
Catch Me If You Can: Graph Neural Networks to
detect fraudulent nodes to counter money

laundering
Master Project AI

Author: Maximiliane Ekert[2680863]
External Supervisor: Dr. Evert Haasdijk
Internal Supervisor: Dr. Michael Cochez
Second Supervisor: Dr. Xander Wilcke

Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The
Netherlands

Abstract. Money laundering poses a considerable threat to our society
and thus countering money laundering has been included in the United
Nation’s Sustainable Development Report under the goal to maintain
peace, justice, and strong institutions. The size of the problem calls
for automated solutions and poses the challenge of identifying a rela-
tively small amount of illicit accounts within a vast majority of licit
ones. The goal of this research was two-fold: first, to investigate if graph-
based methods are in general promising approaches in identifying illicit
nodes within a transaction network and second, which of the imple-
mented methods show the best results. As labels are scarce in prac-
tice and institutions try to avoid bias, we mainly focused on unsuper-
vised methods. We compared stepwise approaches, i.e. first learning the
node embeddings in an unsupervised manner using Deep Graph Infomax
(DGI) with various encoders as well as node2vec which were then passed
into a classifier with the goal to detect anomalies using an Isolation
Forest (IF) or classify the nodes as illicit/licit with Logistic Regression
(LR) and XGBoost (XGB). The stepwise approaches were contrasted
to joined approaches combining these steps, i.e. DONE as anomaly de-
tection algorithm and Graph Convolutional Networks (GCNs) for node
classification. The results show that graph-based methods are in gen-
eral suitable methods to identify illicit accounts above chance level with
the best performance showing a stepwise approach of learning node em-
beddings with DGI using a transductive encoder and XGB as classifier.
Furthermore, application of these methods in real-world settings poses
additional challenges, specifically regarding the size of the data sets and
privacy policiess.

Table of Contents

1 Introduction . 5
1.1 Anti-money Laundering . 5
1.2 Anomaly Detection in AML . 7
1.3 Unsupervised representation learning . 8
1.4 Challenges . 9
1.5 Objective . 9

2 Methodology . 10
2.1 Models . 10
2.2 Node encoders . 15
2.3 Classifiers applied on Node Embeddings . 16
2.4 Experimental Setup . 18
2.5 Data sets . 19
2.6 Node Embeddings . 22
2.7 Evaluation procedure . 23

3 Results . 23
3.1 AMLSim data set . 23
3.2 Elliptic data set . 26

4 Discussion . 28
4.1 Limitations and Outlook . 29

5 Conclusion . 30
References . 31

Appendix . 42
Appendix A: Node Embeddings . 42
Appendix B: Precision-Recall curves . 46

Master Project AI 3

List of Figures

1 Money Laundering Cycle showing the three phases of money
laundering: 1. placement, 2. layering, 3. integration. Source: [26] 6

2 2D Convolution on the left vs. Graph Convolution on the right.
Source: [105] . 10

3 Architecture of multiplayer Graph Convolutional Networks (GCNs)
with input, hidden layers, each followed by a ReLU activation
function and an output. Source: [49] . 11

4 Architecture of Deep Graph Infomax with the nodes of the real
graph and its corrupted version (on the very left) being encoded
(E) and scored against a summary vector of the real graph (s) using
a discriminator (D) which is maximized for the real graph and
minimized for its corrupted version. Source: [93] 12

5 Multi-head attention for Graph Attention Networks. [92] 15
6 GraphSAGE approach. [37] . 16
7 Splitting for a normal versus anomalous data point. [56] 17
8 Architecture of AMLSim simulation platform depicting its 2

components: the Transaction Graph Generator and the Transaction
Simulator. Source: [100] . 19

9 Transaction graph of 1 timepoint of the AMLSim data set. 20
10 Transaction graph of 1 timepoint of the elliptic data set portraying

(a) the illicit nodes and (b) the licit ones. 21
11 Node Embeddings with DGI + GraphSAGE. 22
12 Evaluation of anomaly detection algorithms for the AMLSim data set. 24
13 Evaluation of classification algorithms for the AMLSim data set. 25
14 Evaluation of anomaly detection algorithms for the Elliptic data set. . 26
15 Evaluation of classification algorithms for the Elliptic data set. 27
16 Node Embeddings with DGI + encoder for the AMLSim data set. 42
17 Node Embeddings with node2vec for the AMLSim data set. 43
18 Node Embeddings with DGI + encoder for the Elliptic data set. 44
19 Node Embeddings with node2vec for the Elliptic data set. 45
20 Evaluation of anomaly detection for the AMLSim data set: trade-off

between precision and recall. 46
21 Evaluation of classification for the AMLSim data set: trade-off

between precision and recall. 47
22 Evaluation of anomaly detection for the Elliptic data set: trade-off

between precision and recall. 48
23 Evaluation of classification for the Elliptic data set: trade-off

between precision and recall. 49

4 M. Ekert

List of Tables

1 Overview over all implemented methods categorized as unsupervised
vs supervised, stepwise vs. joined approach, for the stepwise
approach the used node embeddings (transductive vs. inductive)
and classifiers. 18

2 Confusion Matrix showing True Positives (TP), False Positives
(FP), False Negatives (FN), and True Negatives (TN). 23

Master Project AI 5

1 Introduction

The United Nations Office on Drugs and Crime (UNODC) estimates that every
year between 2 - 5% of the global GDP is laundered, which roughly translates to
$800 billion - $2 trillion annually [26]. In the Netherlands alone, €16 billion euros
are laundered every year [89]. However, on average, only 1% of the illicit funds
are detected [28]. Countering money laundering is of great societal interest and
included in the 16th goal of the United Nation’s Sustainable Development Report
[85] advocating to maintain peace, justice, and strong institutions. The first
global response to increasing incidents of money laundering was proposed in 1988
in the United Nation’s Vienna Convention against narcotics and psychotropic
substances (1988 Vienna Convention) [72] which defined money laundering as
criminal act and nowadays forms the basis of the anti-money laundering (AML)
laws and practices of most countries [25]. The subsequent year, the Financial
Action Task Force (FATF) was established by the G7 countries which still sets
global standards on AML policy today [29].

As the cases of AML are increasing, so have been the number of laws and
regulations to which financial institutions have to comply to. If they fail to
do so, high fines are issued that can in some cases even endanger profitability
[100]. Financial institutions are thus inclined to prevent money laundering on
their client accounts. Detecting the few cases of money laundering within a vast
majority of licit accounts and transactions and considering the increasing amount
of money laundering cases is no longer manageable with human labour alone, but
calls for automated, smart solutions. Since criminals who launder money often
work within a network, analysing the network of transactions and finding illicit
behavior by taking the network structure into account seems to be a promising
approach [100]. This research aims to investigate graph analytic techniques aimed
at finding illicitly behaving account holders within the transaction network and
thus seeks to contribute to the objective to countering money laundering.

1.1 Anti-money Laundering

The overall goal of money laundering is to gain capital by portraying money
as legitimate assets that had been illegally obtained, i.e. whitewashing "dirty"
money, and commonly follows three phases: placing the illicit funds (often cash)
into the financial system (1. performance/placement), creating a complex trail
of moving money around, e.g. through different countries (2. layering), and re-
uniting the funds with the criminal, e.g. through purchases of luxury goods (3.
integration) [107] (see also Figure 1). In an attempt to stay compliant with
laws and regulations and to prevent criminally obtained money to enter the
system, financial institutions have established a number of practices including
“know your customer” (KYC; validating if the customer is who he/she claims
to be), due diligence (continuous risk assessment of all customers of a finan-
cial institution, specifically for AML and counter-terrorist financing (CTF)) and
transaction monitoring (checking behavior on an account to find any unusual or
suspicious activity) [107].

6 M. Ekert

Given the volume of customers, activities, and transactions, however, com-
plying with the laws and regulations in place exceeds human capacities and calls
for automated AML [107]. To prevent any false accusations of fraudulent behav-
ior against clients which could jeopardizing the customer relationship or in the
worst case lead to false convictions, human interference and checking of the out-
comes of any applied methods is essential. Thus, AML is typically divided into
three phases: initially transactions are analyzed electronically and alerts are gen-
erated, followed by a human expert assessing the validity of the alert(s). If one or
more alerts cannot be disproven as false positives, the case must be reported to
the local Financial Intelligence Unit (FIU) which links financial institutions to
law enforcement [107]. One key aspect is the explainability of any raised alert(s)
that can elucidate how risks have been assessed for the manual assessment, po-
tential regulatory report thereof and for legal prosecution of involved parties to
be successful.

