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Abstract

Background: with the increasing prevalence of knee Osteoarthritis (OA), a degenerative
joint disease without effective and economical cure at the mid- to late- stage, the growing
demand of its early diagnosis exposes an enormous challenge for highly precise, objec-
tive and efficient assessments. In terms of our investigation on deep learning based OA
quantification mechanisms, this thesis presents a new approach to automate the OA di-
agnosis, which is based on multimodality integration concept.

Methods: our pipeline consists of data collection, preprocessing, Region of Interest (ROI)
detection, classification and regression analysis, decision visualization, and ensem-
ble module. In our approach, plain radiographs from coronal and sagittal plane are
enhanced by using histogram equalization and slight Perona-Malik filter (K=50, it-
erations=1), while Magnetic Resonance Imaging (MRI) slices from sagittal and axial
view are processed using slight Perona-Malik filter, unsharp masking sharpening with
EDGE_ENHANCE kernel, and multi-slice averaging.

ROIs are then precisely extracted from the preprocessed images by means of U-Net with
the ResNet-18 backbone, in which classification and regression analysis are carried out
by DenseNet-161 and revised VGG-19, which are followed by highlighting the relative
class-discriminating features using Gradient-weighted Class Activation Maps ++ (Grad-
CAM++). Based on 2,406 individuals of the Multicenter Osteoarthritis Study (MOST) co-
horts, existing technical bottlenecks such as noise, artefact, and modality limitation have
been mitigated by the grading accuracy with experts of integrating Dense Convolutional
Networks (DenseNets) and VGG-19 trained on coronal radiographs and sagittal MRIs.

Results: precision, recall, and the F1 scores of our OA grading approach are boosted to
0.90 by the combination of model ensemble (DenseNet-161, DenseNet-169, DenseNet-201
and VGG-19) on coronal X-Ray images and VGG-19 attained from sagittal MRIs. More-
over, ensemble experiments on coronal view of X-Ray images confirm that even if only
assembling DenseNet-161, DenseNet-201 and VGG-19, it also served as an optimal alter-
native showing superior diagnosis accuracy of 91.22% with a reasonable Mean Squared
Error (MSE) of 0.0878.
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Chapter 1

Introduction

As a phenomenal chronic disease, OA is defined as a heterogeneous group of conditions
that lead to joint symptoms and signs that are associated with defective integrity of artic-
ular cartilage, in addition to related changes in the underlying bone at the joint margins
[1]. The gradual loss of articular cartilage characterizes defective integrity. Videlicet, ag-
ing cartilage becomes stiffer progressively and more vulnerable to wear and tear [2].

1.1 Background and motivation

Nowadays, the increasing prevalence of OA not only has posed an enormous challenge
for elderly health, but also tends to younger people with risk factors such as obesity and
reduced physical activity [3]. As of 2006, about 40% of the population over the age of
65 have radiographic evidence of OA, in particular for knee, which is still dramatically
soaring [4]. In terms of the studies by World Health Organization, the total number of
Years Lived with Disability (YLDs) world-wide caused by OA increased by 60.2% be-
tween 1990 and 2010, and by 26.2% per 1000 individuals [3].

Ranked as the 13th highest global disability factor [5], OA places a high economic expense
burden on the society, in consideration of work absenteeism, early retirement, and joint
replacement [6]. For example, as early as 1994, the cost of OA was estimated at $ 5.9 bil-
lion in Canada, which was mainly attributed to lost productivity at work and home due
to disability [7]. When it comes to 2007, around $ 185.5 billion are estimated to be paid in
United States as the aggregate annual expenditure [3]. Although with the formal inaugu-
ration of the novelty techniques, the cost of OA treatments began to shrink, up to 2015,
the estimated expenditure per patient for joint replacement still reaches 19,715 e/year
[3], which, to a great extent, arises from the current clinical inability to systematically
diagnose the disease at an early stage [8]. After all, the incremental cost per patient with
mild OA is calculated as 1300 e/year, while 4377 eis spent for severe patients yearly [3].
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However, except expensive joint replacement surgery, there is no effective cure for OA at
the mid- to late- stage [8]. Namely, early diagnosis remains the only available option to
prolong patient health in a low-cost way.

Clinically, OA is primarily identified via hyaline cartilage change based on medical
images. However, the process of measuring cartilage morphology is extremely time-
consuming and burdensome, especially for MRI modality. Each 3-Dimensional (3D) knee
MRI sequence takes up around six hours for a surgeon to manually analyze [9], which still
cannot guarantee its diagnosis accuracy, due to the lack of additional information. Sur-
geons can hardly catch all the information presented in medical images, let alone stored
metadata. Hence, supplementing the diagnostic chain with computer aid, radiologists
and other clinical specialists can focus on incidental findings, instead of routine tasks like
image grading. In the meanwhile, on the basis of accurate algorithms, the OA diagnosis
can be conducted more comprehensive.

1.2 Problem statement

Early detection of OA is in the middle of a major paradigm shift driven by information
technology. In particular, the booming of digital medical images is drawing more and
more attention in the academic, even has engendered several novel branches in terms of
modalities, including radiography (also named as X-Ray), MRI, Computed Tomography
(CT) and ultrasound [2].

However, owing to different operating principles, each modality exposes several limita-
tions, which make the accuracy of OA severity quantification and prediction meet the
bottleneck fundamentally. For example, ultrasound requires so complex image process-
ing algorithms that it is exceedingly costly both for processing time and for expense
[1]. As for CT and radiograph, they exhibit significant potentials in displaying a bone
shape rather than a soft-tissue region which provides a more explicit approach to vividly
express characteristics of OA [10, 11]. Furthermore, CT is currently facing challenging
technical dilemmas with respect to normalization strategies and controlling light beam
angles[12]. X-Ray is stuck with subtle changes detection over time as well as in stereo-
scopic space. While MRI is greatly useful in identifying full or partial-thickness changes
of articular cartilage, it cannot present clear bone architectures, which might indicate the
earliest OA progression [2, 10, 13].

Apart from the aforementioned limitations of each modality, noises and artifacts, such as
aliasing, slice overlap, truncation, and patient motion, acting as several pathological fea-
tures of OA, i.e., osteophytes, bone marrow lesions and surface fibrillation, also restrict
the flourish of automatic OA diagnosis so far [14, 15].

Thanks to the ground-breaking deep learning techniques, automatic medical image seg-
mentation, a significant step for OA detection, has outperformed human experts [8].
Hence, currently, the core of research in automatic OA severity quantification realm is
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how to break through above three technical restraints so that it still possesses a promis-
ing potential to explore the dramatic performance enhancement.

1.3 Objectives and scope of the thsis

OA can result in any of joint in the body, such as spines, hips, fingers, etc, but it is most
common and severe in knee [2]. Therefore, this thesis concentrates on knee OA analysis
and prediction based on deep learning algorithms, on account of its remarkable prosper-
ity in medical image segmentation field.

1.3.1 Thesis goal

Considering intrinsic modality restriction, noise and artifact would give rise to severe
consequences, this thesis aims to sort out the ideal pipeline settings consisting of prepro-
cessing, ROI extraction, classification, and multimodality integration.

Specifically, for the sake of noise removal as well as artifact reduction, this thesis proposes
to figure out the most suitable group of preprocessing operations. Furthermore, in or-
der to promote the classification accuracy, our research intends to investigate the perfect
deep learning based ROI extraction algorithms for medical image. Moreover, targeting
at resolving intrinsic restrictions for each mainstream modality, this thesis is designed to
validate the superiority of multimodality integration and further explore the most fitting
modality combination on MOST public database, one of the standard datasets applied in
knee OA researches.

1.3.2 Scope of the thesis

In the present study, a novel OA quantification solution based on multimodality inte-
gration is applied to overcome the limitations of the state-of-the-art approaches by effec-
tively getting rid of the negative influences stemming from modality-forming principles.
In terms of their complementarity and application range, following a series of prepro-
cessing methods, including contrast enhancement, noise elimination, and multi-slice in-
tegration, aiming at the same patient, radiographs and MRIs from axial, sagittal as well as
coronal plane are respectively classified by their extracted features in the detected ROIs.
Given supplying reliability and objectivity of the grading process, class-discriminating
attention maps are generated by Class Activation Maps (CAM), prior to the averaging
ensemble of models with the same modality and multimodality.
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1.3.3 Key contributions

The key contributions of this thesis can be summarized in the following:

1. Aiming at plain radiograph and MRI, found the best preprocessing approach re-
spectively based on histogram equalization, Perona-Malik filter, unsharp masking
edge enhancement and MRI slice average.

2. Developd an accurate framework to automatically detect and localize knee joints
from different perspectives of X-ray images using a U-Net with ResNet-18 as back-
bone.

3. Taking advantage of their both natural benefits, presented a new approach to train
a ROI detection network on plain radiographs with the combination of two loss
functions: Binary Cross Entropy (BCE) and Intersection-over-Union (IoU).

4. Validated the performance of Region Proposal Network (RPN) in Faster Region
Convolutional Neural Network (FRCNN) for ROI detection and came up with the
shortcomings of end-to-end learning for knee OA grading.

5. Proposed a highly precise architecture, fully convolutional VGG-19, to alleviate
overfitting and resolve the excessive parameter issue of fully connected layers in
VGG-19, in particular for medium and large sized medical images.

6. Refined DenseNet-161 as the remarkably accurate OA predictor assessed on various
views of both X-Ray images and MRIs.

7. Validated the promotion of diagnosis performance dramatically by introducing
dataset balancing based on image augmentation.

8. Compared to Kellgren and Lawrence (KL) semi-quantitative metric, validated the
superiority of Osteoarthritis Research Society International (OARSI) Joint Space
Narrowing (JSN) progression scoring system on the basis of empirical outcomes.

9. Brought in Grad-CAM++ as OA diagnosis visualization to more precisely locate
class-discriminating features.

10. Framed model ensemble concept on diverse neural networks and substantiated its
better performance than assembling the same series of models.

11. Introduced multimodality integration conception to break through limitations of
plain radiograph and MRI themselves, whose promising boost and prospect were
confirmed by integrating models obtained from coronal X-Ray images and sagittal
MRIs.
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The rest of the thesis is structured as follows: chapter 2 gives a panoramic view of the
related works on knee OA quantitative criteria as well as its automatic diagnosis method-
ologies and outlines their potential limitations. In terms of papers analyzed in chapter 2,
chapter 3 explains the desirable approach and relative algorithm candidates for further
evaluation. chapter 4 (Evaluation) provides the experimental comparative performance
for the proposed mechanism in chapter 3 and sorts out the ideal implementations for each
module. Finally, chapter 5 summarizes the accomplishments for the work and points out
future directions which might lead towards the next generation of systems.
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Chapter 2

Related Work

Owing to the ever-growing prosperity of medical image modalities, instead of aiding
with a differential diagnosis where there is clinical doubt, imaging plays a pivotal role in
the OA diagnosis and prediction of structural progression. In particular, modalities have
a predominant influence on determination as well as long-term prognosis of OA. Namely,
diverse patterns contribute to a different understanding of OA pathogenesis. Therefore,
a panorama of automatic OA quantization criteria and mechanisms is proposed based on
the analysis of employed image modalities, including radiography, MRI, CT, ultrasound,
and so on.

2.1 Radiographs

While different modalities have expanded our noesis on OA pathologies by offer embrac-
ing 3D perspectives on the joint, conventional radiographs are still the first line imaging
modality selected, on account of its availability, swiftness, and economy [16]. A radio-
graphic image is a shadow of the differential absorption of x-rays by the tissues of the
joint, where bony structures appear white to light grey whereas the radio-transparent
soft tissues turn out dark grey to black [17]. Radiographs exhibit significant potentials in
displaying bone shape features related to OA, inclusive of osteophytes, Joint Space Width
(JSW) narrowing, subchondral sclerosis and cysts, rather than adjacent tissues which pro-
vide a more explicit approach to vividly express characteristics of OA, in particular for
the early detection [10, 11, 18, 19]. After all, those pathological changes shown in radio-
graphs are associated with severe stages of OA [18, 19]. Even among experts, the first OA
degree reported from radiological and clinical diagnosis may be divergent [20].

Furthermore, due to the projection nature, radiography is stuck with subtle changes de-
tection longitudinally as well as in stereoscopic space. Certainly, to a great extent, the
more perspectives are examined, the higher the likelihood of correct knee OA diagno-
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sis is [20]. Besides, exposure to ionizing radiation has already aroused the public worry
about patient safety [18, 19]. Although radiography is not like the gold standard to detect
and monitor osteoarthritis progression anymore, its widespread application in the evalu-
ation of OA progression still fosters the maturity and variety of related studies, especially
in the fields of admitted scoring systems and quantification workflows.

2.1.1 Evaluation criteria

Albeit OA is radiographically defined by the presence of marginal osteophytes, worsen-
ing of JSN serves as the most common indication of progressive osteoarthritis, which is
assessed via quantitative JSW or semi-quantitative grading systems [21].

Quantitative assessments

JSW is the distance between the projected femoral and tibial margins on the anteropos-
terior radiographic image [21]. In general, minimum JSW is the standard metric. Fur-
thermore, measures of location-specific JSW with various degrees of responsiveness is
substantiated to be superior to minimum JSW assessment concerning the prediction of
progression [22]. Nevertheless, both JSW metrics are reliable when obtained radiographs
last longer than two years, and knees are fixed in a standardized flexed position since
their minor changes are in the millimeter/submillimeter range, which is high-demanding
for precision [21, 22].

Investigations of quantitative evaluation are not limited to joint space. Fractal Signa-
ture Analysis (FSA) of the subchondral bone has been a matter of debate in OA research
[22]. FSA extracts the trabecular texture of subchondral bones in horizontal and verti-
cal vectors and revealed correlations with the degree of cartilage loss on the tibial surface
longitudinally [22]. However, instead of standard digital radiography for our routine OA
examination, barely macro radiography (typically with 4-5 times magnification) allows
for better visualization of structural changes in FSA calculations [22]. Noticeably, FSA
still calls for massive technical renovation in clinical practice.

Semi-quantitative assessments

Due to in difficulty of measurement interpretation, semi-quantitative grading systems
vastly transcend quantitative metrics in automatic knee OA detection, among which the
KL scale and OARSI atlas retain dominant. KL scale defines radiographic OA with a
global composite score on a 0-4 range [23], which is correlated to incremental severity of
OA, with grade 0 signifying no presence of OA and grade 4 indicating grievous OA [24].
The following radiologic features are crucial factors for KL [24]:
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• Formation of osteophytes on joint margin or the tibial spines

• Periarticular ossicles (basically about distal interphalangeal joints and posterior in-
terphalangeal joints)

• Narrowing of joint cartilage associated with sclerosis of subchondral bone

• Small pseudocystic areas with sclerotic walls situated usually in the subchondral
bone

• Altered shape of bone ends, particularly in the head of the femur

Accordingly, representative knee radiograph with each KL grade is demonstrated in Ta-
ble 2.1 [23].

Grade Radiologic symptom
0 None
1 Doubtful narrowing of the joint space with possible osteophyte formation.
2 Possible narrowing of the joint space with definite osteophyte formation.
3 Definite narrowing of joint space, moderate osteophyte formation, some scle-

rosis and possible deformity of bony ends.
4 Large osteophyte formation, severe narrowing of the joint space with marked

sclerosis and definite deformity of bone ends.

Table 2.1: KL grade description

However, employing the KL system for progression description has entailed additional
risks for automatic quantification, since KL grade 3 includes all degrees of JSN, regardless
of the actual extent [21, 22]. Moreover, knees at KL grade 4 that exhibit a bone-on-bone
appearance are still prone to structural changes, such as bone marrow lesions, effusion,
synovitis, and Hoffa-synovitis, which only can be detected on MRI [21, 22]. Therefore,
the term "end stage" is no longer appropriate for KL grade 4 and a modified KL definition
engenders [25].

Assessment of individual radiographic features of OA has been advocated as an alter-
native to KL score. The OARSI atlas provides image examples for grades for specific
features of OA rather than assigning global scores according to definitions [22]. This at-
las grades tibiofemoral JSN and osteophytes separately for each compartment of knees
(medial tibiofemoral, lateral tibiofemoral, and patellofemoral) with a 0-3 scale according
to the following guidelines in Table 2.2 [21, 25, 26].

Even if the usage of this atlas can standardize the interpretation of radiographs in trials
and has moderate to better reliability than KL systems, the inherent limitations on varia-
tions in beam angle or knee flexion are not eliminated [25, 27]. Thereby, grades assessed
with JSN is more rigorous than that of osteophytes [27]. Considering the time-consuming
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Grade Criteria description
0 None
1 Mild (1%-33% abnormal)
2 Moderate (34%-66% abnormal)
3 Severe (67%-100% abnormal)

Table 2.2: OARSI atlas criteria description

rating of the OARSI atlas, typically only OARSI JSN scores are taken into use among the
scholastic [27].

To sum up, among different radiographic metrics, by their evaluation convenience, KL
grade sticks out as representatives to be chiefly publicized in automatic OA detection.
However, with the escalation of available clinical data, the rising of OARSI JSN score in
the computer-aid diagnosis domain commences, which contributes to its higher confi-
dence level.

2.1.2 Quantification workflows

Thanks to the abundant data sources and long-term in-depth research, the automatic OA
diagnosis workflow of radiograph is versatile and flexible, which primarily consists of
preprocessing and classification.

Preprocessing

Under its plain image format, generally, radiograph preprocessing just horizontally flips
images for data augmentation [8, 28]. Undoubtedly, aiming at specific datasets, data
cleaning, such as excluding images with implants to avoid any disturbances in the data
distribution, is also emphasized [8]. However, to a great extent, a radiograph is simple
and clear enough for direct classification after data augmentation.

Classification

Initially, previous to classification, the typical process comprised of feature extraction
step. For example, Tae Keun Yoo et al. calculated Kinematic factors for stair ascent as
features, which are classified by Support Vector Machines (SVM) with 97.4% accuracy
[29]. Certainly, only six patients’ radiographs collected by themselves cannot convince
the public of their overwhelming success. Having contradistinguished with naive Bayes,
Radial Basis Function (RBF) networks and random forest, [30] offered empirical evidence
of SVM’s superexcellence, especially in the aspect of sensitivity and recall rate. In the
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meanwhile, the authors imported Restricted Boltzmann Machine (RBM) to select features
on the images after wavelet transformation [30], which inspired the extensive exploration
for the adhibition of deep learning techniques in knee OA analysis.

Foremost, the failure of unsupervised Artificial Neural Networks (ANN) has been con-
firmed. L. Anifah et al. applied Gabor kernel to extract features from normalized radio-
graphs obtained from Osteoarthritis Initiative (OAI) [31]. However, their Self Organizing
Map (SOM) model cannot produce a satisfying classification accuracy (lower than 30%
overall), which is far away from the requirements in practice [31]. Although [2] accreted
Gray-Level Co-Occurrence Matrix (GLCM) with Gabor kernel for ROI extraction, which
elevated their detection accuracy to 53.34%, only 4% of radiographs correctly detected
as KL grade 2 obviously cannot achieve public expectation, which proves at least SOM
should be eliminated in the further OA research.

Despite their failures, the amelioration rooting in ROI abstraction attracts the academic
to build up their framework with this step, such as another method proposed in [2]. M.
Subramoniam and V. Rajini manually selected 200*200 central joint region as ROI, where
further they extracted features by Local Binary Pattern (LBP) with several distance met-
rics [2]. Although the trained K Nearest Neighbor (KNN) classifier presented over 95%
accuracy, just 50 samples are quite difficult to produce a convincing result. Besides, their
ROI selection is not only exhausted but also lack of evident scientific support. Building
on this concept, [32] picked up three small regions along the tibial edge from medial view
to lateral view, which bore out the rationality of the middle choice by experimental com-
parative deviations.

