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Abstract. Performing approximate query answering on incomplete Knowl-
edge Graphs (KGs) is a challenging yet important task. Current models
use entity embeddings and perform parameterized operations on those
embeddings to generate a query representation. However, these meth-
ods do not actually perform query answering but rather return a rank-
ing, even when a query does not have any answers. In this paper we
present Query Answer Space Embeddings (QASE) that embeds entities
as vectors and queries as polyhedral cones and is specifically designed
for direct query answering where only a set of entities is returned. In-
spired by random projection, we generate multiple cones to allow for a
trade-off between precision and recall and be able to classify multiple
disjoint clusters of entities simultaneously. We experiment with different
model architectures and loss functions and compare their performance
to four other baseline models, where we are the first to evaluate them in
a binary classification setting. Our results show that QASE is currently
outperformed by the baseline models, but that using pretrained entity
embeddings can greatly improve performance. Insights show that train-
ing well-distributed entity embeddings and generating smaller answer
spaces are still challenges to overcome.

Keywords: Approximate query answering · knowledge graphs · machine
learning.
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1 Introduction

Knowledge graphs (KGs) are data representations that capture the relations
between entities. In a KG, entities are expressed as nodes and their relations as
edges. Unlike tabular data, the structure of KGs is not defined beforehand which
makes them very flexible and subsequently well-suited for complex and irregular
data.

The use of graphs as data structures has received increasing attention in
both the public and enterprise domain [17]. Well-known instances of large pub-
licly available graphs include DBpedia [18], YAGO [32] and Freebase [8]. While
these graphs contain huge amounts of data, the quality of this data is very
dependent on the errors, bias, disagreements and sometimes vandalism of their
human contributors [17]. As a result of this KGs are notoriously incomplete, and
finding methods for answering complex multi-hop queries on such large graphs
efficiently and effectively is difficult and an active field of research.

Traditional approaches for multi-hop query answering involve the use of query
languages such as SPARQL [31] or Cypher [14] to traverse and access specific
nodes in the graph using simple logical inference. A common method for this is
sub-graph matching. This method uses the intuition that conjunctive queries can
be represented as Directed Acyclic Graphs (DAGs). This query graph is then
matched against the KG in different orientations to search for target entities that
satisfy the structure of the graph and its anchor nodes (known entities). A major
drawback of this approach is that it cannot work with missing links that block
inference between nodes, often resulting in no answer returned. While the issue
of missing links can be solved by link prediction and graph completion methods,
these methods transform the initial sparse graph in a fully-connected probabilis-
tic graph which in turn exponentially increases computational complexity to a
point where execution is no longer possible.

Recent alternatives can solve these issues by using graph embedding tech-
niques that account for this missing information (approximate query answering).
Here, a query is represented as a computation graph and gets embedded to a
lower-dimensional latent space. With the use of anchor nodes and parameterized
set operators that act in this latent space, an embedding for the target node is
computed by traversing the computation graph. Subsequently a ranking of plau-
sible answers is returned using nearest neighbour search. Further continuations
of this work have resulted in the development of geometry-based models that
embed queries and entities as geometric shapes (e.g. boxes and cones [27, 38])
and define set operations that act upon these shapes. This allows the use of more
expressive logical operators such as unions, intersections, and for some methods
negations.

Still, these methods also have their drawbacks. Firstly, they only support
limited query structures (see section 3.1). Secondly, these methods lack general-
izability and require a variety of query structures for training. Thirdly, current
methods do not actually perform query answering, but rather return a ranking
of most probable answers. Moreover, these models will always return a ranking
containing all entities, even if the query does not have any answers. To return
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a finite answer set, a cut-off point or threshold should be determined which
requires additional resources.

To address these issues, we introduce Query Answer Space Embeddings
(QASE). We use a message passing approach to learn entity and relation em-
beddings. Inspired by random projection, we generate a set of polyhedral cones
in the entity embedding space that enclose the answers to the query. Because the
query embedding does not rely on restrictive operators such as projections and
intersections, it allows for more complex and expressive query representations.
This expressiveness is further increased by the fact that convex cones allow us to
take unions, intersections and negations of these areas. Finally, since entities are
still represented as single points in space, this demarcated answer space allows
us to return a set of entities instead of a ranking.

We run multiple experiments to determine the performance of QASE, in-
cluding model variations with different architectures and loss functions. As a
baseline we train four other ranking-based query embedding models, and per-
form distance threshold optimization to allow for binary predictions. We also
train QASE on pretrained entity embeddings to determine if this increases per-
formance. During all experiments additional metrics were tracked that could
identify flaws and challenges in the current design.

Our results show that QASE is outperformed by the baseline models. Addi-
tionally, no clear difference in model performance is observed between architec-
tures and loss functions. Tracked metrics indicate that training well-distributed
entity embeddings and generating smaller answer spaces are still challenges to
overcome. The first challenge is confirmed by the results of using pretrained
entity embeddings, where the performance of QASE approaches those of the
baseline models.

This work is an Artificial Intelligence master thesis written under the super-
vision of Michael Cochez at the Vrije Universiteit Amsterdam.

2 Related work

Graph embeddings There is a significant amount of research on KG embeddings
for link prediction, which practically equals to one-hop query answering. One of
the first approaches to this is TransE [9]. Here the training objective is to learn
entity and relation embeddings that approximate h+ r ≈ t in Euclidean latent
space, where h is the subject entity, r is the relation and t is a object entity for
which the triple (h, r, t) holds. TransE can model anti-symmetric, inverse and
composite relations, but cannot capture symmetric and 1-to-n relations. TransR
builds upon this method and uses relation-specific latent spaces to solve these two
shortcomings, at the cost of not being able to capture composition relations [20].
Both methods above use L1 (Manhattan) or L2 (Euclidian) distances to calculate
the score of each prediction, but other methods such as DistMult and Bilinear
can also be used [36]. TransH is a method that models relations as hyperplanes
with a translation operation upon it, and is specifically designed to handle one-
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to-many, many-to-one, and many-to-many relations [35]. Other link prediction
methods include RESCAL [24], HOLE [23] and NTN [30].

Subgraph matching Research on subgraph matching in the context of approx-
imate query answering is limited. Zhang et al. propose a model that embeds
query graphs and scores their similarity such that approximate answers are re-
turned [37]. Other research focuses on embedding RDF queries with the aim of
query relaxation, e.g. suggesting another query when the current query returns
an empty answer set [34].

Query embeddings Because TransE is simple and can handle composite relations
it can be retrained for graph query embeddings (GQE) to answer simple path
queries [16]. Using learned embeddings, a query graph can be traversed from
the anchor nodes across the relations to get a representation of the target em-
bedding. However, because the vector representation of GQE cannot naturally
represent sets of entities in latent space there is a significant focus on using ge-
ometrical representations that can. As discussed, two prominent examples are
Query2Box (in this paper sometimes referred to as Q2B) and ConE that model
entities/queries as boxes and cones respectively [27, 38]. These models use two
vectors, one that determines the center and one that determines the shape of
the geometrical representation. For entities, the representation is often reduced
to a single (center) vector that does not have any volume. Other representations
include BetaE that models entities and queries as probabilistic beta distribu-
tions [28], and Query2Particles that uses an ensemble of models to focus on
different disjoint regions in the entity embedding space simultaneously [4].

As discussed we follow a line of research that uses message passing for em-
bedding whole query graphs, such as MPQE [12]. Another related model that
uses message passing is StarQE that is designed to handle hyperrelational KGs
where relations have additional attributes [2]. Finally there is MPQB that uses
a message passing approach to represent both entities and queries as boxes, and
considers entities an answer to a query if the query and entity boxes overlap. To
our knowledge, this is the only other research discussing direct query answering
using query embeddings.