Fig. 1: Money Laundering Cycle showing the three phases of money laundering:
1. placement, 2. layering, 3. integration. Source: [26]

AML practices shifted from a rule-based approach, e.g. raising an alert if a
transaction exceeds a fixed threshold of e.g. €10 000 to a risk-based one after too
many false positive alarms had been raised. But as AML practices become more
sophisticated, so do money laundering schemes: Criminals e.g. use "smurfing" to
avoid any suspicion, i.e. splitting up money into smaller amounts which are sub-
sequently distributed over multiple bank accounts or recruit "mules" that have
no criminal history and whose accounts are used to channel funds [107]. Tradi-
tionally, financial institutions like banks counter money laundering individually.
There are also attempts, however, to join forces and potentially raise the number
of detected cases when banks share information amongst each other which oth-

Master Project AI 7

erwise would only be available to each bank individually. The five Dutch banks
ABN AMRO, ING, Rabobank, Triodos Bank and de Volksbank, for example,
have established Transaction Monitoring Netherlands (TMNL) that combines
the transaction data of companies holding an account at one or more of these
partners [87].

1.2 Anomaly Detection in AML

Essentially, the goal of AML is to find the few illicit transactions/accounts within
a vast majority of licit ones. This can be rephrased as finding the outliers
where an outlier is "an observation point that is distant from other observa-
tions" [35]. Distance-, density-, classification- or cluster-based outlier detection
techniques are usually applied to data represented in linear space [86], e.g. ap-
plying a anomaly detection algorithm while taking into account a number of
a company’s features. In real-world applications, however, objects might have
meaningful relationships to one another which can provide valuable additional
information [62]. Thus, not only account features, but also the graph structure
that preserves information about which nodes are connected with one another
can serve as important information and in some cases be the additional informa-
tion needed to differentiate between fraudulent and normal users, e.g. in online
social networks where fraudsters mimick attributes of benign users [5], [24], [110].
Preserving structural information of a network can lead to detecting fraudulent
users or accounts which otherwise would have gone unnoticed [81].

Conventional anomaly detection methods make use of statistical models de-
rived from domain expert knowledge, manual feature engineering or machine
learning like matrix factorization or support vector machines (SVM) [4], [27],
[54], [64]. These approaches, however, show shortcomings when it comes to scal-
ing these models on real-world data set that have millions of nodes [75], [86].
Graph neural networks (GNNs) have recently gained popularity, amongst oth-
ers, in AML [3], [18], [98], [110] and research targeting anomaly detection on
graphs is broad [15], [19], [86]. A common approach is to use the data to first
learn representations of the nodes that are depicted as vector features in the
vector space, embeddings in the embedding space respectively, i.e. representa-
tion learning [12], [74], [75], [99]. Distributed embeddings are computationally
efficient and widely applied in deep learning [41]. Anomaly detection algorithms
are then applied to the vector space to detect outlying data points [75]. Isolation
Forests (IFs), for example, are recently adopted anomaly detection algorithms
that despite their simplicity show very promising results [6], [88]. However, not
only unsupervised methods, but also supervised algorithms like Logistic Regres-
sion (LR) [13] can be applied as last step. This process can also be combined in
joined graph anomaly detection algorithms with the goal to identify anomalous
nodes, graphs or subgraphs within a graph or anomalous graphs amongst a set of
graphs [10], [38], [100], [110]. Similarly graph classification algorithms for node
classification (NC) serve as joined solutions. In either case, the nodes (V) of a
(static, attributed) graph G = {V, E, X} can intuitively reflect a bank account
or a group of similar accounts with X representing attributes of the nodes, e.g. a

8 M. Ekert

timestamp or an account ID, and the edges (E) the transactions between them
[62], [100].

Although there is a growing research area investigating anomaly detection on
financial data represented as graphs [98], most scientific studies leverage super-
vised or semi-supervised learning methods. Rao et al. [83], for example, apply
a transaction prediction framework comprised of two parts: a detector based on
a transformer architecture [91] and an explainer based on GNNExplainer [106]
using heterogeneous graphs in a supervised learning setting for e-commerce. Van
Belle et al. [10] and Weber et al. [100], [101] also leverage a supervised learning
setup for credit-card fraud, fraudulent bitcoin transactions respectively compar-
ing the performance of GraphSAGE [37] to Fast Inductive Graph Representa-
tion Learning [46] as well as contemporary methods to GCNs and combinations
thereof taking space and time into account. Whereas Lv et al. [61] underline
using auto-enconder-based GCNs to detect fraud, Liu et al. [59] and Liang et al.
[55] propose stacking multiple adaptive path layers to select important neighbor
nodes and aggregating the neighbors’ features to detect insurance fraud. In or-
der to bridge the gap between research and real-world applications, we selected
a diverse set of algorithms which are applied to both, synthetic data, i.e. IBM
AMLSim [100] as well as a data set consisting of real Bitcoin transactions [101].

1.3 Unsupervised representation learning

One of the central objectives of this research is to learn node embeddings without
any prior knowledge, i.e. to learn representations of nodes in an unsupervised
manner [41]. There are a number of models and frameworks that can be applied
which can roughly be categorized in three different approaches [33], i.e. factor-
ization based models like Laplacian Eigenmaps [9] which factorize the matrices
representing the connections between nodes to obtain the representations (e.g.
Radar [54]), random walk based techniques like DeepWalk [79] or node2Vec [34]
that perform truncated random walks and maximize the probability of observ-
ing neighboring nodes on a random walk, and deep learning based approaches
like structural deep network embedding (SDNE) [96] or variational graph auto-
encoders (VGAE) [50] that apply methods used in deep neural network to graphs.
In this research we will mainly focus on deep learning based approaches as well
as a random walk based algorithm to compute node embeddings. In any case,
the graph structure can be represented as an adjacency matrix A ∈ RN∗N of N
nodes with entries Aij = 1 if a respective node pair is connected, and 0 otherwise
[102]. Comparable to constructing node embeddings, creating suitable word em-
beddings have been motivated by the distributional hypothesis, which states that
words that appear in a similar context have similar meaning [31]. On this basis,
the Skipgram model, for example, represents words that have a similar context
as vectors in the embedding space in close proximity to one another [67]. Simi-
larly, the homophily hypothesis for graphs describes that connected nodes that
are part of the same community should also be represented close to each other in
the embedding space [32], [43]. The Skipgram model and homophily hypothesis

Master Project AI 9

serve as basis and inspiration for more recent algorithms like the random-walk
based techniques.

The different unsupervised representation learning algorithms can further be
categorized in transductive versus inductive learning techniques which describe
their capability to learn representations of unseen nodes [38]. Most models fall in
the category of transductive learning techniques, i.e. the entire graph is needed
during learning of the embeddings which causes challenges when encountering
unseen nodes [37]. There are also a smaller number of inductive learning methods;
Hamilton et al. [37], for example, proposed GraphSAGE, a framework and neural
network layer that allows to induce the embeddings of unseen nodes based on
their position in a graph (see also 2.2).

1.4 Challenges

There are a number of challenges when it comes to finding illicit nodes in graphs.
First, graphs representing transactions over a longer period of time can include
millions of nodes, as mentioned above, and thus call for scalable and efficient
methods that can handle large graphs that continuously change [62], [83]. Fur-
thermore, ground-truth labels are scarce in many real-world applications as well
as labeled, publicly available data sets due to the privacy sensitive nature of
fraud detection [10], [97]. Furthermore, the labels that are available in real-
world data sets are usually defined by experts whose opinions might not always
be in agreement with one another [62]. There is also a great imbalance between
a high number of licit and a small percentage of illicit transactions which calls
for suitable methods. Lastly, if a transaction or client is flagged as anomalous
and an alert is created, human analyst further investigate the case and need
an explanation which features led to this decision [62], [83], which is difficult to
provide when using GNNs.

1.5 Objective

Countering money laundering and thus preventing whitewashing illicit funds is
of great interest to keep society safe and to maintain trust in the financial sys-
tem [85]. Financial institutions are being kept accountable for detecting money
laundering on their clients’ accounts, but large amounts of transactions and high
false positive rates call for smarter, automated solutions. Transactions between
different clients can be depicted as graphs and with the help of GNNs either
nodes of the graph can be represented as vector features in the vector space,
i.e. node embeddings in the embedding space [38] or joined solutions can be
applied [62]. Anomaly detection algorithms like IF or supervised methods like
Logistic Regression (LR) can further be applied on the embedding space to find
illicit clients in the network, i.e. those who launder money. Alternatively, graph
anomaly detection or NC algorithms can be applied to the graphs which combine
these two steps.

The aim of the project at hand is twofold: first, we want to investigate whether
graph-based algorithms are a suited method to differentiate between licit and

10 M. Ekert

illicit nodes within a transaction network by applying a diverse collection of
graph methods to simulated as well as real data. Specifically, we are interested
if the implemented methods can generate useful node features or probabilities
regarding the licitness of nodes. Secondly, we want to compare the performance
of the different methods to one another, i.e. transductive versus inductive meth-
ods, supervised (node classification) versus unsupervised algorithms (anomaly
detection) as well as joined approaches versus stepwise approaches (unsuper-
vised representation learning + a non-graph-based machine learning algorithm).
Given the scope of this project we did not take the dynamic nature of trasnac-
tion graphs into account, e.g. [76], but only included static graphs. Neither did
we specifically address explainabilty of the results and implemented methods,
e.g. [106].

