
Data Dependence and
Indecisiveness for
Locality-Sensitive

Hashing

Master Thesis

Supervisor: Dr. Michael Cochez

First Examiner: Prof. Dr. Stefan Decker

Second Examiner: Dr. rer. nat. Walter Unger

Iraklis Dimitriadis

Computer Science 5 - Information Systems

RWTH Aachen University

Aachen, June 14, 2019

Abstract

This thesis proposes three different extensions to Random Hyperplane Hashing, a common

hashing family for LSH Forest. Hashing similar data points by randomly generated hyper-

planes might cause them to be separated and lower the quality of nearest neighbor queries.

To tackle this issue, the proposed extensions introduce a fuzziness area for hyperplanes that

defines points within it as indecisive and hash them into both subspaces generated by the

hyperplane. As a result, data points on different sides of the hyperplane are still hashed to

the same corresponding node of the LSH tree and improve the quality of the nearest neighbor

queries. While for the first extension the fuzziness area is fixed, the second extension allows

the area to be variable, so that a certain fraction of points hashed by a node is covered.

The last approach is a mix both approaches, so that, if a certain fraction of points is within

that area, all points being hashed by this node will be hashed as indecisive. For comparison,

an experimental analysis is performed for three different datasets and provide an empirical

performance overview of each extension.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0

International License.

cbna

Contents
1. Introduction 1

2. Use Case 5

2.1. Matching News Article . 5

2.2. Recommendation Systems . 6

2.3. Fraud Detection in Uber Systems. 6

3. Background and Related Works 9

4. Locality-Sensitive Hashing 11

4.1. The Algorithm . 12

4.1.1 Metric Spaces . 13

4.2. LSH-Family. 15

4.3. Concrete LSH-Families . 18

4.3.1 Minhashing . 18

4.3.1.1 Random Hyperplane Hashing . 21

4.4. Runtime Complexity . 23

4.5. Locality-Sensitive Hashing Forest . 24

5. Challenges and Improvements for LSH 31

5.1. Fuzzy Random Hyperplane Hashing . 35

5.2. Percentage-based Random Hyperplane Hashing . 38

5.3. Indecisive Random Hyperplane Hashing . 41

5.4. Error rates . 42

6. Conceptual Approach 45

6.1. Datasets . 47

6.1.1 ACM Papers (ACM) . 48

6.1.2 Bag of Words (BOW) . 49

6.1.3 Urbansound8k (U8K) . 49

6.2. Hyperplane Generation . 52

7. Computational Results 53

7.1. ACM Dataset Scenario . 54

7.2. BOW Dataset Scenario. 58

7.2.1 Classification Tests . 63

7.3. UrbanSounds8k Scenarios . 66

5

6 Contents

8. Conclusion and Further Work 69

9. List of Figures 71

1 Introduction

During the last couple of decades, the internet developed rapidly and has taken a central

role in information exchange. It connects billions of users, companies and data centers, that

are generating and exchanging a huge amount of data. This development has opened new

opportunities in information retrieval and exchange, as many platforms can provide much

more information to their customers and companies have more data to process. Despite all

the opportunities that came with the development of Big Data, new kinds of problems arose.

Huge amounts of data also include less important information, thus processing the data in

order to gain only the important kind of information has become a major task in data process-

ing. Furthermore, Big Data often includes data records with similar information. Albeit they

do not provide any new information, they increase the computational effort to process the

dataset. Thus, data deduplication is an efficient way to decrease the computational complex-

ity. However, due to the sheer amount of data, processing them has become a challenging

task and demands new concepts and algorithms to process them fast and efficiently, without

losing any kind of necessary information.

Querying similar or close records in huge datasets has become of major importance in

several domains like data compression [ricci1999data], data mining [han2011data], com-

puter vision [zhang2006svm], and other data related areas [Shakhnarovic2006ANNTheory].

The (k)-Nearest Neighbor Search problem (NNS or k-NNS) addresses the issue of finding the

most similar pairs in a dataset. In NNS, every data record is considered to be a point in

a predefined metric space. The idea is to provide a data structure with a set of n given

points P, so that for any query point q the set of (k) closest points to the query are re-

turned quickly [Arya94anoptimal]. There are many known algorithms to solve the NNS

efficiently for low dimensional data [wu2008top]. However, when dealing with high dimen-

sional data, all of them are either suffer from slow query time or exponential space com-

plexity [andoni2015optimal]. Imagine a simple Audio-On-Demand Service, that contains

billions of songs and adds new songs to its library continuously. Due to the huge amount

of accessible songs, it is helpful for customers to have a list of similar songs recommended,

so that one can easily browse through the whole available library. In order to do so, a near-

est neighbor search can be used to provide a set of songs, by comparing the current song

to each existing song in the library and return the most similar ones. While this naive ap-

proach might work for small music libraries, it can not be done efficiently when the amount

1

2 Introduction

of available songs is too big. Even with optimized and task specific k-NN algorithms it is still

necessary to compare a huge amount of songs and thus, not possible to be done in a reason-

able time. The problem with dealing with high dimensional data in NNS is often referred to

as the "curse of dimensionality" [andoni2015practical].

Despite the effort in the last years, current solutions for NNS are still unable to overcome

this "curse". However, many applications nowadays prioritize time efficiency higher than

obtaining the optimal set of nearest neighbors. One can think back to the example of the

Audio-On-Demand Service: Customers do not have an advantage of a precise set of similar

songs, but are irritated from slow recommendations in their user experience. In fact, many

customers do not care about the exactness of recommended songs, but are satisfied if this

set of songs matches the genre, style of music or the artist. Therefore, an approximation

of the "most similar songs" is sufficient. By allowing an inaccurate (but still good enough)

set of near neighbors, the already known Nearest Neighbor Search problem can be reduced

to an approximation of it, also known as the approximate (k)-Near Neighbor Search problem

(ANN or k-ANN) [andoni2014beyond]. Instead of restricting the data structure to return the

closest points (neighbors), it is allowed to return any set of data points within a radius. To be

more precise, the data points of the result must be within radius cr, where r represents the

max distant of the near neighbors to the query point and c > 1 the approximation factor of

it. This opens new opportunities to create faster and efficient algorithms for Near Neighbor

Search.

Locality Sensitive Hashing (LSH) has been developed to address the ANN problem and has

proven to be an efficient and reliable way in many application domains [har2012approximate].

In fact, it provides the best data structure to query points in sub-quadratic space with a con-

stant approximation factor, which has been a key factor for ANN in practice [andoni2015optimal].

The core idea of LSH is to hash points such that close points (distant at most r) are more

likely to collide with those far away (distant at least cr). As a result, points with the same

hash value are considered to be similar. Each used hash function has specific requirements

and is therefore grouped in so called LSH-Families, as we will see later. Generally speaking,

every point is distributed to a bucket, where its bucket is determined by the outcome of the

hashing process. Given such hash functions as mentioned above, close points are likely to

have the same computed hash values and will therefore share the same bucket, where far

away points are expected to be hashed in other buckets and thus be stored separately. Thus,

each bucket contains a set of close points and is represented by the outcome of the hash

functions. In the query process, the query point is hashed with same hash functions and

distributed to one of the buckets. Now, rather than computing the similarity with each point

within the dataset, the query point is only compared to points that share the same bucket. As

a result, the amount of comparisons is reduced to the amount of points within the bucket. It

is also possible to replace the bucket structure by a tree structure like Bawa et al. introduced

3

in [bawa2005lsh]. This variant of LSH is called LSH Forest (LSHF) and will be excessively

studied within this thesis. Instead of distributing points to buckets, a forest consisting of sev-

eral trees is used as a data structure, where the data points are stored in leafs of the trees.

The near neighbor set is then constructed by points that share the longest prefix path as

the query point. This structure achieves better results in many practical applications and is

therefore considered to be superior to the LSH bucket structure [bawa2005lsh].

Hashing data points can be done in many different ways and depend on the given distance

metric. Considering the angular distance as metric, the vector space is divided by randomly

generated hyperplanes. These planes cut the space into subspaces, where each subspace

represents a bucket. Now, any point within that subspace is distributed to the corresponding

bucket (or leaf). This hashing technique is also known as Random Hyperplane Hashing (RHH).

Compared to other hashing techniques, RHH gives the opportunity to improve the hashing

procedure of points and thus also improves the overall result of the near neighbor search.

However, this also introduces a new range of problems, that can have a negative effect to

the performance of LSH. Firstly, if points are too close to a hyperplane, it might be better

to not make a decision, as this can distribute points to the wrong subspace. Secondly, the

hyperplane generation does not take any information about the dataset into account. Es-

pecially when the dataset contains dense clusters of points, it can happen that a generated

hyperplane separates those points into different subspaces and does not consider them as

near neighbor to each other. Hence, the information of such dense points should also be

taken into account when generating hyperplanes.

In contradiction to locality-sensitive hashing, data-dependent hashing offers ways to gen-

erate hyperplanes dependent of the dataset. While this will improve the quality of the near

neighbor search, it will worsen the runtime of the LSH algorithm, as gaining additional in-

formation of the dataset will necessarily need more computational effort. As an alternative

solution, the locality information can be used to simulate some data-dependency without

slowing down the hashing procedure. By taking and processing the information that are al-

ready computed by RHH itself, some improvement can be done in order to deal with the

aforementioned problems as this thesis will show.

Course of this thesis

This thesis will propose three extensions to Random Hyperplane Hashing in order to improve

the correctness of the near neighbor search in LSH. These extensions will be based on the

idea of Cochez et al. [cochez2017large], which introduces the ability to hash points into

multiple subspaces. By defining a small area around the hyperplane, points that are within

this area will be considered as indecisive and assigned to both subspaces generated by the

hyperplane. Thus, points can be hashed into multiple leafs of a LSH Forest tree and lower the

4 Introduction

probability of separating similar points. By doing so, one can directly address the problems

that arise with points that are too close to a hyperplane. As a result, the overall correctness

of the near neighbor search can be improved.

In the first variant, the indecisive area will be given by a fixed radius around the hyper-

plane. This algorithm is already known as Fuzzy Random Hyperplane Hashing [cochez2017large].

The second one will be referred to as percentage-based Random Hyperplane Hashing and will

hash the n% closest points to the hyperplane as indecisive. The last variation is indecisive-

based Random Hyperplane Hashing and represents a mix of the other two RHH variants.

Instead of hashing points as indecisive, the hashing outcome of the hyperplane will be ig-

nored for all points, if n% of the points are within a fixed angle around this hyperplane. While

the Fuzzy Random Hyperplane Hashing will remain as presented in [cochez2017large], the

last two variants are completely new approaches.

All hyperplane variants will only use the information that is obtained by normal Random

Hyperplane Hashing and thus can be done without additional computational effort. However,

hashing points as indecisive will increase the number of nodes in the data structure and

worsen the space and time complexity of LSH Forest. Therefore, it remains to proof if the

benefits outweigh the shortcomings of this trade. In order to do so, this thesis will analyze

the performance of each extension by testing them for different scenarios. The results of

these experiments will be discussed and show if any of those variants can compete with

normal RHH in some use cases.

2 Use Case

Locality-sensitive hashing presents an efficient way to solve the nearest neighbor problem

for large scale applications. Its diversity and simplicity allows the algorithm to be modified

and optimized for any related use case scenario. This section will provide an overview of

common areas where LSH is used in its plain or modified version, where general and more

concrete examples will be discussed.

2.1 Matching News Article

In [leskovec2014mining] the problem of detecting similar news articles was discussed and

is very related to detecting similar documents. When organizing repositories of online news

article as it is done by many news feeds, it is common to group them together by news article

from the same source in order to avoid repeating the same news multiple times. Bigger news

companies produce news article and distribute them to different online news platform. Each

of those platforms putting the news article online, but adding additional information, such

as the platform names, link and advertising. Furthermore, the news article can be published

as a modified version, since adding sentences to the article or leaving out smaller parts of

the origin text is common. As a result many web sites can offer the same news derived

from the same source in a different appearance. In order to avoid publishing the same news

multiple times, it is necessary to detect news with similar information or news derived from

the similar news source and only distribute them once. This task is closely related to the

problem of finding similar documents as both are based on the idea that similar elements

will have repetitive text parts in their text body, and therefore LSH is suitable as a tool to do

so. However, finding similar news articles differs from documents, such that ignoring specific

parts of the news article, like links, headline or advertising improves the overall detection.

In addition, texts, as they appear in books or other documents, differ from news articles

in a sense that they have a higher frequency of stop words. Therefore, the text has to be

preprocessed by detecting and leaving out unnecessary parts and the set of stopwords have

to be chosen more carefully in order to still be able to detect. Afterwards, the news article can

be tokenized as described in Section 4.3.1 and compared based on their Jaccard Similarity.

5

6 Use Case

2.2 Recommendation Systems

The task of recommendation systems is to recommend a set of items for any given query

item. Reducing this task to its core functionality, it becomes essentially the nearest neigh-

bor search problem. As most recommendation system are working with huge datasets in

order to recommend the best possible set of similar items, the task of finding the nearest

neighbor to a query item becomes unfeasible. For this reason, approximating the set of near-

est neighbors by using Locality-sensitive hashing is a common approach to overcome this

issue. In fact, many companies, whose business model are build on recommendation sys-

tems, are actively researching in the domain of LSH. Alphabet (formerly Google) uses LSH

along with their PageRank to improve their image search technology VisualRank [35244,

Jing:2008:VAP:1444381.1444396]. The basic idea is to generate feature vectors of items,

where each entry represents a specific feature of the set. In order to to measure the similar-

ity between a query and all items, the angular distance is computed and used as a score to

rank the near neighbor candidates. Although most recommendation engines involve other

processes to improve these results further, LSH is an essential part to enable a fast and

reliable selection of near neighbor candidates.

2.3 Fraud Detection in Uber Systems

Uber is, with five million daily trips world wide, one of the largest transportation network

companies [uber, uber2]. In order to detect fraudulent drivers, Uber is using LSH to detect

similar trips based on their spatial properties. A trip is identified by GPS signals represented

as a list of latitude, longitude and time tuples. Since these signals are tracked by mobile de-

vices of customers and drivers, the quality of the GPS information can vary a lot. This makes

the detection of similar trips harder, as smaller noises can distort the quality of the signal,

and therefore same trips can be represented by different signal sequences. Furthermore,

similar trips can be completed in different times, due to road traffic or other reasons. As a

result, same trips that are completed in a different time window will differ in their frequency

of signals. In order to deal with those issues, each signal is converted into a S2 Cell. These

Cells are representing a hierarchical decomposition of the earth sphere, so that each Cell

represents an area of the earth by an unique index. By doing so, a sequence of latitude,

longitude and time tuples is represent by a set of S2 Cell indexes and enables to compare

similar trips based on the Jaccard Similarity of those sets. However, since trips involving also

the direction, such that two opposite trips are not considered as the same trip, the indexes

are shingled so that two consecutive S2 Cells represent an element in the set representing

the trip. Therefore, two opposite trips will be represented by different pairs of indexes and

their Jaccard Similarity will be low.

2.3. Fraud Detection in Uber Systems 7

Detecting similar trips by computing the Jaccard Similarity of all pairs is unfeasible, since

the set of existing trips is very large. To improve the runtime, Uber uses LSH to divide the set

of trips in smaller groups of similar trips. This reduces the amount of trips that need to be

compared into a small subset and enables to detect similar trips much faster.

3 Background and Related Works

The recent effort to find a solution for the near neighbor search in high dimensional datasets

showed the importance of this topic. Despite the existence of efficient solutions for the low di-

mensional case [clarkson1988randomized, bentley1975multidimensional, meiser1993point],

the high dimensional case is believed to have no solution that guarantee the correctness of

the near neighbor set, while returning it in a reasonable time. This is due to the "curse of di-

mensionality", a phenomenon that describes the problem of exact near neighbor algorithms

becoming inefficient if the dimensionality of the dataset is high. To overcome this issue, dif-

ferent approximation algorithms were developed in order to solve the near neighbor problem

in a reasonable time. Some existing methods use projections in order to project the original

data into lower dimensions representing value of the dimension by either one or zero using

hashing functions. The data complexity is then reduced significantly so that returning a set

of near neighbors can be done very fast. To do so, these algorithm uses hash functions that

can be mainly categorized in locality-sensitive and data-dependent hashing functions.

Locality-sensitive hashing functions represent a class of hash functions, where each hash

function is given by a randomly generated projection function and hashes the points by their

locality in a given metric space [andoni2006near]. Due to their random generation, these

functions are independent of the dataset and allow a fast generation. As described in the

introduction, close points are likely to have the same hash value computed and grouped into

buckets of similar points. This property enhances the query to perform the near neighbor

search only on points that have the same hash value computed. Locality-sensitive hash-

ing represents the most popular algorithm that hashes points based on their locality and is

an approximation algorithm that solves the nearest neighbor search problem time efficient,

while the guarantee for correctness is very high. First mentioned in [andoni2006near] this

algorithm was steadily advanced and due to its flexibility, many different extensions have

been developed to be suitable for specific metrics and use cases [gionis1999similarity,

andoni2015practical, buhler2001efficient, bhushan2015big]. The most remarkably

change to this algorithm was presented by Bawa et al. in [bawa2005lsh] and replace

the bucket structure of the original LSH with a tree structure, that showed to allows faster

queries in many practical applications and proven by [andoni2015practical]. Being key

components of this thesis, LSH and LSH Forest will be excessively discussed in Chapter 4 and

provide a general introduction into how this algorithms work.