Other methods for query embedding involve using RNNs [11], contextual
graph attention layers [21], compositionalization [15] and Complex Query De-
composition [3].

3 Background

In this section we will cover some preliminary concepts, as well as give a short
introduction to locality sensitive hashing and random projection, explain how
random projection has inspired the idea of answer space discretization, and give
a description of the problem that we aim to solve.
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3.1 Preliminaries

Knowledge graphs We follow earlier work by defining a knowledge graph as a
tuple G = (V, E ,R, T ), where the set V represents the entities, E contains typed
relations between two entities in the form r(vi, vj) where vi, vj ∈ V and relation
type r ∈ R, and function τ : V → T maps the entity to an entity type [12].
There is a factual relation r going from vi to vj if and only if r(vi, vj) ∈ E .

Queries In this paper we will focus on first-order logic queries in conjunctive
normal form (CNF). These queries consist of predicates and logical operations
such as conjunction (∧), disjunction (∨), negation (¬) and existential quantifiers
(∃) and are structured as a conjunction of clauses. These clauses contain one - or
a disjunction of more - binary predicates that take a subject entity, relation type
and object entity as arguments. For example, consider a KG containing movie
data and the query ”Select all actors that played in a Christopher Nolan movie,
and were born in Ireland”. We can rewrite this query to CNF resulting in the
logical equation:

?Actor.∃?Movie : directed(Nolan, ?Movie) ∧ has cast(?Movie, ?Actor)

∧land of birth(Ireland, ?Actor),
(1)

where ?Actor represents an entity or set of entities that is the answer to
the query, and ?Movie is an unknown variable. Queries written in CNF can be
represented as computation graphs (figure 1), that can be used as input for graph
neural networks, among other models, for a variety of tasks. The use of CNF for
queries does come with constraints: query graphs can only contain one target,
can only contain anchor nodes at the leaves of the DAG (no variables or targets)
and cannot contain any cycles (e.g. self-loops). Whereas our proposed model is
not restricted to handling these query structures exclusively, we use them in this
paper to allow comparison to existing models that are.

Nolan ?Movie

Ireland

?Actor
directed has_cast

land_
of_bi

rth

Fig. 1: Query computation graph corresponding to logical equation 1.
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3.2 LSH

Locality sensitive hashing (LSH) is a technique for approximate nearest neigh-
bour search (NNS). Unlike exact approaches such as linear search or space parti-
tioning, LSH allows for a trade-off between accuracy and efficiency, making NNS
significantly faster. The aim of LSH is to maximize the amount of hashing colli-
sions of similar objects, which is in contrast with regular hashing techniques [19].
As a consequence, similar objects will often end up in the same hash bucket,
which allows for performing NNS in sub-linear time. To prevent false-negatives
(e.g. similar items not ending up in the same bucket) the hashing protocol is
repeated using different hash functions. Taking into account the probabilistic
properties of this approach, a LSH scheme can (for the method described below)
be defined as a probability distribution over a family F of hash functions such
that Prh∈F [h(x) = h(y)] = sim(x, y), where sim(x, y)→ [0, 1] is some similarity
function defined on the collection of objects [10].

There are many methods to perform LSH, but the method relevant to this
paper is random projection. In this method, given a vector representation of a
large set of objects, random hyperplanes are generated that divide the object
space into segments (figure 2). For each object and hyperplane a binary value
indicates at which side of the hyperplane the object is located. The collection
of binary indicators for this object is called its signature. Similar objects often
contain the same signatures which can be used for efficient NNS, for instance
using Hamming distance; the amount of bits two binary vectors differ. Using an
anchor object and a distance threshold similar items to this anchor object can
be returned. To prevent false-negatives (i.e. not returning an object while the
object is similar), in practice the signature of an object is often subdivided into
multiple bands. For every band the distance is calculated and the document is
considered similar if the threshold is reached in at least one of the bands.

1
0

0

01

1

0 1 1

1 1 0

1 0 0

1 0 1

0 0 1

1 1 1

h1

h2

h3

Fig. 2: Locality sensitive hashing using random projection. Similar items often
contain similar signatures, which can be used for nearest neighbour search.
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3.3 Query answer space discretization

Current models for embedding queries return a latent representation of the query
target and subsequently use NNS techniques to return a ranking of best possible
answers. Inspired by random projection, we aim to learn a set of hyperplanes
that demarcate a convex subspace in the embedding space to perform direct
query answering. To do this, we represent the subspace as a polyhedral cone,
which can be defined by a finite number of hyperplanes (or half-spaces) that pass
through the origin. If we represent these hyperplanes using normal vectors, we
can subsequently represent a cone as a matrix Ch×d = {n1, n2, ..., nk | ni ∈ Rd},
where h is the number of normal vectors and d is the dimension of each normal
vector.

Whereas we model the queries as cones, we represent entities as vectors. This
allows the generated cones to enclose sets of entities that are the answers to the
query. For entities to be inside the cone, they must be on the correct side of
each hyperplane, where we differentiate between the positive and negative side
of a hyperplane by taking the dot product between its normal vector and the
entity embedding. The entity is on the positive side of the hyperplane if and
only if the dot product between the entity representation and the corresponding
normal vector is positive. Intuitively, for the example in figure 2, we try to learn
the set of hyperplanes for which the subspace corresponding to signature [1, 1,
1] contains the answers to the query.

Furthermore, we do not model one, but multiple cones to enclose the query
answers. The motivation behind this is the observation that similar entities might
not necessarily be close together in the embedding space. To illustrate this,
consider the entities Joe Biden and Emmanuel Macron. Their representations
should be similar in the way that they are both presidents, but different since
they come from different countries. The result of this is that similar entities group
together in disjoint clusters instead of a single region in latent space, which is
demonstrated in figure 3. By using multiple cones, each cone can focus on its
own cluster of entities.

Fig. 3: In this example embedding space, the yellow dots are the answer entities,
and the blue dots are the non-answer entities. The purple areas in (B), (C), and
(D) demonstrate the neighborhoods of the vector embedding, the box embed-
ding, and the desired query embedding (taken from [4]).
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To do this, we generate for each query an answer space S ∈ Rc×h×d, consist-
ing of c cones, h hyperplanes per cone with dimension d. An entity is contained
in a cone if the dot product of its embedding and all the normal vectors in this
cone are larger than zero. Subsequently, we consider the entity inside the answer
space if it is contained in any cone. In other words, we take the union of the
sets of entities contained in each cone as our answer set. Notice how this logical
structure shows similarities with disjunctive normal form logic, which allows to
have a trade-off between preventing false-positives (recall) and false-negatives
(precision), similarly to how bands are used in LSH. Mathematically this logic
can be represented by equation 2. Here entity vk is considered an answer if the
dot product between all hyperplanes in the cone are positive (such that their
product is higher than zero), and this is true for at least one cone (such that the
sum of these products is higher than zero).

vk ∈ Jq̂K =

{
1 if (

∑c
i=0

∏h
j=0 max(0, vk · sij)) > 0

0 Otherwise
(2)

There are three main distinctions with earlier work on approximate query
answering. To start, we are the first to consider modelling queries and entities in
different representation spaces. Secondly, we are the first to use a LSH-inspired
approach by using multiple cones, simulating bands and allowing a trade-off
between recall and precision. Thirdly, we are only the second paper to discuss
direct query answering using query embeddings, where the only other explored
method is MPQB.

3.4 Problem Statement

For any query q we call the set of entities present in the answer space the
predicted answer set Jq̂K [27]. The goal is to find Jq̂K ⊆ V such that for all vk ∈ V,
vk ∈ Jq̂K if and only if vk is a true answer of that query q. For simplicity, we refer
to the true set of answers for query q as true answer set JqK. As we deal with
incomplete knowledge graph G′ ⊂ G (where G is the complete KG), we cannot
solve this problem by logical inference or sub-graph matching. Instead, we learn
entity representations as vectors in some latent space, and generate a convex
subspace that encloses entities such that Jq̂K ≈ JqK.