2 Methodology

In the following all applied models, encoders, and classifiers will be outlined,
followed by a description of the experimental setup, the data sets used in this
project, the node embeddings, and the applied evaluation procedures.

2.1 Models

Graph Convolutional Networks Convolutional neural networks (CNNs) have
shown great success in many domains and have launched a new era of deep
learning [52], [53], [105]. CNNs focus on input data in the Euclidean space, i.e.
2-dimensional, regular data like images, videos or text and are able to leverage
local connections, shared weights, pooling, and apply multiple layers to learn
local meaningful features.

Fig. 2: 2D Convolution on the left vs. Graph Convolution on the right. Source:
[105]

This type of data can also be viewed from a graph perspective: images, for
example, can be represented as a regular grid in Euclidean space which abstractly
can be understood as graph, but with a fixed structure. In this sense, pixels

Master Project AI 11

represent nodes that are connected via edges to neighboring pixels (see also
Figure 2).

As mentioned above, a growing body of research has been targeted towards
non-Euclidean data. Deep learning paradigms, such as CNNs or autoencoders
[94], for example, have been adapted to arbitrary graph structures resulting
in Graph Convolutional Networks (GCNs), Variational Graph Autoencoders
(VGAE) [50] respectively, which can produce powerful feature representations of
graph nodes [23], [49], [62]. Comparably to 2D convolution in CNNs, graph con-
volution consists of summarizing the neighborhood information of a node by e.g.
averaging (see also Figure 2). GCNs are originally designed for semi-supervised
learning and need the entire graph Laplacian for training, i.e. are transductive
[37], [49]. They are one of the most prominent deep graph learning techniques
that serve as building basis for many other algorithms developed later in time.

Fig. 3: Architecture of multiplayer Graph Convolutional Networks (GCNs) with
input, hidden layers, each followed by a ReLU activation function and an output.
Source: [49]

In particular, the feature representation of the next layer H [l+1] in a GCN
is calculated by applying a non-linear activation function σ, e.g. the Rectified
Linear Unit (ReLU) activation function [2], to the weights of the current layer
W [l] times the feature representations of the current layer H [l] times the nor-
malized adjacency matrix A∗: H [l+1] = σ(W [l] ∗ H [l]) ∗ A∗ (see also Figure 3).
A* implicating the normalized adjacency matrix using the diagonal node degree
matrix (degree: amount of nodes a node i is connected to): D− 1

2 ∗ AD− 1
2 and

the identity matrix: I to add self loops.
Each layer in a GCN convolutes the information of a node’s neighbors that

are one hop away. Thus, the number of layers indicates the number of hops
the information can travel, e.g. with a three-layer GCN, each node’s ‘third-
order’ neighborhood is convoluted. When used for end-to-end classification as
joined approach, GCNs’ last layer is past through a softmax activation function:

12 M. Ekert

softmax(xi) = 1
Z exp(xi) with Z =

∑
i exp(xi) applied row-wise. The error of

the labeled data points are evaluated using the cross-entropy loss:

L = −
∑
l∈YL

F∑
f=1

Ylf lnZlf (1)

GCNs have continously been further developed. Wu et al. [104], for example,
recently proposed the simplified GCN (SGCN) arguing that GCNs inherit re-
dundant calculations and complexity that can be avoided. The authors removed
all nonlinearities resulting in fewer parameters and significantly lower computa-
tion time while preserving aggregated information from the k-hop neighbors and
scalability to large graphs and comparable accuracy scores.

Deep Graph Infomax Veličković et al. recently proposed their unsupervised
representation learning framework Deep Graph Infomax (DGI) [93]. Due to its
modular architecture and high performance compared to other popular unsuper-
vised learning models we chose to use Deep Graph Infomax [93] as deep learning
based unsupervised learning framework. DGI’s modular architecture allows to
easily exchange and test different implementations of its components, e.g. differ-
ent encoders and thus e.g. transductive as well as inductive techniques can be
used and compared to one another.

DGI is the adaption of Deep InfoMax (DIM) [42] to graphs, an unsupervised
learning method of Euclidean data that trains an encoder model to maximize
the mutual information between local areas of the input, e.g. patches of an
image and a global representation of it. As such, DIM is strongly relatable to
convolutional neural network structures. Similarly, DGI is based on maximizing
mutual information between patch representations of the graph,

−→
hi and high-

level summaries of it [93] that are generated on the basis of established graph
convolutional network architectures (see also Section 2.1).

Fig. 4: Architecture of Deep Graph Infomax with the nodes of the real graph and
its corrupted version (on the very left) being encoded (E) and scored against a
summary vector of the real graph (s) using a discriminator (D) which is maxi-
mized for the real graph and minimized for its corrupted version. Source: [93]

Master Project AI 13

Specifically, this framework’s objective is to maximize local mutual informa-
tion, i.e. to construct (local) node embeddings that represent (global) informa-
tion of the entire graph which is captured in a summary vector −→s . This summary
vector −→s is created with the help of a read-out function that summarizes the
patch representations into a graph-level representation: −→s = R(ε(X,A)) with
X: set of node features and A: the adjacency matrix. The read-out function can
be as simple as a sum:

−→s = σ

(
1

N

N∑
i=1

−→
hi

)
(2)

DGI is a constructive method, a technique that has also been successfully
adapted to learning representations of words [21], [68], [70], such as, for exam-
ple, the Skipgram model [67]. As such, DGI leverages a scoring function that
contrasts "positive samples" or patches taken from the real graph against "neg-

ative samples" or patches
−→̃
hi of a corrupted version of the graph (X̃, Ã). In order

to maximize the local mutual information, a discriminator D(
−→
hi ,

−→s) is used that
assigns probability scores to each patch-summary pair. For patches that are part
of the summary the probability scores should be higher and vice versa. The cor-

rupted graph (discriminator: D(
−→̃
hi ,

−→s)) is obtained via a corruption function:
(X̃, Ã) = C(X, A), e.g. shuffling of all features and randomly deleting edges
between nodes. DGI then applies classification to score the representations [34],
[38], [50], [79]. Finally, following the approach of DIM, DGI maximizes mutual
information between

−→
hi and −→s by applying a binary cross-entropy loss between

the joint, i.e. the positive samples and the product of marginals, i.e. the negative
samples:

L = − logD(
−→
hi ,

−→s)− log(1−D(
−→
h̃i ,

−→s)) (3)

The schema of DGI is summarized in the following and depicted in Figure
4. For each node and its one-hop neighbors (i.e. patch of a graph rather than
a node itself), denoted as graph G a corrupted version H = C(G) thereof is
created by e.g. shuffling the node attributes and keeping the edges stable. Both
graphs are then encoded (different encoders can be applied, e.g. GCN 2.1) E(G),
E(H) respectively and the true graph G is summarized in a summary vector
−→s = R(E(G)). The encoded embedding vectors of both graphs are compared
to the summary vector using a discriminator D(−→v ,−→s) for −→v in E(G), E(H)
respectively and combined in a loss function. The loss function tries to maximize
D(−→v ,−→s) if −→v in E(G) and minimize D(−→v ,−→s) if −→v in E(H) using gradient
descent.

DONE There are a number of joined graph anomaly detection algorithms;
DONE [8], for example, is a recently developed method that detects anomalies
based on their global, structural, and community anomaly scores. Due to its
relative high performance compared to other unsupervised approaches as well as

14 M. Ekert

the fact that DONE includes both, the structure and the node attributes it was
selected as joined graph anomaly detection in this research. For each node the
likelihood of this node either sharing similar attributes with nodes from differ-
ent communities (oai), or being connecting to other communities (osi), or being
part of a community structurally, whilst being associated with a different one
based on the attributes (ocomi) is computed. The higher the likelihood in one
or more of these three areas, the higher the score of this node and the higher
the chance this node will be anomalous. DONE is based on two separate au-
toencoders, one for the structure and one for the attributes. During training
the reconstruction errors of the autoencoders are minimized ensuring that the
representation of connected nodes is similar in the embedding space (see also ho-
mophily hypothesis 1.3). DONE’s loss function is anomaly-aware and consists of
five terms: structure and attribute reconstruction errors: LRecs

str , LRecs
attr , preserv-

ing homophily:LHom
str , LHom

attr , and restrictions to ensure attributes and structure
complement each other: LCom. They are defined as:

LRecs
str =

1

N

N∑
i=1

log(
1

osi
)||ti − t̂i||22 (4)

LRecs
attr =

1

N

N∑
i=1

log(
1

oai
)||xi − x̂i||22 (5)

with structure and attributes of node i stored in ti and xi and reconstructed
as t̂i and x̂i.