Through the comparison among KNN with the Euclidean distance, SVM with the Ra-
dial Basis Function (RBF) kernels, the logistic regression with the binomial model and
the naive Bayes classifier, SVM stood out again from the crowd [32]. The 80.38% accu-
racy was verified by multiple wavelet decomposed features of 688 radiographs from OAI
database, nevertheless, different with other experiments, only KL grade 0 and 2 were in-
volved in this binary classification, which apparently would lead to the precision surge.
Similar operations with random forest classifier in [33] revealed this conclusion on the
MOST dataset. For the binary classification task, the grades were split into two groups:
non-OA: KL (0,1) and the OA group: KL (2-4), which reached 80% accuracy or so. Cor-
respondingly, 5-Class classification maintains the accuracy of around 45%. Moreover, to
shun the onerous ROI labeling, [33] put forward the Random Forest Regression Voting
Constrained Local Model to locate more informative points in both single bones and com-
binations of bones, which would compose ROIs. Although at least 4% difference between
manual annotation and automatic tagging, it enlightens the academia on the direction for
fully automated OA quantization.

With independence from prior knowledge and human effort in shift-invariant feature
design, Convolutional Neural Network (CNN) gained widespread attention gradually.
After all, the connectivity pattern between neurons resembles the organization of the
animal visual cortex, which automatically extracts salient features for human determina-
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Reference Approach Accuracy Limitation
[2] SOM 53.34% Poor classification accuracy, in particular for KL

grade 2
[2] KNN 97.37% Not enough subjects (50 patients) involved into ex-

periments
[8] Siamese

CNN
66.71% Dissatisfying classification accuracy, in particular

for KL grade 1
[28] CNN 61.9% Dissatisfying classification accuracy
[29] SVM 97.4% Too less subjects (6 patients) involved into experi-

ments
[31] SOM 29.53% Poor classification accuracy
[32] SVM 80.38% Only binary classification for KL=0 and KL=2
[33] Random

forest
47.9% Poor classification accuracy

[34] CaffeNet 59.6% Dissatisfying classification accuracy and poor ROI
detection accuracy

[35] DenseNet —— Unrecognized classification criterion by KL grade
combination

[36] CNN 68% Massive metadata required and class combination
between KL grade 0 and 1

Table 2.3: Conclusion of knee OA diagnosis related work based on radiograph

tion. Thus, the whole process integrates into ROI detection and classification. For exam-
ple, Joseph Antony et al. applied a linear SVM with the Sobel horizontal image gradients
to detect knee joints and fine-tuned the pre-trained BVLC CaffeNet and VGG-M-128 by
OAI database [34]. As for each detected ROI, they evaluated by the well-known Jaccard
index, or essentially IoU to give the following matching score in eq. (2.1):

J(X,Y ) =
X ∩ Y

X ∪ Y
(2.1)

Where X is the manually annotated and Y is the automatically extracted knee joint center,
their mean Jaccard index is only 0.36 [34]. Although the proposed method with 59.6%
accuracy also left much to be desired, its greatest contribution stems from bringing in
regression analysis. The continuous quantization was certified to both reduce the mean
squared error and enhance the multiclass classification accuracy of the model from 57.6%
[34]. After they upgraded linear SVM to Fully Convolutional Neural Network (FCN), in-
spired by the success of FCN for semantic segmentation on common pictures, the mean
Jaccard index sharply leaped to 83%, even if OAI and MOST datasets are combined [28].
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However, having trained their own 6-layer CNN model, 61.9% classification accuracy,
whose gap between automatic and manual localization narrowed down from 4% in [33]
to current 2%, still didn’t live up to clinical desire.

Aleksei Tiulpin et al. applied SVM-based scoring again for gradually modifying pro-
posed ROIs [37]. On the extracted joint areas, a 6-layer deep Siamese CNN detected the
lateral and medial sides of the knee joint in the two branches respectively [8]. Aroused by
[38, 39, 40], they ensembled Grad-CAM for Siamese networks attention visualization, to
automatically highlight the important features to produce the target label, which fortifies
the reliability and transparency of the whole architecture. Compared with the fine-tuned
ResNet-34 (Residual Network with 34 layers) pre-trained on the ImageNet dataset, its
average multiclass accuracy (66.71%) was a bit less, although its MSE was lower. Even
if [41] was also pre-trained by ImageNet, it (67.2%) cannot yet catch up with ResNet-34
(67.49%). However, it proposes the hypothesis based on FRCNN ushering in a new era
for the end-to-end classification without intermediate steps.

In conclusion, currently, two modes of classification prevail in the academic: ROI extrac-
tion + classification and end-to-end classification. Nevertheless, as Table 2.3 indicated, no
matter which architecture is applied, 68% is deemed insufficient for practical application.
The imprecision springs from stage 1 and 2, especially the former, which has no strik-
ing difference with normal joints in insensitive radiographs. Although [35, 36] merged
stage 0 and stage 1 to attain over 70% precision, forasmuch as the restriction of this actual
condition, OA prediction accuracy is facing a huge bottleneck, which bare criterion or
workflow promotion manifestly cannot surmount.

2.2 MRI

As the stagnation for the radiographic OA progressed, gradually the emphasis of schol-
ars shifts to MRI, a non-invasive modality with high spatial resolution without ionizing
radiation and multi-planar capability that allows direct visualization of all structures of
the joint, peculiarly cartilage morphology and biochemical composition [42, 43].

Clinical MRI is based on the alignment behavior (typically to 90◦ with the commonly
used spin-echo technique) of hydrogen nuclei in a magnetic field [44]. When resonat-
ing with the applied external radio frequency pulse, the radio frequency signal produced
by excited hydrogen nuclei realignment constructs a detailed superior contrast 2D and
3D image [18, 44]. Owing to water as the major form of hydrogen in the knee region,
MRI depicts bone tissue as a signal void, while cartilage, muscle, ligaments and other
soft tissues exhibit with low signal intensity [45]. MRI is greatly sensitive in identifying
full or partial-thickness changes of articular cartilage over time, on the contrary, it cannot
present clear bone architectures, which is in contrast to the technical characteristics of
radiography [2, 10, 13].

As the most complex modality, MRI struggle with its diversity comprised by varying
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image planes (Axial, Sagittal, Coronal), multifarious sequences (Spin-Echo, Fast Spine-
Echo, Gradient Echo and Inversion Recovery) and miscellaneous parameters (Proton
density, Relaxation times, Magnetic field power), which strongly change MRI signals and
require excessive robustness [14]. Thus, the crux of blooming MRI OA research lies in the
substantial collection of standardized MRI, rather than regulated evaluation criteria and
workflows.

2.2.1 Evaluation criteria

In comparison to the popularity of radiographic OA semi-quantitative assessment, quan-
titative metrics almost monopolize the academia of MRI OA diagnosis due to the high-
resolution image sequences with the convoluted indices.

Quantitative assessments

The blossom of quantitative measurement of biochemical and biomechanical properties
of the articular cartilage on MRIs has even compelled the formulation of quantitative
MRI (qMRI), an advanced sub-modality in vivo [19]. qMRI for measuring the relax-
ation properties in cartilage, such as T2 mapping, T1 mapping, T1ρ mapping, and T2∗

mapping, may aid in the diagnosis of early OA before irreversible morphologic changes
[19, 46]. Those relaxation times characterize the fluid (water protons) or proteoglycan,
which reflects as the signal intensity. For example, tissues with a strong interaction be-
tween hydrogen nuclei and the electromagnetic vibrations of macromolecules (fat tissue)
exhibit a short T1 relaxation time and are bright on a T1-weighted image [44].

Similarly, abnormal symptoms caused by accumulated free water molecules (not at-
tached to adjacent macromolecules) display long T2 relaxation times and bright signal
intensity on T2-weighted images [44]. Apart from relaxation time, other MR parameters
like proton density also can be associated with the change in water content and colla-
gen fibril network for quantification [19]. However, growing investigations engage in a
more intuitive metric, cartilage volume and thickness measurements, thanks to the super-
resolution of MRI. Exactly, in this case, the accuracy of cartilage segmentation would face
unprecedented challenges.

Semi-quantitative assessments

In the past decade, five well-established MRI scoring systems were published: the
Whole-Organ Magnetic Resonance Imaging Score (WORMS), the Knee Osteoarthritis
Scoring System (KOSS), the Boston Leeds Osteoarthritis Knee Score (BLOKS), the MRI
Osteoarthritis Knee Score (MOAKS) and the Knee Inflammation MRI Scoring System
(KIMRISS), among which WORMS and BLOKS have been broadly disseminated [22, 47].
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Similar to OARSI atlas, both assessments approach highlighted above examine a spec-
trum of OA-related structural abnormalities including soft tissue, cartilage, and bone in
the knee at various anatomical subregion locations [48]. Confronted with global indices,
they offer highly reliable insights in cartilage morphology, bone marrow lesions, menis-
cal damage, and mediolateral meniscal extrusion, especially BLOKS, is more sensitive
for full thickness defects [48]. Nevertheless, integration over ten articular surface regions
concerning over ten independent features is too cumbersome for automatic diagnosis to
handle. Hence, state-of-art MRI classifications predominantly stem from its quantitative
metrics, even radiographic semi-quantitative metrics.

In comparison to the persistence of radiographic OA measurement standards, criteria
of MRI assessments burst into bloom, which leads to the lack of authoritative labeled
datasets so that radiographic metrics have surprisingly abounded in the academic.

2.2.2 Quantification workflows

The kernel of radiographic prediction is classification, whereas the established procedure
for MRI processing highlights the preprocessing and segmentation step, contingent on
the complication of image format itself.

Preprocessing

The superb multi-tissue assessment by MRI is derived from the sophisticated image
modality, which brings about the indispensable standing for preprocessing. In partic-
ular, data acquired directly from the clinic are a series of 3D videos. Luckily, major ac-
knowledged databases have projected them into 2D slices from diversified perspectives.
Even though MRI is capable of imaging the soft tissues, improper contrast distribution,
and brightness distribution always make for incorrect edges between the adjacent tissues
[49]. Hence, those 2D MRI slices are subjected to contrast enhancement firstly. Certainly,
linear rescaling can normalize MRIs to a fixed intensity range for brightness redistribu-
tion [50, 51], but it exerts a limited effect on dark medical images.

Histogram equalization, as the most common approach, adapts pixels to suitable grey
level distribution, which generally augments white pixels for a better view of anatomical
boundaries [11]. With the success of histogram equalization [11, 14, 52, 53, 54], a battery
of variants have sprung up, such as Bi-histogram based Histogram Equalization, Hi-
erarchical Correlation Histogram Analysis, Recursive Mean Separate Histogram Equal-
ization, Recursive Sub-Image Histogram Equalization, Bi-histogram based Bezier Curve
Contrast Enhancement and Spline-based Contrast Enhancement [49]. However, the tech-
niques mentioned above only validated on 8 bits of images with grayscale values from
0 to 255. Grayscale for different MR pulse sequences varies from 0 to 1590. To exhibit
the adequateness in the global environment, [49] developed Local Gray Level Transfor-
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mation using S-curve technique, which efficiently represents enough contrast difference
between tissues with maximized grey level increase and minimized decrease.

Following contrast enhancement, thresholding operation is then performed to exclude
pixels whose intensity is less than half the average intensity of the image, which is ap-
propriate for further binary image segmentation [11, 52, 54, 55].

As referred in chapter 1, noise and artifact block the development of high-precision OA
quantization, in particular for MRI. Thus, their removers, filters, are imperative for the
whole workflow. A. Paproki et al. employed the basic median smoothing with radius
1*1*1 [50]. To remove unnecessary high-frequency edges around cartilages, [41] picked
on Gaussian low-pass filtering and [51] integrated sigmoid filter. These algorithms also
cut off details by smoothing like [50] so that they are merely applicable for classifying the
thickness of cartilages eventually.

After an empirical comparison by A. Suponenkovs et al., Perona-Malik filtering for gradi-
ent anisotropic diffusion smoothing stood out [14, 51, 53]. In addition to common noises,
the bias of the magnetic field is the special artifact of MRI, which also can be dealt with
filters, such as bias correction field filter in SimpleITK [51]. Moreover, as highlighted in
chapter 1, MRI struggles with diversiform pulse sequences and parameters, where Sobel
filter leveraged its power by calculating their derivatives [14].

Compared with the Sobel filter, affine registration is the riper way to solve the multi-
formity of pulse sequences and parameters. The obtained MRI affine transformation was
propagated to the average surface for alignment, which integrates the intermediate result
for next segmentation by MIRROR estimation algorithm [50, 53]. Broadly, affine registra-
tion aims to deal with MRI voxels instead of 2D MRI slices.

Hitherto, contrast enhancement, intensity regulation, noise elimination, and different
measurement integration are emphasized in MRI preprocessing. Distinctly, those ideas
also can be extended to other modalities, in particular for the primitive radiography.

Segmentation

As the major approach for MRI ROI extraction, in general, segmentation can be divided
into 2D and 3D model. According to the stored data format of existing public databases,
this section concentrates on 2D segmentation. The maturity of radiographic segmenta-
tion and edge detection approaches still act as a leading position for MRI segmentation.
Followed by masking, generated segmented cartilage (ROI) automatically, Canny edge
detection determines edges by identifying local maxima of the image gradient [11, 52].
Undoubtedly, this idea is only befitting for cartilage thickness classifier in the next step.
[55] framed a similar concept that ROIs were extracted via the largest blob detection,
which binarized images after a certain intensity threshold in preprocessing operation
to form a convex image mask for meniscus. Following the blossom of Machine Learning
(ML), MRI segmentation based on classification gains steam. These methods classify each
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Reference Approach Limitation
[9] ANN Not enough subjects (100 patients) involved into experiments
[14] K-means Only statistical analysis of selected features
[52] SVM Too less subjects (15 patients) involved into experiments
[54] SVM Too less subjects (16 ROIs) involved into experiments and only

binary classification for anomaly detection
[56] —— Only statistical analysis of T2
[57] —— Only statistical analysis of T1
[58] GHMM Diseased region detection focus

Table 2.4: Conclusion of knee OA diagnosis related work based on MRI

voxel into two classes, ROI and the other. For example, Dong Yang et al. sliced 3D MRIs
into three sets of 2D images with X, Y, Z axes, respectively. For each selected landmark,
2D images are labeled as either positive or negative for the corresponding CNN classifier
based on whether they contain this landmark [59]. With the assistance of Procrustes anal-
ysis, those predicted landmarks could successfully calculate parameters of rigid trans-
formation for the average training mesh (initial boundaries), which fulfilled the femur
segmentation. Although this scheme has accomplished certain constituent segmentation
preeminently, different components in knee MRIs possess individual standings in OA
diagnosis, which cannot unitize as a global ROI. Hence, [60] introduced a brand new
framework that defines multiple classifiers dependent on location, Location-Dependent
Image Classification (LDIC).

In brief, it decomposed the whole image into a set of cells, whose intensity as features
for further Gaussian Mixture Model (GMM) based classification. Through Genetic Algo-
rithm (GA), those classified cells are iteratively grouped by a heuristic search. This idea
only produced better performance when the appropriate combination of cells was set as
GA’s initial individuals. A. Suponenkovs et al. adopted k-means clustering to achieve
above formulation since it is possible to control the number of clusters in case of creating
so many segments like Watershed algorithm [14]. Nevertheless, the initial centroid selec-
tion faced the same dilemma with [60].

Consultative hints from recent 3D segmentation models have emerged, such as FCN es-
tablished by [61] and U-Net employed in [62], whose encoder-decoder structure was spe-
cially designed for biomedical image segmentation. Uncannily paralleling with U-Net
architecture, Generative Adversarial Network (GAN) as well as its variants, like condi-
tional Generative Adversarial Network (cGAN), have been resoundingly demonstrated
in other MRI segmentation, where 2D models can draw brilliant inspirations [63, 64].
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Classification

Contrary to the ripeness of radiographic OA quantization, relative MRI research is scarce,
since the plurality of papers stalls at the segmentation process. After all, having wit-
nessed to the proof by [56, 57, 65] that T1 and T2 relaxation time can characterize articular
cartilage tissue, the academic can readily acquire OA severity from T1 or T2 calculated by
the segmented image intensity. However, articular cartilage is not the only determinative
factor for OA. T1 or T2 mapping may provide valuable information on cartilage morpho-
logical and biochemical changes, which gives more convictive evidence for assessment
of knee OA progress, rather than a true gold criterion [56, 57].

Additionally, considering the core operation, intensity thresholding, calls for the inten-
sity disparity, the application of T1 and T2 is technically demanding, which merely sup-
port formally standardized but enhanced MR scans with high-precise segmentation [57].
Thereby, A. Suponenkovs et al. barely referred to the trend between healthy subjects
and patients figured out from the dispersion method (T2) [14]. [54] emphasized Stereo-
logical and Textural Measurements (STM), which were detrended by the General Linear
Model (GLM). Thanks to Principal Component Analysis (PCA) of normalized STMs, top
5% informative features can be selected efficiently. However, in the case that their SVM
classifier with an RBF Gaussian kernel just carried on anomaly detection (binary classifi-
cation), maximum 73% accuracy among 16 ROIs doubtless disappointed the public.

S. Kubakaddi et al. attempted to quantify segmented cartilage thickness [52], which im-
plemented in [11] by calculated ROI GLCM features. Although 86.66% SVM accuracy
based on 15 patients still has to be verified with larger subtype sample sizes, at least
they have been confirmed the enhancement from STM features. Aware of the authority
of KL and its convenient access, Chao Huang et al. came up quantification with Gaus-
sian Hidden Markov Model (GHMM) whose parameters are estimated by Expectation-
Maximization (EM) algorithm [58]. It designed for both diseased region detection in each
OA subject and localized analysis of longitudinal cartilage thickness within each latent
subpopulation [58].

However, void of verification by recognized datasets, they even didn’t publish their clas-
sification conclusion. Likewise, [9] also predicted KL scores for MRI, but it focused on
the comparison among ML algorithms, including ANN, SVM, random forest, and naive
Bayes. Based on PCA for all the 36 informative locations, ANN distinguished from oth-
ers with 0.714 F-Measure [9]. Although 100 pairs of knees were lack of credibility, owing
to the qualitative leap of quantification performance, Y. Du et al. still demonstrated the
potential of MRI, KL, and ANN in the realm of OA diagnosis.

In brief, behind the trend towards end-to-end learning for radiographic OA analysis,
MRI OA detection explicitly is divided into preprocessing, segmentation and classifica-
tion. Although masses of studies stall at the segmentation for its modality complexity,
as Table 2.4 shown, they still have affirmed the promising combination of MRI, deep
learning and radiographic OA metrics.
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2.3 CT

Originally, CT is primarily applied for the brain and lung with connective tissue [16].
The feasibility as an arthroscopic based clinical instrument and the ability to assess joint
cartilage on a micron scale have initiated the emergence of CT in OA research [66]. It gen-
erally detects bone abnormalities in the axial skeleton or other joints where radiographs
are unclear, and MRI is contraindicated, especially for hip OA [16].

With superior images of the bony cortex and soft-tissue calcification, CT should serve
as a reasonable gold standard in OA research when validating bone morphology such
as cysts, erosions, and osteophytes [16]. Nevertheless, its two leading limitations: low
soft-tissue contrast and radiation are indeed more serious than that of other modalities
so that CT hasn’t independently fulfilled a knee OA quantization, not to mention an en-
tire workflow or evaluation criterion.

Heretofore, Y. Uozumi et al. binarized the raw CT images and formed a bone region of
the femur and tibia by masking, but those operations were just the preparation for further
MRI segmentation [10]. Blending with advanced techniques, [67] and [68] exploited its
progressive variant, Phase Contrast Imaging X-Ray Computed Tomography (PCI-CT),
for OA quantitative characterization. Texture features in [67] derived from Minkowski
Functionals (MF) and GLCM were classified by Support Vector Regression (SVR) with a
radial basis function kernel.

As for [68], with the same GLCM features constructed in the designated ROIs, they di-
rectly evaluated OA severity via CaffeNet. However, none of them present an experiment
with over five patients as a reference. [69] classified Cone Beam Computed Tomogra-
phy (CBCT) scans, another variant of CT, by deep neural networks, which also faced the
plight of accessible data shortage. Hence, those high Area Under the receiver operating
characteristic Curves (AUC) demonstrated from above researches rooted in the repeti-
tion images from the same patient, which is overtly lack of science and rationality. Since
academic is unable to attest the prominent advantage of CT till date and it is highly chal-
lenging to get access to a credible CT database, as shown in Table 2.5, CT OA diagnosis
framework still leaves a massive gap between the current situation and practical demand.