4 Model

In this section we will describe our model, message passing operations, model
architectures and loss functions.

4.1 Message passing

We define a model that learns representations for all entities, including unknown
variables and targets, E ∈ R(|V|+2)×d. The model also learns representations for
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regular and inverse relations, and self-loops R ∈ R(2|R|+1)×d. To acquire our
answer space S ∈ Rc×h×d we need ch normal vectors. These vectors are gener-
ated using message passing, where the node representations of the query com-
putation graph are iteratively updated by aggregating neighbouring representa-
tions. We use a composition-based multi-relational graph convolution network
(CompGCN) as our message passing approach [33]. Here the update equation is
defined as:

xk+1
v = f

 ∑
(u,r)∈N(v)

Wλ(r)ϕ(x
k
u, z

k
r )

 ,

where xk
u, z

k
r represent the initial entity and relation representations respectively

at the k+1’th message passing step. Unlike earlier methods (e.g. R-GCN [29] or
D-GCN [22]) that use relation-specific weight matrices, a composition function
ϕ : Rd × Rd → Rd is used to make the update relation-aware, which makes
CompGCN more parameter-efficient. The updated representations are finally
passed through some activation function f(·). Wλ(r) is a learnable direction-
specific weight matrix for outgoing, incoming and self-loops for which its assign-
ment is defined below:

Wdir(r) =

WO, r ∈ R
WI , r ∈ Rinv

WS , r = ⊤(self-loop)


Finally the relation representation is updated with:

zk+1
r = Wrelz

k
r ,

where Wrel is a learnable weight matrix.
Within the convolution layer we experiment with three different composition

operators: multiplication, circular correlation and complex rotation. Additionally
we experiment with regular symmetric message weighting and attention message
weighting with 8 attention heads. Within all layers we use batch normalization.

On a higher level, different aggregation functions are tried such as the max
and sum of all query nodes. Furthermore we experiment with the Target Message
(TM) function introduced by Daza & Cochez (2020) [12]. Here a number of
message passing steps are applied equal to the diameter to the query graph,
which ensures that all information from all nodes can reach the target node.
Subsequently, the representation of the target node is returned.

4.2 Model architectures

As discussed, message passing can be used to generate an output vector given
a query structure and embeddings for the anchor, variable and target nodes.
To generate our answer space S ∈ Rc×h×d where we require more than one
output vector, we use a collection of sub-models (GNNs) each consisting of 3
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message passing layers. Because we are not restricted to using equal input and
output dimension for these layers, we can also create larger output vectors which
can represent more than one normal vector and reduce the number of learnable
parameters in our model. The only restraint here is that the normal vectors
require a dimension equal to the entity embedding, and subsequently the larger
output vector should be divisible by this dimension.

Given this flexibility, we experiment with different model architectures con-
taining one or more of these sub-models; hype-wise, cone-wise and single
(figure 4). For the hype-wise model a GNN is used for every normal vector, re-
sulting in a total of ch GNN models with output vector dimension d. For the
cone-wise method a GNN is used for every cone, resulting in c GNN models with
output dimension hd. Finally we have the single method where one GNN is used
with output dimension chd. For the latter two architectures a linearly increasing
output dimension is used for every message passing layer. For all model archi-
tectures the output is reshaped into multiple sets of hyperplanes (cones) after
the forward pass, resulting in equal output dimensions for all models. Since the
hype-wise architecture contains the same input and output dimensions for each
layer, the sharing of weights between the convolution layers of a single GNN
is considered. We differentiate between the model architectures by referring to
QASE-h, QASE-c and QASE-s for the hype-wise, cone-wise and single version
respectively.

Hype-wise

GNN2

GNNch

d

d

…
d

d

c x h x d

d hd

c x h x d

GNN1

Cone-wise

GNN

Single

d chd

Reshape
Reshape

d d
d

d

GNN1d d

d hdGNN2

…

d hdGNNc

c x h x d

Reshape

Fig. 4: Given input query with entity embedding dimension d, we experiment
with three model architectures – hype-wise: c × h GNN models with output
dimension d; cone-wise: c models with output dimension h×d; single: 1 model
with output dimension c× h× d.

4.3 Loss function

Given a cone and a finite set of positive and negative samples, we want all the
positive samples to be inside the cone and all negative samples to be outside
of the cone. In other words, for all normal vectors we want to maximize the
cosine distance for positive samples and minimize the cosine distance of negative
samples. Moreover, there is no need to significantly focus on decreasing the cosine
distance for negative samples that are already outside of the cone, since this



12 M. Zwager

will not influence the resulting prediction. Similarly we care less about positive
samples already inside of the cone.

With this intuition, the parameters of the model are optimized by performing
gradient descent on the contrastive loss function in equation 3. Here for each
normal vector we minimize on the negated cosine distance for positive samples
and the regular cosine distance for negative samples. Additionally, a ReLU or
LeakyReLU activation function is applied to (partially) ignore cosine distances
that are already in a favorable domain:

L =

c∑
i=0

h∑
j=0

1

ch

(∑
a∈Ai

1

|Ai|
f(−Dcos(v

+
a , s

i
j)) +

l∑
p=0

1

l
f(Dcos(v

−
p , s

i
j))

)
, (3)

where sij is normal vector j of cone i, v+ and v− denote the embedding of a
positive and negative sample respectively, l is the negative sample size, f is an
activation function in {ReLU, LeakyReLU} and Dcos : Rd × Rd → R1 defines
the cosine distance function:

Dcos(t,n) =
t⊤n

∥t∥ ∥n∥

We sample negative entities from vk ∈ V \ JqK. However, since we train our
model with Gtrain ⊂ Gvalid where edges are missing, the assumed true answer set
JqK may just be a subset of the ground truth answer set JqK′. We assume that the
number of ground truth answers JqK is significantly smaller than V, which means
that given JqK′ ⊆ JqK there is only a very small chance that complementary
entities are incorrectly labeled as negatives (e.g. the probability of sampling
v−
p from V \ JqK′ where v−

p ∈ JqK is small). Therefore, we see this as a minor
issue with negligible effects, and will not take any action to resolve it. Later
obtained statistics on the number of query answers in appendix B support this
assumption.

To make use of the flexibility multiple cones provide us with, we only sum
over a subset of target vectors for each cone Ai, which maps every target entity
to the closest cone:

Ai = {a ∈ JqK | ∀j ∈ {0..c− 1} \ {i},Dcos(v
+
a , ŝ

i) > Dcos(v
+
a , ŝ

j)}

where ŝk denotes the average normal vector of cone k. Note that all entities
are assigned to a single cone, such that the union of all cone assignments contain
all target entities: ∪ci=0Ai = JqK, and that the assignment sets of two cones never
contain the same entities: ∀n ∈ [0..c − 1] \ {i},Ai ∩ An = ∅. We can also see
that in some cases there are cones that without assigned entities. For instance,
this always occurs when a query has less answers than the number of cones. In
this case where At = ∅ for cone t, there will be no summation over any target
vectors and only the negative samples contribute to the loss of cone i.
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Looking at equation 3 we see that the loss value for all normal normal vectors
in a cone is computed similarly. As a result of this, there exists only one global
optimum that is shared by all normal vectors within a cone. This might cause
them to converge to the same direction, resulting in answer spaces with high
volume. To tackle this, an alternative loss function is implemented.