9

10 Background and Related Works

Unlike locality-sensitive, data-dependent hashing functions are explicitly generated uniquely

for the given dataset. In particular, these hash functions are learned from the training

data by usually involving some feature of the dataset. As a result, each hash function

is tailored and designed to optimize the outcome of the near neighbor search for a given

dataset. Some representative data-dependent hashing functions are given by Spectral Hash-

ing [abdullah2014spectral, weiss2009spectral, joly2011random] that is based on graph

partitioning theory, K-mean based Hashing [jegou2011product], Random Maximum Margin

Hashing [joly2011random] and Isotropic hashing [kong2012isotropic]. All named hash-

ing functions differ in their hashing generation, since data-dependent hashing involves more

information about the data and thus allows different ways for hashing. Most recent research

showed that the improvements of data-dependent hashing outperforms the quality of the

near neighbor in locality-sensitive hashing, as they providing better selectivity of the data

[weiss2009spectral]. However, this improvements occurred only in specific cases and have

the general drawback that the hashing procedure becomes slower as for locality-sensitive

hashing functions, due to data dependency.

In order to improve the quality of the near neighbor search in Locality-sensitive hashing

Cochez et al. introduced Fuzzy Random Hyperplane Hashing (f-RHH) [cochez2017large].

Unlike traditional Random Hyperplane, f-RHH allows data points to have two hash values for

the same dimension computed. The dimension is defined by the amount of hyperplanes,

so that each hyperplane represents one dimension. By applying a small angle around the

generated hyperplane, data points that are within this area are considered as indecisive

and will have multiple hash values computed. Experiments in this work showed that f-RHH

increases the quality of the near neighbor set, but worsen the space complexity of the LSH

algorithm. Fuzzy Random Hyperplane Hashing will be excessively discussed in Chapter 5, as

this idea will be extended and used for alternative Random Hyperplane Hashing approaches

proposed by this thesis.

4 Locality-Sensitive Hashing

The task to find nearest neighbors in datasets is very common and of major importance

in many areas. It is used to find duplicates, similar objects or even for clustering. Although

many techniques exist to solve this problem efficiently, they are not performing good enough,

if the dimension of the dataset is high. Consider the following example:

Imagine a dataset D which consists of elements Rd where d is the dimension of properties

describing each element. Furthermore, we define two elements to be nearest neighbors to

each other, if they share the exact same properties. Now assume, two elements a, b ∈ Rd are

given. We can check if those two elements are nearest neighbors to each other by comparing

each property of a to each property of b. Hence, O(d2) operations are needed to check if two

elements are near neighbors.

We can find the set of near neighbors for an element by simply repeating this step on

multiple other elements and select those, that are the closest. Although this brute force

approach will return the exact set of nearest neighbors, it depends on the size of the dataset

if this can be done in a reasonable time. As the dimension of the properties growths, this

algorithm will become slower. For example, due to the "curse of dimensionality" the kd-tree

needs to visit more paths, which let the algorithm perform only slightly better than linear

search over all points [andoni2006near].

Approximating algorithms have proven to be a solid way to overcome this issue. Although

these algorithms can not guarantee to deliver the exact set of near neighbors, they will do it

most of the time. In particular, they may not provide the exact set of near neighbors, but will

return a good approximation of it, which is good enough for most domains, where the near

neighbor problem is relevant.

Locality-Sensitive hashing (LSH) is one of those approximation algorithms and has been

proven to be the most solid one in terms of run time and space complexity [andoni2015optimal].

This section will provide a general introduction to the LSH algorithm. First, we will describe

the main algorithm and see how the hashing of items is done. This also covers the expla-

nation of metric spaces, distance metrics, and Locality-sensitive hashing families with some

concrete examples. In the end, we will discuss the most popular extension of LSH, that im-

proves the LSH algorithm by introducing a new data structure.

11

12 Locality-Sensitive Hashing

h1(x) h2(x) h3(x)

1 3 2
1 2 2
2 4 3
1 3 2
2 4 3

1 1 2
b132b122 b243b112

hash table bucketsdata set

Figure 1: Schematic drawing of buckets in LSH

4.1 The Algorithm

Locality-sensitive hashing is an algorithm to identify approximately the set of nearest neigh-

bors. Its idea is to hash points using several hash functions such that close points are more

likely to "collide" than points far apart. More formally, two points are close, if the distance

between them is at most r, and far apart if its cr, where c is the approximation factor for

the radius r [andoni2015practical]. Each point is then mapped to a bucket, such that the

bucket corresponds to the outcome of the hashing procedure. Hence, points that are very

likely to collide will be mapped to the same bucket with a high probability. Therefore, each

bucket represents a set of points that are very likely to be close to each other. Given such a

data structure, one can retrieve the set of nearest neighbor by hashing the query point into

a bucket and return all points inside it.

Figure 1 illustrates a single mapping procedure in LSH. Three hash functions

h1(x), h2(x), h3(x) ∈ F are given to hash a point. So in this case, each point will have exactly

three hash values, one for each hash function. These hash values taken together are also

known as the hash vector or fingerprint of a data point. Now, each point is mapped to a

bucket, such that the label of the bucket is corresponding to the hash vector. Since the hash

functions will likely generate the same hash value for data points that are close, each bucket

represents a set of similar items.

To increase the accuracy of the near neighbor set, one can add another layer of buckets

by repeating the mapping procedure with another set of hash functions. The query point

is then hashed to multiple buckets, hence multiple sets of near neighbors are available. If

now a point shares the same bucket (in any of the bucket layers), it will be considered as

a near neighbor candidate. To retrieve the set of near neighbors, one can either return all

candidates or filter them by doing an exact near neighbor search on the candidate set and

return only the closest ones.

In order to measure the closeness of two points, a distance between them has to be de-

4.1. The Algorithm 13

fined. This is done by projecting the points into an metric space, where the locality of each

point is defined uniquely and thus their closeness can then be computed by a distance func-

tion. The next subsection will give a short overview and show how such metric spaces are

defined.

4.1.1 Metric Spaces

A metric space is a space in which every distance between two elements is defined. In

particular, each pair of elements is mapped to a real number.

To measure the distance between two points, a metric function (also called distance func-

tion) d(x, y) is used. A metric is defined by the following properties:

Definition 1 (metric). Given a set S a metric is defined as a function d(x, y) so that each

x, y ∈ S is mapped to R and satisfies the following conditions [leskovec2014mining]

1. ∀x, y ∈ S, d(x, y) ≥ 0 (Distance is positive)

2. d(x, y) = 0 ⇐⇒ x = y (Only identical points have a distance of 0)

3. d(x, y) = d(y, x) (Symmetry)

4. d(x, y) ≤ d(x, z) + d(z, y) (Triangle inequality)

There are many different distance functions, but not all of them are commonly used with

LSH. We will introduce some of them and focus on these, that are used in this thesis.

Euclidean Distance

The Euclidean Distance is the most popular distance metric. It is defined on an euclidean

space, where points are represented by n-dimensional vectors of real numbers. Given such

space, the euclidean distance de(~x,~y) can be computed based on different norms. For ex-

ample, the L2-norm is defined as straight distance between two given points and can be

computed as follows [leskovec2014mining]:

de(~x,~y) = de([x1, x2, .., xn], [y1, y2, .., yn]) =

√
n

∑
i=1

(xi − yi)2

Jaccard Distance

The Jaccard Distance dj(A, B) is a distance metric defined on sets. It computes the similarity

between two sets, by using the Jaccard Similarity of those. In particular, the similarity be-

tween two sets is defined by the ratio between their intersection and their union. Subtracting

the similarity from 1 defines the Jaccard Distance as a real number between 0 and 1. This

14 Locality-Sensitive Hashing

Figure 2: The highlighted area shows the intersection of A and B, including two points

distance metric is mostly used with document and text based elements, as we will see later.

The Jaccard Similarity can be defined as follows:

Definition 2 (Jaccard Similarity). Given two sets A and B, the Jaccard Similarity is defined

as

SIMj(A, B) =
A
⋂

B
A
⋃

B

Given this, the Jaccard Distance is defined as follows:

Definition 3 (Jaccard Distance). Given two sets A and B, the Jaccard Distance is defined as

dj(A, B) = 1− SIMj(A, B) (4.1)

where dS is the Jaccard Similarity between them.

Figure 2 shows two sets A and B, where A has 4 elements and B has 5. The highlighted

area shows the intersection area between them, which in this case is 2. With these two

together, we can compute the Jaccard Distance for this example as djd(A, B) = 1− 2
7 = 5

7 .

Cosine Distance

The Cosine Distance (also called angular distance) is one of the most popular distances for

LSH and is used as main metric in this thesis. It is defined for spaces with a dimension, such

that points can be considered as vectors as shown in Figure 3. Rather than to distinguish

vectors by their length, the Cosine Distance is defined as an angle between two vectors. On

any dimension, the angle between two vectors always ranges from 0° to 180°, which is then

used to define the distance.

The cosine distance is 1 minus the cosine similarity of two vectors:

Definition 4 (Cosine Similarity). Given a n dimensional space S, the Cosine Similarity of two

4.2. LSH-Family 15

x

y

0 1 2 3 4
0

1

2

3

4
A

B

θ

Figure 3: Represents the angle θ between A and B

vectors a, b ∈ S is defined as

SIMcos(~a,~b) =
~a ·~b
‖~a‖ ·

∥∥∥~b∥∥∥ =

n
∑

i=1
aibi√

n
∑

i=1
a2

i

√
n
∑

i=1
b2

i

Hence, the definition for the Cosine Distance is as follows:

Definition 5 (Cosine Distance). Given an n dimensional space S, the Cosine Distance of two

vectors a, b ∈ S is defined as

dc(~a,~b) = 1− SIMcos(~a,~b)

where SIMcos(~a,~b) is the Cosine Similarity.

If two vectors have the same orientation the Cosine Similarity between them is 1, and

therefore their distance is 0. If two vectors are orthogonal to each other, their similarity will

be 0 and the distance 1.

4.2 LSH-Family

A LSH-Family defines a set of Locality-sensitive hash functions. Unlike traditional hashing,

these hash functions ignore smaller "distortions" of close points. To do so, the points are

hashed respective to their locality in a metric space, while all points within a small local-

ity area hashed to the same hash value. As a result close points are likely to have same

hashing outcome, which has the same effect as ignoring smaller differences in their lo-

cality. How small the difference can be is defined by the LSH-Family of the hash function

[cochez2016taming]:

16 Locality-Sensitive Hashing

d1 d2

p1

p2

Figure 4: Illustration of LSH-Family boundaries (inspired by [leskovec2014mining])

Definition 6 (LSH-Family). Given a distance function d and two distances d1 and d2, a family

of functions F is called (d1, d2, p1, p2)-sensitive if for every f ∈ F the following conditions are

true:

1. If d(x, y) < d1, then the probability of h(x) = h(y) is at least p1,

2. If d(x, y) ≥ d2, then the probability of h(x) = h(y) is at most p2,

where p1 < p2 and d1 < d2.

The parameter d1 describes the point when the distance between points is considered to be

close, which in return means that points are very likely to collide. In this case, the probability

that h will compute the same hash value for x and y is defined by p1. Condition 2 is similar

to 1 with the difference, that it defines the distance and probability for points far apart. In

addition, p1 has to be smaller than p2 and d1 smaller than d2. Those parameters together

define the (d1, d2, p1, p2)-sensitive LSH family. By defining such a family, any hash function

that is member of it will has the same probability to hash close and points far apart to the

same hash value.

Figure 4 illustrates what the bounds for a LSH-Family can look like. As we can see, there is

still a space between p1 and p2 that is undefined. This space represents the approximation

area of candidates for the near neighbor set. In other words, if an element is within this area,

it can still be considered as an element in the near neighbor set. We can decrease the size

of this area by repeating the hashing of two points with another hash function. This step is

called amplification.

4.2. LSH-Family 17

Amplification

As mentioned before, each (d1, d2, p1, p2)-sensitive family F has an undefined area between

its two distances. This area can be considered as the approximation area in a sense that

points that are within this area can still be considered as close points, although they are not.

Selecting d1 and d2 closer to each other reduces the approximation area, but typically means

that p1 and p2 will be closer to each other.

In order to keep p1 and p2 far apart, while moving d1 and d2 closer to each other, one can

use the effect of amplification. We define a new Family F ′ where each member h′ ∈ F ′ is

constructed by a set of functions of F . Given such a family, we will distinguish between two

different types of amplifications [leskovec2014mining]:

´

Definition 7 (And-construction). Given a (d1, d2, p1, p2)-sensitive family F and a fix r ∈N, a

family F ′ is (d1, d2, (p1)
r, (p2)r)-sensitive if:

1. if h ∈ F ′, then h is constructed from a set {h1, h2, ..., hr} ∈ F .

2. if h(x) = h(y) is true, then for all i = 1, 2, ..., r each function hi(x) = hi(y) is also true.

Definition 8 (Or-construction). Given a (d1, d2, p1, p2)-sensitive family F and a fix r ∈ N, a

family F ′ is (d1, d2, 1− (1− p1)
l , 1− (1− p2)l)-sensitive if:

1. if h ∈ F ′, then h is constructed from a set {h1, h2, ..., hr} ∈ F .

2. if h(x) = h(y) is true, then there is at least one i = 1, 2, ..., r, where hi(x) = hi(y) is also

true.

The effect of an And-construction can be best explained with the bucket structure. Con-

sider H = {h1, h2, ...hr} to be the set of functions of which h ∈ F ′ is constructed of. Each

function of H has its own layer of buckets and thus an individual mapping. Now, if a data

point a and the query point q share the same bucket on each layer, they are considered to be

similar. This is equal to ∏r
i=0(hi(a) = hi(q)) = 1. Knowing this, the probability of F ′ is straight

forward: Since each function of H has the probability of p, the probability of h is given by

ph =
r

∏
i=0

pi = (p)r.

The Or-construction can be explained quite similar. Again, we consider H as the set of

functions of h ∈ F ′, where each function has its own layer of buckets. Now, unlike before,

the Or-construct considers a data point a to be similar to a query point q if they share the

same bucket on at least one layer. This in return is similar to ∑r
i=0(hi(a) = hi(q)) ≥ 1. 1− p is

the probability that a function of H will define a and q as not similar, therefore the probability

that that all hash function will define them as not similar is given by (1− p)r. Knowing this,

we can compute the probability of a and b being at least for one of the functions similar by

18 Locality-Sensitive Hashing

ph = 1−
r

∏
i=0

(1− pi) = 1− (1− p)r.

The benefit of using such constructions is, that depending on how the functions in F ′ are

constructed, the probabilities can be moved either closer or far away from each other. By

using an And-construction we can keep the probability p1 close to 0, while having p2 far away

from 0. The Or-construction on the other hand can keep p1 close to 1 and p2 far away from

it. If we recall Figure 4, we can now change the undefined space between p1 and p2, without

changing d1 and d2, since amplification only affects the probabilities.

4.3 Concrete LSH-Families

This section will introduce two LSH-Families and discuss how they are constructed. The first

one is called Minhashing, which refers to an algorithm that maps a data point to its mini-

mum hash. We will use a concrete example to explain Minhashing and see how it is usually

applied when working with documents. However, documents can not be used directly, there-

fore we will introduce two alternative representations of them [broder1997resemblance,

leskovec2014mining].

The second one is Random Hyperplane Hashing, which uses a certain amount of random

hyperplanes to divide the given space and distribute points to subspaces. This algorithm

measures the distance based on the cosine distance from Chapter 4.1.1 and therefore needs

the data points as vectors.

After explaining both algorithms, we will show that they are indeed a (p1, p2, d1, d2)-Family

by proving so.

4.3.1 Minhashing

Minhashing was invented by Andrei Broder [broder1997resemblance] and refers to an

algorithm that maps a data point to the minimum hash of it. Each data point is represented

by a set, where each element contains a different information of the data point. Afterwards,

the elements are hashed by a function h and the lowest hash value of all elements is taken

to represent this set. By repeating this process multiple times, with an fixed order of hash

functions, the data point can be compressed to a sequence of hash values. This sequence

represents the fingerprint of the data point, as it was described in the introduction to this

chapter. Minhashing a data point as described above has two advantages: Firstly, the size

of a data point becomes smaller. And secondly, we can reduce the amount of comparisons

drastically.

4.3. Concrete LSH-Families 19

Imagine we have a set of documents and want to apply the Minhashing algorithm. Repre-

senting a document by a set is usually done by dividing the text of the document in smaller

strings. One way to do so are k-Shingles, which are defined as follows:

Definition 9 (k-Shingles [broder1997resemblance]). Given a continuous sequence of

characters D, S(D, k) is defined as the set of all k consecutive character sequences in D.

Especially for documents, reducing them to a set of smaller strings has proven to be an

effective way in order to improve further text analysis [leskovec2014mining]. Based on

the use case, these strings can be a sequence of k consecutive characters, words, or whole

sentences. The advantages of representing documents in such sets is that lexical similar-

ity between them can be computed by calculating the intersection of those sets. Another

advantage is that neither the order nor the frequency of a string is important, which are

unnecessary factors in lexical similarity.

Shingling Documents is one of the simplest, but most common approach to generate such

sets. Given a document D, one can define its k-Shingle as S(D, w) being every sub sequence

of the length k within document D.

Assume a shingle is defined by a sequence of consecutive words. For a given document

D ="processing large data sets"

S(D, 2) is defined as the set of 2 consecutive words:

S(D, 2) ={"processing large", "large data", "data sets"}

Now that the documents can be represented as sets, the next step is to generate the

fingerprint of it. This is done by taking advantage of Minhashing, which is defined as follows:

Definition 10 (Minhash). Minhashing defines a family of functions hπ(K) = min{π(k)|k ∈
K}, where π is a random permutation of the given universe U .

