where n1 and n2 are represented shortly but are meant to be composed of property proto-
types. Here we have prototypes g1 and g2, which both have only one property that has the
same id (ex:p) and one constraint for that property. The constraint defines that specializ-
ing values ofL1 are not a specialization ofL2. The reverse is said aboutL2. The question
is, whether n1 ⪯ g1 or n2 ⪯ g2. Both should not be true at the same time because they
are contradictory. Trying to conclude what is true leads to a circle. This circle could be
detected and the answer could be undefined. In their paper Boneva et al. ([30]) propose
to use stratified negation to forbid these kinds of negation. With stratified negation there
needs to exist an ordering of negations where two things on the same layer may not depend
on the negation of another (as is the case in the above example).

Methods like this can be introduced to the system. This would further increase the
expressiveness at the cost of complexity.

7 Conclusion
The Semantic Web movement defines ways to share semantic data in a machine-readable
format. Semantic Web languages such as OWL feature knowledge representation prim-
itives to model class hierarchies. In addition, different systems exist that can be used to
check the integrity of data on the Semantic Web. To offer more possibilities for sharing,
a prototypical approach has been presented in [6]. While the prototypical approach eases
reuse and sharing it cannot model meaningful hierarchies and perform integrity checks.

This thesis enhances the prototypical approach with hierarchical modeling capabilities
and the possibility to perform integrity checks by introducing an additional specialization
relation. The relation is based on constraint satisfaction. For a first exploration, a small but
expressive set of constraints on properties is chosen. Different possible representations are
compared. The selected representation is fully composed and thereby follows the major
design pattern of the prototypical approach: It allows to fully reuse and share properties
and constraints.

The specialization relation is defined on prototypes after inheritance. In contrast to
inheritance it is not declarative, but observational. A prototype s is a specialization of a
prototype g if s either satisfies the constraints of g, or s matches the constraints of g in
such a way that they are stricter than those of g. The relation allows multi-specialization
and is transitive.

An exploratory implementation is presented. It shows that the relation can be com-
puted in polynomial runtime with regard to the size of the knowledge base.

As first exploration of such a relation, this thesis opens up numerous opportunities for
future research (as discussed in Section 6).

ex:p
ex:p
ex:p
ex:p
ex:p

58

8 References
[1] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific

American, 284(5), 2001.
[2] Grigoris Antoniou and Frank Van Harmelen. A semantic web primer. MIT Press,

2008.
[3] Markus Lanthaler, David Wood, and Richard Cyganiak. RDF 1.1 Con-

cepts and Abstract Syntax. W3C Recommendation, W3C, February 2014.
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.

[4] Frank van Harmelen and Deborah McGuinness. OWL web ontol-
ogy language overview. W3C recommendation, W3C, February 2004.
http://www.w3.org/TR/2004/REC-owl-features-20040210/.

[5] Peter Patel-Schneider, Bernardo Cuenca Grau, and Boris Motik. OWL 2 web ontol-
ogy language direct semantics (second edition). W3C recommendation, W3C, De-
cember 2012. http://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/.

[6] Michael Cochez, Stefan Decker, and Eric Prud’hommeaux. Knowledge Representa-
tion on the Web revisited: the Case for Prototypes. In International Semantic Web
Conference (ISWC). Springer, 2016.

[7] Antero Taivalsaari. Classes vs. Prototypes - Some Philosophical and Historical Ob-
servations. In Journal of Object-Oriented Programming. Springer, 1996.

[8] Jiao Tao, Evren Sirin, Jie Bao, and Deborah L. McGuinness. Integrity Constraints in
OWL. In Proceedings of the 24th AAAI Conference on Artificial Intelligence. AAAI
Press, 2010.

[9] Slawek Staworko, Iovka Boneva, Jose E. Labra Gayo, Samuel Hym, Eric G.
Prud’hommeaux, and Harold Solbrig. Complexity and Expressiveness of ShEx for
RDF. In 18th International Conference on Database Theory. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2015.

[10] Ramanathan Guha and Dan Brickley. RDF schema 1.1. W3C Recommendation,
W3C, February 2014. http://www.w3.org/TR/2014/REC-rdf-schema-20140225/.

[11] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
W3C Recommendation, W3C, January 2008. http://www.w3.org/TR/2008/REC-
rdf-sparql-query-20080115/.

[12] Ian Horrocks, Peter F. Patel-Schneider, and Frank Van Harmelen. From SHIQ and
RDF to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1), 2003.

[13] Thomas Hofweber. Logic and Ontology. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, fall
2014 edition, 2014.