4.3.1 Alternative loss function As explained, the loss value for normal
vectors in computed similarly. However, this similarity in computation is not
necessary since we only need the negative samples to be on the negative side
of one hyperplane instead of all of them. By focusing on the most promising
normal vector to exclude a negative sample (where Dcos is already low) we break
this similarity in loss calculation. We implement an alternative loss function as
follows:

L =

c∑
i=0

1

c

∑
a∈Ai

h∑
j=0

1

|Ai|h
f(−Dcos(v

+
a , s

i
j)) +

l∑
p=0

h∑
j=0

f(Dcos(v
−
p , s

i
j) ·wj)

 ,

where wj is a weight used for computing the Softmin weighted average over
all cosine distances between a negative sample and all normal vectors in a cone,
which is calculated by:

wj =
e−Dcos(v

−,sj)∑h
k=0 e

−Dcos(v−,sk)

Using this alternative loss function we hope to generate smaller answer spaces
that might give better performance. We differentiate between the two loss func-
tions by referring to the normal (n) and softmin (s) versions. Supplementary
experiments with another loss function are also conducted, which are discussed
in appendix G.

5 Experimental set-up

In this section, we discuss the design of various experiments that tackle the
following research questions: RQ1) How well can we answer knowledge graph
queries using hyperplanes? RQ2) How does the performance of the three model
architectures compare? RQ3) How does the performance of the two loss func-
tions compare? RQ4) Can we benefit from using pretrained entity embeddings?

5.1 Datasets

We use two publicly available benchmark datasets that have been used in pre-
vious related studies: AIFB and MUTAG [12, 29]. The AIFB dataset contains
information regarding the research group of the same name and models key enti-
ties relevant for typical research communities and the relations between them [7].
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The MUTAG dataset is a protein classification dataset where the chemical struc-
ture is encoded into the nodes and their relations [13]. Their statistics can be
found in appendix A. Whereas related research includes additional datasets such
as AM and BIO, we restrained from using these datasets as available resources
were not sufficient enough to process them.

5.2 Query generation

Fig. 5: Query structures (adapted from [27]).

Common query structures demonstrated in figure 5 are considered. Queries
are generated with a graph query preprocessing and loading framework1. The
frameworks allows loading graph datasets from multiple file formats, such as
RDF or TSV files, and provides multiple options for data splitting, storage, the
creation of mappings and the sampling of queries. It also provides options to filter
out high in and out-degree nodes to downsample frequently occurring answers,
a data issue that has been ignored in many related work in the past [2]. The
framework is flexible as the sampled queries can be exported to multiple formats
that can be used as input for existing baseline repositories, and also comes with
a Pytorch compatible dataloader.

For our experiment each dataset is split in a train, validation and test graph,
where Gtrain ⊂ Gvalid ⊂ Gtest. Splitting is performed using a round-robin method
where edges of the complete graph are included in the train, validation and test
graphs with probabilities 0.7, 0.8 and 1.0 respectively. Nodes in both datasets
are restricted to having a maximum in and out-degree of 50. The resulting query
statistics can be found in appendix B.

5.3 Approach

The GNNs in our architecture are implemented using StarQE models containing
CompGCN layers, but we use their implementation without hyper-relational
qualifiers [12]. This also allows for experimentation on hyper-relational graphs
in future work. All model and training implementation is written in Pytorch [26].

To find appropriate hyperparameters we implement a hyperparameter opti-
mization (HPO) pipeline using the Optuna optimization framework [1]. We train
and evaluate on 1000 and 500 queries per structure for each respective split.
We sampled configurations using a Tree-structured Parzen Estimator algorithm

1 https://github.com/miselico/graph query sampler

https://github.com/miselico/graph_query_sampler
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and applied early stopping to runs with weighted f1-scores on the validation
queries that were below the median for that epoch [6]. We run the optimization
pipeline for each dataset and model architecture (six in total) with the normal
loss function. The explored hyperparameters can be found in appendix E.1. Af-
ter optimization we train each combination (including the Softmin version of the
loss function) on the best found hyperparameters for three epochs and compare
the performance between them, as well as baseline models that we train until
convergence.

To investigate the effect of using pretrained entity embeddings, we use trained
embeddings from StarQE. Since our model is implemented using StarQE sub-
models, the embeddings can be reused directly. We first run HPO for the StarQE
model for both datasets with embedding dimension 64 and 128. For this we use
the authors original optimization setup [2]. After optimization we train StarQE
using the best found hyperparameters until convergence. Using the pretrained
entity embeddings from StarQE, we train the cone-wise model architecture with
both loss functions and embedding dimensions 64 and 128 for four epochs. Dur-
ing training, the entity embeddings remain frozen. We chose the cone-wise ar-
chitecture since it is the middle ground in terms of complexity and efficiency
between all three architectures. As a baseline we optimize a distance threshold
for StarQE (see section 5.4). All QASE experiments are run on a single A100
(40GB) or RTX A6000 (48GB)2. All baseline experiments are run on a single
NVIDIA GeForce GTX 1080 Ti (11GB) orRTX A4000 (16GB). The code to
reproduce the model experiments can be found online 3.

5.4 Baseline models

We compare our model versions to four other query embedding models, namely
GQE [16], BetaE [28] and Query2Box [27], and a message passing-based model,
StarQE [12]. Since for StarQE we only consider edges without qualifiers, the idea
behind the model is similar to MPQE but uses a more parameter-efficient and
better performing message passing algorithm. All models are first trained using
their standard objective, after which a structure-wise distance threshold is op-
timized using using Bayesian optimization where we maximize the f1-score [25].
This optimization is done on all validation queries, after which the determined
structure-wise thresholds are used on the test queries.

For a fair comparison each baseline model is given the same entity embedding
dimension of 800. We follow earlier work by giving Query2Box and BetaE half of
the embedding dimension for GQE and StarQE, since each entity representation
consist of two parameters (Query2Box: center and offset; BetaE: α and β). An
additional overview of the number of learnable parameters for each baseline
model and QASE is provided in appendix C.

There will be no HPO performed for the baseline models. The motivation
for this is that minimal gain is expected while being costly and harmful for the

2 Hardware specifications are explicitly mentioned as QASE requires significantly more
memory for training.

3 https://github.com/maxzw/QASE

https://github.com/maxzw/QASE
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environment. We use the optimized model hyperparameters of their respective
papers, which can be found in appendix D.

Because all query structures are used for training, we do not discuss the
generalizability of the above models to unseen query structures. For this we
refer to previous research [2–4, 27, 28, 38]. The code to reproduce the baseline
results can be found online 4 5.

5.5 Evaluation procedure

In all experiments all models are evaluated in a binary classification setting.
Using evaluation formula 2 the predicted answer set Jq̂K is computed for each
query. Subsequently, the f1-score is calculated using equation 4. Whereas other
f-scores can be considered, we use the f1-score to put equal emphasis on recall
and precision. We calculate performance on the filtered answer set, i.e. when
evaluating validation/test queries, the focus is on JqKvalid \ JqKtrain and JqKtest \
JqKvalid respectively. Metrics are aggregated into structure-wise averages, and a
global macro and micro average.

Similar to earlier work we found greatly varying true answer set cardinali-
ties [2]. For example, there are queries where the maximum answer set is 468,
whereas the 75 percentile is only 1. These queries are corrected for by weighting
the aforementioned metrics of each sample by the inverse cardinality of the cor-
responding answer set. A detailed analysis of the answers of the sampled queries
can be found in appendix B.

F1 =
Precision× Recall

Precision + Recall
(4)

5.6 Additional metrics

To get more relevant insights on QASE, additional metrics were tracked every
evaluation epoch during training:

Metric 1 (Embedding uniqueness) The embedding uniqueness is the frac-
tion of unique sign signatures, which is the result of transforming real-valued
entity embedding vectors to a binary vector where positive values get assigned a
1 and negative values a 0. As embeddings get initiated randomly before training
the embedding uniqueness start at 1.0 almost surely, given a large enough dimen-
sion size. We also track the embedding uniqueness for StarQE. Since Query2Box
and BetaE are trained using Euclidean distances instead of angular distances, the
entity embeddings might all lie in the same sign domain without any loss of per-
formance, hence there is no need to track the embeddings for those models. We
calculate the embedding uniqueness once every evaluation run.