We will explain Minhashing with an example. Assume the set of two documents D1 and D2

are given as follows:

• S(D1, 2) = {processing large, large data, data sets }

• S(D2, 2) = {working with, with large, large data, data sets }

Additionally, we assume that each element of the universe U =
n⋃

i=1
S(Di, k) is mapped to a

unique number. Moreover, we can represent them in a matrix (inspired by [leskovec2014mining]),

where the rows represent an element of U and each column represents the set of a docu-

ment. Notice that the order of elements is defined by Minhashing the universe π(U). The

entry (x, y) of this matrix indicates if the shingle x is present in document y. In case x is

present in y, the entry will be set to 1, otherwise it will be set to 0.

Figure 5 shows two tables, where the left table is the matrix before replacing the elements

20 Locality-Sensitive Hashing

S(D1, 2) S(D2, 2)
processing large 1 0
large data 1 1
data sets 1 1
working with 0 1
with large 0 1

=>

S(D1, 2) S(D2, 2)
0 1 0
1 1 1
2 1 1
3 0 1
4 0 1

Figure 5: matrix representation of sets over the universe U [leskovec2014mining]

of universe U with numbers. What the Minhash algorithm does is it permutes the universe

U and selects the first occurring element of a set for the given permutation of U . As it was

already mentioned, the elements are mapped to numbers, so in case of D1 the Minhash al-

gorithm will return a 0 which respectively stands for "processing large". By doing this for

multiple permutations, we can generate a fingerprint for each document. However, generat-

ing a permutation over the whole universe is a costly operation. For this reason, Minhash is

defined by a set of hash functions, where each function simulates a permutation. In partic-

ular, each hash function is applied on every element of a given set. Afterwards, the lowest

hash value is stored as the first fingerprint value for the respective document.

We can prove that Minhash is a (d1, d2, 1− d1, 1− d2)-sensitive family as follows:

Proof [leskovec2014mining]:

• Assume dj to be the jaccard distance. We can proof that Minhash is a (d1, d2, 1−
d1, 1− d2)-sensitive family:

– Let d1 < d2

– If dj(x, y) = d1, the similarity between x and y is given by 1− d1. This is

equal to the statement that 1− d1 items in x and y are similar. Therefore d1

items are left to consider their hash value as the minimum for the hashing

outcome. This is equal to the statement of (1 − d1) being the probability

that x and y will have the computed hash value.

– If dj(x, y) = d2, the similarity between x and y is given by 1− d2. This is

equal to the statement that 1− d2 items in x and y are similar. Therefore, d2

items are left to consider their hash value as the minimum for the hashing

outcome. This is equal to the statement of (1 − d2) being the probability

that x and y will have the computed hash value.

In other words, the probability that Minhash will permute the sets such that both will have

the first row set to 1 is exactly the difference between both sets. For the example given by

Figure 5, the probability that both documents D1 and D2 will have the first entry set to 1 is
2
5 .

4.3. Concrete LSH-Families 21

fx

fy

fz

h11
0

h2
0

1

h3

0
1v1

v2

v3

v4

v5

v6
v7

v8

v9

(1, 0, 1)

(1, 0, 0)

(0, 1, 0)

(1, 1, 1)

(a)

bucket vectors

... ...
(0, 1, 0) v2, v3, v8, v9

... ...
(1, 0, 0) v4, v5, v7
(1, 0, 1) v1

... ...
(1, 1, 1) v6

(b)

Figure 6: (a) Illustrates subspace generation of RHH with 3 hyperplanes and (b) the bucket distribu-
tion of vectors

4.3.1.1 Random Hyperplane Hashing

Random Hyperplane Hashing (RHH) is commonly used with LSH and refers to an algorithm

that hashes points with a randomly generated set of hyperplanes. The hyperplanes are gen-

erated so that each one is going through the origin of the vector space and divides it in two

equal halves. The points, given as projected vector in that space, are then hashed to either

0 or 1, depending on which side of the hyperplane they are.

By repeating this step for k hyperplanes, the vector space is divided in 2k subspaces

[rajaram2008client], where points that are within the same subspace will be hashed to

exactly the same hash value. Therefore, given a set H of k hyperplanes, the fingerprint of a

vector v is defined by H(v) = [h1(p), ..., hk(p)].

The hash value of a point can be computed from an explicit definition of the hyperplane.

However, computing hash values with the hyperplane itself is a costly operation and there-

fore not reasonable. A more efficient implementation is to hash points based on their angular

distance to the normal vector of a hyperplane. The angular distance between any vector v
and the normal of a hyperplane n is defined as follows:

arccos
(

v · n
‖v‖ ‖n‖

)
Since the angle of the hyperplane and its normal is given by π

2 , we can compute the angle

between the vector v and the hyperplane as follows:

π

2
− arccos

(
v · n
‖v‖ ‖n‖

)

22 Locality-Sensitive Hashing

If the outcome is positive, the vector will be hashed to 0 and if negative to 1. However,

since for the hashing procedure only the side of the hyperplane is necessary, we can reduce

this whole computation to v · n and compute the hashing outcome by:

h(pi) =

0, p · n < 0

1, p · n ≥ 1

Figure 6(a) shows how 3 hyperplanes h1, h2, h3 divide the space in 8 subspaces. As one can

see, the subspaces are not equally large, because the hyperplanes are randomly chosen.

The table in (b) shows how the vectors are distributed to the different subspaces. Notice,

that the left column represents the bucket in which the vectors is distributed. However, the

distribution of vectors to subspaces is equal to the distribution of vectors to buckets and

therefore dividing the space into subspaces serves the same purpose as hashing vectors to

different buckets.

Each hyperplane is considered to be a hash function and together represent the LSH-Family

for the cosine distance [rajaram2008client]. To show, that this family of functions is indeed

a LSH-Family, we need to prove that the properties of a LSH-Family are true. The following

proof will show, that RHH is a (d1, d2, 1−d1
180

1−d2
180)-sensitive family for the cosine distance:

Proof [leskovec2014mining]:

• Given dc as the cosine distance and h(x) = h(y) if two vectors are on the same

side of a hyperplane h ∈ H. Furthermore, let d1, d2 being the distances and p1, p2

the probabilities for close and far apart vectors, where d1 < d2 and p1 < p2. We

can prove that RHH is a (d1, d2, 1−d1
180

1−d2
180)-sensitive family:

– The probability a randomly chosen hyperplane h will be between two vectors

x and y is equal to dc(x,y)
180 .

– If d1 is defined as the distance between two close vectors, we can prove that

p1 = 1− d1
180 :

* Since dc(x, y)⇔ d1, the probability for close vectors is 1− d1
180 .

* If d1
180 is the probability that two vectors are separated by h, then 1− d1

180

is the probability that they are on the same side, which the same as

h(x) = h(y).

* If d1 is the distance for close vectors, the probability of h(x) = h(y) is

1− d1
180 .

* Therefore p1 = 1− d1
180

– If d2 is defined as the distance between two vectors far apart, we can prove

that p2 = 1− d2
180 :

* Since dc(x, y)⇔ d2, the probability for vectors far apart is 1− d2
180 .

4.4. Runtime Complexity 23

* Thus p2 = 1− d2
180

– This holds for any random hyperplane h ∈ H
– Therefore any set of random hyperplanes H is a (d1, d2, 1−d1

180
1−d3
180)-sensitive

family for the cosine distance.

fy

fx

h
x

y

θ

Figure 7: Illustrates a hyperplane that divides the two given vectors in an 2-Dimensional space.

Figure 7 provides a better understanding of what exactly happens. In this example, two

vectors x and y are divided by a hyperplane h. The angle between those two vectors is given

by θ which is equal to the cosine distance dc(x, y). Note, that θ is always the smallest angle

between two vectors, and is therefore never above 180◦. Therefore, the probability that a

hyperplane will be within that angle of θ is equal to θ
180◦ . Given this, 1− θ

180◦ is the probability

that the hyperplane h will not separate those vectors, which in turn is equal to h(x) = h(y).

4.4 Runtime Complexity

The main application of LSH is to solve the nearest neighbor search problem fast and efficient.

Due to the variety of existing improvements and extensions, it is impossible to argue about

the runtime complexity in general. However, restricting it to be for a specific version of LSH,

we can provide a formula to compute it. In order to fit into the scope of this thesis, we

will explain the runtime complexity of the query when using Random Hyperplane Hashing.

Furthermore, the algorithm is defined by two parameters, being k the amount of functions to

compute the hash string of a point and L the amount of bucket layers.

The runtime for the LSH algorithm is given by the following definition:

Theorem 1. Given N d-dimensional points with k hyperplanes dividing the vector space.

The runtime complexity costs of LSH with L iterations is

O
(

Ldk + Ld
(

N
2k

))

The left side of the equation computes the time that is needed to distribute the query point

to L buckets. In order to be distributed to a single bucket, the dot product of a point and

24 Locality-Sensitive Hashing

h0 layer 0

h1 layer 1

h2 layer 2

d2, d3

0

d5

1

0

d1, d7

0

1

0

d9

0

d12, d13

1

0

d11

1

1

Figure 8: A single tree in LSH Forest. The orange nodes illustrate the inner nodes and yellow nodes
visualize the leafs of the tree. The blue highlighted area shows which hash function is used
for the respective tree layer. The hashed points are displayed below the leafs.

each hyperplane has to be computed for all k hyperplanes. The second part of the equation

computes the time that is needed to find the nearest neighbor in each of the L buckets. The

amount of points in a single bucket is represented by N
2k . Note that for this proof, we assume

that the points are equally distributed over all buckets. The average of points in a bucket is

N divided by all possible regions generated by k hyperplanes. Since each hyperplane divides

the space in two subspaces, the amount of overall buckets is given by 2k. This has to be

done for d dimensions and L bucket layers. Summing this up, the runtime of finding the

approximated nearest neighbor of a point is O
(

Ldk + Ld
(

N
2k

))
.

4.5 Locality-Sensitive Hashing Forest

Although LSH has a good runtime while the error rate remains low, it still lacks simplicity. In

addition to assigning a point to a bucket, it demands the fingerprint to have a length equal to

the bucket label, since each bucket is labeled by the hashing outcome of k consecutive hash

functions. However, in some cases this seems to be an unnecessary computational effort.

Imagine we have a set of 10 hash functions {h1, h2...h10} = H and a dataset D consists of

5 points {d1, d2, d3, d4, d5}. Now, in order to distribute the points to buckets, each point is

hashed with each of the 10 hash functions (as explained in Section 4.3.1). Assume that for

the first hash function the first 4 data points have the hash value of 1, while for the last data

point it is 0 (more precise h1(d1) = h1(d2) = h1(d3) = h1(d4) = 1 and h1(d5) = 0). If we now

query a point q, where h1(q) = 0 it would be favorable to not compute the hash values of

the other hash functions, since d5 would be the only possible element to be considered as a

candidate for the near neighbor set. In particular, it is preferable to save the computational

effort of hashing the query and the data point multiple times (In this case 10 times). So

4.5. Locality-Sensitive Hashing Forest 25

in this case, a variable fingerprint length to determine the bucket for a data point could

improve the overall run-time of the hashing procedure. However, since in the original LSH

algorithm the fingerprint corresponds to the bucket id, it has to be of a fixed length. Bawa

et al. [bawa2005lsh] introduced a new data structure for LSH that allows fingerprints of

variable length, called Locality-sensitive Hashing Forest (LSH Forest/LSHF). Instead of storing

data points in buckets, a set of k trees is grouped to a forest, where each data point is hashed

into one leaf of every tree. In the query process, the query point is also hashed in the same

way and the near neighbor set is constructed by selecting the data points of every tree, that

share the longest prefix path.

One can imagine a single tree as a set of paths, where the maximum length of a path is

d. Each path is constructed by a concatenation of nodes, beginning from the root node. The

last node in a path is called leaf and stores a set of data points, while every node in between

is called inner node. Taken all those paths together, a tree with at most d layers can be

constructed, since d bounds the maximum length of a single path. Moreover, each layer has

a unique hash function distributed, which in turn is used by all nodes of that layer to compute

a hash value of a data point. Each edge between a node and its successor represents one

hash value of a data point. The fingerprint is represented by the edges that are visited, while

walking from the root node to the leaf it is stored to.

The illustration in Figure 8 represents a tree with a maximum depth of 3, where inner

nodes are represented as orange and leafs as yellow. Note that all hash function in this tree

hash points to either 0 or 1 and therefore, every node can have at most 2 direct successor

nodes. Those trees are also known as Binary Trees [skiena1998algorithm]. The blue area

highlights the hash functions and represents the mapping of one hash function to a layer.

Every node within that area shares the same hash function, which in turn is used to compute

the hash value of a data point (corresponding to that particular layer). As one can see, data

point d2 is hashed into the left most leaf, which means it was hashed by h0,h1, and h2. If

we recall the definition of a fingerprint, we know that the fingerprint for a data point d is

represented by a hashing vector (h1(d), ..., hn(d)). So in this case, the fingerprint of d2 is

represented by the hashing vector (h0(d2), h1(d2), h2(d2)). If we follow the path from the root

node to that leaf we can get the fingerprint of d2 by taking the label of each visited edge. As

a result, we get the hash vector (0, 0, 0), which is equal to (h0(d2), h1(d2), h2(d2)).

The illustration also shows, that not every node is on the bottom most layer. The node of

point d11 for example is on layer 2. This has the reason, that no other element was hashed

down the prefixed path of (1, 1) and therefore the computation of the hash value for layer 2

is not necessary to distinguish d11 from other points. This in turn means, that the fingerprint

of (1, 1) is sufficient to identify d11. For a better understanding, we first need to explain how

data points are inserted into a tree: beginning from the root node, the insertion of a data

point d is done by walking from node to node. If the current node is an inner node, hi(d) is

26 Locality-Sensitive Hashing

hi layer i

dk

ph

...
dl

(a)

hi layer i

...

10

dkdl

(b)

Figure 9: Illustrating the split and branching operation on a leaf. (a) Shows a leaf with a single point
d1 right before the insertion of d2 and (b) shows the outcome of the branching operation,
after d2 is inserted.

computed and the point will continue to the next node by walking the edge labeled hi(d). In

case that no such edge exists, we can assume that no other data point shares the same path

with d. Consequently, a new leaf will be generated and connected to the node with an edge

labeled hi(d).

If the current node is a leaf, we first need to validate if it is on the bottom most layer.

Given such a leaf n and the data points stored in n as ndatapoints, we simply add d to ndatapoints.

Note that in order to uniquely identify a data point by its fingerprint, it has to be the only

data point in ndatapoints. However, if the bottom most layer is reached, we are unable to

distinguish q from the data points in ndatapoints. Therefore, they are stored in the same leaf

and share the same fingerprint. In case that the leaf is not on the bottom most layer, the

leaf is transformed into an inner node, and all data points d ∪ ndatapoints are hashed in the

same way as described above. More precisely, the insertion process for each point in the set

d ∪ ndatapoints is repeated, beginning from the node that was transformed to an inner node.

We will refer to this operation as Branching.

Figure 9 shows how the branching process is done in general. The left figure shows a leaf

that stores data point dk, before dl is also hashed to the same leaf. As soon as dl visits the

same leaf, the leaf is transformed to an inner node and both items are distributed to a node

one layer deeper. As one can see hi(dl) = 0 and hi(dk) = 1, which means, that no more split

is necessary to distinguish those items.

By inserting data points into a tree and branching when necessary, the tree grows. It can

happen, that some points are so similar that the depth of the tree would be very large. To

avoid this behavior, each tree has a maximum length of d that defines the maximum depth of

a node, where a split can be performed. For the case, that elements are still hashed into the

same leaf and the maximum depth of the tree is reached, no more splitting will be performed

and the elements will remain in the same leaf.

The query process itself differs from the bucket structure, since the tree structure allows

fingerprints of any length. Consider a LSH Forest consisting of l trees and T is the set of

4.5. Locality-Sensitive Hashing Forest 27

Input: query q, layer level xi, current
node s

if s is leaf then
Return (xi, s)

else
h = Hash(q, xi)
t = NodeFromBranch(h)
(p, z) = TopDown(q, xi + 1, t)
Return (p, z)

Algorithm 1: TopDown(q, xi, s)

Input: M, consists of (layer, node)
tuples (x, s)

x = maxl(xl) over all (xl , sl) ∈ M.
S = ∅
while (x > 0) and (|S| < l) do

foreach (xi, si) ∈ M do
if xi == x then

if si is leaf then
dp = getDataPointsOf(si)
S = S ∪ dp

else
dp =
getDescendantDpOf(si)

S = S ∪ dp
x = x - 1

Return S
Algorithm 2: BottomUp(M)

Figure 10: Shows the two phases of the query process in LSH Forest: (a)The top-down phase, where
all nodes from each tree with the longest prefix path to q are collected and (b) the bottom-
up phase, where the closest data point to q of all previously collected nodes are returned.
The algorithms are inspired by [bawa2005lsh]

tree that are used. A query for k-nearest neighbors of point q is performed by hashing q into

each tree. Ideally, q will be hashed to a leaf and all data points that share the same leaf will

be considered as near neighbors to q. However, it may happen that the hashing procedure

would hash q to a leaf that does not exist and no near neighbor set can be retrieved. To

overcome this issue, the query process is divided in two phases: The first top-down phase,

where potential nodes with near neighbor candidates are collected and the second bottom-

up phase, where only the k closest candidates out of those nodes are selected.