LHom
str =

1

N

N∑
i=1

log(
1

osi
)

1

|N(i)|
∑

j∈N(i)

||hs
i − hs

j ||22 (6)

LHom
attr =

1

N

N∑
i=1

log(
1

oai
)

1

|N(i)|
∑

j∈N(i)

||ha
i − ha

j ||22 (7)

with the learned node representation from the structure (hs
i) and attribute

autoencoder (ha
i).

LCom =
1

N

N∑
i=1

log(
1

ocomi

)||hs
i − ha

i ||22 (8)

The sum of these loss functions are minimized and the k nodes with the
highest scores are detected as anomalies [62].

Master Project AI 15

2.2 Node encoders

Besides GCN and SGCN (see section 2.1, a number of GNNs, outlined below,
have been selected that served as encoders for DGI.

Graph Attention Networks Contrary to GCNs, Graph Attention Networks
(GATs) [92], another transductive method, do not share the same weights across
all one-hop neighbors of a node i, but assign different levels of importance to
each neighbor by leveraging masked self-attention and multi-head attention [91].
GATs are nowadays one of the most popular GNNs and considered state-of-the-
art [17].

Fig. 5: Multi-head attention for Graph Attention Networks. [92]

First, a simple linear transformation is applied to every node hi parametrized
by their learnable weight matrix W of the current layer l to ensure that the input
features can be transformed into higher level features: z(l)i = W (l)∗hi(l). Next, an
attention coefficient is calculated for each pair of nodes i,j where a LeakyReLU
activation function [63] is applied to the dot product between the concatenated
z-embeddings of the two nodes (z

(l)
i ||z(l)j) and a learnable weight vector −→a (l)T :

eij
(l) = LeakyReLU(−→a (l)⊤ ∗ (z(l)i ||z(l)j)) (9)

In order to normalize all attention coefficiants of the one-hop neighbors of
a node i, a softmax function is applied: aij(l) = exp(eij

(l))∑
k∈N(i) exp(e

(l)
ik)

. Comparable

to GCNs the feature representation of the next layer is calculated by aggregat-
ing the node embeddings of the neighbors z

(l)
j , however scaled by the attention

scores aij
(l): h(l+1)

i = σ(
∑

j∈N(i) aij
(l) ∗ z(l)j). In order to stabilize the learning

and enrich the capacities of the model, GAT uses multi-head attention compa-
rable to multiple channels in a CNN. A set number of independent attention
mechanisms perform the last aggregation step and the resulting outputs can be
either averaged or concatenated (see Figure 5).

16 M. Ekert

Brody et al. [16] very recently have further improved GATs by expanding
the attention mechanism from a static to a dynamic one resulting in improved
performance and a more expressive method, i.e. GATv2. The authors propose to
modify the order of GAT’s operations and argue that in GAT’s scoring function
(see also Equation 9) the layers W and a can be collapsed into a single layer since
they are consecutively applied. They proposed the following scoring function
instead:

eij
(l) = −→a (l)⊤LeakyReLU(W ∗ [h(l)

i ||h(l)
j]) (10)

Fig. 6: GraphSAGE approach. [37]

GraphSAGE As discussed above
(see also Section 1.3), representation
learning algorithms can be catego-
rized in transductive and inductive
methods. In order to deal with large
and evolving graphs inductive meth-
ods are needed that do not need the
full graph for training. Graph sam-
ple and aggregate (GraphSAGE) [37]
leverages node attributes of neighbor-
ing nodes and shows a relatively high
performance. It is based on the GCN
architecture but instead of aggregating the information of all neighbors of a node,
node embeddings are created by sampling and aggregating the features from a
a fixed amount of a node’s local neighbors (see also Figure 6. GraphSAGE en-
sures that connected nodes have similar node embeddings and non-connected
ones distant ones (see also homophily hypothesis in Section 1.3) by applying the
following loss function:

JG(zu) = − log(σ(z⊤u zv))−Q ∗ Evn∼Pn(v) log(σ(z
⊤
u zvn)) (11)

with node v and u are near each other on a fixed-length random walk, the
sigmoid function as σ, P (n) representing a negative sampling distribution, and
Q as the numbers of negative samples.

2.3 Classifiers applied on Node Embeddings

In case of the stepwise approach, classifiers targeting anomaly detection or clas-
sification are applied with the created node embeddings as input matrix. The
selected algorithms, i.e. Isolation Forest, Logistic Regression, and XGBoost are
outlined in the following.

Anomaly Detection Isolation Forests are relatively simple, but well perform-
ing anomaly detection algorithms. IFs are a distance-based tree ensemble method
based on decision trees that isolate samples in the feature space by performing

Master Project AI 17

Fig. 7: Splitting for a normal versus anomalous data point. [56]

random partitions [56], [57]. A feature and a corresponding split value (between
the minimum and maximum) are randomly selected to create partitions. A tree
structure represents the recursive partitioning where the path length from the
root to the termination node is equivalent to the total amount of splits needed
to isolate a data point. Since anomalous data points lie further away from all
other points in the feature space , they need fewer splits to be isolated and thus
lie closer to the root of the tree, i.e. have shorter paths. An anomaly score is
calculated for each sample x using its path length h(x) averaged over a forest of
n random trees c(n):

s(x, n) = 2−
E(h(x)
c(n) (12)

with scores close to 1 indicating anomalies and normal observations showing
scores <0.5.

Classification In terms of supervised classification algorithms we implemented
a simple Logistic Regression (LR) [13] algorithm as well as the more recently
developed eXtreme Gradient Boosting (XGBoost) [20]. LR is one of the bench-
mark methods applied in anti-money laundering (AML) research [34], [69], [101],
mainly due to its high explainability. XGBoost is a leading, state-of-the art ma-
chine machine learning algorithm and library that excels in regard to speed and
performance. It is based on gradient-boosted decision trees and ensures parallel
tree boosting. It uses a depth-first tree pruning approach and regularizations to
avoid overfitting. XGBoost uses a logistic loss function:

L =
∑
i

[yiln(1 + e−ŷi) + (1− Yi)ln(1 + eŷi)] (13)

18 M. Ekert

Van Belle et al. [10], [11] applied XGBoost for fraud detection in graph repre-
sentation learning and found promising results for XGBoost applied to numeric
vectors representing the graph structure.

2.4 Experimental Setup

This project was carried out in collaboration with Deloitte Financial Advi-
sory B.V. and Transactie Monitoring Nederland (TMNL). It followed the cross-
industry standard process for data mining (CRISP-DM) model [103]; a common
and widely adopted approach to structure data science projects that entails
six phases: business understanding, data understanding, data preparation, mod-
elling, evaluation, and deployment [51], [103]. All steps were applied, but the last
one as it exceeds the scope of this research project. The phases were in general
followed chronologically; the different methods were first developed and evalu-
ated on the synthetic data (see also 2.5) and only then applied to the real-world
data set (see also 2.5).

Unsupervised: Anomaly Detection Supervised: Classification

Stepwise Joined Stepwise Joined

Node Embedding Classifier Node Embedding Classifier

Transd. Inductive Transd. Inductive

DGI+ DGI+ IF DGI+ DGI+ LR
GCN SAGE GCN SAGE XGB
SGCN DONE SGCN GCN +
GAT node2vec GAT node2vec softmax
GATv2 GATv2

Table 1: Overview over all implemented methods categorized as unsupervised
vs supervised, stepwise vs. joined approach, for the stepwise approach the used
node embeddings (transductive vs. inductive) and classifiers.

The code was developed in a Google Colaboratory [14] notebook and run
on the corresponding servers. The GNNs were implemented using Pytorch Geo-
metric [30], PyGOD respectively for DONE [58]. IF and LR were implemented
using Scikit-learn [78] which was partially also applied during preprocessing and
evaluation. The visualizations were done with the help of Matplotlib [45], for the
graph NetowrkX [36] was used. For data handling Numpy [39], [73] and pandas
[66] as well as tensorflow [1] and PyTorch [77] was applied.

The pipeline was implemented using the following hyperparameters: 50 epochs
(convergence of loss curves), a learning rate of 0.01 (randomly chosen), 32 hid-
den channels (due to size of data sets rather small number chosen), and a 5-fold
stratified cross validation (with shuffling) for LR (Scikit-learn) and XGBoost

Master Project AI 19

(XGBoost library). The algorithms were trained with the Adam optimizer [48],
but for node2vec SparseAdam [48] was applied as suggested by Pytorch Ge-
ometric (for both: torch.optim). The hyperparamters were not systematically
tuned, as this would have exceeded the scope of this project. In order to ensure
scalability the ’saga’ solver was applied for LR with a ’balanced’ class weight.
For XGBoost the ’binary:logistic’ objective was applied; for IF and DONE a
contamination of 0.02 was used.