4 https://github.com/maxzw/QASE baselines cqd
5 https://github.com/maxzw/QASE baselines mphrqe

https://github.com/maxzw/QASE_baselines_cqd
https://github.com/maxzw/QASE_baselines_mphrqe
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Metric 2 (Answer space size) The answer space size is the volume of the
answer space. This value is approximated with a Monte-Carlo approach, where
a large number of random vectors are generated (n=104), and the fraction of
vectors inside the answer space approximates the answer space size. Because this
computation requires a lot of resources, we calculate the average answer space
size on a sample of batches (n=103) of the evaluation data.

Metric 3 (Answer set size) The answer set size is the cardinality of the pre-
dicted answer set Jq̂K. We calculate the average answer space size of all batches
of the evaluation data.

6 Results

Results of HPO for QASE can be found in appendix E.1 where table 9 shows
both the optimal hyperparameters and the corresponding weighted f1-score on
the validation queries. Training the hype-wise architecture on the full datasets
required over 100 hours per epoch. Since current resources were not sufficient,
it was not possible to train this architecture within an acceptable time limit.
We included the architecture in this research nonetheless, since it shows better
performance than the other architectures and it could be trained in future work.
The cone-wise and single architectures were trained on both datasets with both
loss functions, taking approximately four and eight hours per epoch respectively.
The baseline models were also trained using their standard objective, after which
their distance threshold was optimized structure-wise. The results of the distance
threshold optimization for the baseline models can be found in appendix F. The
final evaluation metrics for QASE architecture and loss function combinations,
as well as the baseline models are shown in table 1. The additional metrics
tracked for QASE are displayed in figure 6. Analysis showed that the embedding
uniqueness of StarQE remained 100% for AIFB and decreased to 95.3% for
AIFB. For clarity we excluded these values from figure 6b.

Results of HPO on StarQE can be found in appendix E.2, where table 10
shows the optimal hyperparameters. The final evaluation metrics for QASE using
pretrained entity embeddings and the StarQE baseline are shown in table 2. The
additional metrics tracked for QASE using pretrained embeddings are displayed
in figure 7. The loss values for all runs of QASE both with and without pretrained
embeddings are displayed in figure 8.

7 Discussion

7.1 QASE

The results in table 1 show that all baseline models outperform QASE by a
large degree, indicating that QASE does not yet work very well. We also see
QASE performs better on the AIFB dataset than on MUTAG, which is in line
with the baseline models. Regarding the comparison between model architec-
tures and loss functions, there seems to be a difference in performance between
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Table 1: Classification performance (f1-score, %) of all baseline models and
QASE architectures (c/s) and loss versions (n/s).
Method 1p 2p 3p 2i 3i ip pi Macro Micro

AIFB

GQE 44.51 32.01 34.43 59.27 72.68 43.44 55.68 48.86 58.93
Q2B 41.83 31.06 15.63 59.09 73.34 42.23 54.43 45.37 58.25
BetaE 21.35 20.45 19.38 51.87 67.53 34.19 49.37 37.73 52.58
StarQE 17.49 17.32 14.61 51.51 67.59 32.23 47.22 35.42 51.06
QASE-c (n) 4.98 5.48 3.62 9.2 11.52 7.33 8.18 7.19 9.16
QASE-c (s) 5.11 5.67 4.6 9.34 11.38 7.5 8.42 7.43 9.27
QASE-s (n) 3.31 5.11 4.34 6.57 7.48 6.0 4.96 5.4 5.83
QASE-s (s) 3.29 4.8 3.99 6.35 8.05 5.68 4.85 5.29 5.91

MUTAG

GQE 8.48 32.8 30.85 36.63 70.51 38.85 42.29 37.2 49.11
Q2B 7.74 32.18 51.52 31.96 69.11 38.97 42.17 39.09 48.31
BetaE 2.26 15.5 26.27 25.94 62.55 38.22 45.71 30.92 47.64
StarQE 0.45 13.37 39.09 18.46 72.65 38.75 47.75 32.93 51.09
QASE-c (n) 0.16 3.99 5.49 1.06 4.27 6.5 5.8 3.9 4.88
QASE-c (s) 0.17 4.61 6.33 0.93 3.73 7.6 6.42 4.26 5.1
QASE-s (n) 0.17 4.71 6.48 1.54 6.07 7.02 6.55 4.65 5.9
QASE-s (s) 0.17 4.11 3.38 0.91 3.71 5.29 5.41 3.29 4.45

model architectures trained on AIFB where the cone-wise architecture on aver-
age performs 157% better than the single architecture. This higher performance
can be caused by the larger number of learnable parameters in the cone-wise ar-
chitecture. However, no such difference is observed between architectures trained
on MUTAG, which might indicate that this difference in performance is depen-
dent on other factors. No clear difference in performance is observed between
different loss functions.

Additional insights on the performance of QASE can be found in figure 6 that
shows the f1-score and additional metrics. In subfigure 6b we can see that the
embedding uniqueness for QASE decreased over time. This is in contrast with
the observations for StarQE, where embedding uniqueness never decreased below
95%. Looking at the subfigures together we see that high-performing QASE
models often have a high embedding uniqueness and a small average answer set
size, which logically follows since most queries contain only a few answers. Also
interesting is that the answer space size shows no clear indication or correlation
with performance, and that some QASE models perform relatively well even
if over 50% of the entity embedding space is designated as an answer. Whereas
taking the union multiple cones might cause this large answer space, the majority
of queries only contain one answer so the answer space should still be much lower.

There are a number of possible explanations for the poor performance of
QASE. Firstly, it could be that the assignment function creates multiple disjoint
optimization problems, since each cone focuses on its own assigned target entities
and does not care about other target entities. Because of this, the only way
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Table 2: Classification performance (f1-score, %) of training on pretrained entity
embeddings on QASE-c with normal (n) and softmin (s) loss function, with
StarQE as a baseline.
Dim Method 1p 2p 3p 2i 3i ip pi Macro Micro

AIFB

64
StarQE 15.79 19.31 16.5 50.47 70.01 32.28 46.24 35.8 51.1
QASE-c (n) 17.6 9.19 7.39 44.18 62.88 12.52 30.53 27.78 40.72
QASE-c (s) 16.53 8.38 5.96 43.28 60.57 11.15 33.91 27.29 41.83

128
StarQE 16.47 17.09 15.72 50.2 71.34 32.59 44.4 35.4 50.35
QASE-c (n) 18.21 10.3 8.09 51.35 72.4 18.08 46.23 32.55 52.67
QASE-c (s) 17.53 10.22 6.8 49.65 70.74 18.66 45.69 31.47 51.74

MUTAG

64
StarQE DT 0.89 13.97 32.05 21.5 58.08 42.34 46.52 30.76 46.47
QASE-c (n) 0.45 12.87 12.13 5.56 20.36 18.35 22.65 13.22 20.04
QASE-c (s) 0.49 9.57 12.52 3.71 11.16 20.31 24.86 11.97 18.84

128
StarQE DT 1.32 16.84 31.63 27.34 65.44 35.49 48.24 32.33 49.91
QASE-c (n) 0.39 11.65 3.02 7.09 43.35 24.49 38.62 19.05 36.36
QASE-c (s) 0.4 15.06 6.2 9.72 56.41 27.33 44.97 23.73 44.23

similar entities that are assigned to different cones end up in the same region is
if they get pushed there by negative samples. We hypothesize that the chances
of this happening effectively is very small, which results in an entity distribution
in the embedding space where similar entities are still far away from each other,
and a large answer space is needed to include them all in our predictions.