8 REFERENCES 59

[14] Eric Margolis and Stephen Laurence. Concepts. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford Univer-
sity, spring 2014 edition, 2014.

[15] Eleanor Rosch. Cognitive representations of semantic categories. Journal of Exper-
imental Psychology: General, 104(3), 1975.

[16] Antero Taivalsaari. On the Notion of Inheritance. ACM Computing Surveys, 28(3),
September 1996.

[17] Christophe Dony, Jacques Malenfant, and Daniel Bardou. Classifying Prototype-
based Programming Languages. Prototype-based Programming: Concepts, Lan-
guages and Applications, 86, 1998.

[18] David Ungar and Randall B Smith. Self: The Power of Simplicity. In Confer-
ence Proceedings on Object-oriented Programming Systems, Languages and Appli-
cations. ACM, 1987.

[19] David Flanagan. JavaScript: The definitive guide. O’Reilly Media, 2006.
[20] Tom M Mitchell, John Allen, Prasad Chalasani, John Cheng, Oren Etzioni, Marc

Ringuette, and Jeffrey C Schlimmer. Theo: A framework for self-improving systems.
Architectures for Intelligence, 1991.

[21] Michael Cochez, Stefan Decker, and Eric Prud’hommeaux. Knowledge Representa-
tion on theWeb revisited: Tools for Prototype Based Ontologies. arXiv:1607.04809,
July 2016.

[22] Tim Korson and John D. McGregor. Understanding object-oriented: A unifying
paradigm. Communications of the ACM, 33(9), 1990.

[23] M. Duerst andM. Suignard. Internationalized Resource Identifiers (IRIs). RFC 3987
(Proposed Standard), January 2005. http://www.ietf.org/rfc/rfc3987.txt.

[24] Marvin Minsky. A framework for representing knowledge. Technical report, MIT,
1974.

[25] William A. Woods and James G. Schmolze. The KL-ONE family. Computers &
Mathematics with Applications, 23(2), January 1992.

[26] Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE Knowl-
edge Representation System. Cognitive Science, 9(2), April 1985.

[27] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of database systems. Pear-
son, 2015.

[28] Jean Paoli, Eve Maler, Tim Bray, Michael Sperberg-McQueen, and François
Yergeau. Extensible markup language (XML) 1.0 (fifth edition). W3C recommen-
dation, W3C, November 2008. http://www.w3.org/TR/2008/REC-xml-20081126/.

[29] Dimitris Kontokostas and Holger Knublauch. Shapes constraint language (SHACL).
W3C Recommendation, W3C, July 2017. https://www.w3.org/TR/2017/REC-shacl-
20170720/.

http://www.ietf.org/rfc/rfc3987.txt

60

[30] Jose Emilio Labra Gayo Iovka Boneva and Eric Prud’Hommeaux. Semantics and
Validation of Shapes Schemas for RDF. In International Semantic Web Conference
(ISWC), 2017.

[31] Chimezie Ogbuji and Birte Glimm. SPARQL 1.1 entailment regimes. W3C
Recommendation, W3C, March 2013. http://www.w3.org/TR/2013/REC-sparql11-
entailment-20130321/.

[32] KarenCoyle, Thomas Baker, Dublin CoreMetadata Initiative, and others. Guidelines
for Dublin Core application profiles. 2009.

[33] Mikael Nilsson, Alistair J. Miles, Pete Johnston, and Fredrik Enoksson. Formalizing
Dublin Core Application Profiles – Description Set Profiles and Graph Constraints.
Metadata and Semantics, 2009.

[34] Arthur G. Ryman, Arnaud Le Hors, and Steve Speicher. OSLC Resource Shape: A
language for defining constraints on Linked Data. Linked Data on the Web (LDOW),
996, 2013.

	Introduction
	Background
	Semantic Web
	Inheritance
	Class-based Inheritance
	Prototypical Inheritance
	Discussion
	Syntax and Semantics of Prototypes for the Semantic Web

	Frames and Description Logics
	Open and Closed World Assumption

	Integrity Constraints

	Constraints
	Types of Constraints
	Constraint Representation
	Graphical Representation of Prototypes with Constraints
	Syntactic Abbreviations for Constraints

	Specialization Relation
	Examples
	Definition
	Inheritance Free Fixpoint State of a Knowledge Base
	Semantics of Composed Prototypes
	Semantics of Specialization

	Properties
	Transitivity
	Specialization Reduces the Number of Further Specializations
	Consistent Prototypes

	Implementation
	Complexity Analysis

	Future Work
	Data Types and Ranges
	Recursion
	Boolean Operators

	Conclusion
	References