Reference Approach Limitation
[67] SVR Too less subjects (5 patients) involved into experiments
[68] CaffeNet Too less subjects (5 patients) involved into experiments
[69] ANN Unrecognized classification criterion, web application focus

and too less subjects (34 patients) involved into experiments

Table 2.5: Conclusion of knee OA diagnosis related work based on CT
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Reference Approach Limitation
[70] RW Only segmentation involved
[71] Histogram equalization Only preprocessing involved

Table 2.6: Conclusion of knee OA related work based on ultrasound

2.4 Ultrasound

The expensive MRI leads to the ultrasound as an alternative imaging tool for quantita-
tive assessment of femoral cartilage thickness, since ultrasound possesses the properties:
accessibility in conjunction with plain radiography, portability and allows for real-time
image acquisition [22, 70]. Podlipska et al. corroborated that ultrasound examination
is extra beneficial to the depiction of meniscal extrusion, even may be superior to plain
radiography for changes in medial femoral cartilage morphological degeneration and
tibiofemoral osteophytes [72].

However, as an operator-dependent modality, ultrasound cannot visualize subchondral
bone changes and can visualize only parts of the articular chondral surface such as car-
tilage primarily within the patellofemoral joint [22]. Consequently, up to now, in the
field of knee OA analysis, ultrasound has just dabbled in preprocessing and segmen-
tation. Md Belayet Hossain et al. modified histogram equalization by finding out the
separating point for segmenting histogram for which brightness and detail preservation
would be achieved while enhancing the contrast at the same time [71]. [70] enhanced the
low-intensity bone surfaces and cartilage interface by constructing a local phase-based
enhancement metric, followed by Random-Walker (RW) algorithm, a graph-based seg-
mentation scheme.

OA features Radiograph MRI CT Ultrasound
Cartilage + ++++ +++ ++
JSN ++ +++ +++ +
Subchondral cysts and sclerosis ++ +++ ++++ -
Bone marrow lesions - ++++ ++ -
Osteophytes and erosions ++ +++ ++++ ++
Inflammation - ++++ + +++
Soft tissues (menisci, tendons) - ++++ ++ +++

Table 2.7: Modality detection performance comparison in OA diagnosis and follow-up

Even if ultrasound has been increasingly deployed for the assessment of hand OA, they
still adopt KL and OARSI scores instead of creating a more appropriate semi-quantitative
metric [22]. Ultrasound hasn’t yet accomplished evaluation metrics establishment and
workflow exploration, which also substantiates the compatibility of radiographic semi-



2.5 Modality comparison 21

quantitative criteria.

2.5 Modality comparison

Demonstrated in Table 2.7 [16], Table 2.8 [16] and Table 2.9, as the two relatively ma-
ture modalities, no matter from which aspects (detected OA features, clinical utility and
workflow emphasis), radiography and MRI are complementary. Following above two
modalities, CT, ultrasound and other rising modalities, such as vibroarthrography [73],
spectroscopic images [74] and so on, have set out to inaugurate automatic knee OA pre-
diction systems from both medical experiments like assessment standard formulation
and informatics researches such as eligible quantification framework selection.

Clinical utility Radiograph MRI CT Ultrasound
Early diagnosis + +++ +++ +++
Feasibility ++++ +++ ++ +++
Cost ++++ ++ ++ +++
Radiation dose ++ ++++ ++ ++++
Data complexity + ++++ +++ ++
Quantitative metrics ++++ +++ - -

Table 2.8: Modality clinical utility comparison in OA diagnosis and follow-up

Stage Radiograph MRI CT Ultrasound
Preprocessing + ++++ +++ ++
ROI extraction ++ ++++ ++ ++
Classification ++++ ++ +++ -

Table 2.9: Modality research focus comparison in automatic knee OA diagnosis

The more "+" represents the better performance, whereas "-" stands for the lack of related ability/research,
which is the same with Table 2.7 and Table 2.8.

Confronted with the maturity of radiography and MRI, the potential of those different
modalities remains elusive, in particular for long-term data collection.
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Chapter 3

Multimodality Based Automatic
Knee OA Quantification

As described earlier, each modality has its respective virtues and bottlenecks, which
arouses the exploration for the combination of modalities. After all, reciprocal modal-
ities can mutually reinforce detected features by drawing each other merits. In addition,
plenty of algorithms have confirmed the significant enhancement of robustness and ac-
curacy by classifier ensemble [8, 35, 75, 76]. Compared with reconstructing voxel data
from 2D slices for 3D classification, model ensemble is prevented from "curse of dimen-
sionality", which diminishes accuracies by demanding a great deal of training data [77].

The scaling the amount of data exponentially is unrealistic for medical images. As a
consequence, in line with the detection frameworks of individual modalities, the desir-
able multimodality based automatic knee OA quantification approach is developed as
depicted in fig. 3.1. Meanwhile, the complementary, accessibility and maturity analyzed
in chapter 2 settle radiography and MRI as experimental candidates.

3.1 Preprocessing

The substantial divergence of their data complexity results in the operation distinction
of radiograph and MRI preprocessing. In general, rescaling and horizontal flipping con-
stitute the entire preprocessing of radiographs, whereas MRIs yet call for contrast en-
hancement, intensity regulation, noise elimination and different measurement integra-
tion. Merging their ultimate demands, the preprocessing steps are portrayed in fig. 3.2.
Not only owing to the requirement of input dimension alignment from the further deep
learning model training, as the most primitive operation of image preprocessing, rescal-
ing to smaller size is also driven by the limited memory of training devices, in particular
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Figure 3.1: Workflow of the proposed approach

for those high-resolution radiographs.

Figure 3.2: The general preprocessing pipeline

Differing from the data augmentation aim of previous papers [8, 28], for the sake of clas-
sifier error reduction, all the knee images are horizontally flipped into the same direction.
Apart from the foregoing two basic operations, contrast enhancement and noise elimina-
tion are also corroborated to be universally propitious to both modalities. As for intensity
regulation, it is roughly designed for MRI segmentation based on edge detection, which
strays from the state-of-art technical tendency. Moreover, up to now, contrast enhance-
ment is carried out as intensity normalization. Accordingly, intensity adaption is incor-
porated into contrast enhancement step. Compared with global research data collections,
in clinical practice, MRI machines won’t adjust settings per patient, which determines the
impossible frequent occurrence of the multiformity of parameters. Certainly, the diver-
sity of slices from MRI sequences still comes into preprocessing focus, which deserves
special treatments.
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3.1.1 Contrast enhancement

As one of the most determinant factor for image quality, integral contrast is defined as
the difference in the pixel intensity value of a particular pixel to its neighboring pixels
[78]. The more contrast gives better clarity of an image in terms of local details. Aiming
to highlight the interpretability and perception of information contained in images, es-
pecially in details of dark regions, contrast enhancement acquires clear images through
brightness intensity value redistribution by means of stretching interval between dark
and brightness area without significant distortions [79].

In general, the acknowledged approaches for contrast enhancement are subdivided into
two types in accordance with the image stretching span namely global and local meth-
ods [78]. The global one, including histogram equalization as well as its modifications,
non-linear stretching (logarithmic, exponential and power functions, etc.) and adaptive
linear stretching, mainly focuses on overall viewing purpose, which leads to a possible
disappearance of small-size objects on images, especially when images contain regions
expressly darker or brighter than other parts [78, 80, 81, 82]. Obviously, a better way to
address such problem is to enhance the dark regions by keeping the bright regions un-
touched, where local contrast enhancement is inspired [78]. However, combining a small
area or neighbourhood of pixels to generate an enhanced pixel is not an acceptable im-
age processing in real time [80, 83]. Thus, based on saliency principle that human vision
is sensitive to high frequency contents, instead of regions, the academic gradually gives
prominence to edge emphasis, which is also named as image sharpening. Contrary to
global contrast enhancement, image sharpening would generate magnified noises, which
results in the operation order exchange that edge enhancement should be operated after
noise elimination, as shown in fig. 3.3.

There is no universal methods so far and the specific methodology depends on the con-
text of related tasks and image content. Roughly, local contrast enhancement is too com-
putationally intensive for medical images, which are relatively large and high-resolution.
Hence, this thesis only draws an all-round comparison between global contrast enhance-
ment and image sharpening. As depict in chapter 2, compared to radiography, MRI dis-
plays more detailed OA features, such as bone marrow lesions, inflammation, soft tissues
and so on, which, to a great extent, would vanish due to global contrast enhancement.
In this case, as exhibited in fig. 3.4, global operations are not employed to MRIs in our
evaluation.

Global contrast enhancement

Having witnessed to its triumph in the domain of medical images [11, 14, 52, 53, 54, 82,
83], rather than non-linear and adaptive linear stretching, typical histogram equalization
is assigned as the representative of global contrast enhancement in the following evalua-
tion. An image histogram is the graphical representation of the relative frequencies of the
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Figure 3.3: The preprocessing pipeline of radiographs

different gray levels in that image, which provides a total description of the appearance
of an image [82]. The basic concept of histogram equalization lies on mapping gray levels
from their original intensity probability distribution to a uniform distribution, which flat-
tens and stretches the entire dynamics range of the image histogram resulting in overall
contrast modification [82, 84].

In other words, via combining gray levels with less frequencies into one and stretching
high frequent intensities over high range of gray levels, histogram equalization achieves
close to equally distributed intensities [82, 84]. After all, information entropy will be at
peak, when data have uniform distribution property [84]. To be specific, the probability
density function p(Xk) of a given image X is defined as eq. (3.1) [84]

p(Xk) =
nk

N
(3.1)

where k is the gray level ID of input image X varying from 0 to L and nk represents the
frequency of gray level Xk appearing in X . As for N , it is the total number of samples
from the input image X . Therefore, a plot of nk vs. Xk is specified as the histogram of
X , while the equalization transform function f(Xk) is tightly related to the cumulative
density function c(Xk):

f(Xk) = X0 + (XL −X0)c(Xk) (3.2)
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Figure 3.4: The preprocessing pipeline of MRIs

c(Xk) =
k∑

j=0

p(Xj) (3.3)

Synthesizing above formula derivation, the output of typical histogram equalization Y =
Y (i, j) should be expressed in the following:

Y = f(X) = {f(X(i, j))|∀X(i, j) ∈ X} (3.4)

Edge enhancement

Current available techniques of edge enhancement can be broadly classified into two cat-
egories: spatial domain and frequency domain [85]. The former directly operates on pix-
els, which favours real time implementations, thanks to the conceptual briefness. How-
ever, this leads to the lack of robustness, in particular from imperceptibility perspective
[85]. In order to figure out this dilemma, frequency-based image sharpening is blazed,
which manipulates image transform coefficients after Fourier transform. Evidently, it
doesn’t carry forwards the low complexity of computation and the ease of viewing. In
the meanwhile, the full images cannot be simultaneously tickled [85]. Thus, this thesis
only culls one typical methodology from spatial domain.

Owing to the spread of image processing software and libraries, such as Adobe Photo-
shop, Python Imaging Library (PIL) and so on, there is no doubt that unsharp masking is
the most mature technique for image sharpening. In general, the blurry unsharp masking
is derived from a weighted highpass-filtered version of the original image, which would
be added back to the signal itself, as shown in fig. 3.5 and eq. (3.5) [86].

Y = X + λ ∗ g(X) (3.5)

Referring to the implementation of PIL, ImageFilter.EDGE_ENHANCE and Im-
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Figure 3.5: The working principle of unsharp masking

ageFilter.SHARPEN are adopted as the kernel (g(.)) for further evaluation, whose
convolution matrices are demonstrated in fig. 3.6. After all, by contrast, another kernel
ImageFilter.EDGE_ENHANCE_MORE magnifies too many noises in practice.

Figure 3.6: The kernel of EDGE_ENHANCE and SHARPEN

Considering the compatibility between histogram equalization and image sharpening,
apart from single contrast enhancement approach, the combinations of histogram equal-
ization and different sharpening kernels are also inclusive in the preprocessing compari-
son scheme.

3.1.2 Noise elimination

Noise is a random variation of image intensity, which is visible as grains in images. In the
light of the characteristics of diverse noises, heretofore, medical images undergo sundry
smoothing filters for common noise removal, chiefly including median filter, Gaussian
filter and Perona-Malik filter. Median filter is born for impulse noise (named also as Salt-
and-Pepper noise) which is provoked by the sharp and sudden disturbance in the image
signal or transmission error [87]. Apparently, distinct from normal pictures, above two
causes rarely occur in medical images. Therefore, our OA quantification strategy doesn’t
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take median filter into consideration.

As expounded in chapter 2, in comparison to Gaussian filter, profuse empirical evalu-
ations have substantiated the superiority of Perona-Malik filter which preserves edges
and detailed structures along with noise reduction, as long as the fitting diffusion coeffi-
cient c(.) and gradient threshold K are singled out [14, 88]. Hence, our noise elimination
exploration concentrates on the parameter selection of Perona-Malik filter. As a non-
linear anisotropic diffusion model, Perona-Malik filter smoothens noisy images θ(x, y)
by means of the partial differential equation [88]:

∂u

∂t
= div(c(|∇u(x, y, t)|)∇u(x, y, t)) (3.6)

where u(x, y, t) serves as the obtained image after t iteration diffusion. Videlicet, u(x, y, 0)
is the original noisy image θ(x, y). Moreover, div and ∇ correspondingly indicate the
divergence operator and the gradient operator with respect to the spatial variables x and
y. As for the diffusion coefficient c(.), the initial authors Perona and Malik nominated
below two functions [89]:

c1(|∇I|) = exp

(
−
(
|∇I|
K

)2
)

(3.7)

c2(|∇I|) = 1

1 +
(
|∇I|
K

)2 (3.8)

Together with Tukey’s biweight function (manifested as shown in eq. (3.9)) [90], they
compose all the eminent diffusion coefficients. Definitely, their outcomes are inversely
proportional to the magnitude of the local image gradient. Accordingly, within inner
regions, the gradient magnitude is weak, thereby the diffusion coefficient is almost 1,
which acts as typical heat equation to smoothen the relative regions. In contrast, the
strong gradient of boundaries engender the diffusion stop due to the nearly zero diffu-
sion coefficient. Regarding whether the local gradient magnitude is strong enough for
edge preservation, apart from gradient threshold K, it depends on which diffusion coef-
ficient function c(.) is picked as follows:

c3(|∇I|) =

 1
2

[
1−

(
|∇I|
K
√
2

)2]2
, |∇I| ≤ K

√
2

0, |∇I| > K
√
2

(3.9)

The Tukey’s biweight function c3 is once recognized as the best option, since its bound-
ary between noises and edges is lowest [88]. However, under the circumstances, noises
are also likely to be left. Conversely, c2 has the highest threshold to distinguish noises
and edges so that conspicuously sharp edges and fine details would be diffused. Thus,
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c1, which thoroughly conserves edges and highlights in conjunction with general noise
reduction, is adopted in this thesis. Concerning the remained two parameters, gradient
threshold K and number of iterations t, our further OA diagnosis probe would lay more
emphasis on their selection from practical aspect.

3.1.3 Multi-slices integration

Different with the multiformity of pulse sequences and parameters in research MRI col-
lections, the diversity of slices becomes the heart of how to wield MRI sequences in clin-
ics. Consequently, the traditional Sobel filter and affine transformation cannot reveal
their talent, since the shapes of knees are even erratic.

Referring to the application of MRIs in other body parts [91, 92], our scheme makes use of
average filter which acquires the numerical mean of corresponding pixels for multi-slices
so that MRI slices are integrated whilst further erases noises and artefacts at the single
MRI slice. Absolutely, in order to avoid strong bias, average operation takes place after
discarding certain images in the beginning and the end of series. For the sake of validat-
ing the promotion of average filter, this thesis still picks up MRI slices in the middle of
the entire sequences as control trail.

3.2 Classification and regression analysis

According to the proof in [34], regression analysis was certified to promote the accuracy
so that our blueprint introduces homologous regression algorithms based on multiclass
classification. Hereto, summarizing previously stated architectures in the literature, there
are three types of quantification workflows:

• Type A (ML-based approach): ROI detection + feature extraction + classifica-
tion/regression

• Type B (CNN-based approach): ROI detection + classification/regression

• Type C (end-to-end framework): Classification/Regression.

However, compared with Type A, [34] has manifested the preeminence of Type B, by
virtue of CNN’s predominantly automatic feature extraction. Hence, this research is cen-
tred on Type B (CNN-based approach) and Type C (end-to-end framework) architectures.
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3.2.1 CNN-based approaches

Conducive to weakening the negative influence of image artifacts on classification, tradi-
tional CNN prediction workflow regularly starts with ROI extraction to glean the knee-
joint rectangles where own the most decisive features from the full medical images.
Within those pivotal regions, a couple of CNN variants applied to general images are
opted to fulfill grading through classifying hierarchies of features without resorting to
feature engineering schemes [93]. Distinctly, labelling massive images manually where
ROIs are is so drained that drawing on recent successes of deep learning in semantic
segmentation, automatic ROI detection phase is also consummated by CNN branches.

ROI extraction

So-called ROI extraction conventionally trains neural networks by ground truths as labels
which specify ROIs with masked binary images or intrinsically 2D matrices in the same
size of input images. Broadly, if related pixels are within ROIs, ground truths mark as 1,
whereas the rest tags as 0. Having trained relative models, the bounding boxes of ROIs
can be deduced in accordance with the contour coordinates simply acquired from model
predictions as fig. 3.7. In consequence, this subsection underlines the most crucial step to
eventually attains fully automatic ROI extraction, segmentation model training.

Figure 3.7: Workflow of the ROI extraction process

As interpreted in chapter 2, the breakthrough from [34] to [28] has shown the power of
FCN in the ROI detection domain so that our evaluation would implement FCN declared
in [28] as baseline. The basic concept behind FCN roots in pixel-wise prediction, whose
key to success is to leverage large-scale image classification as supervised pre-training
and fine-tune fully convolutional layers via transfer learning [93]. As an end-to-end se-
mantic segmentation technique without further machinery, FCN adapts standard deep
CNN to learn per-pixel labels from ground truths of entire images by removing fully
connected layers as well as importing deconvolution layers [93, 94]. Purely with a train
of non-linear filters, FCNs naturally map coarse outputs to the dense pixel space [93, 94].
To be specific, the final layer generates tensors in the consistent spatial dimensions of in-
puts, except the number of channels will be equal to the number of classes (customarily 2
classes: ROI and non-ROI) whose likelihoods would be calculated by softmax probability
function at the same time.
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Undoubtedly, striding and pooling diminish image dimensions, where deconvolution or
essentially transposed convolution layers treated as inverse operation realize their po-
tentials to match the widths and heights of the original input images. The transposed
convolution is implemented as the backward pass of related convolutional operator with
regards to weights, which can be effectuated via two procedures: zero padding and unit
strides [95]. The former approach executes filter dilating by padding zeros between adja-
cent filter elements and cross-correlates them with the input [94, 95]. The latter achieves
upsampling with factor f by convoluting with a fractional input stride 1/f , where the al-
ternative name, fractional stride convolution, is designated [94]. Aside from transposed
convolution, interpolation is also supposed to be the most efficient technique for upsam-
pling. Undoubtedly, rather than fixed interpolation, deconvolution filter can be trained,
even as a non-liner upsampling. Thus, transposed convolution is applied to our design.

Similar with other semantic segmentation architecture, it faces an inherent tension be-
tween semantics and location: global features resolve semantics while local information
unveils positions. Deep feature hierarchies jointly encode location and semantics in a
local-to-global pyramid so that FCN defines combination layer by element-wise addition
for fusing deep, coarse, semantic features and shallow, fine, appearance features [94].
Conforming to the initial FCN network, there are three modes for target mixture: FCN-
32s, FCN-16s and FCN-8s, as presented in fig. 3.8 [96].