Secondly, it could be that our loss function in practice still suffers from simi-
larity in computation for different normal vectors within a cone. Because we use
a ReLU or LeakyReLU activation function to (partially) ignore values already
in a favorable domain, cosine distances for negative samples might not get much
lower than zero. This can result in the weighing factor wj being approximately
the same for each normal factor, making the whole weighing component redun-
dant. Looking at subfigures 6c and 7b we can see that there is no clear difference
between the two loss functions on the answer space, supporting this theory.

Figure 8 shows that the loss has converged to negative values for all runs,
indicating that on average the cosine distance for positive samples is higher
than zero, and lower than zero for negative samples. However, this average is no
guarantee for good performance, as positive samples need to be on the correct
side of all hyperplanes and both sides of the contrastive loss can compensate for
the other. With this in mind, it is probable that the loss functions used in this
research do not accurately reflect the intended learning goal of the model. In fact,
both of the aforementioned explanations for the poor performance of QASE are
caused by the loss function. Experimentation with other loss functions therefore
seems essential when building further upon this work.
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Fig. 6: Micro average f1 score and additional metrics per epoch, tracked for QASE
models on the validation queries.

7.2 QASE using pretrained embeddings

The results in table 2 show that using pretrained entity embeddings results
in better performance in all cases, one even outperforming the baseline model.
Looking at the f1-score and additional metrics for QASE using pretrained em-
beddings in figure 7, we see that the answer space size and subsequently the
answer set size has decreased for all models in comparison with figure 6. We hy-
pothesize this is due to a better distribution of entity embeddings, eliminating
the need for a large answer space to contain all query answers, which supports
the first possible explanation for the poor performance of QASE. We also observe
lower answer space and answer set sizes for well performing models, similarly to
figure 6.

Comparing QASE without and with pretrained entity embeddings, we see
that even though QASE does not yet work very well, using pretrained embed-
dings can greatly increases performance. Current challenges therefore include
training these embeddings correctly, as well as decreasing the answer space size
to allow for more precise predictions. The second could be achieved by increasing
the number of hyperplanes, or using different loss functions where the normal
vectors are actively diversified to make the answer space more round, of which
an example implementation is discussed in the supplementary experiments in
appendix G.
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Fig. 7: Micro average f1 score and additional metrics per epoch, tracked for QASE
models trained with pretrained entity embeddings on the validation queries.

7.3 Limitations and future work

In this section we discuss multiple limitations of this work, and possible future
research directions.

7.3.1 Resources The first limitation of our work is the lack computational re-
sources, which caused multiple other disadvantages. Firstly, other larger datasets
could not be included in our analysis as resources were not enough to process
these datasets. Secondly, whereas the hype-wise architecture performed best dur-
ing HPO (see table 9 in appendix E.1), resources were not sufficient enough to
train the architecture on the whole dataset within an acceptable time limit. This
is also due to the large amount of parameters of the QASE architectures. As can
be seen in table 7 in appendix C, the amount of parameters for QASE is much
higher than for the baseline models. A third disadvantage is our restriction to low
numbers for some hyperparameters during optimization such as batch size, num-
ber of cones, number of hyperplanes per cone and the embedding dimension, and
the exclusion other variables. Given more resources higher values and more vari-
ables could have been included which might have led to better results. Finally,
the lack of resources restricted us to only documenting single runs. Therefore
we emphasize that even though the main experiments show good indications
for the performance of QASE, they hold no statistical power. Future research
might circumvent all these issues by having more resources available. Another
way to prevent these issues in the future is by the development of more efficient
methods for data processing, model training and hyperparameter optimization.
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Fig. 8: Running loss during training for both QASE without and with pretrained
entity embeddings.

7.3.2 Queries The second limitation of our work is the imbalance in generated
queries within the datasets. As discussed in appendix B there is a large imbalance
where the two most frequently occurring structures 3i and pi account for over
85% of all queries. Looking at the results of the baseline models in table 1, we
also see that the performances of these query structures are much higher than for
others. By better balancing the number of queries per structure, better results
might be achieved in the future. During processing the datasets, we experimented
with multiple values for in and out-degree filtering. No clear relation was found
between the filter value and the resulting number of queries per structure, and
finding an acceptable balance might just be the result of trial and error. Another
way of balancing the number of queries is by using sampling or taking only a
subset of queries for structures that are overrepresented.

7.3.3 Loss function In section 7.1 multiple flaws of the current loss func-
tions are discussed. Future research can focus on these flaws to find alternative
loss functions that might prove more effective. Main challenges regarding the
loss function include diversifying the normal vectors to generate smaller cones,
and acquiring better entity embeddings. The first challenge could be tackled
by including a diversification component in the loss function, as discussed in
the supplementary experiments in appendix G. The second challenge could be
tackled by preventing the disjoint optimization problem that is also described in
section 7.1. This could be cone by using a weighted assignment function instead
of a discrete one, to make cones focus on their assigned entities while also tak-
ing into account the distribution of other entities assigned to other cones. This
approach might help to move similar entities assigned to different cones closer
together. However, since the cone takes into account target entities that might
be in a different direction, this can also negatively influence the generated cones
in direction or shape.
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7.3.4 Other future work Aside from QASE and MPQB, we see other pos-
sible methods for direct query answering using query embeddings. Similar to
MPQB that uses the box embedding introduced by Query2Box, one could also
try to perform direct query answering by using the cones introduced by ConE.
As entities are still represented as vectors (or cones with aperture 0), the re-
sulting query cone representations can contain the entity representations and
subsequently return this enclosed set.

Another interesting research direction is the exploration of other use cases
that have a different emphasis on recall and precision. Whereas in this work we
focus on their harmonic mean by using the f1-score, there might be use cases
where recall and precision are not equally important. Ideally, there would be a
hyperparameter in some loss function that could control the focus on these two
metrics.

Finally, future work can investigate how QASE scales to hyper-relational
graphs. As QASE is built using StarQE sub-models, hyper-relational queries
can be handled naturally and require minimum changes.

8 Conclusion

In this work we have introduced our model QASE and demonstrated its per-
formance on the AIFB and MUTAG datasets by comparing it to four baseline
models. In the context of approximate query answering, we are the first to con-
sider evaluating these baseline models in a binary classification setting. Our
results show that all baseline models outperform QASE, indicating that QASE
does not yet work very well. Moreover, we see no indication for a difference in
performance between model architectures and loss functions. We have shown
that using pretrained entity embeddings can be used to increase performance
to the baseline level, which suggests that finding correct entity embeddings is
a challenge still to overcome. By tracking additional metrics we identified flaws
of the model such as a low embedding uniqueness and high answer space and
set size. Future work could use these metrics to track and analyse future model
performance.

Negative impacts of this work. This work could have negative societal im-
pacts in fields where the correctness of query answers is of vital importance,
such as in the medical domain. Because our model does not return a ranking
but instead returns a finite answer set, false negatives can easily be overlooked.
On the other hand, our model can have a positive impact in places where a lot
of time is spent checking answers but where many invalid queries are submitted.
The applicability of our model is therefore very dependent on the use case and
requires careful consideration.
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Appendix

A Dataset Statistics

Table 3 shows the number of entities, entity types, relations and relation types
for both datasets. The number of entities for both AIFB and MUTAG may
differ with current literature, as blank nodes have been assigned to new entity
instances instead of being excluded from the graph.