In the top-down phase as depicted in Figure 10, the query point q is inserted into each tree

by descending them, while searching for the longest matching path to q. Expressed more

simply, at query time t, q is hashed to a node of layer t of each tree Ti ∈ T . If the current

node in Ti is a leaf, the layer and the leaf will be returned. Afterwards, the tree will be disabled

for all upcoming iterations of the first phase. If the current node is an inner node, the hash

value of the current layer will be computed and compared to all outgoing edges of that node.

If an edge is labeled with the hash value, the query point q will continue down that path and

wait for the next iteration to repeat the process on the next layer. If no edge exists, the

current node and layer will be returned and the tree disabled so that it wont be considered

in the next iteration. This process will be repeated until all trees are processed. As a result, a

setMcandidates is generated, consisting of tuples (x, s) where x is the layer and s the node that

was returned. Note that |Mcandidates| = |T |, since every tree has exactly one prefix path that

matches to the query point. All nodes inMcandidates are considered to have potentially near

28 Locality-Sensitive Hashing

hi layer i

hi+1 layer i + 1

hi+2 layer i + 2

dl , dk

...
0

1

1

0

(a)

hi, hi+1 layer i, i + 1

hi+2 layer i + 2

dl , dk

...
0

(1, 1)

0

(b)

Figure 11: Illustration compressed nodes. (a) Shows a chained sequence of nodes, that have only
one outgoing edge, while (b) represents a compressed version of this sequence as a single
node

neighbors and consequently form the set of nodes with near neighbor candidates. However,

not all of them have the same probability to be similar to q. In particular, the deeper the

layer of a corresponding node is, the more likely it contains a neighbor close to q. In addition,

the number of candidates can exceed the amount of near neighbors we are looking for and

therefore only the closest candidates should be selected.

In the second bottom-up phase, as depicted on the right side of Figure 10, we solve this

problem by collecting k points from the deepest nodes of Mcandidates. Those points will be

collected to Mnn. The bottom-up phase starts from layer x, where x = maxl(xl) over all

(xl , sl) ∈ Mcandidates. While moving up from layer x to the root of each tree, we mergeMnn

with all points from nodes that are in the setMcandidates. If the node inMcandidates was not a

leaf but an inner node, we will collect all data points of every leaf, that is descendant to this

node. After each iteration, we check if M >= k and if so, the process stops and M is returned

as near neighbor set. Otherwise, the algorithm moves up to the next layer and is repeated.

Note, that although a data point can be considered as a near neighbor candidate in more

than one tree, it will not be collected multiple times inMnn, sinceMnn is a set. After both

phases are finished, the points inMnn will be sorted by their similarity to q and the k most

similar points will be returned.

If comparing LSH Forest to the best known LSH algorithm, no quantitative improvement

will be noticed. However, being based on practical heuristics, it is provably better than most

of them [andoni2017lsh]. The tree structure as described above is not efficient in its space

allocation, since the amount of nodes to hash data points could become very large. Although

each tree is restricted by its maximum depth, two very similar points are very likely to be

4.5. Locality-Sensitive Hashing Forest 29

hashed to the bottom most layer of the tree. Assume we hash two very close points and want

to hash them into a tree with the maximum depth of k. As both items are close, it is very

likely that hash functions compute the same hash value for both of them. If we assume that

this is indeed the case, both items will be branched until the bottom most layer is reached

and both items are stored in the same leaf. Consequently, k + 1 nodes are needed to store

those points. However, each node in the path will have exactly one outgoing edge, which

seems quite redundant to store just 2 points. In order to save the space of such unnecessary

node chaining, sequences of nodes with only 1 outgoing edge can be compressed into a

single node without affecting either the insertion nor the query process of the LSH trees. An

example of compressed nodes is given in Figure 11. The left illustration shows a chained

sequence of nodes, where each node has only 1 outgoing edge. The right illustration shows

a compressed version of this sequence. In particular, the first two nodes are merged into the

third node, while their edges are merged into a single edge. The new edge is then labeled

with both labels of the merged edges. While in the query process, it is still necessary to

compute the whole path for a query point, the amount of nodes to store the data points will

be reduced. In fact, the amount of internal nodes is one less than the overall number of

leafs and ensures, that the storage complexity is linear to the number of overall data points

[bawa2005lsh]. Trees that support such kind of compression are also known as PATRICIA

trees [morrison1968patricia].

A forest as described above represents a more simple data structure compared to the

original LSH. Especially when combining LSH Forest with Random Hyperplane Hashing, the

overall quality of the near neighbor set is good. However, one shortcoming of both LSH

variants is that none of them take any data dependent information into consideration. For

example, if we have a dataset with dense clusters it would be favorable to keep data points

of one cluster close to each other and avoid "splitting" them down into different pieces.

The following section will highlight some of the shortcomings of LSH Forest combined with

Random Hyperplane hashing and present solutions to overcome them.

5 Challenges and Improvements for

LSH

When using LSH one profits from its data structure that enables a time efficient query for the

near neighbor search, even for a large amount of data. Combined with Random Hyperplane

Hashing, LSH can achieve a good run-time. By dividing the data space in sub-spaces, the

query process is only performed in smaller portions of it. A special property of the algorithm is

that it allows to control how close the approximation is, by trading time and space efficiency

for a better approximation. Nevertheless, this property is also one of its most challenging

parts, since it depends on many factors like the LSH parameter settings or the dataset itself.

.

First of all we will talk about how the approximation can be improved. If we recall the

structure of LSH Forest as it was presented in Chapter 4.5 we can notice that the correctness

of the near neighbor search correlates to (a) the amounts of trees in a forest and (b) the depth

of each tree. There is also a noticeable similarity to the bucket structure: Increasing the

amount of hash functions also increases the probability that two points in the same bucket

are similar to each other. This statement is equal to (b), since the depth of the tree represents

the (maximum) amount of hash functions that hash points to leafs. Literally speaking, the

deeper a leaf is in the tree, the more likely it is that its stored points are similar to each other.

This has the reason that deeper trees offer a higher granulation of data, since each layer

represents a possibility to split data points in different branches. Despite the fact that two

very close points have a high probability to be hashed into the same leaf, it may happen that

they are split into different branches very early. This has an impact to the approximation. In

fact, it is enough if one hash function on a layer close to the root node, computes different

hash values for both points.

To overcome this issue, we can increase the amount of trees, since each tree works with

a separate and independent set of hash functions and therefore the hashing outcome can

differ for each of those sets. More precise, all trees are independent from each other and

will distribute the points differently. In conclusion, each pair of points has multiple chances

to be hashed into the same leaf or at least, be split into different branches quite late. If we

recall the bucket structure we will see (a) is very similar to adding different layer of buckets.

Actually, both serve the same purpose, which is to lower the impact of unfortunately hashed

31

32 Challenges and Improvements for LSH

points. Since both, LSH and LSH Forest, are very similar in handling this kind of problems, we

could also improve the approximation by using either Or- as well as the And-Construction as

described in Section 4.2.

As already mentioned, improving the approximation comes also with the downside of wors-

ening either query complexity, space efficiency or the correctness of the near neighbor set.

In fact, both also correlate to (a) and (b). Increasing the depth of each single tree also in-

creases the amount of space that is needed to store all nodes. Even with PATRICIA trees,

each additional layer is likely to add new nodes. Furthermore, each tree works completely

independent from all other trees and thus has to be stored separately. The space complex-

ity is given by the approximate amount of nodes that each tree needs to store the whole

dataset in, multiplied by the amount of trees. Considering time complexity, the query time

increases with each additional layer in a tree, since on each layer, the query point has to be

hashed. Therefore, finding a good balance between correctness and time/space efficiency is

a necessary, but also challenging task.

Another impacting factor is the LSH Family, which provides the set of locality-sensitive

hash functions. As per definition, these hash functions are generated independent from the

data and decide if points are close to each other or not. While these functions are typically

generated randomly, they still offer ways to improve the correctness of the approximation.

By carefully selecting the LSH Family, we can change the distance between close points and

influence the result of the near neighbor search. In contrast to (a) and (b), the amount

of trees and their depth can be left untouched, while the improvement is done within the

hashing procedure.

One reason that locality-sensitive hashes are preferable when working with LSH is that

their generation can be done very easy and independent of information provided by the

dataset. Furthermore, they work very efficient, since the items are hashed only based on

their distance, which is a fast computational operation. As a drawback, data-dependent in-

formation that could improve the overall correctness of the near neighbor search are ignored

and not considered during this hashing procedure. Although it is possible to add limited

amount of data-dependent information to the locality-sensitive hashing procedure additional

computational effort is needed. In fact, the hashing procedure in LSH is a common operation

and should remain simple. By adding more factors to the hashing process, hash functions

can be overburdened with too much computational effort and lead to a higher time complex-

ity of each single hashing operation. This in fact will worsen the query procedure, since the

query point has to be hashed in the same way.

In some cases, the benefits from taking data-dependent information into account will over-

weight the drawback of worsening the time and space complexity. Imagine a set that contains

a dense cluster of points. A dense cluster is an indicator that all points within it have a high

probability to be logically related to each other. In this case, it would be preferable that a

33

d1

d2

Figure 12: Shows the locality-sensitive area of two points of a cluster. The orange nodes represent
points of the cluster, while the yellow nodes represent other points of the dataset. The
two blue areas show the locality-sensitive area of datapoint d1 and d2.

locality sensitive hash function does not separate them by computing a different hash value,

since this would result in the tree distributing them into different leafs. Despite the fact that

these points are logically connected to each other, they may not be located close to each

other. Especially points on the outer border of the cluster are unlikely to be hashed to the

same leaf as some points in the center.

Figure 12 illustrates a cluster that is part of a dataset. The orange nodes represent data

points that are part of the cluster, while the yellow are just some other points of the dataset.

The two blue areas represent the locality-sensitive area of point d1 and d2. On first glance

we can see, that none of those areas cover the whole cluster. To fix this problem, one could

take the maximum distance between two cluster points as the radius of the locality-sensitive

area. While this would help to define all cluster points as potential near neighbors, the hash

functions may become too imprecise for the overall performance of LSH. A completely dif-

ferent approach is to generate the hash functions dependent on the dataset. Instead of

randomly generating locality-sensitive hash functions, a function will be generated based

on the data. In fact these functions are already known as Data-dependent hashing func-

tions, which contradict the idea of locality-sensitive hash functions. These hash functions

are defined uniquely only for the given dataset and include some feature information of the

data. The objective is to distribute the points based on features of the data. There are

different approaches that address this issues, like Spectral Hashing [weiss2009spectral,

abdullah2014spectral], K-mean based hashing [pauleve2010locality] and Random Max-

imum Margin Hashing [joly2011random]. While data-dependent functions show good re-

sults, they are not applicable for every use case. In addition, some of them demand of more

computational effort, when comparing them to locality sensitive hashing.

Nevertheless, there are also problems that are hardly solved by either of locality-sensitive

or data-dependent hash functions. If we recall the cluster in Figure 12 we can see, that some

points are covered by both locality-sensitive areas. For this case, hash functions have to

decide which locality-sensitive area a point should be distributed to. In fact, these areas

represent a leaf in a tree. As one already knows, points can only be distributed in one leaf.

34 Challenges and Improvements for LSH

So in this case, hash functions will always hash the point into a wrong leaf, since either d2 or

d1 will miss it in its nearest neighbor set. Thus it would be preferable to avoid hashing a data

point in one leaf exclusively.

It is shown, that each hash variant offers many possibilities to improve the approximation

of LSH. However, both of them have their downsides, since each approach introduces new

problems that have impact to the overall performance of the algorithm. Although it seems

not to be possible, it is obvious that mixing the benefits of both variants without adapting

their worse parts, will be the best solution to the stated problem.

This thesis will propose three different Random Hyperplane Hashing extensions for LSH

Forest to solve the aforementioned issues. All of them are designed so that a small portion

of the space complexity and time efficiency is traded for an improved correctness of the near

neighbor set. This will be done by introducing a "fuzzy" area for each hyperplane that is

not assigned to any subspace exclusively, but represents an overlapping area between both

subspaces and define the space for points that are too close to the hyperplane. Therefore

every point within this area will be distributed in both subspaces. This has the same effect

as ignoring the hashing outcome for a particular hyperplane completely as the point will be

distributed in multiple child nodes. We will refer to points that are too close to a hyperplane

as indecisive points. This comes with some computational effort, but it should only be notice-

able in the initialization phase of each tree, since the query procedure remains unchanged.

We hope, that this approach can improve the overall correctness of the near neighbor search,

while the query time can compete with traditional LSH algorithms. As an unavoidable down-

side, the space complexity will increase. This demands further analysis and will be covered

by Chapter 7.

As for the first solution we will classify points by considering their closeness to a hyper-

plane as described above. While small modifications will try to improve the aforementioned

algorithm, it will mainly remain the same. We will refer to this variant as Fuzzy Random Hy-

perplane Hashing (f-RHH) [cochez2017large]. The second solution will also include a fuzzy

factor, but instead of branching points if necessary, a fixed percentage of points on each

layer will be hashed into multiple nodes on the lower layer. In order to select a specific per-

cent of the points, we will compute the closeness of a point to the hyperplane and take only

the demanded percentage of closest points. The goal is to simulate an appropriate behavior

when data points are very dense. Despite the fact that this can slightly increase the amount

of wrongly hashed points, it is assumed that the overall correctness of the near neighbor

set will be increased. This algorithm will be refereed to as Percentage-based Random Hy-

perplane Hashing (p-RHH). The third and last algorithm is Indecisive Random Hyperplane

Hashing (i-RHH) and will be a hybrid of both variants. Instead of hashing points as indeci-

sive, the hashing outcome of all points for a particular hyperplane will be ignored, if a certain

percentage of points is within the given indecisive area.

5.1. Fuzzy Random Hyperplane Hashing 35

While all three extensions define indecisive points different from each other, they all ad-

dress the problem of a point being hashed into the wrong space and thus being separated

from potentially closer points. It remains to prove if the benefit of increasing the correctness

of the near neighbor search can outweigh the worsening of the time and space efficiency.

The following section will discuss and highlight the key aspects of the different extensions.

However, all of them are based on the idea of Fuzzy Random Hyperplane hashing and there-

fore the discussion of this variant will also give a more excessive explanation of fuzzy and

indecisive points.

5.1 Fuzzy Random Hyperplane Hashing

When using RHH combined with LSH, points are projected as vectors in a n-dimensional

space. Each side of the hyperplane cuts the space into halves and when comparing a vector

to it, the vector can be on either of the sides. As a result, every point that is hashed with a

hyperplane will have either 1 or 0 as hashing outcome. However, in some cases it is hard

to make any decision about the projected vector, since this vector can be very close to the

hyperplane. More precise, hashing a close points exclusively into one half space could cause

that near neighbors are split into different branches of the tree. To ease this problem, Cochez

et al. introduced Fuzzy Random Hyperplane Hashing (f-RHH) [cochez2017large]. The idea

is, instead of hashing points exclusively to one side, close points can be hashed to both sides.

As a consequence, points can have multiple hash values for close hyperplanes, which has the

same effect as ignoring the hashing outcome of those planes. In order to extend normal hy-

perplane hashing to support indecisive hashed points, an area around the hyperplane has to

be defined. This area describes the fuzzy or indecisive area for a hyperplane and every node

within it will be hashed as such. Intuitively, one could take the angular distance between

the hyperplane and the vector. While this is indeed a good measurement for the closeness

distance, it comes with additional computational effort, which will slow down the hashing pro-

cedure. However, as described in Section 4.1.1 it can be observed that the angle between

the hyperplane and the vector is defined as π
2 − α , where α = arccos

(
v·nh

‖v‖·‖nh‖

)
describes the

angle between the vector and the normal of the hyperplane. Therefore, computing this dis-

tance, one can obtain the distance of a point to the hyperplane. In fact, this computation will

provide us the information for both, the hash value as computed in RHH and the indecisive-

ness of a point. Assume we have a given parameter k describing the angle of the indecisive

area, then for any given vector v and normal of a hyperplane nh, a vector within this angle

will be have both hash values computed by the transformation of the following expression

[cochez2017large]:

π

2
− α =

π

2
− arccos

(
v · nh

‖v‖ · ‖nh‖

)
< k

36 Challenges and Improvements for LSH

Which in turn can be transformed to an equivalent expression:

arcsin
(

v · nh

‖v‖ · ‖nh‖

)
< k

Since nh is the same for all vectors v, we can conclude that ‖nh‖ is a (positive) constant.

This allows us to replace the expression ‖nh‖ by a constant value R. Moreover, if we normal-

ize vector v beforehand, the angle will remain identical. Therefore, we can replace v by its

normalized vector v̄ where ‖v‖ = 1. Taking all this together, the previous transformation can

be written as:

arcsin
(

v̄ · nh

1 · R

)
< k

Which will finally be transformed to the equation:

|v̄ · nh| < sin(k) · R = C

By replacing the sin(k) · R with C we can say, that if the angle between the vector v and

the hyperplane is smaller than k, it is equivalent to the dot product of the normalized vector

v and the hyperplanes normal vector nh being smaller than the constant parameter C.

If we have a closer look at the expression |v̄ · nh| one may notice, that this is very similar

to the way that the hash value for a vector is computed. More precisely, the only difference

is that we compute the distance of the normalized vector v̄ instead of just v. By providing the

vector v already in its normalized form, we can compute the hash value and its indecisiveness

in the same time. Thus no additional computational effort is needed in order to determine

if a point is too close to a hyperplane and therefore |v̄ · n| < C can be implemented very

efficiently.