Figure 3.8: The FCN architecture

Without any fusion, FCN-32s directly upsamples the output of last convolutional layer
at stride 32, which loses predominantly spatial information [94]. In line with above
theoretical analysis, FCN-16s and FCN-8s are developed on the basis of what fig. 3.8
displays. FCN-16s adds the output of penultimate pooling layer and 2 × upsampled
prediction from last convolutional operation, whose combination then performs 16 ×
upsampling. Regarding FCN-8s, the sum obtained from 2 × upsampled production
of last convolutional layer (with a stride 2 transposed convolution) and the output of
penultimate max-pooling links with the antepenultimate pooling production. Certainly,
in order to accomplish element-wise addition, the previous sum has to enlarge as twice
size. On the top of this combined feature map, a transposed convolution layer with
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stride 8 is carried out for the final segmentation map.

Figure 3.9: The FCN fusion principle

Visibly, as illustrated in fig. 3.9 [94], our baseline FCN noted in [28] (fig. 3.10) belongs to
FCN-32s. However, [94] has substantiated FCN-8s delivered the best performance from
both theoretical and empirical perspective. Therefore, we establish a lightweight FCN-8s
network with the same settings from scratch to upgrade ROI detection performance.
The network consists of 4 convolution blocks followed by a max-pooling layer per block
and 3 upsampling stages. The kernels of convolution and max-pooling are uniformed as
[3×3] and [2×2] severally, whereas the numbers of filters for convolutional operators at
each stage are rising in the way: 32, 32, 64 and 96. Naturally, due to vanishing gradient
prevention, batch normalization and Rectified Linear Unit (ReLU) activation function
also come with each convolution layer. In relation to upsampling stages, the first two
have the same [2×2] stride transposed convolution attaching an add layer, while the
last stage merely deconvolutes at [4×4] stride with Sigmoid activation function, whose
concatenate details are indicated in fig. 3.11.

Figure 3.10: The baseline FCN architecture

Supplementing a usual contracting network by successive layers, where pooling opera-
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Figure 3.11: Revised FCN-8s architecture

tors are replaced by upsampling operators, FCN reinforces the output resolution [97]. In
order to assemble a more precise segmentation, high resolution features from the con-
tracting path of FCN are combined with the upsampled outcomes [97]. Imaginably, fea-
ture channels in the expansive path are augmented, which allow the network to prop-
agate the full stack of context available in local-to-global pyramid hierarchies to higher
layers. To a great extent, it outperforms the prior best mechanism, for which a more el-
egant network, U-Net, is come up with. Namely, U-Net yields a u-shaped architecture
whose expansive path is symmetric to the contracting path as shown in fig. 3.12 [97].

Figure 3.12: The U-Net architecture

As the winner in biomedical image segmentation category by a large margin, beyond the
symmetric structure, U-Net has a brilliant trick up its sleeve: concatenation operators
instead of element-wise addition. These skip connections intend to provide local infor-
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mation to the global context while upsampling so that the decoder at each stage owns all
the relevant features that are lost when pooled in the encoder. Another stroke of genius
from U-Net is no padding in convolutional layers [97]. Whereupon, only valid feature
maps are left after convolutions, which brings in the seamless segmentation of arbitrarily
large images by an overlap-tile strategy that to predict the pixels in the border regions
of images, the missing context is extrapolated by mirroring the input images [97]. This
tiling strategy is the key why U-Net perfect matches with medical image segmentation,
which is always confined by GPU memory, due to the huge input size [97].

The only pitfall needs to be noted that in this case, cropping feature maps from the con-
tracting path is indispensable, arising from the loss of border pixels in every convolution
[97]. The prevalence of U-Net is chiefly beneficial to the more flexible contracting path,
which could follow any typical convolutional network (also termed as backbone), or
even self-tuned architecture. Consequently, the inner drive to succeed of U-Net is how to
sort out an ideal backbone. In view of vanishing gradient avoidance and faster training
convergence verified in [98], ResNet is extended to our U-Net.

While U-Net is proud of its long skip connections between contracting and expansive
path, ResNet is glorious for its shortcut connections among convolutional layers. With
the depths of neural networks growing, the degradation of training accuracy issue
has been exposed. ResNet provides two mappings to settle down this challenge:
identity mapping (x) and residual mapping (F (x)) (shown in fig. 3.13 [99]), where the
architecture is named after [99]. The outcome of each residual block y then is F (x) + x.
To the extreme, if the network training is optimal, solvers simply drive the weights of
the multiple non-linear layers toward zero to approach identity mappings so that the
network would maintain in the best status, even if architectures are deeper and deeper
[99].

Figure 3.13: The residual block design

Although shortcuts don’t step up extra parameters, CNN deepening still leads to the
parameter explosion. Accordingly, apart from common building blocks as fig. 3.14
left, [99] also designed bottleneck (fig. 3.14 right) by means of channel reduction. The
former generally constructs ResNets with 34 or less layers, while the latter is invented
for ResNets with over 50 layers.
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Figure 3.14: Two types of residual blocks

A series of convolution operators without pooling in between is recognized as a stack.
The first convolutional layer of each stack (except the first stack) in ResNets downsam-
ples by at stride 2, which inevitably provokes the channel difference between identity
mapping (x) and residual mapping (F (x)). Under this situation, the output of each block
y = F (x) + Wx, where W is also a convolution operator for x’s channel adjustment
[99]. Recently, ResNet almost evolves into the first alternative of classification tasks, for
which there are plentiful variants thanks to the ample layer combinations. Served as
backbone of U-Net, excessive layers would impose more computing burden. Hence,
only ResNet-18, ResNet-34, ResNet-50 and ResNet-101 (detailed architectures shown in
fig. 3.15 [99, 100]) are taken into consideration.

Exactly, architectures with superabundant hyper-parameters, like filter sizes, channels
and so on, also suffer from complicated computing and memory exhaustion so that
ResNeXt-50 (network settings displayed in fig. 3.15 [99, 100]) is involved into our com-
parison as well. ResNeXt is the modified ResNet with homogeneous and multi-branch
architecture that has a few hyper-parameters to assign by repeating a building block that
aggregates a set of transformations with the same topology as fig. 3.16 [100]. fig. 3.17 [100]
clearly exhibits the equivalence relation of ResNet and ResNeXt blocks, which confirms
that even under the restricted condition of maintaining network architecture, ResNeXt
can handle with higher hyper-parameter settings.

Nevertheless, no matter which backbone is employed, since all the networks are com-
prised of a single convolutional layer and 4 stacks, their concatenations are fixed to lay
out before each stack, likewise what is manifested in fig. 3.18.

Classification and regression in ROIs

OA grading for ROIs overtly pertains to CNN, in particular special networks, such as
VGG-m-128, Siamese CNN, ResNet-34 and DenseNets. Referring to their reputation
in the sphere of image classification, further quantification evaluation would build up
VGG, ResNet and DenseNet series. Considering the strategies and layouts of investi-
gated ResNet variants: ResNet-18, ResNet-34, ResNet-50 and ResNet-101 have been set
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Figure 3.15: Different ResNet-based architectures

Parameters of convolutional layers are denoted as [receptive field size & the number of channels] × repeti-
tion times, where C represents the path number of repeated residual blocks and 4d points out the channels
of each aggregative building block. Downsampling is performed at the first layer of Stack 2, Stack 3 and
Stack 4 with a stride of 2.

forth in section 3.2.1, here we spotlight VGG and DenseNet.

Essentially, ResNet is inherited from VGG concept, a lightweight stack-based CNN. Com-
pared with structures in the early stage, VGG ushers CNN deepening, thanks to its very
small (3×3) convolution filters [76]. In terms of regularisation definition, a 7×7 convolu-
tional filter can decompose into a stack of three 3×3 filters with non-linearity injected in
between [76]. Plainly, in the meanwhile of layer extension, incorporating three non-linear
ReLU activation functions instead of a single one makes the decision equation more dis-
criminative and parameter shrinkage [76].

Karen Simonyan and Andrew Zisserman in [76] proposed 6 VGG networks equipped
with 3×3 filters and 2×2 max-pooling as shown in fig. 3.19 [76], in which VGG-16 and
VGG-19 (D and E) stand out from pragmatic image classification tasks. Therefore, this
thesis lays more attention on these two architectures for our OA scoring.

Certainly, different with inchoate CNNs, VGG consumes much more computing re-
sources caused by the three fully connected layers which do has not so much impact on
performance gain. Our first modification on VGG-16 and VGG-19 is hidden node reduc-
tion for the first two fully connected layers, which would be explored via detail medical
images. After all, the design of 4096 hidden nodes are caused by 1000 classes in ILSCRC
dataset. Referring to dense evaluation concept presented in [76], the other VGG revision
converts the last three fully connected layers to 2D convolution operation for parameter
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Figure 3.16: Block comparison in ResNet and ResNeXt

Left: ResNet block shown as number of in-channels, filter size and number of out-channels; Right: ResNeXt
block with roughly the same complexity

Figure 3.17: Block relationship between ResNet and ResNeXt

Left: ResNeXt block; Right: Equivalent ResNet block

decline. For the sake of classification, the last two layers are fixed to adopt 1×1 kernel
but only the final one is equipped with Softmax activation function, likewise fig. 3.20.
As for the remaining settings, they leave the potential space for the following empirical
exploration.

As ResNet embraces the originality of VGG, DenseNet distills the shortcut insight of
ResNet to surpass the 150-layer barrier, which direct connects from any layer to all subse-
quent layers in a feed-forward fashion [101]. Apparently, it carries forward the vanishing-
gradient alleviation by a simple connectivity pattern to ensure maximum information
flow between layers in the network [101]. After all, each layer has direct access to the
gradients from the loss function and the original input signal, contributing to an im-
plicit deep supervision [101]. ResNet merges feature-maps through summation, while
DenseNet concatenates additional inputs from all preceding layers in channel dimen-
sion, which not only strengthens feature propagation to moderate information loss, but
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also encourages feature reuse to substantially cut down the number of parameters from
width [101]. Since there is no need to relearn redundant feature-maps, DenseNet can be
very narrow, which depends on the growth rate k, defining how many feature-maps from
each layer needed to be collected for the final decision [101]. On account of downsam-
pling, concatenation cannot be executed straightforwardly, for which transition layers,
amount to a batch normalization layer, a 1×1 convolutional layer and a 2×2 average
pooling layer, are injected into dense blocks as shown in fig. 3.21 [101].

In light of above compelling advantages, even regularization effect observed from exper-
iments in [101], DenseNet can freely breakthrough the 100-layer barrier. Hence, current
mainstream DenseNet topologies are drafted from 121 layers to 201 layers (shown in
fig. 3.22), which are all involved into our OA prediction scheme, thanks to their strong
possibilities of lifting up classification accuracy by depth.

In conclusion, by reference of theoretical structure analysis and previous performance
rankings, our traditional CNN-based approach is selected from the following combina-
tions of ROI detection and classification/regression (fig. 3.23).

3.2.2 End-to-end neural networks

The soaring popularity of end-to-end learning triggers our interest for exploration in the
medical image classification realm. After all, it has already yielded extraordinary talents
on object detection. In order to search for classes of all the targets in a picture, traditional
CNN divides images into separated regions. Having been classified each region, the orig-
inal image merged their outcomes together. How to split regions according to the shape
of targets confuses the academic so that Region-CNN (RCNN) is put forward, which
firstly combines ROI extraction and classification in one network as end-to-end learn-
ing by selective search. However, RCNN is made up of three models: selective search
by multiple pixel-wise image scan, regional feature extraction and classification, each of
which calls for demanding computing capability. For example, prediction for only one
image generally requires 40-50 seconds, not to mention training process.

Thus, Fast RCNN integrates above three steps into one CNN model which is primarily re-
sponsible for selective search ROIs and the following fully connected layers are in charge
of classification/regression within ROIs. Although prediction accelerates to around 2 sec-
onds per image by Fast RCNN, selective search is still computationally expensive, which
cannot handle with massive datasets. Consequently, Faster RCNN, the top of state-of-
the-art object detection architectures, replaces selective search with RPN, for which this
thesis exploits FRCNN as end-to-end framework.

Even if FRCNN is composed of two modules (demonstrated in fig. 3.24): RPN for ROI
detection and Fast RCNN detector for classification, it is still a single and unified net-
work [102]. After all, RPN serves as an attention mechanism to indicate which bounding
boxes are salient enough in the feature maps extracted from the classifier backbone (con-
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volutional layers in fig. 3.24 [102]). Taking the performance on benchmark datasets into
consideration, our FRCNN adopts ResNet-50 as backbone initialized by the pre-trained
ImageNet classification model [103].

With reference to RPN, fig. 3.25 precisely exposes how a series of convolutional opera-
tions denote the possibilities and locations of ROIs. The upper workflow contributes to
target bounding box detection via classifying foreground and background, whereas the
other calculates the offsets of bounding box regression for further location refinement. To
be specific, after a 3×3 convolution for grouping local spatial information, classification
branch creates anchor boxes for each pixel by a 1×1 convolutional operator at stride 1
with 18 filters. An anchor is centred at the sliding window in question with certain scale
and aspect ratio (fig. 3.26) [102]. By default, our RPN follows the settings of [102] with
3 scales (16×8, 16×16, 16×32) and 3 aspect ratios (0.5, 1, 2) yielding 9 anchors at each
sliding position, since ResNet-50 conducts 16 times downsampling as well.

In view of each anchor with two classes: foreground and background, the entire box-
classification information can be stored in above 18 channels of 1×1 convolution. The
criteria of binary label assignment for foreground and background also refer to [102]. An
anchor whose IoU (explained in eq. (2.1)) is higher than 0.7 with any ground-truth box
is designated as 1, while if an anchor’s IoU ratio is lower than 0.3 for all ground-truth
boxes, it hard codes as 0. Anchors without labels then do not engage in the training ob-
jective so that there won’t be excessive anchors for training [102]. Similarly, bounding
box regression branch is implemented by a 1×1 convolution at stride 1 with 36 filters,
containing coordinates of top-left corner and bottom-right corner for each anchor. The
transformations between target anchors and ground truths are learned as weights of 1×1
convolutional layer during training process, which addresses the extremely extra cost
in ROI detection. As for proposal block, different with those benchmark datasets, such
as PASCAL VOC, Microsoft COCO and so on, medical images for knees typically have
merely one ROI, at most two. Accordingly, only top 2 anchors with the highest IoU are
preserved but their IoU between each other should be less than an overlapping threshold,
which is allocated as 0.7 in this thesis.

In order to unify the size of anchors for classifier, ROI pooling layer is built on the spatial
pyramid concept. ROIs highlighted from RPN are equal to the size of original images,
for which our ROI pooling layer foremost maps their size to feature maps with 1/16
spatial scale, followed by averagely division of width and height. The applied divisor
is assigned as 7 in accordance with the initial research [104]. In each sub-block, max-
pooling operation assists to fulfill the fixed-length output for fully connected layers, after
which two branches establish again for both ROI refinement and knee OA classification.
In spite of the complex excogitation, FRCNN expedites 10 times as Fast RCNN per image
prediction, since the whole architecture can be trained synchronously without additional
effort, likewise above traditional CNN-based approaches.
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3.3 Decision visualization

The dramatic progress of ML in the form of deep neural networks has offered tremendous
benefits with impressive results. However, different from those logical and symbolic rea-
soning approaches, they are perceived as "black box", a lack of internal functional under-
standing, which is the fatal weakness of automatic diagnosis. For the sake of stepping
up knee OA quantification transparency, class-discriminating attention map visualiza-
tion are appended to exhibit significant features for class assignment.

For a certain class, explaining where classification/regression takes into consideration for
label determination amounts to collect weights of each feature map from the final con-
volutional layer. In this context, Zhao et al. presented CAM technique, which visualizes
the weighted combination of the feature maps at the penultimate layer as heat-maps by a
global average pooling [105]. Nevertheless, CAM has to retrain a linear classifier for each
class, for which [106] subsequently came up with an efficient generalization of CAM,
Grad-CAM. Instead of pooling, aiming at class c, Grad-CAM globally averages gradients
of feature maps as weights depicted in eq. (3.10) [106].

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

(3.10)

where Z is the pixel number of each feature map. And the gradient of the score for class
c represents as yc. Regarding Ak

ij , it denotes at (i,j) position the value of kth feature map.
Having gathered relative weights, the coarse saliency map Lc can be demonstrated as the
weighted combination similar to CAM. Indicated in eq. (3.11), a ReLU activation function
is employed to the linear combination of maps because only features that have a positive
influence on the class are interested [106]. Those negative pixels are likely to belong to
other categories in the image. As expected, without this ReLU, heat-maps, to a great
extent, highlight more than the desired class [106].

Lc = ReLU(
∑
i

αc
kA

k) (3.11)

However, if an image contains multiple occurrences with slightly different orientations
or views of the same class, several objects would fade away in the saliency map created
by Grad-CAM. Moreover, merely parts of objects are spotlighted by Grad-CAM, due to
its overlook of the significance disparity among pixels. Thus, Grad-CAM++ replaces
global gradient average with a weighted average of the pixel-wise gradients [105]. With
respect to how to explicitly code the structure of pixel weights, Grad-CAM++ reformu-
lates eq. (3.10) to eq. (3.12) with the concept of Grad-CAM for reference [105]. The core
of eq. (3.12) in question is how to express αkc

ij with known symbols. Since the weights
among pixels also contribute to the final classification score as eq. (3.13), rearranging the
consolidation of eq. (3.12) and eq. (3.13), αkc

ij can be declared as eq. (3.14) [105]. In case
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of confusion, here two iterators over the same activation map Ak, (i, j) and (a, b), are
applied.
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In reality, knee radiographs and MRIs rarely appear multi-targets. Furthermore, it is
more reasonable to reveal the detail bits for determination rather than the entire joint.
Considering the computing complexity, this research absorbs both Grad-CAM and Grad-
CAM++ into evaluation candidates.

3.4 Model ensemble

Enlightened from the notion of ensemble learning, apart from aforementioned multi-
modality integration, the final module also takes on model fusion among preeminently
trained models. Inspired by literature [8, 35, 75, 76], no matter whether the merged mod-
els are generated from the same training process or not, averaging their Softmax class
posteriors is in common, which owns tremendous architecture compatibility. Taking the
OA diagnosis context into account, it would be more reasonable to sort out the maximum
score among predictions of top trained models. After all, the risk for one-more-grade di-
agnosis is much less than that of the inverse way. Spoken of in section 2.2.1, radiographic
semi-quantitative criteria are surprisingly in vogue among automatic MRI prediction,
which builds on a solid foundation for fusing multimodality predictions by above two
operations. Since there is no previous reference to integrate multimodality diagnosis out-
come as yet, both model fusion and multimodality integration assess the mean Softmax
class posterior and the maximum among elite models regardless whether they are pro-
duced by the same architecture.

To sum up, each module of our multimodality based automatic knee OA quantification
comprises a set of technique combinations (fig. 3.27), which would be hammered out
based on profuse empirical evaluations revealed in chapter 4.
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Figure 3.18: The contracting path of U-Net with the backbone ResNet-34
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Figure 3.19: The original VGG architecture

The convolutional layer parameters are denoted as "receptive field size-number of channels", which are
based on ILSVRC dataset as well as the input and output dimensions of VGG networks. LRN: Local Re-
sponse Normalisation, a typical normalization approach in early stage CNNs. FC: Fully Connected Layer.

Figure 3.20: The revised VGG-19 architecture
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Figure 3.21: The workflow of DenseNet architecture

Figure 3.22: The mainstream DenseNet architectures

Figure 3.23: The design of CNN-based approaches
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Figure 3.24: The FRCNN architecture

Figure 3.25: The workflow of FRCNN architecture
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Figure 3.26: The anchor-based work principle

Figure 3.27: The technique to combine knee OA quantification system
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Chapter 4

Evaluation

In order to break through the knee OA diagnosis bottleneck which stems from the defects
of modality attributes, the core of this thesis establishes on the comparative quantification
research among multi-perspectives of radiographs and MRIs in accordance to the scheme
signified in fig. 3.27.