Table 3: Dataset statistics for AIFB and MUTAG.
AIFB MUTAG

Entities 2,835 22,540
Entity types 6 4
Relations 39,436 81,332
Relation types 49 8

B Query Statistics

Table 4 shows the number of queries for each dataset, split and structure. Some
queries structures are notably underrepresented, which is clearly shown in table 5
that contains the distribution of query structure in percentages. Also interesting
is the difference between the amount of generated queries for each dataset, which
is over 4 times larger for AIFB than it is for MUTAG, even though the latter
dataset contains almost 10 times as much entities and twice as much relations.
We hypothesize this is due to the difference in edge distribution, where the in
and out-degree filtering protocol excludes nodes from the graph that should
otherwise have generated a lot of queries.

Table 4: Number of queries for each query structure.
Dataset Split 1p 2p 3p 2i 3i ip pi Total

AIFB
Train 3,222 6,453 348 27,807 170,505 58,924 506,918 774,177
Valid 756 3,404 164 8,537 74,321 40,542 246,654 374,378
Test 1,338 5,502 327 21,266 243,241 87,700 555,803 915,177

MUTAG
Train 10,105 1,472 203 19,052 41,952 3,733 106,723 183,240
Valid 2,654 656 66 6,373 19,252 1,739 32,135 62,875
Test 4,508 1,059 114 14,432 53,252 4,979 103,713 182,057
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Table 5: Percentage (%) of each query structure for all datasets and splits.
Dataset Split 1p 2p 3p 2i 3i ip pi

AIFB
Train 0.42 0.83 0.04 3.59 22.02 7.61 65.48
Valid 0.2 0.91 0.04 2.28 19.85 10.83 65.88
Test 0.15 0.6 0.04 2.32 26.58 9.58 60.73

MUTAG
Train 5.51 0.8 0.11 10.4 22.89 2.04 58.24
Valid 4.22 1.04 0.1 10.14 30.62 2.77 51.11
Test 2.48 0.58 0.06 7.93 29.25 2.73 56.97

Table 6 shows the answer set statistics for each dataset and structure. To
save space, we combined the results of all splits. We see that in general AIFB
queries contain more answers than MUTAG queries. An explanation for this
could be that MUTAG contains smaller graph networks (molecules), since it is
mainly used for graph classification. In combination with the large amount of
unique entities present this might cause the presence of very specific queries that
contain less answers.

Table 6: Query answer statistics (splits combined for simplicity).
Structure mean std min 25% 50% 75% max

AIFB

1p 3.33 13.67 1 1 1 2 683
2p 10.04 44.03 1 1 3 7 876
3p 2.50 2.67 1 1 1 2 27
2i 1.25 1.85 1 1 1 1 128
3i 1.03 0.31 1 1 1 1 41
ip 10.93 54.65 1 1 2 6 876
pi 2.11 6.00 1 1 1 1 468

MUTAG

1p 3.26 6.27 1 1 1 2 175
2p 5.28 8.91 1 1 1 6 168
3p 1.17 0.46 1 1 1 1 6
2i 1.06 0.18 1 1 1 1 2
3i 1.00 0.00 1 1 1 1 1
ip 1.00 0.05 1 1 1 1 2
pi 1.06 0.97 1 1 1 1 135
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C Parameter analysis

To compare the complexity of representations for entities, as well as relations,
projections, intersections and convolutions, the sets of learnable parameters for
QASE and the used baseline models are displayed in table 7 as E, R, P, I and
C respectively. Here |V| represents the number of entities, |R| the number of
relation types, |Γ | the number of entity types, d the embedding dimension, hd the
hidden dimension for MLP networks (for BetaE), L the number of convolution
layers (for StarQE and QASE), c the number of cones and h the number of
hyperplanes per cone (for QASE). For simplicity, the formulas for Query2Box
and BetaE are based on the amount of MLP layers used in their papers (one
and three respectively). For QASE, only the hype-wise architecture is displayed
as a worst-case example.

Table 7: The number of parameters for each baseline model and QASE.
Method entities relations projections intersections

GQE E ∈ R|V|×d - P ∈ R|R|×d×d I ∈ R2|Γ |×d×d

Q2B E ∈ R|V|×d - P ∈ R|R|×2d I ∈ R2×2d×d

BetaE E ∈ R|V|×2d - P ∈ R|R|×4d×hd -

StarQE E ∈ R(|V|+2)×d R ∈ R(2|R|+1)×d C ∈ R|L|×(4d×d+2d)∗

QASE (h) E ∈ R(|V|+2)×d R ∈ R(2|R|+1)×d C ∈ Rc×h×|L|×(4d×d+2d)∗

∗ StarQE and QASE do not use projection and intersection operators. Instead,
we define their learnable convolution parameters as C.

D Baseline models hyperparameters

Table 8 shows the hyperparameters used for the baseline models, which are the
hyperparameters described in their respective papers. For StarQE, the optimal
entity embedding dimension of 192 has been changed to 800 for a fair comparison
between the baseline models.

Table 8: Hyperparameters used for the baseline models.
Method dim lr batch size neg samples margin

GQE 800 0.0001 512 128 30
Q2B 400 0.0001 512 128 30
BetaE 400 0.0001 512 128 60
StarQE 800 0.0007 64 all -
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E Hyperparameter optimization

E.1 QASE

Hyperparameters for QASE are explored for each model architecture and dataset
combination (6 in total) where the normal loss function is used. For optimization
we consider the entity embedding dimension in (32, 128), the number of cones
in {1, 2, 4}, the number of hyperplanes per cone in (32, 128), weight dropout
in (0, 0.5), activation function in {LeakyReLU, Identity, ReLU}, composition
operators in {multiplication, complex rotation}, edge dropout in (0, 0.5), batch
size in (8, 256) and learning rate in (10−4, 10−2). Additionally, for the hype-wise
architecture we explored with the sharing of weights between the convolution
layers of a single GNN. We also implemented cone-dropout, where with prob-
ability p one random cone is dropped out, which was optimized for values of p
in (0, 0.5). To decrease the number of variables for optimization we used for all
model versions: bias in the convolution layers, the TM graph pooling operator,
symmetric message weighting, LeakyRelu loss activation, a negative sample size
of 1000 and the AdamW optimizer. These constants have shown better perfor-
mance during initial experimentation. The resulting best hyperparameters that
have been used for training are shown in table 9.

E.2 StarQE

Table 10 shows the resulting best hyperparameters for StarQE that have been
used for training, which are optimized for both datasets and embedding dimen-
sions 64 and 128.

Table 10: Best hyperparameters used for pretraining with StarQE.
Dataset dim layers lr batch size activation weighting dropout bias

AIFB
64 3 0.001 64 leakyrelu attention 0.1 True
128 3 0.0011 128 prelu symmetric 0.0 False

MUTAG
64 3 0.0011 32 identity attention 0.3 False
128 3 0.003 32 relu attention 0.0 True
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F Threshold optimization results

Figures 9-12 show the structure-wise distance threshold optimization results for
GQE, Query2Box, BetaE and StarQE respectively. Note that the actual distance
threshold range used for the optimization does not match the range of the x-axis
in the figures below, which has been adjusted for clarity. The crosses represent
the explored threshold values. The lines between the crosses are filled in to give
an approximation of the f1-score for interposing thresholds.

15 20 25 30 35
Distance threshold

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Optimization results (GQE on AIFB)
1p
2p
3p
2i
3i
ip
pi

(a) Optimization on AIFB.
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(b) Optimization on MUTAG.

Fig. 9: Structure-wise threshold optimization of GQE on the validation queries
of AIFB and MUTAG.
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(b) Optimization on MUTAG.

Fig. 10: Structure-wise threshold optimization of Q2B on the validation queries
of AIFB and MUTAG.