A diverse set of models was implemented (see also Table 1). All joined as well
as stepwise approaches were implemented with 2 layers. As corruption procedure
for DGI the node features were shuffled and edges were randomly removed;
all encoders’ hidden layers were passed through a PReLU activation function
[40]. For the node2vec algorithm all default paramater settings were kept and a
walk length of 20 with a context size of 10 and 2 walks per node was applied.
For DONE the default parameter settings were used besides the globally set
parameters (e.g. number of layers, learning rate, epochs, number hidden layers).
For the joined GCN + softmax model a basic implementation with an output
layer of size 2 and a ReLU [71] activation function inbetween layers was applied;
the last layer was past through a sigmoid activation function.

2.5 Data sets

The above described techniques were applied to a simulated data set, i.e. AML-
Sim data set and a real-world data set, i.e. Elliptic data set. Ideally, we would
have analyzed a real-world data set in a real-world setting, i.e. TMNL data set
with the implemented methods, however due to a number of challenges out-
lined below that would have exceeded specifically the duration limitations of
this project.

Fig. 8: Architecture of AMLSim simulation platform depicting its 2 components:
the Transaction Graph Generator and the Transaction Simulator. Source: [100]

20 M. Ekert

AMLSim data set AMLSim [100] is a multi-agent simulation platform trying
to mimic real-world money laundering patterns where each agent represents a
bank account that transfers money to other agents with a small percentage show-
ing illicit behavior. The simulator has two components, a "Transaction Graph
Generator" and a "Transaction Simulator" (see also Figure 8). The former first
generates a graph based on a degree distribution using NetworkX and subse-
quently the "Transaction Simulator" generates transactions (time-series) using
PaySim [60] which are based on transaction distributions and known money
laundering patterns. For all nodes labels ’licit’ or ’illicit’ are added, 6.4% are
labeled as ’illicit’ accounts in this simulation. For this project, transaction data
with ca. 10k nodes and 200k edges were simulated where each node represents
an account and each edge a transaction between 2 accounts. In total there were
12,042 accounts and 199,374 transactions. Figure 9 depicts the transaction graph
for 1 timepoint.

Preprocessing From the original node features, we only kept the "initial bal-
ance" of each account and deleted all other features (e.g. date of birth, address).
Regarding the transactions all columns, but the ones describing sender and re-
ceiver account, transaction amount, timestamp, and whether a transactions is
fraudulent or not were deleted. The timestamp was converted into a date format
and encoded as labels (LabelEncoder from Scikit-learn). Data formats were ad-
justed for all remaining node and edge features and the columns were renamed
to sensible descriptions. There was no missing entries found in the data set.

Fig. 9: Transaction graph of 1 timepoint of the AMLSim data set.

Feature Engineering For each node the total degree of in- and out-going con-
nections over all timepoints were computed as the amount of connections might

Master Project AI 21

bear valuable additional information. Furthermore, the summed up revenue as
well as spending for each node over the given period of time as well as the to-
tal profit (revenue - spending) was computed. A new deposit was calculated by
adding the profit to the initial one. Lastly, the transaction amount served as base
for the edge weights, which was normalized by the total revenue of the source
account. In total 6 additional features were created, resulting in 7 features. All
computed feature values were scaled to a range between 0 and 1 (MinMaxScaler
from Scikit-learn).

Elliptic data set After a first development phase the models were applied to
the elliptic data set [101]. The data set and its node features are anonymized as
it stems from real Bitcoin transactions. A node in the graph refers to a trans-
action and an edge as the Bitcoins transferred in these transactions. The data
consists of 203,769 nodes and 234,355 edges of which 2% are labeled ’illicit’, 21%
licit, and the rest as ’unknown’. Each node has 166 features, the first 94 repre-
senting local information about the transaction, the authors name e.g. number
of inputs and outputs, transaction fee, timepoint (ranging from 1-49) of ca. 2
weeks each, output volume, average amount of received or spend bitcoins and
average number of incoming and outgoing transactions of the node. Due to pri-
vacy restrictions the features are not described in more details. The remaining
72 features represent aggregated information of the 1-hop neighboring transac-
tions. In order to best simulate real-world situations only the local features were
included in the analysis. Figure 10 depicts the transaction graph for 1 timepoint.
There was no missing entries found in the data set.

(a) Illicit nodes. (b) Licit nodes.

Fig. 10: Transaction graph of 1 timepoint of the elliptic data set portraying (a)
the illicit nodes and (b) the licit ones.

22 M. Ekert

TMNL data set We also intended to apply the set of implemented models
to another real-world data set of transactions from TMNL ranging over ca. 2
weeks (1 timepoint) of transactions. The data consists of millions of company
bank accounts, their properties, and the transactions between them combined
from ABN AMRO, ING, Rabobank, Triodos Bank and de Volksbank. Similar
features as described above were generated for this data set. The data set was
securely stored and could only be accessed through AWS SageMaker on the
TMNL servers. For the TMNL data set the following libraries were used in
addition to the once listed above: Spark [109], Pytorch [77], Spark SQL [7], and
GraphFrames for graph visuzliaztions [22]. Applying the model to the real-world
data set was not successful as many issues in regard to the size of the data
set as well as privacy restrictions arose. In a real-world setting financial data
is well protected and different python package like Pytorch Geometric, cannot
just be pip installed on the servers, but first need to be reviewed and centrally
added. Furthermore, the large size of the transaction graph poses additional
difficulties calling for the need of environments that are able to handle big data,
e.g. distributed computing and large memory.

2.6 Node Embeddings

(a) Node Embeddings with DGI +
GraphSAGE for the AMLSim data set.

(b) Node Embeddings with DGI +
GraphSAGE for the Elliptic data set.

Fig. 11: Node Embeddings with DGI + GraphSAGE.

A visual inspection of the node embeddings generated in the stepwise frame-
work indicate the usefulness of supervised learning methods. After applying DGI
+ encoders, node2vec respectively, clusters of illicit and licit nodes seem to be

Master Project AI 23

identifiable which is illustrated in Figure 11 for DGI + GraphSAGE. For all
other illustrations of the node embeddings see Appendix A. The node features
are illustrated in a 2D-space using Uniform Manifold Approximation and Pro-
jection for Dimension Reduction (UMAP) [65], a dimension reduction technique
also suited for non-linear dimension reduction.

2.7 Evaluation procedure

Actual

P
re

d
ic

te
d Positive Negative

Positive TP FP
Negative FN TN

Table 2: Confusion Matrix show-
ing True Positives (TP), False Pos-
itives (FP), False Negatives (FN),
and True Negatives (TN).

The implemented algorithms were evalu-
ated using the provided labels of the data;
in case of the elliptic data set only the
known lables, i.e. illicitly and licitly la-
beled nodes were included in the evalu-
ation. We used the Receiver Operating
Characteristic (ROC) curve [44], [80] to
compare the performances of the differ-
ent approaches. The ROC curves illus-
trate the true positive rate (TPR) against
the False Positive Rate (FPR) for differ-
ent thresholds between 0 and 1 (see also Table 2). The TPR is also known as
sensitivity or recall and describes how well a model performs in finding the true
positives out of all positives:

TPR =
TP

TP + FN
(14)

whereas the FPR describes 1 - specificity, i.e. the fraction of false positives a
model found out of all negatives:

FPR = 1− TN

TN + FN
=

FP

TN + FP
(15)

The performance of the evaluated algorithms are often quantified in a single
measurement, i.e. the Area Under the Curve (AUC), the Area Under the Re-
ceiver Operating Characteristics (AUROC) respectively. A value of AUC = 0.5
indicates randomness, i.e. a diagonal ROC curve from the bottom left to the
top right corner. On the other hand, a value of AUC = 1 describes optimal
performance, i.e. a ROC curve going from the left bottom corner, to the left
upper corner, to the right upper corner. Given the high class imbalance in the
data sets, the ROC curves were additionally compared to their precision-recall
curves (see also Appendix B).

3 Results

3.1 AMLSim data set

Anomaly Detection The ROC curves (see also Figure 12a) comparing DGI +
encoders and node2vec to one another show that node2vec performs worse (AUC

24 M. Ekert

= 57.9%) than DGI + any encoder (all AUCs ≥ 68.4%). The different encoders
do not vary greatly between each other, but DGI + GCN seems to perform
best in this case. There is no great difference between the performance of the
transductive approaches, i.e. node2vec and DGI + GraphSAGE compared to the
other implementations of DGI besides the lower performance of node2vec. For
the joined anomaly detection algorithm, DONE (see also Figure 12b), the results
show an overall AUC > 50% indicating that the illicit nodes can be identified
above chance level. DONE seems to be overall sightly more instable than the
stepwise approaches, but with an AUC of 69% its performance is comparable to
DGI + any encoder.

(a) ROC Curve with error bars for
anomaly detection using the stepwise

approach: DGI/node2vec + IF.

(b) ROC Curve with error bars for
anomaly detection using the joined model:

DONE.

Fig. 12: Evaluation of anomaly detection algorithms for the AMLSim data set.