4.1 Experiment setup

Experiments were carried out on a machine having Intel(R) Xeon(R) CPU E5-2640, 256
of RAM, and Ubuntu 16.04 OS. The software stack consisting of Scikit-learn and Keras
with the TensorFlow backend. The network training is carried out on an Nvidia GTX
1080i GPU with CUDA and cuDNN enabled to make the overall pipeline faster. For
each hyperparameter group of the certain network structure, 5 repeated experiments are
conducted, among which the best one is employed in the comparison.

4.1.1 Dataset

In consideration of the availability of public datasets, radiographic images and 2D MRI
slices as well as their relative labels are rendered from MOST cohort, a standard public
database for knee OA studies, which encompasses 3026 subjects and their six follow-
up examinations in DICOM (Digital Imaging and Communications in Medicine) format
[107]. In view of data integrity, our evaluation is based on their first visit data (V0).
Although MOST possesses 3026 knee radiographic assessments, merely 2406 mutual pa-
tients are engaged in MRI collection. Due to the aim of multimodality integration, the
following appraisal simply applies plain radiographs and MRI slices of above 2406 par-
ticipants.
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Modality Training/validation set Test set
Radiograph (coronal plane) 3409 1403
Radiograph (sagittal plane) 3345 1403
MRI (axial plane) 3273 1403
MRI (sagittal localizer) 3275 1403

Table 4.1: The distribution of the radiographs and MRIs in the training and test sets

KL-0 KL-1 KL-2 KL-3 KL-4
2037 842 752 822 359

Table 4.2: KL scale distribution for grade 0-4 in MOST cohorts

Owing to information loss and view complementary, MRI slices from axial plane and lo-
calizer are opted from 4 perspectives (localizer, axial, sagittal and coronal). Hence, in to-
tal 4812 radiographs from coronal plane, 4748 radiographs from sagittal plane, 4676 MRI
slices from axial plane and 4678 MRI slices from sagittal localizer contribute to the quan-
titative comparison among techniques picked in chapter 3. For the sake of deep learning
training, each group of experiment images are randomly split into training/validation
set (70% or so) and test set (30% or so), which maintains test sets with the same amount
as Table 4.1 for fair comparisons.

As for labels, MOST proffers 3 types of OA semi-quantitative scores: KL scale, OARSI JSN
progression gauged from medial tibiofemoral compartment and OARSI JSN progression
gauged from lateral tibiofemoral compartment, whose detail distributions for each grade
are respectively illustrated in Table 4.2 and Table 4.3. Considering the prevailing of KL in
automatic MRI quantification and the demand of multimodality integration, it is feasible
and indispensable to assign the same radiographic semi-quantitative labels for both ra-
diographs and MRIs. Noticeably, JSN progressions of lateral tibiofemoral compartments
are excessively imbalanced so that only the first two scoring metrics are adopted, not only
for singling out the better evaluation criterion, but also for convincing the universality as
well as the applicability of our proposed approach.

Assessment position JSN-0 JSN-1 JSN-2 JSN-3
Medial tibiofemoral 2796 792 631 237
Lateral tibiofemoral 4093 165 149 68

Table 4.3: OARSI JSN progression distribution for grade 0-3 in MOST cohorts
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4.1.2 Evaluation criteria

The entire automatic knee OA quantification design consists of both image segmenta-
tion and classification task, for which depending on different targets, metric selection is
subdivided into two branches: ROI detection and classification/regression.

ROI detection

ROI detection can be regarded as 2-class segmentation with bounding boxes. Thus, IoU
(mathematical explanation as eq. (2.1)) as the prime segmentation index is employed.
After all, another leading metric, Dice coefficient (eq. (4.1)) would be always higher than
IoU in the same situation theoretically.

Dice =
2|X ∩ Y |
|X|+ |Y |

(4.1)

In the above equation, X is the ground truth and Y is the prediction. When IoU is trans-
ferred into loss function of segmentation networks in eq. (4.1) can be transformed as
shown in eq. (4.2).

IoU loss = 1− X ∩ Y

X ∪ Y
(4.2)

IoU measures the detection precision from overlapping perspective by integrating the
four bounds of a predicted box as a whole unit, while traditional loss functions in par-
ticular cross entropy series evaluate segmentation pixel-wisely. Based on information
theory, entropy ∆I stands for the possible information quantity obtained from resources.
If the possibility of certain event is Pi, ∆I = −ln(Pi). The BCE defined in eq. (4.3) is the
optimal metric for distance between two sets in our ROI detection as 2-class bounding
box prediction.

BCE = − 1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (4.3)

where yi is the ground truth for pixel i and p(yi) represents the predicted probability that
pixel i is within ROIs. Certainly, N is the number of pixels. However, the final averaging
lead to a distinct shortcoming of BCE that every pixel owns the same standing for loss
reduction. If the target barely takes up one-hundred of the whole picture, then the entire
feature map is trend to be marked as background. Although it is common phenomenon
for medical images, it is unlikely to annotate ROIs as such small area for MOST dataset.
Hence, in order to take advantages of both methodologies, our loss function L tots up
BCE and IoU loss.
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Classification and regression analysis

In general, the acknowledged evaluation criterion for OA severity grading is accuracy,
which is represented by the proportion of true positive and true negative in all evaluated
cases [108], which can be stated mathematically as follows [108]:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.4)

where True Positive (TP) = the number of cases correctly identified as patient
False Positive (FP) = the number of cases incorrectly identified as patient
True Negative (TN) = the number of cases correctly identified as healthy
False Negative (FN) = the number of cases incorrectly identified as healthy

For the sake of imbalanced datasets, F-Measure and AUC are highly recommended as
classification criteria rather than accuracy, which is extremely influenced by the domi-
nated class [9]. Considering ROC is limited to the binary classification, F-Measure, to-
gether with precision and recall, is picked up in the thesis, shown as eq. (4.5), eq. (4.6)
and eq. (4.7) correspondingly:

F −measure =
(1 + β2)Precision ∗Recall

β2Precision+Recall
(4.5)

Precision =
TP

TP + FP
(4.6)

Recall =
TP

TP + FN
(4.7)

Aiming to OA diagnosis, precision and recall should be equally crucial so that as the
symbol of the significance ratio between precision and recall, β is fixed to 1. Then eq. (4.5)
can be simplified as

F1− score =
2 ∗ Precision ∗Recall

Precision+Recall
(4.8)

Taking the imbalanced class distribution into account, F1-score, precision and recall are
calculated by macro-averaging, which treats the metric independently and equally for
each class. Roughly, compared with micro-averages and weighted averages, it is the
lowest but most impartial index. After all, class distributions between different scoring
systems, perspectives and modalities vary in a broad range.

On the other hand, for an ordinal regression, a form of multiclass regression for which
there is an inherent order between classes, the performance of knee OA prediction cannot
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be accounted for comprehensively by above metrics [109]. In order to take advantage
of the precise error degree illustration by regression analysis, Gaudette and Japkowicz
compare existing loss functions concluding that Mean Absolute Error (MAE) and MSE
are the best so far [110].

MSE(Y ) = E((Y −X)2) (4.9)

However, MAE lays its talent in the situation where the tolerance for small errors is lower,
while MSE performs better when the severity of the errors is more vital [110]. Obviously,
concerning OA diagnosis, one grade higher prediction is acceptable but large deviation
takes too much risks. As a result, this thesis takes MSE as the loss function for training
all the models and the main regression metric in eq. (4.9).

4.2 Preprocessing

As depicted in section 4.1.1, knee images of the whole MOST dataset are stored as DI-
COM files. Thereupon, during transforming DICOM files to PNGs (Portable Network
Graphics), the black borders and the blank blocks are cut off, for which rescaling each
group of medical images to their width/height minimums is requisite. MRI slices from
axial plane are rescaled to 511 × 511 pixels, while those from localizer are in the shape
of 255 × 255 pixels. And radiographs from sagittal plane are set to 1520 × 2047 pixels
(Width × Height). As for radiographs from coronal plane, due to the setting as bilateral
PA fixed flexion knee X-Ray images, in order to split both knees, they are cut apart from
the middle of width and adjusted to 1023× 2047 pixels.

After horizontal flipping all the right knees to left, radiographs conduct histogram equal-
ization as analysed in section 3.1, followed by diversified combinations among Perona-
Malik filtering and unsharp masking. On the other hand, before multi-slice averaging,
MRIs execute varied groups of Perona-Malik filtering and unsharp masking. In terms of
the instruction of the picked Python library, MedPy, the possible K of Perona-Malik filter-
ing are selected as 20 (recommended minimum setting) and 50 (default setting), whereas
iterations are assigned to 1 and 5. With regards to MRI slice integration, having discarded
the first and the last one-third slices of each series, the middle part is averaged per pixel
as control trail with three specified MRI slices: the median and its two adjacent slices.

As preliminary experiment, the lightweight VGG-19 is trained from sketch with 32 sam-
ples per batch to minimize MSE by the default Adaptive moment estimation (Adam) op-
timizer for a fast but accurate comparison among the following radiographic preprocess-
ing approaches expressed in Table 4.4. The accuracy of test set is monitored by EarlyStop-
ping callback function during training process. If validation accuracy does not rise after
250 epochs, the training process would be halted.

Before we start training the neural networks, image standardization is done in which



54 4 Evaluation

Approach Filtering iterations K for filter Unsharp masking kernel
1 1 50 ——
2 1 50 SHARPEN
3 1 50 EDGE_ENHANCE
4 5 20 ——
5 5 20 SHARPEN
6 5 20 EDGE_ENHANCE
7 5 50 ——

Table 4.4: Preprocessing approaches for radiographs

the mean pixel value is substracted from each pixel and dividing the difference by the
standard deviation of pixel values. Compared to standardizing each image separately
as sample-wise standardization, feature-wise standardization calculated on the whole
datasets is adopted for both training/validation sets and test sets, followed by image
normalization which traditionally rescales pixel values into [0,1] by pixel-wisely multi-
plying with 1/255 ratio. After all, the full image sets merely consist of grey-scale images,
whose pixel value range is between 0 and 255.

In case ROI detection step has effect on the comparison, pre-experiments work with the
manually annotated ROIs of radiographs. Due to the flexible sizes of labelled knee joints,
radiographic ROIs from sagittal plane are resized to 352 × 544 pixels, while those cap-
tured from coronal plane contain 320 × 352 pixels.

Pursuant to the original VGG-19 architecture illustrated in fig. 3.19, our training is al-
ways stuck in the local optimal solution. Having observed plenty of trails on receptive
field sizes, filter numbers of each convolutional layer and hidden nodes numbers of each
fully connected layer, [3×3] kernel size is preserved. Since our image components are
not complicated, redundant feature maps are supposed to results in overfitting and trap-
ping validation performance. Thus, filter numbers of our VGG-19 shrink 32 times per
layer (Stack 1: 2, Stack 2: 4, Stack 3: 8, Stack 4: 16, Stack 5: 16). With respect to hidden
nodes numbers of the first two fully connected layers, in consideration of the difference
between our dataset capability and the image quantity of ILSVRC, they are diminished
to 128 and 32. As for regression analysis, it is pretrained by the weights of corresponding
trained classifier.

On the basis of our more lightweight VGG-19, Table 4.5 and Table 4.6 give an all-round il-
lustration that Approach 1 (Histogram Equalization + Slight Perona-Malik Filter) is ideal
for X-Ray images. After one iteration Perona-Malik filtering with K as high as 50, the
processed images are nearly the same with the original one, which extends the conclu-
sion in [14] to radiographs that Perona-Malik filtering does not contribute more to MRI
enhancement on the basis of histogram equalization. The more iterations indeed smooths
the bone shapes, which results in the worse cases, likewise blurred images generated by
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Metric Approach Accuracy Precision Recall F1-score MSE
JSN 1 0.8176 0.76 0.70 0.73 0.0779
JSN 2 0.6805 0.68 0.67 0.67 0.1346
JSN 3 0.6980 0.7 0.67 0.68 0.1273
JSN 4 0.7847 0.68 0.56 0.59 0.1019
JSN 5 0.7917 0.71 0.63 0.65 0.0959
JSN 6 0.7500 0.66 0.58 0.60 0.1106
JSN 7 0.8125 0.71 0.62 0.65 0.0881
KL 1 0.6712 0.64 0.59 0.60 0.0924
KL 2 0.5773 0.59 0.57 0.57 0.1464
KL 3 0.5311 0.55 0.51 0.52 0.1414
KL 4 0.6320 0.53 0.53 0.50 0.1149
KL 5 0.6280 0.55 0.53 0.52 0.1298
KL 6 0.6000 0.56 0.50 0.52 0.1161
KL 7 0.6520 0.62 0.58 0.59 0.1222

Table 4.5: Classification and regression results for radiographic approaches (coronal
plane)

Metric Approach Accuracy Precision Recall F1-score MSE
JSN 1 0.6908 0.47 0.43 0.42 0.1117
JSN 2 0.4289 0.45 0.38 0.38 0.2446
JSN 3 0.4201 0.42 0.40 0.40 0.2467
JSN 4 0.4792 0.37 0.32 0.32 0.2354
JSN 5 0.4583 0.38 0.36 0.34 0.2524
JSN 6 0.4375 0.52 0.32 0.32 0.2403
JSN 7 0.4653 0.41 0.31 0.31 0.2322
KL 1 0.5544 0.46 0.42 0.40 0.1192
KL 2 0.4156 0.44 0.39 0.39 0.1557
KL 3 0.3517 0.36 0.33 0.32 0.2075
KL 4 0.4480 0.36 0.34 0.34 0.1797
KL 5 0.4400 0.39 0.37 0.37 0.1872
KL 6 0.4080 0.32 0.31 0.30 0.2220
KL 7 0.4520 0.40 0.38 0.39 0.1909

Table 4.6: Classification and regression results for radiographic approaches (sagittal
plane)
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Approach 7 (as displayed in fig. 4.1(c)). As for the lower K, Approach 4-6 keep more
noises, for which not only they have higher misclassification rates, but also their image
qualities are not enriched by edge sharpening. After all, those noises are also enhanced
at the same time. Similarly, having transformed by global contrast enhancement (his-
togram equalization), the high-resolution radiographs in Approach 2 and 3 have already
hold strong contrast so that unsharp masking even brings more noises into, as indicated
in fig. 4.1(a) and fig. 4.1(b).

(a) Approach 1 (b) Approach 3 (c) Approach 7

Figure 4.1: Radiographs after different preprocessing

Drawing a salutary lesson from radiograph preprocessing, K in Perona-Malik filters is
assigned as 50 for MRI preprocessing. Since the edges of MRIs are much blurrier than
those of X-Ray images, there is no need to lift up the default K. With respect to itera-
tions, it retains as 1, given the fact that multi-slice averaging has smoothed the acquired
images. Owing to the lack of global contrast enhancement, edge sharpening compari-
son is remained as Table 4.7. In order to corroborate the excellence of slice averaging,
the unsharp masking kernel is specially picked as EDGE_ENHANCE, the kernel with
marginally poorer performance in radiographs.

Distinct with X-Ray images, now that the whole MRIs are small enough for neural net-
works and artefacts inside are within acceptable interval, they are directly trained pur-
suing the architecture, lightweight VGG-19, and the training settings of the radiograph
preprocessing evaluation. Within expectation, averaging is the optimum approach for
multi-slice integration (seen in Table 4.8 and Table 4.9). As a result of short MRI se-
quences, in particular those from localizers, the median slice also achieves approximately
similar F1-score, followed by the slice after median. This depends on the median slice
determination method that if there are even slices in total, the previous one is handled.
Under this condition, the slice prior to median remains at the last places. Synthesizing the
corresponding entries of Table 4.8 and Table 4.9 (discarding Approach 1 with slice aver-
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Approach Unsharp masking kernel Slice selection
1 EDGE_ENHANCE Average
2 EDGE_ENHANCE Median
3 EDGE_ENHANCE One slice prior to median
4 EDGE_ENHANCE One slice after median
5 SHARPEN Median
6 SHARPEN One slice prior to median
7 SHARPEN One slice after median

Table 4.7: Preprocessing approaches for MRIs

age), it turns out a flagrant contrast between two edge sharpening kernels in Table 4.10.
Opposed to radiographs, EDGE_ENHANCE accomplishes lightly higher F1-score and
lower MSE than SHARPEN, for which Approach 1 maintains its unsharp mask kernel in
further assessments.

To sum up, both X-Ray images and MRIs would be pre-processed as their Approach
1 (Radiograph: Histogram Equalization + 1 iteration Perona-Malik Filtering with K =
50; MRI: 1 iteration Perona-Malik Filtering with K = 50 + Unsharp Masking with
EDGE_ENHANCE Kernel + Multi-slice Averaging). Their accuracies, even the major-
ity of precisions, are notably higher than others. However, restricted to the imbalanced
dataset, their recalls cannot remain at the same level, which exhibits the considerable pro-
motion potential, in particular with JSN grading system. On the whole, by reason of the
irregular class distribution, the trained models always stagnate at the local optimal solu-
tion, only concentrating on classes rich in data, which leads to the unsatisfactory results
and the sharp decline from accuracy to precision, especially for sagittal radiographs and
MRIs.

However, if weighted average evaluation metrics are taken into account, their values
would soar by 10% or so, even over 15% for JSN grading system. For example, the
weighted average precision, recall and F1-score of Approach 1 for axial MRIs under JSN
scores are respectively 0.68, 0.66 and 0.57, while those under KL grades are 0.44, 0.49 and
0.40. Although X-Ray images from coronal plane can handle the imbalanced data dis-
tribution superbly with an impressive performance, which is similar to state-of-art top
researches ([8][28][36]), it still possesses promising prospect for progress. Furthermore,
for the sake of multimodality integration, balancing dataset is undoubtedly imperative.

On this occasion, the classification and regression performance based on JSN scores is dis-
tinctly superior rather than that of KL, likewise Table 4.7, whereupon further experiments
lay more emphasis on classification/regression under OARSI JSN semi-quantitative sys-
tem. Having nominating final architecture candidates on the basis of JSN, our approach
would be ascertained by KL grades moreover.
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Metric Approach Accuracy Precision Recall F1-score MSE
JSN 1 0.6662 0.40 0.28 0.34 0.1244
JSN 2 0.3964 0.35 0.35 0.34 0.1438
JSN 3 0.3417 0.25 0.29 0.25 0.1831
JSN 4 0.5224 0.27 0.31 0.28 0.1667
JSN 5 0.5224 0.27 0.31 0.27 0.1574
JSN 6 0.4403 0.21 0.26 0.22 0.1601
JSN 7 0.5299 0.27 0.32 0.29 0.1853
KL 1 0.4774 0.38 0.37 0.36 0.1382
KL 2 0.3179 0.36 0.29 0.27 0.1615
KL 3 0.2976 0.28 0.28 0.27 0.2307
KL 4 0.4195 0.32 0.33 0.32 0.1953
KL 5 0.4322 0.33 0.26 0.29 0.2130
KL 6 0.3602 0.31 0.31 0.30 0.2270
KL 7 0.4195 0.37 0.31 0.29 0.1624

Table 4.8: Classification and regression results for MRI approaches (sagittal localizer)

Metric Approach Accuracy Precision Recall F1-score MSE
JSN 1 0.6603 0.58 0.31 0.40 0.1232
JSN 2 0.3690 0.37 0.38 0.36 0.1544
JSN 3 0.3303 0.32 0.30 0.30 0.1844
JSN 4 0.5149 0.31 0.30 0.26 0.1568
JSN 5 0.5000 0.25 0.30 0.27 0.1621
JSN 6 0.4962 0.25 0.29 0.27 0.1638
JSN 7 0.4851 0.25 0.29 0.26 0.1616
KL 1 0.4943 0.38 0.29 0.33 0.1321
KL 2 0.4156 0.31 0.31 0.31 0.1400
KL 3 0.2791 0.23 0.22 0.13 0.1596
KL 4 0.3856 0.36 0.33 0.33 0.2003
KL 5 0.3517 0.26 0.28 0.25 0.1542
KL 6 0.3447 0.27 0.26 0.25 0.1862
KL 7 0.3856 0.24 0.29 0.25 0.1552

Table 4.9: Classification and regression results for MRI approaches (axial plane)
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Kernel View Label F1-score MSE
EDGE_ENHANCE Localizer JSN 0.29 0.1645
EDGE_ENHANCE Localizer KL 0.29 0.1958
EDGE_ENHANCE Axial JSN 0.31 0.1651
EDGE_ENHANCE Axial KL 0.26 0.1666
SHARPEN Localizer JSN 0.25 0.1676
SHARPEN Localizer KL 0.29 0.2008
SHARPEN Axial JSN 0.27 0.1625
SHARPEN Axial KL 0.25 0.1652

Table 4.10: Unsharp masking kernel comparison among MRIs

4.3 ROI detection

As stated in section 4.2, without discernible artifacts, knee joints clearly stand out against
the black background in the preprocessed MRIs as shown in fig. 4.2 in which there is
an an appropriate scale for direct neural network training. Therefore, MRIs from both

(a) From sagittal localizer (b) From axial plane

Figure 4.2: Preprocessed MRIs

perspectives in the MOST cohorts are not required to extract ROIs prior to classifiers and
consequently we focus only on radiographs.