A visualization of the indecisive area of a hyperplane for a 2-dimensional space is given by

Figure 13(a). A hyperplane hi is dividing the space, where the blue area represents the hash

value 0 while the red area represents 1. The shaded area around the hyperplane represents

the indecisive area defined as the angle to the hyperplane. As one can notice, instead of

dividing the space in two halves exclusively, the fuzzy area represents the overlapping part

of both subspaces. Furthermore, three points d1,d2, and d3 are given by their normalized

projection vector v̄1, v̄2, and v̄3. While v̄1 is clearly on the blue half and v̄2 on the red, v̄3 is

within the fuzzy area. Therefore, data point d3 will have both hash values computed. As a

consequence, d2 will be hashed down the branch 0 and d1 will follow the path 1, while d3 will

be split into both branches, as depicted in Figure 13(b).

By allowing a point to have multiple hash outcomes for a (RHH) hash function and proceed

the insertion as illustrated in Figure 13(b), we essentially ignore the hashing outcome of it.

5.1. Fuzzy Random Hyperplane Hashing 37

0

1

hiv̄1
v̄3

v̄2

(a)

hi layer i

hi+1 layer i + 1

...

......

d2, d3 d1, d310

(b)

Figure 13: Illustrating a fuzzy hashing for the data points d1, d2, d3 and their corresponding vector
projections v1, v2, v3. (a) Shows a hyperplane that divides the space in two halves and with
an indecisive area around it, while v3 being within it (inspired by [cochez2017large]).
(b) Shows the outcome of that hyperplane in a tree, so that point d3 is hashed down into
both branches.

Rather than hashing the point into one successor node exclusively, we skipped the hyper-

plane only for this particular point, while all other points that are not too close will be hashed

as in normal RHH. By doing so, even if d1 and d2 will be hashed in different branches, d3 can

be hashed in both and thus can be a near neighbor of both points.

The essential idea of f-RHH is to lower the amount of points that are separated from their

near neighbors by restricting hash points to either 0 and 1. While this hashing approach re-

mains locality-sensitive and thus, its computation can be relatively fast (compared to data

dependent hashing), it still "simulates" a certain behavior of data dependent hashing. To

be more clear, by adding a new feature to a data point, which is its closeness to the hy-

perplane, we basically have more information about the data itself without increasing the

computational effort to gain it. In addition, these changes do not have any effect on the

query time, since the query process remains exactly the same. By doing so, the correctness

of the near neighbor search can be increased. However, what still remains to be answered is

how to set the parameter C in order to define the fuzzy area as depicted in 13(a). Generally,

this parameter heavily depends on the use case and needs to be defined only for a certain

dataset. While this goes in the direction of analyzing the dataset and thus including some

data-dependency, the parameter setting can be achieved just by smaller observations of the

information gained from locality-sensitive hashing procedure. In order to find a good setting

for the indecisive angle, we will run some tests for different datasets. This will be covered in

Chapter 7.

38 Challenges and Improvements for LSH

5.2 Percentage-based Random Hyperplane Hashing

A general problem in LSH is its inability to react to datasets that are shaped in a certain way.

Especially when working with datasets that contain clusters, there is nothing that prevents

normal RHH from accidentally dividing it in different subtrees, and therefore worsening the

overall correctness of the near neighbor set. This has the reason, that the hyperplanes are

generated randomly without taking any information about the actual shape of the data into

account.

Using f-RHH instead of RHH can slightly improve the correctness, although f-RHH addresses

a completely different problem. This is due to the way it treats points that are close to the

hyperplane. If a hyperplane cuts a dense cluster of points, all the points within the indecisive

area will be assigned to both subspaces. We can distinguish between two cases: (a) all points

of the cluster are within the indecisive area or (b) only a subset of the cluster is within the

indecisive area. If (a) is the case, then all points will result in the same subspace and thus

also in the same subtree or leaf. if (b) is the case, then only the points within that area will

be hashed in the same subspace, while all other will be divided in either of the subspaces.

One way to deal with this issue is to set the angle for the indecisive area to the maximum

distance between two points within that cluster. While this setup will solve the problem for

a specific cluster, it will not work in general for other clusters within the same dataset, since

their shapes (and thus their maximum distance) can differ from each other. Additionally,

in order to obtain the information of the maximum distance between two points within a

cluster, some additional computational effort is needed and will worsen the overall runtime

of the algorithm. Even if it is possible to get the information without any computational effort,

the angle for the indecisive area will be the same for every hyperplane, and can therefore

not be defined explicitly for a specific cluster.

Alternatively, the angle for the indecisive area can be kept variably, and therefore allow the

angle to be different for every hyperplane. Percentage-based Hyperplane Hashing (p-RHH)

extends the idea of f-RHH, so that the angle of the indecisive area is not fixed, but adaptive to

the points that are hashed with it. Instead of providing the angle as a constant parameter for

all hyperplanes, each hyperplane will define the angle to always cover a fixed fraction of the

points hashed in the given node. This parameter is represented by a percentage threshold

and is defined for all hyperplanes. Although this parameter is also constant, the angle of

each hyperplane will be variable, since the angle depends on the points that are hashed with

it. In order to select a percentage of points, all points that will be hashed with the hyperplane

will be ordered by their distance to it and only the closest points, equal to the amount of the

threshold, will be hashed as indecisive. Assume we have a hyperplane h1 that hashes 200
points in total. If the percentage parameter is set to 0.1, 20 of the 200 points will be hashed

as indecisive. This is equal to setting the indecisive angle so that 20 points out of the 200

5.2. Percentage-based Random Hyperplane Hashing 39

hi

(a)

hi

(b)

Figure 14: Shows the difference between f-RHH (a) and p-RHH (b) for a dense cluster in a dataset.
The indecisive area in p-RHH is equally distributed to both sides, while for p-RHH it is
uneven. In addition, p-RHH covers the whole cluster, which contains 5 very close vectors.

points are covered. If, for example, a second hyperplane h2 hashes 100 points in total, only

10 points will be hashed as indecisive, and therefore the angle for the indecisive area will be

different as the angle of h1.

Another difference between f-RHH and p-RHH is the location of the indecisive area. In f-RHH

the angle is set so that each side of the hyperplane have the same area covered as indecisive,

while in p-RHH the these angles can be unequal. The reason is that we do not necessarily

know where exactly the hyperplane cuts the cluster, and therefore it is necessary to "move"

the area so that the whole cluster is covered.

Figure 14 shows the difference between both RHH variants, where (a) represents f-RHH

with a constant angle and (b) p-RHH with an angle so that 50% of the points are covered. Just

by looking at (b) it is noticeable that the indecisive area for the lower red area is larger than

the blue one. As a result, the whole cluster of points is within the indecisive area and will be

hashed into the same subspaces, while for (a) only a small portion of the cluster will do so.

Therefore, we can assume that for a query point that is part of the cluster, the near neighbor

set for p-RHH will be presumably better than for f-RHH, since all the points of the cluster will

have a higher probability to result in the same subtree.

While for f-RHH the space complexity can not be computed in general, since the amount

of points that will be hashed as indecisive is not limited by any parameter, the percentage

threshold of p-RHH enables the ability to compute the worst case space complexity of p-RHH,

as the amount of indecisive hashed points per layer is limited. Assuming that the points of

the dataset are equally distributed into the next layer, the total amount of points given by the

initial dataset and the indecisive hashed points is maximized. Given this, we can compute

40 Challenges and Improvements for LSH

the maximum depth of a binary tree where each data point is stored into its own leaf as

follows:

Theorem 2 (Depth of p-RHH binary tree with maximized data points). Given a data set T of

n points, an percentage threshold as 0 ≤ p < 1 and l being the current depth initialized with

0, we can compute the depth of a binary tree, while the amount of hashed items by p-RHH is

maximized by

kprhh(n, p, l) =

n, n≤ 1

kprhh
(
(n

2 + n · p), p, l + 1
)

n> 1

Given this, we can compute the number of nodes in a full binary tree as follows:

Theorem 3 (Maximum number of nodes p-RHH). Given a data set T of n points, a percent-

age threshold as p < 1 and the maximum tree depth as m we can compute the maximum

number of nodes in p-RHH by

nodesprhh = 2k+1 − 1,

where k is given by:

min
(
kprhh(n, p, 0), m

)
In definition 11 the maximum layer is computed recursively, where n

2 + n · p defines the

number of points in each node of the current layer l. Since p is limited to [0, 1), the amount

of points per node will decrease with each layer. If the amount of points for a particular node

is 1, the current layer will be returned as tree depth, otherwise the recursion will continue.

Note that this is not the maximum depth that a binary tree can have while hashing points

with p-RHH, but represents the maximum depth of a binary tree, when the amount of hashed

points is maximized. In definition 12 this depth is then taken to compute the number of nodes

in a full binary tree, that is restricted by the maximum tree depth in an LSH Forest.

Finding a good percentage parameter is an essential part of this extension, as it defines

the amount of points that will be hashed as indecisive. In addition, the amount of points

that will be hashed with a certain hyperplane has to be known, so that the algorithm can

work properly. Therefore, the initialisation of the trees in LSH Forest has to be changed a

bit. Instead of inserting the data points sequentially into each node, they will be inserted

simultaneously. By doing so, the amount of data points that will be hashed with a certain

hyperplane will be known in advance. Moreover, we can firstly compute the distances of all

points to a hyperplane and therefore define the angle of the indecisive area. Afterwards, the

hashing procedure will be similar to f-RHH.

5.3. Indecisive Random Hyperplane Hashing 41

5.3 Indecisive Random Hyperplane Hashing

As an alternative approach to improve the NNS correctness, we will introduce Indecisive

Random Hyperplane Hashing (i-RHH). This RHH variant represents a hybrid of f-RHH and

p-RHH. Its essential idea is instead of hashing points as indecisive, it will ignore the hashing

outcome of a node if a certain fraction of points is too close to it. Similar to p-RHH, we first

compute the distance to the hyperplane of the node for every point that will be hashed with

it. As this process needs to pre-compute the distances, the initialization phase will be exactly

like it is described for p-RHH. Afterwards, two parameter are necessary to decide how the

points will be hashed:

1. A constant parameter C that defines the angle for the indecisive area.

2. A constant parameter p that describes the fraction of points, for which the outcome of

a node will be ignored.

Like in f-RHH, the parameter C defines the distance for which a point will be considered

as indecisive. The second parameter p describes a percentage threshold and will be used

to decide if the hyperplane of a node will be set as indecisive, and therefore ignored. If the

fraction of points that are too close to the hyperplane is lower than the given threshold p,

the algorithm will behave similar to RHH. If, however, this fraction exceed p, all points that

are hashed with this node will be hashed as indecisive. Hashing all points as indecisive will

have essentially the same effect as ignoring the outcome of the hyperplane completely. As

an effect we avoid to make any decision about the points, if a certain amount of points is

to close to it. Different from p-RHH and i-RHH, the points will not be hashed into both trees.

In order to avoid hashing points multiple times, the points will be hashed into one leaf on

the lower layer, while all outgoing edges of the indecisive node (representing the indecisive

hyperplane) will be redirected to the new node.

The query procedure will remain mostly the same. However, computing the hashing out-

come for a query of an indecisive hyperplane is an unnecessary computational effort, since

all outgoing edges are directed to same node. Therefore, the hash value will not be com-

puted for this particular plane, but the query point will just take any edge to the next node.

This way we can ensure, that no additional computational effort has to be made if planes are

set as indecisive.

However, ignoring the hashing outcome of a hyperplane means that the amount of hyper-

planes to hash points into the forest will be reduced by 1. Although this will increase the

fingerprint length, the query time will remain the same as for RHH, since no computational

effort is necessary to compute the hash value for an indecisive plane. Therefore, the amount

of hashing computation will remain exactly the same, while the fingerprints can be different.

Percentage-based as well as indecisive Random Hyperplane Hashing addressing the same

issue, while both behave slightly different. In case of i-RHH, we will try to improve the hashing

42 Challenges and Improvements for LSH

procedure by ignoring "badly" generated hyperplanes. As a consequent, points that can

not be assigned clearly to one subspace will still result in the same leaf. Additionally, the

percentage threshold for p-RHH have to be selected carefully, since it has to cover all points

of the cluster in order to keep them together. If the threshold is chosen so that not all points

are within the indecisive area, outer points of the cluster will be separated. The same case is

also applicable to i-RHH, with the difference that not only the threshold, but also the angle for

the indecisive area has to be defined so that clusters can be detected. A closer comparison

of both algorithm will be covered in Section 7.

5.4 Error rates

There are very few cases, were RHH can perform better as the fuzzy variants. While this is

expected to happen very rarely, it depends on the query point and its angular distance to its

closest points as the following example will show:

Assume that for RHH, the query vector q and two vectors v1 and v2 are given, where v1 is

the closest neighbor to q. On layer n, the training vectors are separated, so that v1 is hashed

to 0 and v2 to 1. On the next layer n + 1, v1 will again be hashed to 0 and v2 to 1, so that for

the fingerprints for the vectors are given by hn,m(v1) = (0, 0) and hn,m(v2) = (1, 1). Note that

on layer m both points are already separated into different branches. Now assume that for

the same layers the fingerprint of q is given by hn,m(q) = (0, 1). On layer n, q would be hashed

into the same branch as v1, the hashing procedure would be stopped on layer m and v1 as

a near neighbor candidate returned. For f-RHH, the same scenario is given, but this time n
hashed v2 as indecisive so that the fingerprint of v2 is given by hnm(v1) = [(0, 1), (1, 1)]. If the

fingerprint of q is again given by hn,m(v1) = (0, 1), instead of stopping at layer m, the hashing

procedure would continue since q and v2 have the same fingerprint. As a result, v1 would not

be in the set of near neighbor candidates. Note that finding v1 as nearest neighbor was only

possible in p-RHH since it was hashed as indecisive and thus resulted in the same subspace

as q.

Figure 15 illustrates this scenario for a 2-dimensional space. The left image 15 (a) shows

the the random hyperplane hashing on layer n for both variants. Figure 15 (b) shows the

hashing procedure on layer m for RHH. Since v1 is the only vector and the hyperplane would

separate q and v1 in different subspaces, the hashing procedure would stop and return v1 as

a near neighbor candidate. Figure 15 (c) shows the the hashing procedure on the same layer

for RHH. Again, the hyperplane separates v1 from q, but this time the hashing would continue

to the layer below, since q is assigned to the same subspace, as vector v2. Note that v2 is

only considered in this hashing procedure, because it was within the fuzzy area as depicted

in (a).

5.4. Error rates 43

hi

v1

q

v2

(a)

hi+1v1

q

(b)

hi+1v1

q

v2

(c)

Figure 15: Illustrates the case where RHH performs better than f-RHH. (a) Shows the hashing pro-
cedure for both variants, while (b) shows the hashing procedure for RHH on layer i + 1
and (c) for the one for f-RHH. In (b) the hashing procedure for RHH would stop, since hi+1
would separate v1 and q. while in (c) it would continue, since q would result in the same
subspace as v2.

While this case can indeed happen, the probability that f-RHH will separated q from its near-

est neighbor is smaller then keeping them together. In fact, we can compute this probability

as follows:

Assume that the probability of a query vector q and its closest neighbor v with angle

β between them being separated by RHH is given by Pr[h(q) 6= h(v)]rhh and the prob-

ability for the same case in f-RHH for an indecisive angle of α is given by Pr[h(q) 6=
h(v)] f rhh. We can show that the probability of Pr[h(q) 6= h(v)]rhh ≥ Pr[h(q) 6= h(v)] f rhh

by contradiction:

• The probability of Pr[h(q) 6= h(v)]rhh is given by max
(

β
π , 0
)

.

• The probability of Pr[h(q) 6= h(v)] f rhh is given by max
(

β−α
π , 0

)
.

• If we assume that Pr[h(q) 6= h(v)]rhh < Pr[h(q) 6= h(v)] f rhh, then max
(

β
π , 0
)
<

max
(

β−α
π , 0

)
• This is only true if α > β, but in this case f-RHH would have hashed v as indecisive

and thus, it would result in the same subspace as q E.
• Therefore for any given α > 0, the probability that RHH separates q from its

closest neighbor v is always Pr[h(q) 6= h(v)]rhh > Pr[h(q) 6= h(v)] f rhh .

What this proof essentially shows is that the probability of making a "bad" hashing so that

q is separated from v is always smaller than the probability that a fuzzy random hyperplane

will hash q and v to the same subspaces. This probability correlates to (a) the distance of q
and v and (b) the indecisive angle α. Knowing this, we can compute the probability of q being

separated from its closest neighbor as follows:

Theorem 4 (error rate f-RHH). Given a query vector q, the dataset W, and its closest vector v

44 Challenges and Improvements for LSH

so that min {dcos(q, wi)|wi ∈W} = dcos(q, v), the probability that min {dcos(q, wi)} 6= dcos(q, v)
for f-RHH with the indecisive angle of α can be computed by

Err f rhh(q, v) = max
(

dcos(q, v)− α

π
, 0
)

.

Comparing the correctness of p-RHH and RHH, we can make a similar assumption. If we

assume that the percentage range is set so that at least 1 point will be hashed as indecisive

it will always be the closest point to the query. In fact, p-RHH will always perform better

as RHH, if the percentage of points is set so that the amount of fuzzy hashed points for all

layers matches to the requested amount of near neighbors to q. This has the reason, that if a

hyperplane will be between the query point and its nearest neighbors, the next closest point

will be hashed as indecisive. Since there is no other closer point to q as its nearest neighbor,

it will be hashed as indecisive and thus always distribute to the same subspace as the query

point. If now on each layer, the amount of indecisive hashed points matches the requested

amount of k nearest neighbors, the k closest neighbors to q will always be hashed in the same

subspace and thus always in the returned nearest neighbor set. However, proving this is not

obvious and more challenging as it is for f-RHH, since the angle of the indecisive area is not

fixed. The same case is also true for i-RHH: Although the angle in i-RHH is fixed, it needs to

be determine how many points are within that area. This in turn depends on the dataset and

the distribution of the data points and thus can not be answered in general.