Classification In line with the results for the stepwise approach for anomaly
detection, the ROC curves comparing DGI + encoders and node2vec with LR
or XGBoost show that node2vec performs worse (AUC = 59.7%, AUC = 68.1%,
respectively), but is also more noisy than DGI + any encoder (all AUCs ≥ 74.6%,
all AUCs ≥ 82.9%, respectively) for all classification algorithms (see also Figure
13). Again, the different encoders do not vary greatly between each other. The
pattern of performance of XGBoost (see also Figure 13b) is comparable to that
of Logistic Regression (see also Figure 13a), however the AUCs appear to be
slightly higher than those for LR. When comparing transductive versus inductive
methods, similar results as for the stepwise approach for anomaly detection can
be found. For the joined classification algorithm, GCN + softmax (see also Figure

Master Project AI 25

(a) ROC Curve with error bars for
classification using the stepwise approach:

DGI/node2vec + LR.

(b) ROC Curve with error bars for
classification using the stepwise approach:

DGI/node2vec + XGBoost.

(c) ROC Curve with error bars for classification using the joined model: GCN +
softmax.

Fig. 13: Evaluation of classification algorithms for the AMLSim data set.

13c), the results show an overall identification of illicit nodes above chance level
with an AUC > 50%. However, performance is lower when compared to any DGI
+ encoder for LR and XGBoost and the performance is more noisy and instable.

26 M. Ekert

3.2 Elliptic data set

Anomaly Detection Unlike for AMLSim the performance (see also Figure 14a)
of anomaly detection using a stepwise approach on the elliptic data set only shows
correct identification of illicit nodes above chance level for some combinations of
DGI + encoders. However, compared to the AMLSim data set performance is
on average lower and also more noisy. The joined anomaly detection algorithm,
DONE (see also Figure 14b), seems to be rather instable, although on average
still above chance level and higher than for IF. For the elliptic data set only a
subset of the timepoints (i.e. 26-30) could be run with DONE, which equaled
just below 10k nodes. With more nodes to train the pipeline broke.

(a) ROC Curve with error bars for
anomaly detection using the stepwise
approach: DGI/node2vec + IF with.

(b) ROC Curve with error bars for
anomaly detection using the joined model:

DONE.

Fig. 14: Evaluation of anomaly detection algorithms for the Elliptic data set.

Classification The ROC curve shows for DGI + encoders high performances
for all classification algorithms with all AUCs ≥ 87.1% (see also Figure 15).
However, node2vec again is clearly outperformed by DGI + any encoder with
AUCs of 60.1% for LR, and an AUC of 63.5% for XGBoost. Comparably to
the AMLSim data set, the performance of DGI + the different encoders do
not vary greatly between each other, however DGI + GraphSAGE seems to
perform best for both stepwise approaches. Similarly to AMLSim the pattern
of performance of XGBoost 15b is comparable to that of Logistic Regression,
however the AUCs appear to be slightly higher than those for LR. In combination
with XGBoost, DGI + GraphSAGE (AUC = 94.3%) also seems to show a slightly

Master Project AI 27

(a) ROC Curve with error bars for
classification using the stepwise approach:

DGI/node2vec + LR.

(b) ROC Curve with error bars for
classification using the stepwise approach:

DGI/node2vec + XGBoost.

(c) ROC Curve with error bars for classification using the joined model: GCN +
softmax.

Fig. 15: Evaluation of classification algorithms for the Elliptic data set.

higher performance than the other combinations of DGI + encoder. The joined
classification algorithm, GCN + softmax, shows moderate performance with an
AUC of 66.6% (see also Figure 15c), however the performance varies especially
for thresholds of approximately TPR <0.4 and FPR <0.2. GCN + softmax is
outperformed by the stepwise classification approaches using DGI + any decoder.

28 M. Ekert

4 Discussion

The results show that in general graph-based algorithms show very promising
performances in identifying illicit nodes amongst licit ones with many approaches
clearly showing performances above the random baseline. For both data sets, the
classification-based algorithms outperformed the anomaly detection ones for the
stepwise approaches, in case of the joined approaches results are more mixed,
instable, and noisy. For the stepwise approach node2vec-based implementations
perform substantially worse than DGI + an encoder. This could be due to the
fact that whilst node2vec performs random walks DGI learns message passing
improving the performance considerably. Moreover, node2vec is only scalable
to a certain extend as this method cannot generalize to new graphs nor han-
dle dynamic ones and does not share any parameters between nodes leading to
inefficient computations [110]. When generating node embeddings, the unsuper-
vised algorithms, i.e. DGI and node2vec seem to aggregate information about
each node that already preserves information that allows to differentiate between
licit and illicit nodes (see also Figure 11). Over and above, node embedding algo-
rithms + IF perform in general worse than the supervised stepwise approaches
with DGI + any encoder + XGBoost performing best. Overall, the different
encoders in combination with DGI perform relatively similarly, however DGI +
GraphSAGE either performs best or close to best compared to the other combi-
nations. Since it is the only transductive encoder and could also handle data of
considerably larger size, the combination of DGI + GraphSAGE + XGBoost is
the preferred option.

For the AMLSim data set performances of the joined approaches for anomaly
detection, i.e. DONE, and classification, i.e. GCN + softmax, are comparable,
for the elliptic data set DONE outperforms GCN + softmax. Furthermore, the
stepwise approaches outperform the joined implementation for classification for
both data sets; the anomaly detection models seem to be more noisy and instable
and the differences are not comparable between stepwise and joined approaches
for the AMLSim data set, for the elliptic data set DONE clearly outperforms
the stepwise approaches. For the classification algorithms, the lower performance
of GCN + softmax could be due to the more simplistic architecture of GCN
+ softmax compared to e.g. the relatively recently developed DGI approach.
The GCN architecture, for example, cannot take edge direction into account
compared to DGI. When comparing the performance of all approaches between
the two data sets, we see higher scores for the elliptic data set compared to the
AMLSim data set. The main reason presumably being a higher amount of node
features in the elliptic data set which are essential to all approaches.

Our results are in line with Weber et al. (2019) [101] who also documented
higher performance for supervised stepwise approaches compared to joined im-
plementations on the elliptic data set. Furthermore, the authors also found lower
performance of LR compared to a more advanced classification algorithm. As
such, this research adds valuable validation to these findings and beyond that
adds information about other approaches.

Master Project AI 29

Lastly, the project has shown that in a real-world setting many challenges
arise when working with transaction graphs. Mainly the size and the limited
accessibility due to privacy protections cause issues when trying to apply these
models to financial data in a real-world setting. [47].

4.1 Limitations and Outlook

Contrary to other studies, e.g. [101], we did not perform any hyperparameter
tuning on the models since this would have exceeded the scope of this project as it
is a time- and resource-consuming process [108]. However, results are expected
to improve noticeably when doing so. Hyperparamters to include are e.g. the
number of epochs, different learning rates, or the number of hidden channels as
well as specific parameters for each implemented algorithm.

More importantly, however, we did not include the dynamism of transaction
graphs over time in this project. Taking into account how the graph changes
over time can add a further dimension and additional valuable information in
countering money laundering. Transaction networks are not static, but their
structure changes over time, e.g. a transaction is made to a new bank account
at time point t+1. To capture how nodes and the relationships amongst them
change over time, real-world networks can be modeled in a dynamic graph G(t)
= {V(t);E(t);Xv(t);Xe(t)} with nodes V, edges E, attribute matrices of nodes
(Xv) and edges (Xe) at time point t [82], [95]. Dynamic graphs include mean-
ingful temporal signals that can give more insights into the structure of illicit
transactions resulting into a higher detection rate, e.g. a node might look normal
at time point t, but only the comparison to time point t+1 reveals its illicit na-
ture [62], [84]. Pareja et al. (2020) [76] for example, propose EvolveGCN on the
basis of a GCN captured in a Recurrent Neural Network (RNN) structure and
find higher performance of this approach compared to similar approaches. Fur-
ther research is needed to integrate this approach into the investigated model.
From the set of the current methods only the transductive methods are able to
deal with evolving graphs, however they do not capture the dynamic nature with
the current implementations.

In this project explainability of the different methods was only indirectly
considered, e.g. when choosing LR as classification algorithm. Being able to
infer which features or feature combinations led to identifying illicit accounts is
a central challenge in successfully convicting individuals operating accounts with
which money was laundering. However, the generated node embeddings are not
explainable and thus even applying LR only leads to limited explainability. One
such attempt is e.g. GNNExplainer [106] which tries to infer the features and
structures that led a GNN to classify a node as e.g. illicit or licit. Additional
research is needed to investigate how the outcome of GNNs can be interpreted
and explained which serve as basis for prosecutors in a potential indictment.