4.3.1 CNN-based approach

Served as a vital stage of traditional CNN-based approach described in section 3.2.1,
pure ROI detection highly depends on the labelled ground truths for the segmentation
training. Thereupon, the knee joints are manually annotated by a Python-based image
annotation tool, LabelImg, without size limitation, since the shapes of knee joints from
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Architecture Batch size IoU score Loss
FCN-32s 16 0.8262 0.2374
FCN-8s 64 0.8444 0.2237
U-Net (ResNet-18) 80 0.9807 0.0257
U-Net (ResNet-34) 64 0.9430 0.1075
U-Net (ResNet-50) 32 0.9429 0.0774
U-Net (ResNet-101) 24 0.9370 0.0737
U-Net (ResNeXt-50) 24 0.9361 0.0788

Table 4.11: ROI detection results of radiographs from coronal plane

Architecture Batch size IoU score Loss
FCN-32s 32 0.7657 0.3312
FCN-8s 64 0.7725 0.3320
U-Net (ResNet-18) 96 0.9637 0.0729
U-Net (ResNet-34) 64 0.8466 0.2732
U-Net (ResNet-50) 64 0.9184 0.1506
U-Net (ResNet-101) 24 0.8940 0.1519
U-Net (ResNeXt-50) 32 0.8964 0.1497

Table 4.12: ROI detection results of radiographs from sagittal plane

sagittal plane are altered flexibly. According to the coordinates of bounding boxes, the
ground truths of X-Ray images are generated to binary images with the same sizes of the
input images (Sagittal: 1520 × 2047 pixels; Coronal: 1023× 2047 pixels).

Depict in section 4.1.2, this thesis upgrades previous segmentation loss function from
single BCE or IoU loss to their sum so that after input normalization, FCN and U-Net can
be thoroughly trained by the Adam optimizer with default parameters and straightfor-
wardly monitored by EarlyStopping callback function via IoU score of the test dataset.
After all, the combination of BCE loss and accuracy only measures how many percent of
input images whose IoU score are higher than 50%, for which the highest accuracy does
not stand for the most outstanding performance. Regarding the group of IoU loss and
IoU score, it is void of pixel-wise perspective.

Having observed the growth tendency in several trails, the EarlyStopping patience of
FCN is specified as 200, whereas that of U-Net is scheduled to 80. As for another hyper-
parameter, batch size, it is tuned in the learning procedure to explore the prefect settings,
whose outcomes are presented in Table 4.11 and Table 4.12.

As the template of our baseline FCN-32s, the mean IoU for MOST cohort in [28] reached
0.81, which is quite approximate our baseline IoU average (0.8262). Evidently, this con-
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firms the rationality and comparability for our evaluation. In spite of the fact that the ar-
chitecture upgrade from FCN-32s to FCN-8s truly promotes the IoU score, the increment
around 0.01 for X-Ray images acquired from both planes is far away from expectation.
Since before settling on the final network, [28] had already verified plentiful convolution
stages, the number of filters and kernel sizes in each convolution layer, our experiments
does not try those parameters out. Compared with IoUs calculated from U-Net seg-
mentation, the least 0.1 addition exposes the fateful factor behind the insufficient FCN
performance, the defects of architecture. After all, concatenation for each pooling layer
impeccably preserves all the local features, while vast spatial information is still lost dur-
ing downsampling and adding in FCN.

Concerning U-Net backbones, ResNet-18 visibly has a brilliant achievement no matter
which perspective of X-Ray images and which evaluation criterion is applied. Rather
than 98.3% accuracy in [35], which represents ROIs in 98.3% of validated coronal radio-
graphs are detected with IoU>0.5, the mean IoU of our U-Net with ResNet-18 architec-
ture is 0.9807, whose percentages of detected ROIs with IoU>0.5 and IoU>0.75 are 100%.
Considering knee joints from coronal plane are more monotonous than those from sagit-
tal plane, average IoUs of sagittal X-Ray images are 5% or so lower. In the meanwhile,
U-Net with other backbones also behave superb enough. However, aiming at 2-class
bounding box detection, a relatively simple segmentation task, U-Net with more com-
plicated structures are more likely overfitted, which is substantiated by a mild decrease
trend on IoU scores in Table 4.11. This also illustrates why GANs are not applied in our
ROI detection. After all, the powerful GAN is overqualified for binary bounding box de-
tection. At the same time, this overfitting issue also explains why backbones with more
layers are more suitable for smaller batch sizes and aiming at ROI detection for sagittal
radiographs, expanded batch sizes is called for.

In conclusion, U-Net with complex backbones are more suitable for sophisticated seg-
mentation tasks, whereas U-Net based on ResNet-18 is picked for our ROI detection of
traditional CNN.

4.3.2 RPN

Distinguished from pure ROI detection, RPN of FRCNN is trained based on feature maps
and bounding box coordinates so that the ROI coordinates produced by LabelImg remain
to be employed but cannot be the only decisive factor any more. Apart from vertex coor-
dinate distances, the Adam optimizer has to optimize classification BCE on the proposed
ROIs as well. In order to shrink convergence duration, pre-trained ResNet-50 weights
from Keras are loaded as initial parameters. Since whether the entire training stops or not
is chiefly determined by classification accuracy at the last step, this subsection takes mod-
els trained after 30 epochs to calculate IoUs for comparison (seen in Table 4.13). Thanks
to 1000 steps per epoch, which is mainly designed for OA grading, in our case, generally
after 30 epochs, the regression loss computed by coordinate distances between proposed
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Approach Perspective IoU≥0.25 IoU≥0.5 IoU≥0.75 IoU score
FCN in [28] Coronal 99.5% 98.4% 85.0% 0.81
U-Net (ResNet-18) Coronal 100.0% 100.0% 100.0% 0.9807
RPN Coronal 100.0% 100.0% 100.0% 0.9899
U-Net (ResNet-18) Sagittal 100.0% 100.0% 100.0% 0.9637
RPN Sagittal 100.0% 100.0% 100.0% 0.9297

Table 4.13: Comparison between IoUs of RPNs and pure ROI detection approaches

and target bounding boxes would descends lower than 0.01 and nearly stop to revise.

Obviously, ROIs proposed by RPNs are more accurate than previous papers. Never-
theless, its performance is regulated by the final classification outcomes. The more sur-
passing radiographs are classified, the more likely RPNs are fostered so that it can at-
tain similar even better IoU score than U-Net for coronal radiographs, while respecting
sagittal radiographs, RPN is limited a bit by the grading difficulty. In practice, RPN
owns more apparent operation simplicity because it not only merges two model train-
ing to skip the ROI extraction step in macroscopic view, but also ignores ground truths
from detail implementation directly replaced by bounding box coordinates, which leaves
prediction contour detection out. Hence, under synthetic consideration, the predicted
bounding boxes from RPNs are straightly extracted for all the following experiments,
although RPN’s IoU average for sagittal X-Ray images is slightly lower than that of U-
Net equipped with ResNet-18, which still can take up the second ranking with superior
performance.

4.4 Classification and regression analysis

Having gained experiences from pre-experiments, previous to classification and regres-
sion analysis, in terms of JSN scores, dataset balancing is conducted via image augmenta-
tion for each perspective of plain radiographs and MRIs to guarantee the sample amount
balance among classes. According to Table 4.3, triple extra images of grade 1 and grade
2 are demanded, while elevenfold additional images of grade 3 are required. Inspired by
[8, 35], every image of grade 1 and grade 2 is rotated 5◦, 355◦ and 10◦ clockwise, since
diverse angles creates higher variability within datasets. As for grade 3, 230 images per
perspective of each modality from other visits (V2, V3 and V5) are randomly selected for
following preprocessing steps as Approach 1.

Having automatically extracted radiographic ROIs from RPN prediction, all the grade
3 knee joint images are together rotated 5◦, 10◦ and 15◦ clockwise as well as
counter-clockwise. In case one subject rotated in different angles appears in the train-
ing/validation dataset and the test dataset at the same time, the rotation procedure and
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Modality Perspective JSN=0 JSN=1 JSN=2 JSN=3
Radiograph Coronal 862 868 660 924
MRI Axial 862 868 660 924
Radiograph Sagittal 862 868 660 816
MRI Localizer 862 868 660 818

Table 4.14: Class distributions under JSN scores in test sets

Optimizer Accuracy Precision Recall F1-score MSE
Adam 0.8633 0.86 0.86 0.85 0.0535
SGD 0.8896 0.88 0.88 0.88 0.0451

Table 4.15: Comparison between Adam and SGD optimizer based on VGG-19 with the
balanced coronal radiographs

the extra image import are carried out in the training/validation sets and test sets sepa-
rately. Thereupon, with the growing need of model adaptability, their class distributions
achieve almost balanced as Table 4.14. On the balanced datasets, radiographic ROIs ex-
tracted from RPNs are resized to their width/height minimums: 336 × 359 pixels for
coronal X-Ray images and 355 × 568 pixels for sagittal radiographs. Besides, on account
of possible GPU memory limitation, especially for networks over 150 layers, MRIs from
axial plane are rescaled to 360 × 360 pixels on the whole.

As what pre-experiments have done, images on the test datasets are feature-wisely stan-
dardized and centred with the same distribution of the training/validation images. Prior
to model training, image normalization is fulfilled based on dividing pixel values by 255.
Differing from preliminary experiments, this section cares more about functional perfor-
mance, such as accuracy, precision, recall and F1-score, rather than convergence speed.
Accordingly, the Adam optimizer is replaced by a more reliable optimizer, SGD, to lessen
MSE. SGD is shorten from Stochastic Gradient Descent, however, the mini-batch import
modifies it to mini-batch gradient descent in this thesis. Even though SGD is more strict
with initialization and parameter settings, having attempted innumerable combinations
of learning rates, initial weights, weight decays, momentums and Nesterov based on hy-
perparameter optimization with Bayesian algorithm implemented by Sherpa, our final
SGD settings (Learning rate: 0.01, Weight decays: 1e-6, Momentum: 0.95, Nesterov: True,
Initializer: He_normal, Regularizer: L2) can realize more convincing performance than
that of Adam, which can be demonstrated by Table 4.15.
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4.4.1 VGG architectures

Thanks to the expertises acquired from abundant pre-experiments on batch sizes, VGG
networks are trained from sketch still with 32 samples per batch. Regarding the number
of epochs, it depends on the validation accuracy monitored by EarlyStopping callback
function in the training process. In order to make sure the highest accuracy can be
captured and avoid local optimal solutions, the patience of EarlyStopping function is set
to 300 and the minimum increment remains at 0.

In view of the image monotony, VGG-16 and VGG-19 persist our modification for
convolutional filter numbers. Due to the dataset expansion, Dropout is imported
for overfitting prevention. Concerning Dropout rates, along with numbers of fully
connected layers and hidden node numbers per fully connected layer, ahead of eventual
architecture determination, ample attempts are succeeded in. The detailed final network
settings are noted in fig. 4.3. Indeed, instead of excessively extra hidden nodes, the

Figure 4.3: Final architectures of VGG-16 and VGG-19

The convolutional layer parameters are denoted as receptive field size and number of channels. FC: Fully
Connected Layer.

image set augmentation demands more on moderate Dropout rate, while the quality
differences among extracted feature maps caused by lacking convolutional layers have
to be remedied by more hidden nodes in fully connected layers. Even if VGG-16 enlarges
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Network Perspective Accuracy Precision Recall F1-score MSE
VGG-16 Coronal 0.8739 0.87 0.87 0.87 0.0488
VGG-19 Coronal 0.8896 0.88 0.88 0.88 0.0451
VGG-16 Sagittal 0.7130 0.70 0.70 0.70 0.1048
VGG-19 Sagittal 0.7489 0.75 0.74 0.74 0.1019

Table 4.16: VGG classification and regression performance on radiographs

Network Perspective Accuracy Precision Recall F1-score MSE
VGG-16 Sagittal 0.6742 0.67 0.66 0.65 0.1155
VGG-19 Sagittal 0.6835 0.69 0.67 0.66 0.1096
VGG-16 Axial 0.6307 0.58 0.60 0.58 0.1246
VGG-19 Axial 0.6261 0.59 0.60 0.59 0.1316

Table 4.17: VGG classification and regression performance on MRIs

octuple and quadruple numbers of hidden nodes for each layer, the diagnosis from
VGG-19 is more reliable overall (Table 4.16 and Table 4.17). This excellence is more
significant for sagittal knee joints, since with more formations, classifiers need more
fitting feature maps, which relies on convolutional layers. As for MRIs from axial
plane, appropriate JSN-related features are extracted more challengingly, which gives
rise to this similar performance. Therefore, the dense evaluation concept mentioned in
section 3.2.1 is developed on the basis of VGG-19 to import more convolutional layers
for feature extraction. On this occasion, hyperparameter optimization is conducted for
culling the most suitable filter number of additional convolutional layers. Eventually,
prior to the fixed last convolution operator, the number of convolutional layers are
determined as 2 and their filter numbers are 16 per layer, whose performances are shown
in Table 4.18.

This modification visibly enhances the performance of VGG-19 on sagittal radiographs
and axial MRIs. Instead of flattening, the last global average pooling calculates the mean

Modality Perspective Accuracy Precision Recall F1-score MSE
Radiograph Coronal 0.8820 0.88 0.88 0.88 0.0570
Radiograph Sagittal 0.7704 0.77 0.77 0.76 0.0894
MRI Sagittal 0.6773 0.68 0.66 0.66 0.1113
MRI Axial 0.6536 0.61 0.63 0.61 0.1220

Table 4.18: Fully convolutional VGG-19 classification and regression performance
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Network Batch size Accuracy Precision Recall F1-score MSE
ResNet-18 8 0.8380 0.83 0.83 0.83 1.5269
ResNet-34 16 0.8395 0.83 0.83 0.83 0.7303
ResNet-50 16 0.8295 0.82 0.82 0.82 3.8338
ResNet-101 64 0.8220 0.82 0.81 0.80 6.9157

Table 4.19: ResNet classification and regression performance with optimal batch sizes on
coronal radiographs

of classes from each pixel. A pixel-wise classification/regression definitely is far more
difficult to overfit and reinforces the precision, robustness and reliability of classifiers.
That is the reason why with the image size expansion, the upgrade effect is magnifying.
The additional convolutional layers slow down the learning rate, in particular nearby the
accuracy peak, so that there are more opportunities to fine-tune an ideal model. The less
filters are assigned, the slower the convergence is. Hence, the tradeoff between training
duration and possible progress settles the filter number as 16. After all, few filters may
stagnate the training for redundant epochs to exceed the patience of EarlyStopping.

While the comparison with pre-experiments, the necessity of class distribution balance is
empirically proven by the soaring accuracies (around 10%). Moreover, on the balanced
datasets, macro average precision, recall and F1-score have approached to their upper
limits, since model trainings are not struck into certain class prediction. Naturally, it sets
a shining example for the following evaluation.

4.4.2 ResNets

Although Keras has pre-trained ResNets, in order to control weight initialization, all the
ResNet architectures are trained from sketch with validation accuracy monitoring. The
patience of EarlyStopping function is designated to 50, learned from the surge intervals
of manifold tryouts. As for batch size, it is tuned by grid search algorithm among 8, 16,
32, 64 and 128 as hyperparameter optimization in aforementioned trails as well, whose
results are presented in Table 4.19, Table 4.20, Table 4.22 and Table 4.21 respectively. Al-
though it is tough to discover the rule of optimal batch size, those different batch sizes
just give rise to approximately within 1% difference among validation accuracies so that
their classification performances with ideal batch size are still comparable. As for regres-
sion analysis, our MSEs are calculated per batch by evaluate function in Keras so that
their comparability is only applicable to the trainings with the same batch sizes.

On the whole, ResNet-34 accomplishes most outstandingly, which profits from its modest
network. This is also in accordance with the discovery of [8]. On the most monotonous
dataset, radiographs from coronal plane, smaller structures likewise ResNet-18, have al-
most the same performance, whereas for images from sagittal view, ResNet-101 occupies
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Network Batch size Accuracy Precision Recall F1-score MSE
ResNet-18 64 0.6684 0.65 0.64 0.63 2.6063
ResNet-34 8 0.6921 0.68 0.68 0.66 3.4473
ResNet-50 16 0.6691 0.64 0.65 0.63 4.4126
ResNet-101 8 0.6765 0.68 0.66 0.66 9.0198

Table 4.20: ResNet classification and regression performance with optimal batch sizes on
sagittal radiographs

Network Batch size Accuracy Precision Recall F1-score MSE
ResNet-18 32 0.6554 0.64 0.62 0.59 2.8907
ResNet-34 16 0.6667 0.66 0.64 0.63 5.2924
ResNet-50 16 0.6483 0.64 0.62 0.60 5.6758
ResNet-101 32 0.6483 0.64 0.63 0.63 9.7233

Table 4.21: ResNet classification and regression performance with optimal batch sizes on
sagittal MRIs

the second rank, since the shapes of knee joints from sagittal perspective vary in a widen
range. Similar with VGGs, ResNet-18, ResNet-34 and ResNet-50 behave almost the same,
aiming at axial MRIs. Evidently, due to the structured residual blocks, the accumulation
of layers cannot promote feature maps, in particular extracted from axial view. It even
may be only connected with shortcuts. Certainly, axial view indeed is not adept in re-
flecting to JSN.

4.4.3 DenseNets

Different with ResNets, DenseNets lift up validation accuracies quite slowly, since its
multiple connections within dense blocks. Thereupon, after 300 epochs without any gain
for validation accuracy, our EarlyStopping callbacks would restore the optimally trained

Network Batch size Accuracy Precision Recall F1-score MSE
ResNet-18 64 0.6165 0.55 0.58 0.53 2.8495
ResNet-34 16 0.6129 0.58 0.59 0.58 5.1153
ResNet-50 16 0.6168 0.57 0.59 0.56 5.6195
ResNet-101 16 0.6053 0.52 0.57 0.51 9.9949

Table 4.22: ResNet classification and regression performance with optimal batch sizes on
axial MRIs
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Network Accuracy Precision Recall F1-score MSE
DenseNet-121 0.8941 0.89 0.89 0.89 0.0532
DenseNet-161 0.8965 0.89 0.89 0.89 0.0505
DenseNet-169 0.8920 0.89 0.89 0.89 0.0561
DenseNet-201 0.8947 0.90 0.89 0.89 0.0561

Table 4.23: DenseNet classification and regression performance on coronal radiographs

Network Accuracy Precision Recall F1-score MSE
DenseNet-121 0.7583 0.75 0.75 0.75 0.1062
DenseNet-161 0.7645 0.76 0.75 0.75 0.1083
DenseNet-169 0.7583 0.75 0.75 0.75 0.1082
DenseNet-201 0.7723 0.76 0.76 0.75 0.1042

Table 4.24: DenseNet classification and regression performance on sagittal radiographs

model. In the meanwhile, due to its complex structure, batch size does not have catas-
trophic impact on the performance, which can be made up by more epochs. For example,
DenseNet-201 with 32 samples per batch completes training 1100 epochs or so, while
when batch size cuts down to 16, the whole training calls for around 1450 epochs on av-
erage. Certainly, among all the contrast tests, the accuracy differences are roughly within
2%. Hence, for the convenience of comparison with VGGs, batch size is arranged to 32.