6 Conceptual Approach

In order to proof and evaluate the performance, all RHH extensions presented in Chapter 5

were implemented and tested for different scenarios1. The results are compared to a stan-

dard implementation of Random Hyperplane Hashing. We will refer to the dataset that is feed

to the LSH Forest as training set.

All extensions can be used with the normal LSH Forest, but in this case some smaller

modifications to the algorithm need to be done. For this reason a modified version of the LSH

Forest was implemented and used among all extensions to ensure the comparability of the

results. The forest consists of multiple binary trees. Moreover, each layer of each tree has a

unique hash functions assigned, which is used by its layer nodes to compute the hash value.

The initialization phase for RHH and f-RHH is done by inserting each point of the training set

sequentially into the forest, while for p-RHH and i-RHH the points were inserted at the same

time, so that both algorithm can work correctly. However, since the experiments will focus on

comparing the different RHH extensions, the training set will be determined once and does

not support any insertion of training points afterwards. Hence, there will be no performance

difference if the training points are inserted at once or consecutively. The query procedure

is exactly the same for RHH and all 3 extensions. Therefore, for any query point q the query

procedure for the k nearest neighbors is as follows:

1. Point q is inserted into each tree (top-down phase):

a) For each level of each tree, q is hashed with either of the RHH extensions

b) If a leaf or dead end is encountered, the found near neighbor candidates are

marked and the tree is deactivated

2. After all trees are processed, the near neighbor candidates are synchronously collected

from all trees, until the near neighbor limit k is exceeded (bottom-up phase)

3. The near neighbor candidates are filtered by their similarity to q and only the k closest

are returned.

As Random Hyperplane Hashing demands the points to be given in their vector represen-

tation, the near neighbor candidates will be filtered by their angular distance to the query

point.

1 The implementation is available under https://git.rwth-aachen.de/iraklis.dimitriadis/lsh

45

46 Conceptual Approach

When using LSH Forest with Random Hyperplane Hashing, many opportunities to improve

the performance of the algorithm are available. However, the performance of the algorithm

can not be simply compared by a single factor, but depends on the goal that is defined. More

precisely, the performance of LSH Forest can be measured by different characteristics and

depends on the use case, which makes some of the characteristics more important than oth-

ers. This makes the comparison of different RHH extensions more complex, since each one

focuses on improving only some of those characteristics. Therefore, the experiments in this

thesis will focus on mainly three characteristics: (a) query time (b) space allocation and (c)

correctness of the near neighbor set. In order to understand the computational results in

Chapter 7, we will shortly highlight the key factors for each of them.

(a) Query Time: The query time is recorded from the moment the query point is inserted

into the forest until the near neighbor set is computed and returned. Since the query pro-

cedure is exactly the same for all four RHH algorithms, the query time will depend on their

hashing efficiency and the amount of times a query point needs to be hashed. How often a

query point is hashed depend on the average depth of each tree, which can be different for

any of the implemented RHH algorithms.

Another factor that has an effect on the query time is the amount of near neighbor candi-

dates. Since the similarity of each candidate has to be compared to the query point, some

computational effort is necessary to compute the distance between them. Therefore, the

amount of near neighbor candidates has to remain low, while the correctness of the near

neighbor set is high. The number of candidates strongly depend on the hashing procedure of

each extension, and therefore it is important that a single point is only hashed into multiple

subtrees when necessary.

(b) Space Allocation: The space allocation is represented by the amount of nodes that

are necessary to structure the trees of the forest. This amount depends on the depth d of

each tree, the forest size t and how deep the data points of the training set are hashed into

each tree. The RHH extensions differ in the amount of generated nodes, as each one follows

an alternative approach to increase the correctness of the near neighbor search. As a result,

the training points are distributed differently, where the amount of necessary nodes can vary.

As one of the main reasons, hashing points as indecisive necessarily increases the amount of

nodes in a tree. The reason for that is that hashing points as indecisive increases the size of

the dataset in each iteration and can expand the tree significantly, which makes it important

to keep the amount of those points low.

(c) Near Neighbor correctness: The performance of the near neighbor correctness is

essentially given by the quality of the returned near neighbor set. The quality itself depends

on the distances between the query point and all points of the approximated near neighbor

6.1. Datasets 47

search relatively to the ones of the optimal set. The quality of a near neighbor search is then

computed as follows:

Definition 11. The quality Q of an approximated k near neighbor set P = {p0, ..., pk} for its

given optimal set P̄ = { p̄0, ..., p̄k} is computed by

Q =

k
∑

i=0
d(p̄i, q)

k
∑

i=0
d(pi, q)

,

where d is a distance function and q the query point.

The value of Q is between 0 and 1, where 1 represents the best possible case as this is only

the case if the approximated near neighbor set is the same as the optimal one. Therefore,

the closer the quality Q is to 1, the better is the approximated near neighbor set. In order to

measure this quality, it is necessary to compute the exact distance between the query point

and each of the k near neighbor points. Since the data will be processed and represented as

vectors, the distance of two data points is represented by the angular distance between their

projected vectors.

The quality of the near neighbor set strongly depends on the selected candidates, which

in return is related to the hashing procedure of the RHH algorithms. RHH distribute the data

points so that the query point is more likely to be hashed in the same leaf as it nearest neigh-

bors. While this is true for all implemented RHH algorithms, the RHH extensions will increase

this probability by hashing some points multiple times. However, this will have a negative

effect to (a) and (b) and it remains to find a good balance between the quality of the near

neighbor set and the query time as well as the space allocation.

The performance of each algorithm is tested by a series of experiments. In order to have

a good and representative evaluation, the same experiments were repeated for each RHH

algorithm and the results compared among each other. As an additional task, some test sce-

narios will validate the classification efficiency of the RHH algorithms and see if any of the

extension can outperform RHH. The scenarios will consist of three different datasets, where

two of them will be text and one sound based.

6.1 Datasets

The datasets to test the RHH algorithms were selected so that each one challenges the LSH

Forest algorithm on another domain. We will discuss each one in detail and explain the vector

generation process for each dataset. This will be followed by a more detail explanation about

48 Conceptual Approach

s y s t e m

01110011|01111001|01110011|01110100|01100101|01101101

126965465245037

convert to int

Figure 16: Shows the process of transforming the word "system" into a number.

the hyperplane generation, since the generated vectors will be of infinite dimension.

6.1.1 ACM Papers (ACM)

This dataset is a collection of different ACM papers [rahm:2017]. While it contains biblio-

graphic data, with 4 attributes title, authors, venue, year, only the information of the title

will be used to generate the vector. The short title of every data record does not contain

much information and will challenge the LSH algorithm such that it will be more difficult to

keep similar titles close to each other. In addition, this dataset contains data records with the

same title and will help to investigate the behavior of the different RHH variants for datasets

with duplicate records, as LSH Forest will hash same data records with the same information

in leafs on the bottom most available layer.

In order to to transform the data to its vector representation, each data record will be

tokenized into single words and stopwords removed. The numerical representation of each

word is then used as the index of the vector, while the frequency of it represented its value.

In order to represent a word as a number, every character was converted into an 8-bit vector.

This bit vectors are then concatenated and the sequence of bit translated to its integer value.

Figure 16 shows how the word "system" is translated into its decimal representation. The

binary string of this word consists of 5 × 8 bit blocks, where each block is representing a

character. For example the bit representation of character "s" is 01110011, and therefore

the bit string begins with exactly that prefix. This bit block is translated into a number by

transforming it as follows:

Definition 12. Given a bit string D = d0, d1, ...dn−1, dn its decimal number is equal to:

decimal(D) = d0 · 20 + d1 · 21 + ... + dn−1 · 2n−1 + dn · 2n

By using the decimal number of a word as index and its frequency as the value to it, we

obtain a vector that represent the data record by its words and frequency. As these numbers

will be very large while the amount of words in the titles will be usually less than 20, the

6.1. Datasets 49

generated vector will become very sparse. Furthermore, the amount of words is basically

unlimited, since each concatenation of random characters can be interpreted as a word.

Therefore, the dimension of the vector will be +∞. However, since each text document, or in

this case the title of the data record, is limited by the amount of words, this vector will have

a limited number of non-zero entries. This fact will enable us to compute the distance of the

vector and the hyperplane, as we will see in Section 6.2.

6.1.2 Bag of Words (BOW)

This dataset consists of five text collections in the form of bag-of-words [Dua:2017, newman:2008].

This means that the documents are not given in text form, but are represented by a list of

unique numerical word id’s and their frequency. This list does not contain any stopwords

and is filtered so that it includes only words with a frequency of 10 or higher. The dataset is

ideal for clustering and classification topic modeling experiments and fits very good into the

scope of this thesis. At the time this thesis was written, one of the collection was not avail-

able, and therefore not included in the tests. The remaining four text collections consists of

the following sources [Name (documents, unique words, total words)]: Enron Emails (39861,

28102, 6400000), NIPS full papers (1500, 12419, 1900000), KOS blog entries (3430, 6906, 467714),

NYTimes news articles (300000, 102660, 100000000).

The vector generation of this dataset will be similar to the ACM paper. However, removing

stopwords and transforming the words of the text document into its decimal number was not

necessary, since each document was already represented by a unique word id and stopwords

removed. Therefore each word id represents the index to an vector, while their frequency

was taken as its value. In addition, each data record will be labeled with the name of its class

collection which will then be used to validate the results of the classification tests.

6.1.3 Urbansound8k (U8K)

This dataset contains 8732 labeled sound excerpts (<=4s) of urban sounds from 10 classes:

air conditioner, car horn, children playing, dog bark, drilling, engine idling, gun shot, jack-

hammer, siren, and street music [urbansounds:2014]. It was designed for audio recogni-

tion and sound classification and fits perfectly as dataset for the test scenarios of this thesis.

The work of Salamon et. al [Salamon:UrbanSound:ACMMM:14] gives a close look into the

composition of this dataset.

The vector generation of the sound excerpts is more complex, as the data model to gener-

ate them is not as simple as for text based elements. For example, a text can be trans-

formed into a vector based on its words and their frequency. Thus, the cosine similar-

ity is high, if two documents have many words in common. For sound files this is more

difficult, such that we first need to find a property for which we can compare two sound

50 Conceptual Approach

snippetf 1 snippetf 2 snippetf n-1 snippetf n...

generate snippets

Soundfile

snippetf 1 snippetf 3 snippetf n-1 snippetf n...

snippetf 1 snippetf 2 snippetf n-3 snippetf n...

...

snippetf 1 snippetf 2 snippetf n-1 snippetf n...

generate vector projection

1011000101

1111000101

1011000101

1111010010

0
...
2
...
1
...
3
...

index 0

...

index 709

...

index 965

...

index 978

...

0index n

...

Ph
as

e
1:

Sn
ip

pe
ts

1011000101 1111000101 1011000101 1111010010...

Random Hyperplane Hashing

MFCC generation for each snippet

Ph
as

e
2:

 B
in

ar
y

Ve
ct

or
s

Ph
as

e
3:

 V
ec

to
r

G
en

er
at

io
n

skipgrams

snippet 1 snippet 2 snippet n-1 snippet n...

Figure 17: Shows the processing of a single sound excerpt in 3 phases [cochezCom]

files. The Mel Frequency Cepstral Coefficients (MFCC) has its origin in speech recognition

[rabiner1993fundamentals]. Human generated vocals are shaped by the tract of the

tongue, the movement of the mouth, teeth etc. Therefore, its sound is determined by this

shape. The MFCC offers a way to represent this shape by a short time power spectrum of

the phoneme and has proven itself as property to compare human generated sounds. The

work of Logan et al. [logan2000mel] showed that this approach of speech recognition is

also applicable for music modeling.

This thesis will use MFCC in order to transform a the sound excerpts into a vector, so that

two sound files can be compared based on their MFCC properties. However, comparing just

the MFCC vectors of the sound excerpts is not enough, since some of them contain noises

that distort the MFCC generation and make them useless as such. For this reason, a data

model was developed which will reduce the distortion of noises by leaving out some smaller

parts of the sound excerpt. In order to do so, the vector of a sound excerpt will be obtained

6.1. Datasets 51

by processing it three phases:

1. snippet generation

2. binary vector generation

3. final vector generation that represents the sound excerpt

The illustration in 17 shows the whole process of the vector generation. The first phase

divides the sound excerpt in to smaller ordered snippets. Afterwards, the MFCC vectors for

each snippets will be generated and concatenated with skipgram. Skipgram is a technique,

where elements in a sequence are concatenated so that the length of the concatenation

consists of n consecutive elements, while at most k elements of the sequence are skipped. A

more formal definition is given as follows [guthrie2006closer]:

Definition 13. For a given sequence S = s1, ..., sn the set of k-skip-n-grams is define as:

{si1 , si2 , ..., sin |
n

∑
j=1

ij − ij−1 < k}

Generally speaking, the k-skip-n-gram set of the snippets set is every possible ordered

concatenation of n consecutive snippets, while at most k snippets are skipped in between.

If for example the set of snippets is given by S = {s1, s2, s3, s4} its 1-skip-2-gram is given by

Sgram = {(s1, s2), (s1, s3), s1, s4), ..., (s2, s4), (s3, s4)}. The idea is to compare two sound excerpt

by their skip-gram sets. If sound excerpts are similar, but one of them is distort by noises,

they will still have some skip-gram vectors in common.

In the second phase of the process, we apply several Random Hyperplanes to the skip-

gram set. By doing so, each element in the skip-gram set is represented by a bit string,

where the length of the string is defined by the number of hyperplanes that were applied to

each skip-gram.

In the last phase, these bit strings are mapped to a vector as it was described in Sec-

tion 6.1.1, so that a single vector represents the skip-gram set.

There are several parameters that can be set and will influence how good a vector rep-

resents a sound excerpt. Therefore, the test will be executed for different settings of the

following parameters:

• amount of MFCC features

• seconds of a single snippet

• k and n for skip-gram generation

• amount of hyperplanes to generate the binary vectors

Section 7 will provide a more detailed analysis of those settings.

52 Conceptual Approach

6.2 Hyperplane Generation

In some datasets the generated vector of the data records will be of infinite dimension. For

example, in the ACM Papers dataset, each index of the vector represents a word and its

frequency. However, the amount of words is theoretically unlimited, as any sequence of

character can be defined as word. In order to represent any possible word, the dimension of

the vector has to be infinite. As a consequence, the angular distance between a hyperplane

and those vectors has to be performed in an infinite space, also known as Hilbert Space

[akhiezer2013theory]. The Hilbert Space generalizes the rules for the Euclidean Space, so

that the algebraic vector methods are applicable to any finite and infinite dimension. For the

Euclidean Space, the angle between a vector ~V = (v1, ...vn) and the normal of a hyperplane
~N = (n1, ...nn) is defined as

cos θ =
V · N
‖V‖ ‖N‖ ,

where · is defined as their dot product:

V · N = ∑
i

vini

The dot product can be extended to the infinite dimension if this series converges. This is

given if both V and N satisfy:

∑ n2
i < +∞

This case is only satisfied by the vector, since the normal of the hyperplane is of infinite

length with an infinite amount of non-zero entries. Thus, its norm |N| = ∑ ni will not be

smaller than +∞. While this being true, it is known the entries of ‖N‖ are limited by the

amount of different words in all documents. Moreover, ‖N‖ is replaced by a constant value.

Knowing this, both V and N will satisfy the condition, and therefore the computation of the

angle between them can be done as above. Note that this is also possible because we can

do the same assumption as we did for f-RHH: Since the normal vector N will be the same for

every vector, ‖N‖ will be constant for every angle computation, and therefore be replaced

by a constant value.

7 Computational Results

All experiments were run on a standard desktop computer (Linux Fedora 29, Intel Core i5-

3570K CPU @ 3.40GHz and 8GB RAM) and will cover different scenarios. They are explicitly

designed to test the performance of the RHH extensions presented in Chapter 5. Further-

more, the results are averaged by 100 samples for the same scenarios and will provide a

good empirical overview. The random hyperplanes will be generated based on a seed and

shared among all RHH algorithms to ensures that the results are comparable to each other.

As key points of this experiments we will focus on the three properties, mentioned in Sec-

tion 6: (a) query time, (b) space allocation and (c) correctness of the near neighbor set.

Measuring these is not a trivial undertaking, because the result depends on many parame-

ters that need to be set. For this reason some of those parameters will be the same for all

scenarios. Unless otherwise stated, the forest will consist of 10 trees and the near neighbor

search will search for the 5 closest neighbors.

In the first two scenarios, we will validate the performance of each variant for the ACM

and BOW dataset. As the datasets differ in dimensionality and data information, each one

will proof the performance of the algorithms for different requirements. The results will be

discussed independent and connections will be made if necessary. In the third test scenario

the classification capability of each RHH variant will be proofed explicitly for the BOW dataset,

as this dataset is known to be good for classification tasks. In the end, we will shortly evaluate

the presented data model of Section 6.1.3 and discuss if the vector representation of a sound

excerpt is reasonable. This will be done by applying the same classification tasks as for the

BOW dataset.

All scenarios are structured so that they will test the performances for different tree depths

ranging from 1 to 25, while the training and query set will remain the same for each depth.