We also had to limit ourselves to a set of approaches that we compared.
Further research is needed to test improved joined methods that have shown to
outperform their predecessors; e.g. Composition-based Multi-Relational Graph

30 M. Ekert

Convolutional Networks (CompGCN) [90] showed superior results over compa-
rable methods on a number of task including node classification. Furthermore,
comparing stepwise approaches with node embeddings generated by unsuper-
vised versus supervised methods might give valuable insights into finding the
best suited approaches for analyzing financial transaction data. Lastly, the gen-
erated node embeddings could be used as input for joined methods rather than
the original node features (see also [101]).

The data sets used in this project were of substantial size, however still rela-
tively small compared to real-world transaction graphs. In course of this project
we could already identify major challenges when applying these methods in a
real-world setting. Additional research is needed, however to specifically investi-
gate challenges and solutions when it comes to closing the gap between scientific
research and application ensuring the developed methods can also benefit so-
ciety. This can be achieved by either using a bigger simulated data set or if
available, public data set, ideally however this line of research should work with
real-world transaction data while ensuring privacy and security of the data .

5 Conclusion

In this project we implemented and compared different approaches with the
goal to detect illicit accounts amongst a vast majority of licit ones in a finan-
cial transaction network. We implemented a variety of approaches comparing
unsupervised versus supervised, stepwise versus joined approaches, and trans-
ductive versus inductive methods. In general, the graph-based methods seem
to be suitable to find illicit nodes within a transaction graph, especially step-
wise implementations using DGI + GraphSAGE + XGBoost show very high
performances (AUCs up to 94.3% for the elliptic data set) and are the recom-
mended technique to use. Furthermore, this project revealed valuable insights
into unforeseen difficulties when applying these models to data sets in a real-
world setting and thus resembles a first step into better understanding how to
close the gap between research and practice.

This research contributed valuable results to those countering money launder-
ing and outlined usable methods to find illicit accounts in a financial transaction
network. However, more research is needed to expand the methods investigated
in this project and their explainability in order to successfully convict individuals
that use accounts to launder money.

Master Project AI 31

References

[1] M. Abadi, A. Agarwal, P. Barham, et al., “Tensorflow: Large-scale ma-
chine learning on heterogeneous distributed systems,” CoRR, vol. abs/
1603.04467, 2016. arXiv: 1603.04467. [Online]. Available: http://arxiv.
org/abs/1603.04467.

[2] A. F. Agarap, “Deep learning using rectified linear units (relu),” CoRR,
vol. abs/1803.08375, 2018. arXiv: 1803.08375. [Online]. Available: http:
//arxiv.org/abs/1803.08375.

[3] C. G. Akcora, Y. Li, Y. R. Gel, and M. Kantarcioglu, “Bitcoinheist: Topo-
logical data analysis for ransomware detection on the bitcoin blockchain,”
CoRR, vol. abs/1906.07852, 2019. arXiv: 1906.07852. [Online]. Available:
http://arxiv.org/abs/1906.07852.

[4] L. Akoglu, M. McGlohon, and C. Faloutsos, “Oddball: Spotting anomalies
in weighted graphs,” in Advances in Knowledge Discovery and Data Min-
ing, 14th Pacific-Asia Conference, PAKDD 2010, Hyderabad, India, June
21-24, 2010. Proceedings. Part II, M. J. Zaki, J. X. Yu, B. Ravindran,
and V. Pudi, Eds., ser. Lecture Notes in Computer Science, vol. 6119,
Springer, 2010, pp. 410–421. doi: 10.1007/978-3-642-13672-6_40.
[Online]. Available: https://doi.org/10.1007/978-3-642-13672-
6_40.

[5] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection
and description: A survey,” Data Min. Knowl. Discov., vol. 29, no. 3,
pp. 626–688, 2015. doi: 10.1007/s10618-014-0365-y. [Online]. Avail-
able: https://doi.org/10.1007/s10618-014-0365-y.

[6] W. S. Al Farizi, I. Hidayah, and M. N. Rizal, “Isolation forest based
anomaly detection: A systematic literature review,” in 2021 8th Interna-
tional Conference on Information Technology, Computer and Electrical
Engineering (ICITACEE), IEEE, 2021, pp. 118–122.

[7] M. Armbrust, R. S. Xin, C. Lian, et al., “Spark SQL: relational data
processing in spark,” in Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data, Melbourne, Victoria, Aus-
tralia, May 31 - June 4, 2015, T. K. Sellis, S. B. Davidson, and Z. G.
Ives, Eds., ACM, 2015, pp. 1383–1394. doi: 10.1145/2723372.2742797.
[Online]. Available: https://doi.org/10.1145/2723372.2742797.

[8] S. Bandyopadhyay, L. N, S. V. Vivek, and M. N. Murty, “Outlier re-
sistant unsupervised deep architectures for attributed network embed-
ding,” in WSDM ’20: The Thirteenth ACM International Conference on
Web Search and Data Mining, Houston, TX, USA, February 3-7, 2020,
J. Caverlee, X. B. Hu, M. Lalmas, and W. Wang, Eds., ACM, 2020,
pp. 25–33. doi: 10.1145/3336191.3371788. [Online]. Available: https:
//doi.org/10.1145/3336191.3371788.

[9] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques
for embedding and clustering,” in Advances in Neural Information Pro-
cessing Systems 14 [Neural Information Processing Systems: Natural and
Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia,

32 M. Ekert

Canada], T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds., MIT
Press, 2001, pp. 585–591. [Online]. Available: https://proceedings.
neurips.cc/paper/2001/hash/f106b7f99d2cb30c3db1c3cc0fde9ccb-
Abstract.html.

[10] R. V. Belle, C. V. Damme, H. Tytgat, and J. D. Weerdt, “Inductive graph
representation learning for fraud detection,” Expert Syst. Appl., vol. 193,
p. 116 463, 2022. doi: 10.1016/j.eswa.2021.116463. [Online]. Available:
https://doi.org/10.1016/j.eswa.2021.116463.

[11] R. V. Belle, S. Mitrovic, and J. D. Weerdt, “Representation learning in
graphs for credit card fraud detection,” in Mining Data for Financial
Applications - 4th ECML PKDD Workshop, MIDAS 2019, Würzburg,
Germany, September 16, 2019, Revised Selected Papers, V. Bitetta, I.
Bordino, A. Ferretti, F. Gullo, S. Pascolutti, and G. Ponti, Eds., ser. Lec-
ture Notes in Computer Science, vol. 11985, Springer, 2019, pp. 32–46.
doi: 10.1007/978- 3- 030- 37720- 5_3. [Online]. Available: https:
//doi.org/10.1007/978-3-030-37720-5_3.

[12] Y. Bengio, A. C. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, 2013. doi: 10.1109/TPAMI.2013.50.
[Online]. Available: https://doi.org/10.1109/TPAMI.2013.50.

[13] C. M. Bishop and N. M. Nasrabadi, Pattern Recognition and Machine
Learning, 4. 2007, vol. 16, p. 049 901. doi: 10.1117/1.2819119. [Online].
Available: https://doi.org/10.1117/1.2819119.

[14] E. Bisong, Building machine learning and deep learning models on Google
cloud platform: A comprehensive guide for beginners. Apress, 2019.

[15] A. Boukerche, L. Zheng, and O. Alfandi, “Outlier detection: Methods,
models, and classification,” ACM Comput. Surv., vol. 53, no. 3, 55:1–
55:37, 2020. doi: 10.1145/3381028. [Online]. Available: https://doi.
org/10.1145/3381028.

[16] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention net-
works?” CoRR, vol. abs/2105.14491, 2021. arXiv: 2105.14491. [Online].
Available: https://arxiv.org/abs/2105.14491.

[17] M. M. Bronstein, J. Bruna, T. Cohen, and P. Velickovic, “Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges,” CoRR, vol. abs/
2104.13478, 2021. arXiv: 2104 . 13478. [Online]. Available: https : / /
arxiv.org/abs/2104.13478.

[18] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy, “Ma-
chine learning on graphs: A model and comprehensive taxonomy,” CoRR,
vol. abs/2005.03675, 2020. arXiv: 2005.03675. [Online]. Available: https:
//arxiv.org/abs/2005.03675.

[19] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A sur-
vey,” ACM Comput. Surv., vol. 41, no. 3, 15:1–15:58, 2009. doi: 10.
1145/1541880.1541882. [Online]. Available: https://doi.org/10.
1145/1541880.1541882.

Master Project AI 33

[20] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
vol. abs/1603.02754, 2016. arXiv: 1603.02754. [Online]. Available: http:
//arxiv.org/abs/1603.02754.

[21] R. Collobert and J. Weston, “A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning,” in Ma-
chine Learning, Proceedings of the Twenty-Fifth International Confer-
ence (ICML 2008), Helsinki, Finland, June 5-9, 2008, W. W. Cohen, A.
McCallum, and S. T. Roweis, Eds., ser. ACM International Conference
Proceeding Series, vol. 307, ACM, 2008, pp. 160–167. doi: 10.1145/
1390156.1390177. [Online]. Available: https://doi.org/10.1145/
1390156.1390177.