As the key advantage of DenseNet, the narrow structure with 12 channel growth per layer
has been substantiated its marvellous performance in [101], for which our DenseNets
keep growth rate as 12. Inspired by skills how to search for ideal filter numbers of VGG
convolutional layers, the initial filter number settings are traversed among small integers:
4, 8, 12 and 16, where 8 triumphs over in both accuracy and speed. In general, filter num-
bers are assigned small enough so that reduction rate is left as the same with the original
design (0.5) and Dropout rate is also preserved as 0. In addition to theoretical analysis,
there are two more practical arguments for giving up Dropout. Firstly, DenseNets are
already trained tardily with direct connections. If bringing in Dropout, the whole train-
ing process would be extended out of expectation. Besides, since MOST does not supply
as massive images as normal picture databases, even though each group of medical im-
ages are expanded by data augmentation, it is still far away from overfitting for such
deep networks rather than VGGs, for which compared to DenseNets without Dropout,
there is around 5% accuracy less for DenseNets with 0.5 or 0.8 Dropout rate during our
hyperparameter optimization trails.

On the radiograph datasets, by virtue of clear image composition, DenseNets act alike
and any aforementioned DenseNet can handle with X-Ray images much better than up-
to-date researches, like [35] also on the balanced datasets. After all, the connection struc-
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Network Accuracy Precision Recall F1-score MSE
DenseNet-121 0.6667 0.68 0.66 0.65 0.1312
DenseNet-161 0.6704 0.67 0.64 0.62 0.1275
DenseNet-169 0.6667 0.69 0.66 0.65 0.1262
DenseNet-201 0.6879 0.67 0.67 0.66 0.1444

Table 4.25: DenseNet classification and regression performance on sagittal MRIs

Network Accuracy Precision Recall F1-score MSE
DenseNet-121 0.6415 0.60 0.61 0.58 0.1323
DenseNet-161 0.6584 0.63 0.63 0.61 0.1284
DenseNet-169 0.6515 0.62 0.63 0.62 0.1307
DenseNet-201 0.6467 0.61 0.62 0.59 0.1637

Table 4.26: DenseNet classification and regression performance on axial MRIs

ture prevents DenseNets from overfitting. Even if their training accuracies reach 99%,
their validation accuracies still maintain at an advanced level. Thus, when training ac-
curacies exceed 99%, a series of attempts are tried out and the optimal one is restored,
for which divergent networks perform similarly in the end but with pretty distinctive
epoch numbers. This also points out why the patience of EarlyStopping should be set to
much higher than other two architectures. If the patience is growing, their performances
would continue to be mildly lifted up. Balanced the performance gain and the train-
ing duration, 300 epochs is decided. While DenseNet-161 and DenseNet-201 are slightly
surpassing respectively on the radiographs, DenseNet-161 and DenseNet-169 are adept
in MRIs. Therefore, in general DenseNet-161 can cope with both modality perfectly, in
particular in regression analyses. By contrast, DenseNet-201 often obtains the highest
accuracy but with also high MSE, as Table 4.25. Apparently, its misclassification offsets
more from targets than other networks, for which the clinical diagnosis takes higher risks,
although it is more likely that DenseNet-201 offers a correct prediction.

4.4.4 FRCNN

As end-to-end learning, hyper-parameters of classifiers such as steps per epoch and ini-
tial weights are shared with RPNs depicted in section 4.3.2. Thus, distinguished with
other classification algorithms, classifiers of FRCNN are loaded weights from Keras pre-
trained ResNet-50. Certainly, now that MRIs do not really need RPNs, their bounding
box targets are specified to the entire images. Taking the performance of both RPNs and
classifiers into consideration, the training process is monitored by the sum of bound-
ing box prediction loss and classification loss. According to the gained knowledge from
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Modality Perspective Accuracy Precision Recall F1-score
Radiograph Coronal 0.6772 0.71 0.68 0.67
Radiograph Sagittal 0.4998 0.48 0.50 0.48
MRI Sagittal 0.5620 0.48 0.56 0.49
MRI Axial 0.5345 0.54 0.53 0.51

Table 4.27: FRCNN classification performance

previous experiment observation, if the total loss does not descend within 10 epochs or
models are trained beyond 200 epochs, the learning procedure would turn to the end.
Inspired by snapshot concept, after each epoch, weights of the trained model is saved,
among which the best models (listed in Table 4.27) are opted.

Apparently, ROI proposal has enormous influence on final grading, in particular for X-
Ray images. Compared to the performance of its backbone, ResNet-50, no matter from
which perspective of radiographs, their accuracies sharply drop over 15%, while those of
MRIs slides 8.43% on the average. In order to extract ROIs, shared convolutional layers
pay more attention to features describing knee joint contours and then ignore features
depicting minor width changes of joint margins which are really beneficial to classifiers.
Therefore, MRIs without actual ROI proposal are less impacted.

FRCNN is prevalent for object detection, especially in scenarios where classification can
be fulfilled via object outlines. In the field of OA diagnosis, to a great extent, fine distinc-
tions inside subjects are the key to judgement, which is challenging for feature selection
of state-of-art FRCNN. In other words, even if the backbone is changed, the outcomes
still cannot match with its separated classifier caused by the architecture design.

4.4.5 Selection of neural network architectures

Having witnessed the dilemma of end-to-end learning, this section merely sorts out the
optimal networks from traditional CNN-based approaches. ResNet is firstly rejected
from candidate list. Even though on the MRI datasets, the leading structure, ResNet-
34, narrows the classification performance gap between itself and other two architectures
to around 1%, it still cannot catch up with their least cases. With respect to radiographs,
the disparity between ResNets and DenseNets even comes to 8%. And this difference
would be enlarged with data imbalancing as Table 4.28 and Table 4.29. Besides, in regres-
sion analyses, compared to VGG architectures and DenseNets, their MSEs are almost one
order of magnitude larger.

Generally, the whole performance of VGG-19 is inferior to DenseNets around 1.5% and
their gap is increasing with the growth of image size. Revised by replacing fully con-
nected layers, the results of VGG-19 approach to, even surpass, the best DenseNet, now
that they work with the similar principle. Hence, served VGG-19 as baseline, DenseNet-
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Architecture Accuracy Precision Recall F1-score MSE
VGG-19 0.8176 0.76 0.70 0.73 0.0779
Revised VGG-19 0.8313 0.78 0.71 0.74 0.0691
DenseNet-161 0.8427 0.77 0.78 0.76 0.0709
ResNet-34 0.7710 0.66 0.61 0.63 2.5173

Table 4.28: Classification and regression performance on coronal radiographs under JSN
scoring system

Architecture Accuracy Precision Recall F1-score MSE
CNN in [28] 0.634 0.62 0.61 0.58 ——
VGG-19 0.6712 0.64 0.59 0.60 0.0924
Revised VGG-19 0.6626 0.63 0.60 0.60 0.0969
DenseNet-161 0.6956 0.66 0.63 0.62 0.1135
ResNet-34 0.6010 0.54 0.49 0.50 3.3012

Table 4.29: Classification and regression performance on coronal radiographs under KL
grading system

161 is picked for further comparison with upgraded VGG-19 on the original image sets
under both JSN and KL grading systems.

The same with pre-experiments, the imbalance has barely negative effect on the final re-
sults. The classification/regression performance differences between JSN and KL are dis-
tinguished among coronal radiographs, not only because of one more class from KL, but
also owing to the indiscernible grade 1 under KL as previous papers declared [36, 41].
However, no matter under which grading system, DenseNet-161 possesses the over-
whelming superiority roundly in classifications, even if compared with up-to-date re-
searches, such as 66.71% accuracy of 5-class classification in [8] and 0.68 precision of
4-class in [36]. The detailed classification reports for each class are listed in Table 4.30-
Table 4.32, which exposes the issue for KL grade 1 vividly. On the other hand, VGG ar-
chitectures own lower MSEs in regression analyses on the whole, although, for the sake
of image sizes, revised VGG-19 does not promote so much progress.

On the contrary, revised VGG-19 lifts up both classification and regression performance
on X-Ray images from sagittal plane remarkably, even surpasses DenseNet-161 readily
under KL assessment system. Visibly, averaging 355 × 568 pixels render a strong robust-
ness of precision, which makes up the vacancy of fully connected layers. Nevertheless,
the imbalance starts to make sense on the classification/regression, especially for VGGs,
which narrows the performance gap between JSN and KL by weakening grade 1 classifi-
cation under JSN scoring system as well. After all, from sagittal view, it is more challeng-
ing to extract exact features telling apart grade 1 and grade 0.
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Class Precision Recall F1-score
0 0.89 0.96 0.92
1 0.86 0.81 0.84
2 0.85 0.84 0.85
3 0.97 0.96 0.96

Mean 0.89 0.89 0.89

Table 4.30: Class-wise DenseNet-161 classification performance on the balanced coronal
radiographs under JSN scoring system

Class Precision Recall F1-score
0 0.89 0.95 0.92
1 0.62 0.39 0.48
2 0.80 0.83 0.81
3 0.76 0.94 0.84

Mean 0.77 0.78 0.76

Table 4.31: Class-wise DenseNet-161 classification performance on the imbalanced coro-
nal radiographs under JSN scoring system

Class Precision Recall F1-score
0 0.70 0.93 0.80
1 0.42 0.08 0.14
2 0.55 0.52 0.54
3 0.78 0.81 0.80
4 0.86 0.79 0.82

Mean 0.66 0.63 0.62

Table 4.32: Class-wise DenseNet-161 classification performance on the imbalanced coro-
nal radiographs under KL grading system

Architecture Metric Accuracy Precision Recall F1-score MSE
VGG-19 JSN 0.6908 0.47 0.43 0.42 0.1117
Revised VGG-19 JSN 0.7061 0.60 0.42 0.49 0.1059
DenseNet-161 JSN 0.7389 0.62 0.49 0.51 0.1233
VGG-19 KL 0.5544 0.46 0.42 0.40 0.1192
Revised VGG-19 KL 0.5838 0.63 0.47 0.45 0.1202
DenseNet-161 KL 0.5824 0.50 0.45 0.43 0.1481

Table 4.33: Classification and regression performance on sagittal radiographs
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Architecture Metric Accuracy Precision Recall F1-score MSE
VGG-19 JSN 0.6662 0.40 0.28 0.34 0.1244
Revised VGG-19 JSN 0.6814 0.28 0.31 0.29 0.1231
DenseNet-161 JSN 0.6830 0.53 0.35 0.35 0.1566
VGG-19 KL 0.4774 0.38 0.37 0.36 0.1382
Revised VGG-19 KL 0.5176 0.27 0.31 0.28 0.1282
DenseNet-161 KL 0.5097 0.40 0.33 0.36 0.1866

Table 4.34: Classification and regression performance on sagittal MRIs

Architecture Metric Accuracy Precision Recall F1-score MSE
VGG-19 JSN 0.6603 0.58 0.31 0.40 0.1232
Revised VGG-19 JSN 0.6702 0.65 0.31 0.42 0.1196
DenseNet-161 JSN 0.6763 0.39 0.39 0.39 0.1652
VGG-19 KL 0.4943 0.38 0.29 0.33 0.1321
Revised VGG-19 KL 0.5172 0.39 0.32 0.35 0.1262
DenseNet-161 KL 0.5215 0.43 0.36 0.39 0.1728

Table 4.35: Classification and regression performance on axial MRIs

Feature selection troubles MRIs from sagittal perspective more seriously, even involving
grade 2 of KL, since they display more knee details indirectly related to JSN. In addition,
how to construct features expressing few samples of grade 3 under JSN or grade 4 un-
der KL scoring system is highly demanding. Thus, recalls fall off sharply and the gap
between performances of different grading systems is sealed. With the smallest image
shape, convolution replacement clearly cannot boost the performance of VGG-19, even
becomes a burden on classification. Although the accuracies are enhanced, it relies on
grade 0 and grade 2 (JSN)/grade 3 (KL). Then the unsatisfied macro means can be easily
imaged. The outputs of DenseNet-161 also tend to grade 0 and grade 2 (JSN)/grade 3
(KL) but their outcomes are supported by the class with fewest images, which retards
the performance decline. Thus, in practical, contributed by dense blocks, overcoming the
lack of data is easier for classifiers than extracting features directing at tiny lesions.

This also clarifies why axial MRIs can be diagnose as grade 3 (JSN)/grade 4 (KL),
however, grade 1 and grade 2 cannot be recognized roughly. Pixel-wise classifica-
tion/regression also conduces to the identification of class with fewest data by VGG-19
but accurate features from axial plane for joint margin portrayal are scarce. Hence, al-
though the overall MRI performances under both semi-quantitative assessment criteria
are similar, their inner obstacles for both perspectives are widely divergent.

DenseNet-161 architecture has stronger resistance to imbalanced image sets so that its
classification performance properly maintains at the highest level, compared with other
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architectures. However, with the drop of accuracy, its MSEs raise more rapidly than
revised VGG-19, even VGG-19. Distinctly, the misclassification of DenseNets is easier
with large offsets, especially for MRIs. In addition, with the expansion of image sizes,
the modification of VGG-19 plays a more leading role in classification, while the memory
limitation to DenseNet comes into play, for which the ideal choice turns into revised
VGG-19.

4.5 Decision visualization

Precise decisive feature localization is vital not only for model prediction explanation but
also for rapidly confirming the reliability of the outcome, especially for potentially false
positive cases [77]. Therefore, a more trustworthy attention map calculation approach is
selected between Grad-CAM and Grad-CAM++ by our manual judgement. Due to ex-
ternal conditions, this thesis fails to verify the localization accuracy with radiologists.

Primarily, the more accurate the model is, the more alike the visualizations between
Grad-CAM and Grad-CAM++, since key features are then more simply identified.
Hence, their visualizations of coronal radiographs are the same for correct predictions,
even wrong grading, whereas visualizations for the same axial MRI slice vary in a board
range, even if they are classified exactly, as fig. 4.4. In order to spotlight entire objects,
instead of their parts, Grad-CAM++ replaces global averaging by the weighted mean, for
which in our case, Grad-CAM++ highlights more conjoined features precisely (fig. 4.4(b)
and fig. 4.5(b)). As previous papers focus on radiographs from coronal plane, Grad-
CAM is enough for attention map generation. On account of assisting diagnosis based
on multimodality, Grad-CAM++ is adopted to our pipeline, by virtue of its extensive
applicability.

As shown in fig. 4.5, the saliency maps not only verify the reliability of our models, but
also serve as a valuable tool for issue exposure. For example, the misclassified X-Ray
images from coronal plane in common highlight the upper or bottom borders e.g. the
heatmap generated by the Grad-CAM as shown in fig. 4.5(b). Even if the classifica-
tion outputs are aligned with the targets, the borders are also spotlighted as shown in
fig. 4.5(d). Unacquainted with the knee joint structure, our ROI annotation covers ex-
tra shaft part of femurs or tibiae, especially femurs are cut out in terms of the shadow
of patella which is not directly related to OA quantification. Thereupon, non-uniform
lengths of bones increase the possibility of misclassification, which is however, caused
by human factor rather than the whole pipeline itself. Consequently, ROI is merely de-
lineated in the condyle region, which is contributed by saliency maps.
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(a) Coronal radiograph

(b) Axial MRI

Figure 4.4: The visualization comparison between Grad-CAM and Grad-CAM++

(a) Target JSN: Grade 2, Prediction: Grade 0; (b) Target JSN: Grade 3, Prediction: Grade 3

4.6 Model ensemble

No matter which networks are employed, the definite trend of classification levels be-
tween perspectives per modality is stable. Radiographs from coronal plane possesses
impressive classification capability, leading at least 14% accuracy together with other
evaluation metrics. Certainly, less features in the images contributes a lot to its success.
However, the key to its triumph is the labels stemming from scoring systems, especially
JSN, which lays more emphasis on the width of knee joint margin. Compared to other
perspectives, coronal view can exhibit joint margins most clearly, which explain why pre-
vious papers have special preference on that. Hence, our model ensemble also strengthen
the usage of images from this group.

Ranking at the second place, sagittal X-Ray images benefit by minor interference by extra
features. MRIs encompass a great deal of OA features, however, they are merely involved
into more sophisticated semi-quantitative or quantitative assessments. This is the reason
why MRIs cannot exert its advantages under KL or JSN scoring systems. Then, obvi-
ously, MRIs from axial perspective which cannot give expression to the width of knee
joint margin but hold considerable additional OA features serve as the last option for our
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Architecture Accuracy MSE
DenseNet-161 0.8965 0.1210
DenseNet-169 0.8920 0.1174
DenseNet-201 0.8947 0.1071
VGG19 0.8896 0.1228

Table 4.36: Classification and regression performance for top models on coronal radio-
graphs

Architecture combination Accuracy Precision Recall F1-score MSE
DenseNet-161+DenseNet-201 0.8956 0.89 0.89 0.89 0.1095
DenseNet-161+DenseNet-169 0.8896 0.89 0.88 0.88 0.1138
DenseNet-161+VGG19 0.8908 0.89 0.89 0.89 0.1110
DenseNet-161+DenseNet-201+
DenseNet-169

0.8890 0.89 0.88 0.88 0.1162

DenseNet-161+DenseNet-201+
VGG19

0.8844 0.88 0.88 0.88 0.1216

DenseNet-161+DenseNet-169+
VGG19

0.8832 0.88 0.88 0.88 0.1210

DenseNet-161+DenseNet-201+
DenseNet-169+VGG19

0.8784 0.87 0.88 0.87 0.1276

DenseNet-201+DenseNet-169 0.8947 0.89 0.89 0.89 0.1113

Table 4.37: Classification and regression performance for model ensemble by prediction
maximization on coronal radiographs

multimodality integration.

4.6.1 Model ensemble with same modality

Following above analysis, model ensemble is carried on models classifying radiographs
from coronal view. Top 3 models based on the whole performance (directly calculated
on the entire validation datasets, rather than batch by batch, as shown in Table 4.36) are
picked: DenseNet-161, DenseNet-169 and DenseNet-201. In consideration of the variety
of architectures and regression analysis conclusion, VGG-19 is also involved into model
ensemble, whose outcomes are presented in Table 4.37 and Table 4.38.

No matter how to combine architectures, assembling by averaging their Softmax poste-
riors indeed promotes the classification and regression performance roundly. Taking the
maximum among predictions as final decision is easily influenced by outliers with high
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Architecture combination Accuracy Precision Recall F1-score MSE
DenseNet-161+DenseNet-201 0.8992 0.90 0.89 0.89 0.1059
DenseNet-161+DenseNet-169 0.8989 0.90 0.89 0.89 0.1071
DenseNet-161+VGG19 0.9059 0.90 0.90 0.90 0.1026
DenseNet-161+DenseNet-201+
DenseNet-169

0.9040 0.90 0.90 0.90 0.0993

DenseNet-161+DenseNet-201+
VGG19

0.9122 0.91 0.91 0.91 0.0878

DenseNet-161+DenseNet-169+
VGG19

0.9113 0.91 0.91 0.91 0.0929

DenseNet-161+DenseNet-201+
DenseNet-169+VGG19

0.9077 0.90 0.90 0.90 0.0957

DenseNet-201+DenseNet-169 0.8959 0.89 0.89 0.89 0.1068

Table 4.38: Classification and regression performance for model ensemble by Softmax
posterior average on coronal radiographs

scores. To a great extent, the mean possibilities for each class ameliorates the affect of
outliers so that this thesis adopts Softmax posterior average as ensemble methodology.

On the whole, VGG-19 does bring in substantial improvement, which turns out that the
architecture mixture assists to breakthrough and the original performance itself is not the
only key to eventual outputs. After all, models in the same series behave similarly so
that their extracted features as well as predictions are alike. Accordingly, aiming at those
samples difficult to classify, their outcomes cannot make up each other, which presents
the significance of model diversity. In addition, the notion that the more models are as-
sembled, the better outcomes are attained is dispelled by our empirical results.