This will allow to observe the behavior of each algorithm for different tree depths and ensure

comparability among different tree depths. Figure 18 shows the quality of the query process

for (a) p-RHH and (b) f-RHH with different parameters. It can be observed, that increasing

these parameters improves the quality of the returned near neighbor set of both extensions,

so that each tested tree depth shows increased near neighbor correctness. However this

results in the drawback that the amount of nodes to store the tree structure is increased as

the following sections will show.

53

54 Computational Results

5 10 15 20 25
0

20

40

60

80

100

depth

co
rr

e
ct

n
e
ss

p-RHH(5) p-RHH(10)
p-RHH(20)

(a)

5 10 15 20 25
0

20

40

60

80

100

depth

co
rr

e
ct

n
e
ss

f-RHH(0.01) f-RHH(0.1)
f-RHH(0.15)

(b)

Figure 18: Shows the average correctness of an NNS for (a) p-RHH and (b) f-RHH for tree depths 1-25

7.1 ACM Dataset Scenario

In the first scenario, we built the forests with 2000 training points of the ACM dataset. Note,

that in order to find reasonable parameter for f-RHH, p-RHH and i-RHH, we investigated the

dataset and computed the distance between random points and hyperplanes. It was ob-

served, that the distance was at least 0 and most 3, while the median was 0.6 and the average

0.7.

5 10 15 20 25
0

20

40

60

80

100

depth

co
rr

e
ct

n
e
ss

Random
RHH

p-RHH(.25)
f-RHH(.15)

i-RHH(.15,.25)

(a)

d RHH p-RHH f-RHH i-RHH
1 100 100 100 100
2 99.98 100 100 99.98
3 99.41 99.74 99.74 99.41

...
8 73.41 82.66 85.46 75.16
9 65.02 75.65 79.30 69.68
10 55.28 68.21 71.60 62.95
11 42.14 58.88 63.44 54.60
12 34.68 50.42 57.17 48.70
13 31.58 41.11 47.72 43.13
14 30.34 33.82 39.16 36.33
15 30.34 30.98 33.43 32.60
16 30.34 30.38 31.53 31.20
17 30.34 30.37 31.25 30.96

...
25 30.34 30.37 31.25 29.56

(b)

Figure 19: Shows the average correctness of an NNS for the ACM dataset for each algorithm and tree
depths 1-25

Table 19 shows average correctness for each tree depth. The indecisive parameter for

f-RHH was set to 0.15 for f-RHH, the percentage threshold for p-RHH to 10% and for i-RHH

these parameters were set to 0.15 and 25%. The first observation we can make is that all

approaches perform clearly better than just selecting points randomly from the training set.

While the average correctness of random selecting points is 5.5%, the lowest correctness for

7.1. ACM Dataset Scenario 55

all RHH was 29.56%. Although the indecisive parameters for each variant were set very low,

means that only smaller portions of the points were hashed as indecisive, we can see that

f-RHH and p-RHH perform better as RHH and supports the assumption that both algorithms

should have a better correctness as RHH. While for tree depths greater as 16 the difference

between them is negligible, we can observe that for depth in between 7 and 15 the difference

is clear. For example, for the depth of 12, the correctness of i-RHH it was 57.17%, which is

nearly 1.7 times better as the correctness of RHH for the same tree depth.

For i-RHH this observation was not possible, since the correctness for this algorithm is

only better or at least as good as RHH for depth until 16, while for the other depths the

correctness is slightly lower. This was a bit surprising and contradicts to the assumption we

made in Section 5.3. The reason for this could be the limited amount of information that each

data record provides. This will force the LSH algorithm to distribute the training points into

smaller groups very early so that less points are available to determine the indecisiveness of

a hyperplane and RHH becomes more efficient.

For tree depths larger as 16 the correctness of each algorithm does not change anymore.

This seems reasonable since at this moment, most points are either hashed into a leaf as

single or are sharing a leaf with very similar points, so that the probability of separating

them is nearly zero.

0 5 10 15 20 25
0

500

1,000

1,500

layer

n
o
d
e
s

w
it

h
p
o
in

ts

Figure 20: Shows the average points to layer distribution for the tree depth 25

Investigating the item distribution for the tree depth of 25 in particular also approves this

assumption. From Figure 20 it can be seen that most points were hashed into leafs between

the depth of 11 and 24. Furthermore, the histograms of f-RHH and p-RHH were slightly shifted

to the right, when compared with RHH. This is expected and covers with the observation

made in [cochez2017large] as i-RHH and p-RHH will generate more points for each addi-

tional layer, while for RHH the amount of training points will remain the same.

While most points are distributed on the layers 11 and 24, we can see that there are still

many points hashed into a leaf of the bottom most layer. This has the reason that the nodes

will be split and branched until only one point is remaining in the node or the maximum tree

56 Computational Results

depth is reached. In addition, this dataset was mentioned to have some similar data records

that will consequentially force the algorithm to hash them to the bottom most layer, as those

datapoints will always result in the same leaf. However, the amount of points on layer 25 for

f-RHH was nearly as much as for the layer with the most points. The most likely reason to

this is that f-RHH will continue to hash points as indecisive, if a node contains more than one

item. Therefore, if points are so similar that any of the hyperplanes are unable to separate

them, the chances are increased that those points will be hashed as indecisive.

0 5 10 15 20 25
0

2,000

4,000

6,000

8,000

10,000

12,000

depth

a
v
g
.

it
e
m

s

(a)

0 5 10 15 20 25
0

10,000

20,000

30,000

depth

a
v
g
.

n
o
d
e
s

(b)

Figure 21: Shows average tree statistics for Figure 19, where (a) shows the average items and (b)
average nodes per tree

Figure 21 (a) shows the average points per tree and supports this assumption, since with

f-RHH the amount of points per tree is increased with each additional layer. An interesting

observation is that for p-RHH the amount of points does not increase much more for the tree

depth 12 and higher. If we compute the depth of a binary tree with equally distributed points

to nodes for p-RHH as explained in Chapter 5.2, we can see that the result is very close to

what we expected, since the depth for this scenario is expected to be 15.

Figure 21 (b) shows the average nodes per tree. It can be seen, that all fuzzy variants

compute more nodes as RHH, with f-RHH having roughly 30000 for the depth of 25. Com-

paring this to the 5205.10 nodes in RHH, the amount is increased by a factor of 6 and not

reasonable, when judging in terms of space allocation. For the same depth, the amount

of nodes for p-RHH was 15296.80 and if we compute the estimated amount of nodes by

min
(
kprhh(2000, 0.1, 0), 25

)
= 16384 we can again see that this is close to our expectations

from Section 5.2. Comparing the average nodes of i-RHH with RHH, we can nicely see how

indecisive hyperplanes influence the number of nodes for lower tree depths. We can see that

the amount of nodes for i-RHH is smaller as for RHH if the tree depth is between 9 and 15.

For depths higher as 16, i-RHH surpasses RHH. The reason for this is that i-RHH has defined

some hyperplanes as indecisive. For each indecisive hyperplane, the points will remain in

the same group and pass to the next layer. This is represented by the lower steepness as

for indecisive hyperplanes only one node is generated to distribute the points into the next

layer, while RHH is likely to generate two. As the amount of points that will be hashed by a

7.1. ACM Dataset Scenario 57

single node slowly decreases for each additional layer, RHH has more nodes with only one

successor, since most points will already be distributed to a single leaf, while for i-RHH this

effect is slightly delayed to a deeper tree layer. The effect of i-RHH can also be seen in Fig-

ure 20 as RHH have more points distributed between the layer 9 to 12 and i-RHH slowly catch

up to distribute the points on the layer above 13.

0 5 10 15 20 25
0

20

40

60

80

100

layer

a
v
g
.

in
d
e
ci

si
v
e

h
y
p
e
rp

la
n
e
s

Figure 22: Shows the average number of indecisive planes per layer for the tree depth 25

Figure 22 shows the average number of indecisive planes per layer for tree depth of 25. As

one can see, most skips were performed in between 10 and 13. This observation also matches

to the previous ones, since from Figure 21 we could assume that most skips were performed

in between those layers. Another interesting fact is that when summing up all indecisive

planes is approximately equal to the number of nodes that are left after subtracting the

ones of RHH and i-RHH. This makes sense since the indecisive planes represents nodes with

only one successor, where RHH is more likely to have two successor. Note that we can only

assume that RHH has two successor nodes, since this depends on the hyperplane and how

the items are distributed into the next layer and thus the difference between the nodes in

RHH and i-RHH are not exactly equal to the number of indecisive planes.

Figure 23 (a) shows the average path length for a point. Note that this is equal to the

average fingerprint length for a single point, since each edge represents one value of the

fingerprint. As we can see, the lowest length for all tested tree depths is achieved by RHH,

where the maximum length for depth 25 is roughly 13. An interesting observation is that

although p-RHH increases the number of points, its fingerprint length is the same as for i-

RHH. This is more likely related to the fact that i-RHH hashes the items deeper into the tree,

and therefore the fingerprint length becomes equal to the ones of p-RHH.

The average query time per tree depth is depicted in Figure 23 (b). During the query

execution it was prioritized that there was no other process running which could falsify the

search time. However, it still is possible that some unrelated computations were performed

by the operating system, so that for low query times the results are not exactly represen-

tative. Under this consideration, we can see that RHH and i-RHH have the best query time

58 Computational Results

0 5 10 15 20 25
0

5

10

15

depth

a
v
g
.

p
a
th

le
n
g
th

(a)

0 5 10 15 20 25

10−3

10−2

10−1

depth

q
u
e
ry

ti
m

e
(s

e
co

n
d
s)

(b)

Figure 23: Shows the average path length (a) and query time (b) per depth

until the tree depth of 6, while RHH becomes faster for trees with the maximum depth of

7 or higher. For the maximum tested tree depth, the performance of f-RHH and p-RHH was

nearly the same and twice as slow as RHH. This is reasonable, as both algorithm increases

the probability of similar points being hashed to the same leaf. As a result, the size of similar

points in a leaf will be larger and worsen the query time, as the similarity to the query point

has to be computed for each point of those points.

7.2 BOW Dataset Scenario

For this scenario, the forests were constructed by feeding them with 8000 training points of

the BOW dataset. The parameters remained the same, since observations showed that the

average distance of an random point to the hyperplane was approximately the same as for

the ACM dataset.

5 10 15 20 25
0

20

40

60

80

100

depth

co
rr

e
ct

n
e
ss

Random

RHH

p-RHH(.25)

f-RHH(.15)

i-RHH(.15,.25)

(a)

d RHH p-RHH f-RHH i-RHH
1 100 100 100 100
2 99.96 100 100 99.96
3 99.66 99.86 99.86 99.66

...
8 82.10 88.53 89.81 82.12
9 74.57 83.75 85.46 74.93
10 68.04 78.79 80.57 69.04
11 62.97 75.07 77.23 65.72
12 55.78 69.20 71.39 59.96
13 49.55 64.38 66.41 55.68
14 45.83 59.27 61.66 52.27
15 44.44 53.52 56.62 48.86
16 43.55 49.31 52.79 45.77
17 43.55 46.47 48.87 44.17

...
25 43.51 45.24 45.29 43.22

(b)

Figure 24: Shows the average correctness of an NNS for the BOW dataset for each algorithm and
tree depths 1-25

7.2. BOW Dataset Scenario 59

The correctness that is obtained by randomly selecting points from the training set was

approximately 4.31% and outperformed by each of the tested RHH algorithms. Interesting

to observe is that when comparing the results to the ones of the ACM dataset scenario, the

average correctness of randomly selecting a point is lower, while the the average correctness

for all tested algorithms is higher as for their counterparts. Beside that, it can be assumed

that the training points are hashed much deeper into the tree. An indicator for this is that

correctness steadily decreases until the tree depth of 19, while in the previous scenario, the

correctness stopped to decrease after the the depth of 16. We can see that for the maximum

tree depth the correctness for all algorithms is between 40.70% and 45.24%, while for the

previous scenario, the correctness was between 29.56% and 31.25%. This is approximately

a difference of 15% and can be explained by the larger training set size. Another reason for

this is that the data records of this training set provide much more information, so that their

vectors representation have more non-zero entries. This improves the near neighbor search,

such that the near neighbor set to a query is less likely to contain points with low a similarity

score.

Another observation that can be made is that f-RHH and p-RHH perform better, while i-

RHH is slightly worse than RHH. In addition, the correctness for f-RHH was slightly better as

for p-RHH. This is quite similar to what could be observed in Figure 19 and also supports the

assumption that was made in 5.4, since both algorithm can outperform RHH in terms of near

neighbor correctness. Comparing the i-RHH and RHH correctness with each other, we can

see that RHH outperforms i-RHH for higher tree depths. This contradicts to the assumption

that the reason for the bad performance of i-RHH in the ACM dataset scenario was related to

the limited amount of information provided by the data records. However, it is possible that

the amount of information provided by this data records is still not enough, so that i-RHH can

still not work as expected.

0 5 10 15 20 25
0

5,000

10,000

15,000

layer

n
o
d
e
s

w
it

h
p
o
in

ts

Figure 25: Shows the average points to layer distribution for the tree depth 25

Figure 25 shows the point distribution for the tree depth 25. It can be seen, that the his-

tograms of p-RHH and f-RHH are again slightly skewed to the right and most points are dis-

60 Computational Results

tributed in between the layers 14 and 21. If we compare the amount of points distributed to

the last layer, we can nicely see the how hashing points as indecisive for f-RHH increasing

the amount of points that are hashed to the last layer. This was already observed for the

ACM dataset, but the effect becomes more visible for the BOW dataset, for several reasons.

Firstly, the size of the training set for this scenario is increased, and thus the amount of inde-

cisive hashed points is likely to be higher. Secondly, this dataset contains more data points

with a high similarity. This will increase the number of nodes that store more than one point,

as those points are likely to be in the same leaf. As a result, they will be hashed to the bottom

most layer, while for each layer there is a chance that f-RHH will hash them as indecisive. If

so, the probability that f-RHH will hash more than one point as indecisive is more likely as

hashing only one of them as such. Therefore, the same set of similar points can be in multiple

leafs, while each time they are hashed to the bottom most layer.

0 5 10 15 20 25
0

20,000

40,000

60,000

depth

a
v
g
.

it
e
m

s

(a)

0 5 10 15 20 25
0

50,000

100,000

150,000

depth

a
v
g
.

n
o
d
e
s

(b)

Figure 26: Shows average tree statistics for Figure 24, where (a) shows the average items and (b)
average nodes per tree

Investigating the average points per tree as depicted in Figure 26 (a) we can make the

same observation as for Figure 21 (a), as the amount of points for f-RHH is steadily increas-

ing. Furthermore, we can see, that the proposed upper bound for generated points by p-RHH

is also true for this dataset, as for tree depths larger as 15 most points are already dis-

tributed until layer 15. Given the maximal amount of necessary nodes to store those points

as min
(
kprhh(8000, 0.1, 0), 25

)
= 131071 we can see that p-RHH is clearly under the proposed

upper bound, as for this scenario only 79500 nodes were necessary to store the tree.

If we compare i-RHH to RHH, we can again observe a similar behavior as for the ACM

dataset. The amount of nodes generated by RHH is higher in between the maximum depth

of 9 and and 19, while for larger tree depths i-RHH surpasses RHH in terms of node generation.

Figure 27 shows the average indecisive hyperplanes per layer for the tree depth being 25.

It can be seen that most indecisive hyperplanes are set for nodes between layer 12 to 16,

while most of them are on layer 13. If we compare Figure 27 and 22 we can notice that for

the BOW dataset the algorithm performed 4 times more skips as for ACM. If we consider that

the size of the training set was also increased by the factor of 4, it seems like the amount of

7.2. BOW Dataset Scenario 61

0 5 10 15 20 25
0

100

200

300

400

layer

a
v
g
.

in
d
e
ci

si
v
e

h
y
p
e
rp

la
n
e
s

Figure 27: Shows the average number of indecisive planes per layer for the maximum depth of 25

indecisive planes correlates to the size of the training set. The reason to this could be that on

layer 13 most points are grouped to smaller chunks, so that nodes of deeper layers will have

just a few points to hash. If this amounts becomes lower as 4 it is not possible to enable the

percentage threshold of 25% and set the hyperplane as indecisive. This is also represented

by the steepness in Figure 27 as the amount of indecisive hyperplanes decreases steadily for

each additional layer.

0 5 10 15 20 25
0

5

10

15

20

depth

a
v
g
.

p
a
th

le
n
g
th

(a)

0 5 10 15 20 2510−2

10−1

100

101

depth

q
u
e
ry

ti
m

e
(s

e
co

n
d
s)

(b)

Figure 28: Shows the average path length (a) and query time (b) per depth

Figure 28 (a) shows the average path length per maximum tree depth. Again, this is very

similar to what we observed for the ACM dataset. As long as all points are hashed down to

the bottom most layer, the average path length matches with the maximum depth of the

tree. This can be observed until layer 12 is reached, since the steepness of the average path

length for RHH slowly starts to decrease. This is also the case for the other RHH algorithms,

although the steepness is not decreased as much as for RHH. From Figure 28 (b) we can

nicely see how the average path lengths influences the query time. Until the the maximum

tree depth of 15 all algorithm suffer from the huge amount of near neighbor candidate, since

62 Computational Results

for each one its distance to the query point has to be computed. Note that for the depth of

0 this is equal to the exact near neighbor search and is thus of linear time complexity, as all

points of the training set will be in the set of near neighbor candidate. With each additional

layer, the data complexity decreases and the points in the near neighbor set become fewer.