Approximate Query Answering using Answer Space Discretization 33

50 60 70 80 90
Distance threshold

0.0

0.2

0.4

0.6

0.8

1.0
F1

-s
co

re

Optimization results (BetaE on AIFB)
1p
2p
3p
2i
3i
ip
pi

(a) Optimization on AIFB.
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(b) Optimization on MUTAG.

Fig. 11: Structure-wise threshold optimization of BetaE on the validation queries
of AIFB and MUTAG.
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(a) Optimization on AIFB.
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Fig. 12: Structure-wise threshold optimization of StarQE on the validation
queries of AIFB and MUTAG.
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G Further experimentation

Besides the loss functions introduced in the paper, there has been experimenta-
tion with a third more complex loss function. Here, the parameters of the model
are optimized by performing gradient descent on a loss function consisting of 3
distinct components – A contrastive component that moves the normal vectors
in the direction of the target embeddings, and away from negative sampled em-
beddings; A push-back component that pushes the normal vectors away from
the target vector to narrow down the answer space; A diversification com-
ponent that actively distributes the normal vectors equally around the target
representation to enforce roundness of the cone. The following subsections will
discuss their implementation and effects in detail.

Contrastive loss

Given answer space S ∈ Rc×h×d, we iterate over all cones and normal vectors
in those cones. The loss value consists of the average negative cosine distance
between the normal vector and the target vectors, and the average cosine distance
between the normal vector and a collection of negative samples:

LCON =

c∑
i=0

h∑
j=0

1

ch

(
−
∑
a∈Ai

1

|Ai|
Dcos(v

+
a , s

i
j) +

l∑
p=0

1

l
Dcos(v

−
p , s

i
j)

)

To illustrate the effects of the CON loss component in combination with the
assignment function, consider the toy example in figure 13. In this example there
are three random target embeddings in green, and two cones, blue and red, each
represented by 16 random hyperplanes, all in R3. Note that the three target
entities in green do not cover a single region in the latent space. Other entities
have been left out for clarity.

The normal vectors of the toy example are trained on loss component LCON

using standard gradient descent with a fixed learning rate of 1 for 250 epochs.
The result of this can be seen in figure 14. Here each entity is assigned to the
closest cone, where the lower left entity is assigned to one cone, and the two upper
right entities are assigned to the other cone; the most optimal distribution. All
normal vectors of each cone (blue and red) are pointing in the same direction,
which means that the corresponding answer space of each individual cone is
approximating a single half-space that will likely contain many false-positives if
other entities were present.

Push-back loss

To narrow down the cone and reduce the number of false-positives, an additional
loss component is required. Since there is already a pulling factor in the first
loss component, a pushing factor is needed to increase the angle between the
target and normal vectors. To do this, for each cone a hyperplane is imagined
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Fig. 13: Random generated target embeddings (n=3, green) and randomly gen-
erated normal vectors (n=16) for two cones (blue and red). A shows an elevated
view, B a top view and C a front view.
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Fig. 14: The result of training on LCON. A shows an elevated view, B a top view
and C a front view.

that has the average assigned target entity representations as its normal vector
(approximating the direction of normal vectors trained on LCON). To increase
the angle between the target entities and the normal vectors, the normal vectors
of this cone are projected onto this hyperplane and their L2 (Euclidian) norm
is maximized. Intuitively, one could see it as a shadow from the sun; a shadow
cast on the ground will be longer when the object in question is laying down.
We implement this using formula:

Lnorm =

c∑
i=0

h∑
j=0

1

ch

∥∥∥rej(sij , t̂+i )∥∥∥2 ,
where rej(n, t) : Rd × Rd → Rd is a rejection function:

rej(n, t) = n− n · t
∥t∥2

t,

and t̂
+

i is the average vector of all assigned target entities of cone i:



36 M. Zwager

t̂
+

i =
∑
a∈Ai

1

|Ai|
v+
a

The loss component rejects normal vector n from average target embedding
vector t such that rej(n, t) · t = 0. In other words, the function returns a new
vector that is projected onto the hyperplane defined by t, and the resulting
vector is therefore perpendicular to t. The loss value consists of the average L2
(Euclidian) norm for all normal vectors.

Maximizing these vector norms in combination with the CON component
ensures that the angle between the normal vectors and some target entity will
increase, but never be pushed beyond 90 degrees where the target entity is on
the negative side of the corresponding hyperplanes. The toy example will now
be trained on loss components LCON − αLnorm, where α is a hyperparameter
that determines the degree to which the normal vectors are pushed back. The
results of training with α = 2 can be seen in figure 15.

x

1.0
0.5

0.0

0.5

1.0
y

1.0 0.5 0.0 0.5 1.0

z

1.0

0.5

0.0

0.5

1.0

A

BCE_norm

x

1.0

0.5

0.0

0.5

1.0

y
1.0 0.5 0.0 0.5 1.0

B

BCE_norm - top

y
1.0 0.5 0.0 0.5 1.0

z

1.0

0.5

0.0

0.5

1.0

C

BCE_norm - front

Fig. 15: The result of training on LCON − αLnorm, with α = 2. A shows an
elevated view, B a top view and C a front view.

Experimentation showed that the average angle between the normal vectors
of a cone and the average target embedding increases with α, but slower as α
increases (figure 16). Because of this we recommend using an α between the
values of 0 and 10, preferably at the high end.

Diversification loss

To narrow down the answer space of an individual cone even further, a third and
final loss component is introduced. As can be seen in figure 15, normal vectors
might not be distributed evenly around the assigned target entity representa-
tions. This can result in cones that have angular characteristics instead of being
evenly round. To enforce the roundness of cones, the projected norms are ac-
tively diversified around the average target entity embeddings by calculating the
cosine distance between randomly paired rejected normal vectors:
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Fig. 16: The average angle between the normal vectors of a cone and the average
target embedding as a function of hyperparameter α.

Ldiv =

c∑
i=0

h∑
j=0

1

ch
Dcos(rej(s

i
j , t̂

+

i ), rej(s
i
χ, t̂

+

i )),

where χ
R← {0, 1, ..., h− 1} \ {j} (χ is randomly sampled).

Using the three loss components described above, the final loss function can
be defined: L = LCON − αLnorm + βLdiv, where β is another hyperparameter.
We also experimented with the effect of hyperparameter β on the orientation of
the hyperplanes. The difference between the results of training the toy example
with a β in range (0, 10] is visually imperceptible. Therefore a value of β in
range (0, 1) is recommended to cause as little noise as possible in the learning
process. The result of training the toy example on L with α = 2, β = 0.5 can be
seen in figure 17. The figure shows that the normal vectors are distributed more
evenly around the target entity representations, closing some gaps and making
the resulting answer space for each individual cone more round.
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Fig. 17: The result of training on LCON − αLnorm + βLdiv, with α = 2, β = 0.5.
A shows an elevated view, B a top view and C a front view.
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Experimentation results

Training the model with this loss function on the whole dataset using the op-
timized hyperparameters resulted in weighted f1-scores below 0.1% for both
datasets. In addition to this low performance, an important limitation of this
approach is that the width of the cone is not dependent on the position of pos-
itive and negative samples, but solely on hyperparameter α. Additionally, we
hypothesize that the implementation suffers from negative sample embeddings
getting stuck inside the cone. Looking at figure 17 we can see that for negative
samples inside the answer space the optimal direction would be to move further
inside the cone instead of moving towards the edge. Because of this we decided
not to continue with this line of experimentation.

Similar to the loss functions introduced in the paper, we also experimented
with focusing on the most promising normal vectors to exclude negative sam-
ples by using the Softmin weighted average or minimum of the cosine distances
between a negative sample and all normal vectors in a cone. These alternative
implementations did not yield better performances.

Finally we experimented with adding only the diversity loss component to the
loss functions described in the paper, with the aim of increasing the roundness
of the answer space. The model did not converge when trained on this combined
loss function.
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