The combination of DenseNet-161, DenseNet-201 and VGG-19 visibly precedes other
groups, even it is associated with less basic models. Analysing its confusion matrix
(fig. 4.6) in depth, the misclassified samples are gathered on the adjacent classes of ground
truths, for which its MSE is as minor as 0.0878, exactly conforming to the clinical expec-
tation. Compared Table 4.39 with Table 4.30, there is no doubt that the correction effect
on grade 1 and grade 2 is notable. Those misclassified grade 2 X-Ray images are adjusted
back to grade 1. In reality, one more grade prediction is acceptable. In this case, the re-
call for each class would be dramatically elevated to 1.00, 0.90, 0.87 and 0.98, which in
principle achieves the practical use requirements.

When it comes to the imbalanced dataset under JSN scoring, the precision, recall and
F1-score of the ensemble of DenseNet-161 and revised VGG-19 are 0.80, 0.79 and 0.77 re-
spectively. Clearly, thanks to the adequate space for lifting up, even if employing the pre-
diction maximization method, each evaluation metric is still boosted 2% and surpasses
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Class Precision Recall F1-score
0 0.90 0.96 0.93
1 0.86 0.85 0.86
2 0.90 0.83 0.87
3 0.98 0.98 0.98

Mean 0.91 0.91 0.91

Table 4.39: Class-wise classification performance of the model ensemble on the balanced
coronal radiographs

Modality combination Accuracy Precision Recall F1-score MSE
Coronal radiograph 0.8799 0.88 0.88 0.88 0.1394
Coronal radiograph+Sagittal radio-
graph

0.8848 0.89 0.89 0.89 0.1317

Coronal radiograph+Sagittal MRI 0.8813 0.89 0.88 0.88 0.1461
Coronal radiograph+Axial MRI 0.8858 0.89 0.89 0.89 0.1272

Table 4.40: Classification and regression performance for multimodality integration (2
image sets)

up-to-date researches readily. All in all, facilitated by model ensemble, our pipeline has
fulfilled the need of clinical applications by overall 91% grading performance from coro-
nal perspective.

4.6.2 Multimodality integration

As analyzed in the beginning of this section, models based on radiographs from coronal
plane are the cornerstone of our multimodality integration so that the optimal trained
model, DenseNet-161, is fixed for comparison and the top models trained from other 3
image sets are fused into by Softmax posterior average, whose effect has been corrobo-
rated by section 4.6.1. Inspired by the conclusion of model ensemble, models from other
perspectives are picked from VGG series to reinforce the entire model variety. Since the
random patient selection of grade 3 for dataset balance draws in different subjects and
then there are merely 462 grade 3 images in common, the performance of DenseNet-161
is recalculated in Table 4.40.

Noticeably, the statistical slump in comparison to the balanced dataset results from the
data deficiency of grade 3. Even if the accuracy differences between models trained from
coronal X-Ray images and other perspectives are considerable, multimodality integra-
tion still contributes to prediction enhancement with the imbalanced image distribution,
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Class Precision Recall F1-score
0 0.88 0.96 0.92
1 0.86 0.81 0.84
2 0.85 0.84 0.85
3 0.94 0.92 0.93

Mean 0.88 0.88 0.88

Table 4.41: The baseline of class-wise multimodality integration classification perfor-
mance under JSN scoring system

Class Precision Recall F1-score
0 0.88 0.97 0.92
1 0.88 0.80 0.84
2 0.85 0.85 0.85
3 0.94 0.92 0.93

Mean 0.89 0.89 0.89

Table 4.42: Class-wise multimodality integration classification performance based on
coronal radiographs and sagittal radiographs under JSN scoring system

Class Precision Recall F1-score
0 0.86 0.98 0.92
1 0.87 0.80 0.84
2 0.87 0.83 0.85
3 0.95 0.92 0.94

Mean 0.89 0.88 0.88

Table 4.43: Class-wise multimodality integration classification performance based on
coronal radiographs and sagittal MRIs under JSN scoring system

Class Precision Recall F1-score
0 0.88 0.98 0.93
1 0.89 0.80 0.84
2 0.86 0.85 0.85
3 0.94 0.93 0.93

Mean 0.89 0.89 0.89

Table 4.44: Class-wise multimodality integration classification performance based on
coronal radiographs and axial MRIs under JSN scoring system
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Additional models Accuracy Precision Recall F1-score MSE
DenseNet-169 0.8925 0.90 0.90 0.90 0.1113
SR(D) 0.8918 0.90 0.90 0.90 0.1124
DenseNet-169+SR(D) 0.8936 0.90 0.90 0.90 0.1064
SR(V) 0.8946 0.90 0.90 0.90 0.1092
DenseNet-169+SR(V) 0.8946 0.90 0.90 0.90 0.1054
SM(D) 0.8922 0.90 0.90 0.90 0.1110
DenseNet-169+SM(D) 0.8950 0.90 0.90 0.90 0.1071
SM(V) 0.8957 0.90 0.90 0.90 0.1071
DenseNet-169+SM(V) 0.8967 0.90 0.90 0.90 0.1033
AM(D) 0.8929 0.90 0.90 0.90 0.1120
DenseNet-169+AM(D) 0.8932 0.90 0.90 0.90 0.1078
AM(V) 0.8939 0.90 0.90 0.90 0.1071
DenseNet-169+AM(V) 0.8950 0.90 0.90 0.90 0.1061

Table 4.45: Classification and regression performance for multimodality integration
based on model ensemble outcome (2 image sets)

D: DenseNet, V: VGG, SR: Sagittal radiograph, SM: Sagittal MRI, AM: Axial MRI, which is the same with
Table 4.46 and Table 4.47.

especially for grade 0. Seen in Table 4.41-4.44, the recalls of grade 0 are even higher than
the selected assembled model in section 4.6.1 and precisions of other 3 grades also lift
up slightly. Compared with model based on MRIs from sagittal plane, other two models
have a more appreciable effect, which may benefit from revised VGG-19.

By means of the wider architecture discrepancy, revised VGG-19 remedies the drop of
performance among the three models. Concerning the information entropy provided by
image itself, axial view with totally distinctive features prevails undoubtedly. In order
to further upgrade multimodality integration, the key to the success of model ensemble,
DenseNet-161, DenseNet-201 and VGG-19 (Base), are taken advantage of. Top models of
other 3 image sets obtained from both DenseNets and VGGs are melded into.

Evidently, multimodality integration do assists to prediction optimization on the basis
of our model ensemble (Table 4.45). Although the differences among modalities are in-
significant, overall performance integrated with models from sagittal MRIs is the opti-
mal, followed by models acquired from sagittal X-Ray images. Clearly, rather than single
model combinations, model diversification supported by models attained from coronal
radiographs has filled the achievement gap between VGG-19 and revised VGG-19, for
which the vital factor roots in the original accuracy and the image information entropy.

Thus, consolidating basic accuracy through adding one more model based on X-Ray im-
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Additional models Accuracy Precision Recall F1-score MSE
SR(D)+SM(D) 0.8932 0.90 0.90 0.90 0.1089
SR(D)+AM(D) 0.8929 0.90 0.90 0.90 0.1082
SR(D)+SM(V) 0.8946 0.90 0.90 0.90 0.1064
SR(D)+AM(V) 0.8939 0.90 0.90 0.90 0.1071
SR(V)+SM(D) 0.8950 0.90 0.90 0.90 0.1061
SR(V)+AM(D) 0.8915 0.90 0.89 0.89 0.1113
SR(V)+SM(V) 0.8939 0.90 0.90 0.90 0.1089
SR(V)+AM(V) 0.8939 0.90 0.90 0.90 0.1061
SM(D)+AM(D) 0.8897 0.90 0.89 0.89 0.1145
SM(V)+AM(D) 0.8925 0.90 0.90 0.90 0.1075
SM(D)+AM(V) 0.8936 0.90 0.90 0.90 0.1085
SM(V)+AM(V) 0.8935 0.90 0.90 0.90 0.1075

Table 4.46: Classification and regression performance for multimodality integration
based on model ensemble outcome (3 image sets)

ages from coronal plane makes sense under this condition. By contrast, it is redundant
for model ensemble of single perspective. In view of Base composition (2 DenseNets and
1 VGG-19), naturally, fusion with top VGGs trained on other 3 datasets yields better out-
comes. Comprehensively, Base + DenseNet-169 (coronal radiograph) + VGG-19 (sagittal
MRI) thoroughly deserves to be settled on the ideal integration. With regards to assem-
bling models generated on 3 or 4 image sets, the group of DenseNet-161, DenseNet-169,
DenseNet-201 and VGG-19 is set as the New Base for further assessment, stemming from
their aforementioned accomplishment.

Although fusing more modalities shortens their performance differences, Table 4.46
comes up with solid evidence again that X-Ray images and MRIs from sagittal perspec-
tive are more appropriate for multimodality integration established on New Base. Their
architecture-mixed combinations, both SR(V) + SM(D) and SR(D) + SM(V), occupy the
leading rankings among 3-Modality Integration. Discriminating from integration based
on 2 image sets, its promotion effect is relatively meager, in particular for VGG series
models. After all, there is scarce space for upsurge.

Due to the comparatively low original accuracies, rather than 3 image sets, integrat-
ing models trained from 4 image sets does not benefit to prediction. The perfor-
mance tendency among various number of model integration has already revealed that
models learned on 3 datasets has offered enough information for JSN score classifi-
cation/regression so that more predicted class possibilities, in particular generated by
AM(D), just bring in interferences. In summary, balancing the cost of data acquisition
and its possible performance gain, our pipeline singles out the group of DenseNet-161,
DenseNet-169, DenseNet-201, VGG-19 and SM(V) as multimodality integration module,
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Additional models Accuracy Precision Recall F1-score MSE
SR(D)+SM(D)+AM(D) 0.8869 0.90 0.89 0.89 0.1236
SR(D)+SM(D)+AM(V) 0.8929 0.90 0.90 0.90 0.1145
SR(D)+SM(V)+AM(D) 0.8915 0.90 0.89 0.90 0.1149
SR(D)+SM(V)+AM(V) 0.8932 0.90 0.90 0.90 0.1089
SR(V)+SM(D)+AM(D) 0.8876 0.90 0.89 0.89 0.1205
SR(V)+SM(D)+AM(V) 0.8939 0.90 0.90 0.90 0.1082
SR(V)+SM(V)+AM(D) 0.8904 0.90 0.89 0.89 0.1124
SR(V)+SM(V)+AM(V) 0.8922 0.90 0.90 0.90 0.1089

Table 4.47: Classification and regression performance for multimodality integration
based on model ensemble outcome (4 image sets)

which profits from ample information absorbed from both modalities and perspectives.
Certainly, limited by the access to medical images, our scheme is also furnished with
model ensemble module operated via averaging Softmax posteriors of DenseNet-161,
DenseNet-201 and VGG-19 trained on coronal radiographs.
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(a) Class 0

(b) Class 1

(c) Class 2

(d) Class 3

Figure 4.5: Class-wise decision visualization on the balanced coronal radiographs
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Figure 4.6: Confusion matrix of the assembled model
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Chapter 5

Conclusion and Outlook

Targeting to advance the state-of-art automatic knee OA diagnosis by upgrading deep
learning based architectures, this thesis establishes the pipeline with preprocessing, ROI
detection, classification/regression, decision visualization and ensemble modules on the
multimodality integration concept, in terms of our investigation on OA quantization cri-
teria and its automatic detection mechanisms. Having drawn a comprehensively theoret-
ical comparison among plentiful medical image algorithms for each module, the selected
approaches are evaluated on plain radiographs and MRIs in MOST public database.

Eventually, an innovative framework assembling multi-models trained from coronal ra-
diographs and sagittal MRIs is proposed to break through existing modality restric-
tions, whose backbone consists of U-Net ROI detection and classification/regression by
DenseNets together with VGG-19. In view of supplying reliability and transparency
of the grading procedure, class-discriminating attention maps are generated by Grad-
CAM++. Compared with up-to-date knee OA quantification researches, our validation
under both OARSI JSN and KL scoring system confirms its superior classification accu-
racy.

5.1 Discussion

Having witnessed the growing demand of automatic knee OA quantification, this the-
sis reviews thoroughly previous studies on computer-aid OA assessments, from which
three technical bottlenecks are exposed: noises, artefacts and intrinsic modality limita-
tions. Aiming at above three points to be broken through, the basic workflow is settled
on, including preprocessing, ROI detection, classification/regression and multimodality
integration module. After inquiring deeply into approaches for each module together
with their evaluation metrics, a novel module for decision visualization is brought in to
highlight significant features for classification and a comparative feasibility analysis is
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given to nominate algorithm candidates for our scheme, which is validated on MOST
cohort.

Served as pre-experiments, a series of radiographic preprocessing approaches grouped
histogram equalization, Perona-Malik filtering and unsharp masking edge enhancement
with various parameters are compared by their final classification and regression perfor-
mance of VGG-19, while the optimal parameter combination of Perona-Malik filtering,
unsharp masking and MRI slice integration is sorted out for the MRI preprocessing ap-
proach. Ultimately, the bundles, histogram equalization + slight Perona-Malik filtering
(K=50, iterations=1) and slight Perona-Malik filtering (K=50, iterations=1) + unsharp
masking with EDGE_ENHANCE Kernel + MRI slice averaging stood out respectively
for both modalities. On the basis of enhanced radiographs, ROI detection trails are con-
ducted among FCN, U-Net and RPN, where U-Net built on ResNet-18 outshines others
from precision aspect, whereas RPN transcends by its direct coordinate learning. Thanks
to the architecture superiority, both methods exceed state-of-art researches.

Within extracted ROIs, classification/regression module draws an all-round comparison
under both JSN and KL grading system among FRCNN, VGG, ResNet and DenseNet se-
ries, in which DenseNet-161 excels by stably high accuracies on both perspectives of ra-
diograph and MRI. However, with the expansion of image sizes, the structure advantages
of our revised VGG-19 are reflected to its regression preeminence, rather than DenseNet-
161. In brief, thanks to the dataset balancing and sensitive JSN scoring system, our single
model classification on coronal view of X-Ray images achieves 89.65% accuracy, together
with 0.89 precision, recall and F1-score, which surpasses current publications at least
15%. Even if on imbalanced image sets, there is at least a 5% performance gain for our
DenseNet-161. Furthermore, its discriminative features are spotlighted by Grad-CAM++
exactly, which verifies the reliability of our prediction.

Served as base of multimodality integration, top models (DenseNet-161, DenseNet-201
and VGG-19) trained on the most suitable image set, balanced radiographs from coronal
plane, are assembled by Softmax posterior averaging, which accomplishes 91.22% accu-
racy and 0.0878 MSE, along with 0.91 precision, recall and F1-score. On the imbalanced
dataset, its precision, recall and F1-score are still 0.80, 0.79 and 0.77 respectively. When it
comes to multimodality integration, the class distribution turns into imbalanced, due to
the inconsistency of assessment subjects. However, the combination of model ensemble
(DenseNet-161, DenseNet-169, DenseNet-201 and VGG-19) on coronal X-Ray images and
VGG-19 attained from sagittal MRIs still boosts the whole performance metrics to 0.90,
followed by the model ensemble fusing with revised VGG-19 learned on sagittal radio-
graphs.

The tradeoff between the cost of data acquisition as well as further processing and the
possible performance gain determines the group of radiographs from coronal plane and
MRIs from sagittal view as the optimal solution, while model ensemble of DenseNet-161,
DenseNet-201 and VGG-19 trained by coronal radiographs is also perfect alternative. In
the meanwhile, the significance of model variety for model ensemble is verified by the
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superior results of the balanced prediction mixture of DenseNets and VGGs.

5.2 Limitation

Although our proposed approach has already satisfied the clinical demand, there are still
potential spaces to enhance its reliability, which can be outlined as follows:

• MSE standardization: Our regression analyses for single models are based on the
outputs of Keras evaluate function, which calculates MSEs per batch. In this case,
although they are still comparable, their average MSEs are more likely to have bi-
ases than the direct computation on the entire validation datasets. Therefore, MSEs
for single models would be more convictive to be calculated directly on validation
sets as what model ensembles do.

• ROI calibration: As analysed in section 4.5, due to the lack of medical expertise,
parts of misclassification results from extra region demarcation for ROIs. Thus,
ROI calibration in terms of the decision visualization outputs or even radiologists’
suggestions would be beneficial to refine final performance.

• Validation based on other databases: Likewise [8, 28], they trained models on
MOST cohort, while their evaluation carried out on OAI database. Apparently, un-
der this occasion, their outcomes possess higher universality and robustness. How-
ever, limited by the access to OAI or other data sources, this validation only can be
conducted when other resources are available in the future.

5.3 Future work

On the basis of our satisfying pipeline, there are several directions to further extend its
functionalities in real practice, even more application areas, which are outlined in the fol-
lowing. Although Grad-CAM++ identifies critical features for classification, it does not
explain the relationship between grading and those features. [77] framed the concept of
prediction basis that present the typical elements for the relative class contained in exam-
ined medical images. Distinctly, appending prediction bases to saliency maps generated
by Grad-CAM++ would offer end users an better explanation of how our future online
diagnosis application makes prediction.

Although KL and JSN scoring system own wide applicability, they cannot make fully use
of OA features contained in MRIs, since they are designed for plain radiographs, which
ignore a great deal of details. MRIs frequently detect further cartilage loss and fluctu-
ation of bone marrow lesions, effusion, synovitis and Hoffa-synovitis at the follow-up
[16]. Thus, KL grade 4 or JSN score 3 can still deteriorate and the term "end stage" seems
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to be no longer appropriate [16]. If there would be grading systems taking advantage of
MRI details and compatible for both X-Ray images and MRIs, the effect of multimodality
integration would be maximized on the basis of current stage.

Predictions are more accurate established on patients’ age, sex, Body-Mass Index, given
knee injury or surgery history, symptomatic assessment report and so on, since their out-
puts refer to more decisive factors [36]. Certainly, it greatly depends on the collection of
meta-data. Weighing the effort of data acquisition and possible profits, time dimension
import is an optimal alternative. The diagnosis of certain visit is heavily influenced by its
previous grade, for which availing of follow-up visits of the same patient makes sense for
classification refinement even under complex assessment systems. In future we intend to
consider these scenario as well as additional factors and parameters.
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Appendix A

Abbreviation

Adam Adaptive moment estimation
ANN Artificial Neural Networks
AUC Area Under the receiver operating characteristic Curves
BCE Binary Cross Entropy
BLOKS Boston Leeds Osteoarthritis Knee Score
CAM Class Activation Maps
CNN Convolutional Neural Network
CT Computed Tomography
DenseNet Dense Convolutional Network
DICOM Digital Imaging and Communications in Medicine
EM Expectation-Maximization
FCN Fully Convolutional Neural Network
FN False Negative
FP False Positive
FRCNN Faster Region Convolutional Neural Network
FSA Fractal Signature Analysis
GA Genetic Algorithm
GAN Generative Adversarial Network
GHMM Gaussian Hidden Markov Model
GLCM Gray-Level Co-Occurrence Matrix
GLM General Linear Model
GMM Gaussian Mixture Model
IoU Intersection-over-Union
JSW Joint Space Width
JSN Joint Space Narrowing
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KIMRISS Knee Inflammation MRI Scoring System
KL Kellgren and Lawrence
KNN K Nearest Neighbor
KOSS Knee Osteoarthritis Scoring System
LBP Local Binary Pattern
LDIC Location-Dependent Image Classification
MAE Mean Absolute Error
MF Minkowski Functionals
ML Machine Learning
MOAKS Osteoarthritis Knee Score
MOST Multicenter Osteoarthrithis Study
MRI Magnetic Resonance Imaging
MSE Mean Squared Error
OA Osteoarthritis
OAI Osteoarthritis Initiative
OARSI Osteoarthritis Research Society International
PCA Principal Component Analysis
RBF Radial Basis Function
RBM Restricted Boltzmann Machine
RCNN Region-CNN
ReLU Rectified Linear Unit
ResNet Residual Network
ROI Region of Interest
RPN Region Proposal Network
RW Random-Walker
SGD Stochastic Gradient Descent
SOM Self Organizing Map
STM Stereological and Textural Measurements
SVM Support Vector Machines
SVR Support Vector Regression
TP True Positive
TN True Negative
WORMS Whole-Organ Magnetic Resonance Imaging Score
YLDs Years Lived with Disability
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