Increasing the maximum tree depth to 16 and above, the query time slowly increases. This

indicates that the break even point where hashing the query point to a leaf becomes more

time consuming as filtering the set of near neighbor candidates. If we compare the query

time for the maximum depth of 25 we can see that the near neighbor search of f-RHH needs

nearly twice as much as of RHH, while for p-RHH the the query time is approximately 1.5

times more. Comparing the query time of i-RHH and RHH we can see that the 5-NNS can be

performed in approximately the same time.

7.2. BOW Dataset Scenario 63

43 45.5
0.02

0.04

correctness

q
u
e
ry

ti
m

e

Figure 29: Shows the correctness in relation to the query time for the tree depth 25

The above scatter plot shows a space divide in 4 categories Figure 29 illustrates a scatter

plot that categorize the algorithms by the query time and correctness for the tree depth of

25:

1. fast NNS/good NN quality

2. fast NNS/bad NN quality

3. slow NNS/good NN quality

4. slow NNS/bad NN quality

Obviously, the best possible category for any of the variants would be in the lower right

quadrant, so that the query is executed fast and the quality of the near neighbors good. As

we can see, the RHH algorithms can be grouped into two categories. RHH and i-RHH are

representing algorithms that allows querying the near neighbor set fast, while the quality of

it is less important. On the other hand, the query time for f-RHH and p-RHH is high, but the

quality of the near neighbor search increased.

7.2.1 Classification Tests

This scenario is designed similar to Section 7.2, but aims to test the classification capabilities

of each RHH algorithm. More precise, the same training and query set was used, so that

each forest was build with 8000 points of the BOW dataset and the near neighbor search

executed for 100 query points. This query points were then classified based on the obtained

near neighbor set for each algorithm.

Figure 30 shows the class frequency in the training and query set. The training points

are selected so that each class is represented approximately equally. Note that the nips

collection only consists of 1500 documents and is slightly less present in the training and

query set.

The classification of the query was done by following two different approaches: (a) Classify

64 Computational Results

ko
s

ni
ps

en
ro

n

ny
tim

es
0

500

1,000

1,500

2,000

2,167

1,485

2,168 2,180

fr
e
q
u
e
n
cy

(a)

ko
s

en
ro

n
ni

ps

ny
tim

es
0

20

40

60

80

100

32 30

14
24

fr
e
q
u
e
n
cy

(b)

Figure 30: Shows the class frequencies of (a) the training set and (b) the query set

the query by the similarity score of all classes present in the near neighbor search result and

(b) Classify the query by the frequency of each class present in the near neighbor search

result. In (a), the class for a query is defined by a similarity score. This score is computed by

grouping the near neighbor candidates to their classes and summing up their similarity. The

query point is then assigned to the class with the highest score. In (b) we simply count the

frequency of each class in the near neighbor set and the query point assigned to the most

frequent class.

In order to proof if the query item was classified correctly, the computed class is compared

to the original class of the query and if both are the same, the classification was successful.

0 5 10 15 20 25

90

95

100

depth

cl
a
ss

ifi
ca

ti
o
n

a
cc

u
ra

cy

Figure 31: Classification result by score for depth 1-25

Figure 31 shows the outcome of the classification tests when the query is classified by (a).

For lower tree depths, all algorithms achieved an accuracy of 100%. This indicates that for

the optimal near neighbor set, the proposed classification method works as intended and

can classify any given query point correctly. Even if the training space is divided in 256

subspaces, the classification accuracy remain at 100% for all tested algorithms. In between

the depths of 12 and 18 the classification accuracy of all RHH algorithm drop steadily. The

reason for that is most likely that at this point the training set is already well distributed into

7.2. BOW Dataset Scenario 65

the tree and separated in small groups of points, so that the quality of the near neighbor set

is decreased and by that also the classification accuracy.

Investigating the outcome for the tee depths in between 19 and 25 it can be seen that the

accuracy of all RHH algorithms stay the same, which indicates that the training points are

already distributed into leafs and the query always finds the same set of near neighbors,

even if the depths of the trees is increased. The accuracy for the depth 25 ranging from 88%
to 92%. This is still a very good accuracy if we consider that for deeper trees the training set

is separated into much more subspaces that will allow the classification to be done very fast.

If we rank the algorithms by their classification accuracy, it can be noticed that the ranking

is exactly the same as ranking the algorithms by their correctness performance from Sec-

tion 7.2. This indicates that the improved quality of the near neighbor set that was achieved

by using f-RHH and p-RHH correlates to the classification quality of the algorithms. Further-

more, it can be assumed, that the similarity score of the near neighbor is a good indicator to

classify the query item.

0 5 10 15 20 25

70

80

90

100

depth

co
rr

e
ct

n
e
ss

Figure 32: Classification result by frequency for depth 1-25

Figure 32 shows the classification accuracy by the frequency of the near neighbor classes.

The classification accuracy for each algorithm evolves very similar to their counter parts from

Figure 31 until the tree depth is 11 or higher. A bit surprising is that for this classification ap-

proach, the overall accuracy is much worse as for the score approach. In addition, expect

i-RHH, all algorithm achieve approximately the same accuracy for deeper trees and the differ-

ence between the RHH algorithms is not as big as it was for the score approach. One reason

for this could be that although f-RHH and p-RHH increased the quality of the near neighbor

set, it still contains more points with different class labels, while points with the same class

label have a very high similarity. This would also explains why for the score approach, the

classification quality was much better.

66 Computational Results

7.3 UrbanSounds8k Scenarios

Testing the RHH algorithms with the UrbanSounds8k dataset differs from the previous sce-

narios, because it is unknown if the proposed data model to generate the vector for a sound

excerpt is good or good enough. This made it quite difficult to analyze the outcomes of the

RHH algorithms. In addition, many different parameter, like sound snippet length, n-gram

and skip size, number of MFCC features and the the dimension of the hyperplanes add more

complexity, as each combination of those changes the results significantly. For this reason,

different combination were tested for the same scenario and their results compared. The

training set was given by 8000 datapoints from the UrbanSounds8k dataset. After loading the

datapoints into the LSH Forests, the result of the near neighbor search was averaged over

100 query points. Note that the parameters for f-RHH, p-RHH and f-RHH were the same as in

the previous tests.

secs n-gram skips MFCC planes ∅-nz-entries ∅-rand RHH p-RHH f-RHH i-RHH
0.2 3 1 10 10 3.9 20.43 97.55 98.17 98.11 97.99
0.2 3 1 10 20 12.67 2.79 79.30 81.06 81.00 80.43
0.2 3 1 20 20 15.64 5.44 70.75 75.80 78.15 71.63
0.2 4 1 20 30 21.09 4.44 63.16 64.78 69.56 63.69
0.2 4 1 20 10 6.3 23.37 96.48 97.29 97.12 96.38
0.2 4 2 20 30 17.03 4.62 67.43 69.13 69.62 65.4
0.3 4 1 20 30 14.37 4.33 61.83 66.05 65.76 60.37

Figure 33: Shows the correctness for different parameter combinations for the UbranSounds8k
dataset

The table given by Figure 33 shows how different parameter combinations change the cor-

rectness of the NNS. The column "nz-entries" represents the average non-zero entries in the

generated vectors. Generally speaking, this number gives an intuition how good the LSH

algorithm can distribute the dataset into the data structure, as more non-zero entries in-

creases the chances to recognize two unsimilar data points. This can also be seen from the

correctness of the near neighbor search results, as for a low number of non-zero entries, the

correctness seems to be unreasonable high. The reason for that is that different types of

sound excerpts are represented by nearly the same vector projection. This becomes clear

if we compare the generated vectors for two totally different sound excerpts: The values in

"vector" and "vector2" representing the index and its value to two different vectors, gener-

ated by the parameters in the table. For the first setup, the vectors of both sound excerpts

are identically, and therefore will always have the same hash value computed. If we com-

pare the vectors for the second setup it can be seen, that they are different from each others

and therefore most likely have different hash values computed. This is not the only case and

seems to happen very frequently, when the amount of non-zero entries is low. As a conclu-

sion, we can assume that setups generating more non-zero entries are favorable, as the LSH

algorithm can identify similar and unsimilar pairs much better.

7.3. UrbanSounds8k Scenarios 67

secs n-gram skips MFCC planes
vector 0.2 3 1 10 10
vector2 0.2 3 1 20 20

Figure 34: Illustrates vector representations of two sound excerpts with different preprocesss set-
tings

The setup that generates the most non-zero entries is given by (secs = 0.2, n− gram = 3,

skips = 1, MFCC = 20, planes = 30). This is very reasonable if we think about how the

different parameters changes the outcome of the generated vector. For example, if the time

window for the snippets length is small, the amount of snippets will become higher. This

on the other hand will allow to generate more n-gram-skip pairs, and therefore increase the

amount of non-zero entries, as each one has to be represented by the vector of a sound

excerpt. Choosing smaller n-gram lengths while the skip size is low will have the same effect,

as this will result in more permutations of pairs. Increasing the MFCC features and planes

will add more accuracy, so that the amount of similar n-gram-skip pairs is reduced and the

vector becomes more dense, as each one has to be represented.

5 10 15 20 25

45

50

55

60

65

70

depth

co
rr

e
ct

n
e
ss

Figure 35: Classification result by score for depth 1-25

Running the same classification tests similarly to the BOW scenario for this particular

setup, the classification accuracy by score for the tree depth of 25 was approximately 55% for

f-RHH and p-RHH, while for RHH it was 50%. The accuracy computed by the i-RHH algorithm

was at 45% and by far the lowest of all.

68 Computational Results

5 10 15 20 25

40

45

50

55

60

depth

co
rr

e
ct

n
e
ss

Figure 36: Classification frequency by score for depth 1-25

For the classification by frequency, the accuracy was around 42% for all algorithms. At the

first look, both results seem a bit underwhelming as only half of the query items are classified

correctly. However, since the amount of available classes are 10, the chances of randomly

assigning the correct class label is exactly 10%. Compared to the classification results of f-

RHH, the accuracy is increased by 45% which is a huge difference and indicates that the data

model for the sound excerpts works partially as intended.

8 Conclusion and Further Work

This thesis presented three extensions to Random Hyperplane Hashing in order to improve

the performance LSH algorithm. By running several test scenarios and investigate the out-

comes, we found out that f-RHH and p-RHH can outperform the near neighbor correctness

of RHH. We also observed that this comes with the drawback of increasing the space com-

plexity of the LSH algorithm, since hashing points as indecisive will expand the trees, and

therefore the space that is needed to store them. While the difference for forests with large

tree depths was negligible, the gap between the correctness of the fuzzy approaches and

normal RHH was noticeable for smaller depths, while the query time was still reasonable

fast. In case of i-RHH no improvement was visible. This contradicts to the expectations as it

was assumed that selecting better hyperplanes to distribute the training set would increase

the chance of two similar points resulting in the same leaf. It would be interesting to see how

this algorithm performs for datasets on a larger scale. Another option would be to test the

algorithm for datasets that contain more information about each data record, as this allows

to distinguish items more precise and could probably improve the performance of i-RHH.

The tests scenarios showed that the proposed upper bound for the amount of indecisive

hashed points by p-RHH was as expected. This was a very interesting finding, since it allows

to control the trade of correctness and space allocation more precise. This presents a good

improvement over f-RHH, as the experiments showed that for this algorithm the amount of

indecisive points is only bounded by the maximum tree depth. It would be interesting to see

if it is possible to find a better indecisive bound for f-RHH while maintaining the correctness of

the algorithm. Furthermore, the space complexity of all proposed extensions can be reduced

by using PATRICIA tree, as it can be assumed that most of the nodes are only used to structure

the tree and do not store any data points. The reduced tree representation for each algorithm

can be different in the number of nodes, as each one distributes the points in a slightly

different fashion. Furthermore, these compact tree representations could be compared and

see if any noticeable difference to the results of this thesis are observable.

In addition, the classification capabilities of all proposed extensions were tested for two

different datasets. We saw that for the BOW dataset, the classification accuracy of f-RHH was

at 92% and for p-RHH at 91%. While this dataset was known to be good for classification task,

they are still better as expected. Furthermore, the tests indicate that the improved correct-

ness of f-RHH and p-RHH correlates to the classification capability of these algorithms. In the

69

70 Conclusion and Further Work

UrbanSounds8k test scenarios, the accuracy for all algorithms was around 42%. While this

seems a bit underwhelming, the tests did not clearly indicate if the proposed data model for

this dataset was good enough. This makes it quite difficult to reason about the classification

accuracy, as the reasons for this could be ambiguous. Investigating the data model for this

dataset further would be the first option in order to validate the results of the classification

tests. However, this demands further research that would simply be out of scope of this

thesis, as the data model needs to be analyzed in isolation.

As further research, the presented approaches could be combined and see if there is any

remarkable performance improvement. As most interesting combination, mixing i-RHH and

f-RHH could be investigated and see if the overall correctness can be improved, while the

space complexity is reduced, as we still expect that i-RHH should work better as RHH if the

dataset contains more information to generate the vectors of each item. Another option is

to allow each item to be hashed as indecisive only a specific amount of times. This could

help to improve the space complexity of all algorithms, while maintaining the correctness as

presented by this thesis.

The results showed that p-RHH and f-RHH represent an alternative to RHH that can improve

the near neighbor correctness. This attributes these algorithms to be applied in real scenarios

and vindicate further research.

9 List of Figures

1 Schematic drawing of buckets in LSH . 12

2 The highlighted area shows the intersection of A and B, including two points . 14

3 Represents the angle θ between A and B . 15

4 Illustration of LSH-Family boundaries (inspired by [leskovec2014mining]) . . 16

5 matrix representation of sets over the universe U [leskovec2014mining] . . 20

6 (a) Illustrates subspace generation of RHH with 3 hyperplanes and (b) the bucket

distribution of vectors . 21

7 Illustrates a hyperplane that divides the two given vectors in an 2-Dimensional

space. 23

8 A single tree in LSH Forest. The orange nodes illustrate the inner nodes and

yellow nodes visualize the leafs of the tree. The blue highlighted area shows

which hash function is used for the respective tree layer. The hashed points are

displayed below the leafs. 24

9 Illustrating the split and branching operation on a leaf. (a) Shows a leaf with a

single point d1 right before the insertion of d2 and (b) shows the outcome of the

branching operation, after d2 is inserted. 26

10 Shows the two phases of the query process in LSH Forest: (a)The top-down

phase, where all nodes from each tree with the longest prefix path to q are

collected and (b) the bottom-up phase, where the closest data point to q of

all previously collected nodes are returned. The algorithms are inspired by

[bawa2005lsh] . 27

11 Illustration compressed nodes. (a) Shows a chained sequence of nodes, that

have only one outgoing edge, while (b) represents a compressed version of this

sequence as a single node . 28

12 Shows the locality-sensitive area of two points of a cluster. The orange nodes

represent points of the cluster, while the yellow nodes represent other points of

the dataset. The two blue areas show the locality-sensitive area of datapoint d1

and d2. 33

71

72 List of Figures

13 Illustrating a fuzzy hashing for the data points d1, d2, d3 and their corresponding

vector projections v1, v2, v3. (a) Shows a hyperplane that divides the space in two

halves and with an indecisive area around it, while v3 being within it (inspired by

[cochez2017large]). (b) Shows the outcome of that hyperplane in a tree, so

that point d3 is hashed down into both branches. 37

14 Shows the difference between f-RHH (a) and p-RHH (b) for a dense cluster in

a dataset. The indecisive area in p-RHH is equally distributed to both sides,

while for p-RHH it is uneven. In addition, p-RHH covers the whole cluster, which

contains 5 very close vectors. 39

15 Illustrates the case where RHH performs better than f-RHH. (a) Shows the hash-

ing procedure for both variants, while (b) shows the hashing procedure for RHH

on layer i + 1 and (c) for the one for f-RHH. In (b) the hashing procedure for RHH

would stop, since hi+1 would separate v1 and q. while in (c) it would continue,

since q would result in the same subspace as v2. 43

16 Shows the process of transforming the word "system" into a number. 48

17 Shows the processing of a single sound excerpt in 3 phases [cochezCom] . . . 50

18 Shows the average correctness of an NNS for (a) p-RHH and (b) f-RHH for tree

depths 1-25 . 54

19 Shows the average correctness of an NNS for the ACM dataset for each algorithm

and tree depths 1-25 . 54

20 Shows the average points to layer distribution for the tree depth 25 55

21 Shows average tree statistics for Figure 19, where (a) shows the average items

and (b) average nodes per tree . 56

22 Shows the average number of indecisive planes per layer for the tree depth 25 57

23 Shows the average path length (a) and query time (b) per depth 58

24 Shows the average correctness of an NNS for the BOW dataset for each algo-

rithm and tree depths 1-25 . 58

25 Shows the average points to layer distribution for the tree depth 25 59

26 Shows average tree statistics for Figure 24, where (a) shows the average items

and (b) average nodes per tree . 60

27 Shows the average number of indecisive planes per layer for the maximum

depth of 25 . 61

28 Shows the average path length (a) and query time (b) per depth 61

29 Shows the correctness in relation to the query time for the tree depth 25 63

30 Shows the class frequencies of (a) the training set and (b) the query set 64

31 Classification result by score for depth 1-25 . 64

32 Classification result by frequency for depth 1-25 65

73

33 Shows the correctness for different parameter combinations for the UbranSounds8k

dataset . 66

34 Illustrates vector representations of two sound excerpts with different prepro-

cesss settings . 67

35 Classification result by score for depth 1-25 . 67

36 Classification frequency by score for depth 1-25 68