[22] A. Dave, A. Jindal, L. E. Li, R. Xin, J. Gonzalez, and M. Zaharia, “Graph-
frames: An integrated API for mixing graph and relational queries,” in
Proceedings of the Fourth International Workshop on Graph Data Man-
agement Experiences and Systems, Redwood Shores, CA, USA, June 24 -
24, 2016, P. A. Boncz and J. L. Larriba-Pey, Eds., ACM, 2016, p. 2. doi:
10.1145/2960414.2960416. [Online]. Available: https://doi.org/10.
1145/2960414.2960416.

[23] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” CoRR, vol. abs/
1606.09375, 2016. arXiv: 1606.09375. [Online]. Available: http://arxiv.
org/abs/1606.09375.

[24] Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu, “Enhancing graph
neural network-based fraud detectors against camouflaged fraudsters,”
CoRR, vol. abs/2008.08692, 2020. arXiv: 2008.08692. [Online]. Available:
https://arxiv.org/abs/2008.08692.

[25] U. N. O. on Drugs and Crimes, “Estimating illicit financial flows resulting
from drug trafficking and other transnational organised crime: Research
report,” 2011.

[26] U. N. O. on Drugs and Crime. “Money laundering.” (), [Online]. Available:
https://www.unodc.org/unodc/en/money-laundering/overview.
html. (accessed: 28.01.2022).

[27] D. Eswaran, C. Faloutsos, S. Guha, and N. Mishra, “Spotlight: Detecting
anomalies in streaming graphs,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD
2018, London, UK, August 19-23, 2018, Y. Guo and F. Farooq, Eds.,
ACM, 2018, pp. 1378–1386. doi: 10.1145/3219819.3220040. [Online].
Available: https://doi.org/10.1145/3219819.3220040.

[28] Europol, From suspicion to action, converting financial intelligence into
greater operational impact, 2017.

[29] J. Ferwerda and E. R. Kleemans, “Estimating money laundering risks:
An application to business sectors in the netherlands,” European Journal
on Criminal Policy and Research, vol. 25, no. 1, pp. 45–62, 2019.

34 M. Ekert

[30] M. Fey and J. E. Lenssen, “Fast graph representation learning with py-
torch geometric,” CoRR, vol. abs/1903.02428, 2019. arXiv: 1903.02428.
[Online]. Available: http://arxiv.org/abs/1903.02428.

[31] J. R. Firth, “A synopsis of linguistic theory, 1930-1955,” Studies in lin-
guistic analysis, 1957.

[32] S. Fortunato, “Community detection in graphs,” CoRR, vol. abs/0906.
0612, 2009. arXiv: 0906.0612. [Online]. Available: http://arxiv.org/
abs/0906.0612.

[33] P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” CoRR, vol. abs/1705.02801, 2017. arXiv:
1705.02801. [Online]. Available: http://arxiv.org/abs/1705.02801.

[34] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for net-
works,” vol. abs/1607.00653, 2016. arXiv: 1607.00653. [Online]. Avail-
able: http://arxiv.org/abs/1607.00653.

[35] F. E. Grubbs, “Procedures for detecting outlying observations in sam-
ples,” Technometrics, vol. 11, no. 1, pp. 1–21, 1969.

[36] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dy-
namics, and function using networkx,” Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), Tech. Rep., 2008.

[37] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” CoRR, vol. abs/1706.02216, 2017. arXiv: 1706.
02216. [Online]. Available: http://arxiv.org/abs/1706.02216.

[38] ——, “Representation learning on graphs: Methods and applications,”
IEEE Data Eng. Bull., vol. 40, no. 3, pp. 52–74, 2017. [Online]. Available:
http://sites.computer.org/debull/A17sept/p52.pdf.

[39] C. R. Harris, K. J. Millman, S. van der Walt, et al., “Array programming
with numpy,” CoRR, vol. abs/2006.10256, 2020. arXiv: 2006.10256. [On-
line]. Available: https://arxiv.org/abs/2006.10256.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification,” vol. abs/
1502.01852, 2015. arXiv: 1502.01852. [Online]. Available: http://arxiv.
org/abs/1502.01852.

[41] G. E. Hinton, J. L. McClelland, and D. E. Rumelhart, “Distributed repre-
sentations,” in The Philosophy of Artificial Intelligence, ser. Oxford read-
ings in philosophy, M. A. Boden, Ed., Oxford University Press, 1990,
pp. 248–280.

[42] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, A. Trischler,
and Y. Bengio, “Learning deep representations by mutual information
estimation and maximization,” CoRR, vol. abs/1808.06670, 2018. arXiv:
1808.06670. [Online]. Available: http://arxiv.org/abs/1808.06670.

[43] P. D. Hoff, A. E. Raftery, and M. S. Handcock, “Latent space approaches
to social network analysis,” Journal of the american Statistical associa-
tion, vol. 97, no. 460, pp. 1090–1098, 2002.

[44] M. Hoogendoorn and B. Funk, “Machine learning for the quantified self -
on the art of learning from sensory data,” Cognitive Systems Monographs,

Master Project AI 35

vol. 35, 2018. doi: 10.1007/978-3-319-66308-1. [Online]. Available:
https://doi.org/10.1007/978-3-319-66308-1.

[45] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Comput. Sci.
Eng., vol. 9, no. 3, pp. 90–95, 2007. doi: 10.1109/MCSE.2007.55. [On-
line]. Available: https://doi.org/10.1109/MCSE.2007.55.

[46] F. Jiang, L. Zheng, J. Xu, and P. S. Yu, “FI-GRL: fast inductive graph
representation learning via projection-cost preservation,” CoRR, vol. abs/
1809.08079, 2018. arXiv: 1809.08079. [Online]. Available: http://arxiv.
org/abs/1809.08079.

[47] S. H. Kaisler, F. Armour, J. A. Espinosa, and W. H. Money, “Big data:
Issues and challenges moving forward,” in 46th Hawaii International Con-
ference on System Sciences, HICSS 2013, Wailea, HI, USA, January 7-
10, 2013, IEEE Computer Society, 2013, pp. 995–1004. doi: 10.1109/
HICSS.2013.645. [Online]. Available: https://doi.org/10.1109/
HICSS.2013.645.

[48] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.
org/abs/1412.6980.

[49] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” CoRR, vol. abs/1609.02907, 2016. arXiv: 1609.
02907. [Online]. Available: http://arxiv.org/abs/1609.02907.

[50] ——, “Variational graph auto-encoders,” CoRR, vol. abs/1611.07308, 2016.
arXiv: 1611.07308. [Online]. Available: http://arxiv.org/abs/1611.
07308.

[51] L. A. Kurgan and P. Musílek, “A survey of knowledge discovery and
data mining process models,” Knowl. Eng. Rev., vol. 21, no. 1, pp. 1–
24, 2006. doi: 10.1017/S0269888906000737. [Online]. Available: https:
//doi.org/10.1017/S0269888906000737.

[52] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nat., vol. 521,
no. 7553, pp. 436–444, 2015. doi: 10.1038/nature14539. [Online]. Avail-
able: https://doi.org/10.1038/nature14539.

[53] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, p. 1995, 1995.

[54] J. Li, H. Dani, X. Hu, and H. Liu, “Radar: Residual analysis for anomaly
detection in attributed networks,” in Proceedings of the Twenty-Sixth In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2017, Mel-
bourne, Australia, August 19-25, 2017, C. Sierra, Ed., ijcai.org, 2017,
pp. 2152–2158. doi: 10.24963/ijcai.2017/299. [Online]. Available:
https://doi.org/10.24963/ijcai.2017/299.

[55] C. Liang, Z. Liu, B. Liu, et al., “Uncovering insurance fraud conspiracy
with network learning,” in Proceedings of the 42nd International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
SIGIR 2019, Paris, France, July 21-25, 2019, B. Piwowarski, M. Cheva-
lier, É. Gaussier, Y. Maarek, J. Nie, and F. Scholer, Eds., ACM, 2019,

36 M. Ekert

pp. 1181–1184. doi: 10.1145/3331184.3331372. [Online]. Available:
https://doi.org/10.1145/3331184.3331372.

[56] F. T. Liu, K. M. Ting, and Z. Zhou, “Isolation forest,” in Proceedings of the
8th IEEE International Conference on Data Mining (ICDM 2008), De-
cember 15-19, 2008, Pisa, Italy, IEEE Computer Society, 2008, pp. 413–
422. doi: 10.1109/ICDM.2008.17. [Online]. Available: https://doi.
org/10.1109/ICDM.2008.17.

[57] ——, “Isolation-based anomaly detection,” ACM Trans. Knowl. Discov.
Data, vol. 6, no. 1, 3:1–3:39, 2012. doi: 10.1145/2133360.2133363.
[Online]. Available: https://doi.org/10.1145/2133360.2133363.

[58] K. Liu, Y. Dou, Y. Zhao, et al., “Benchmarking node outlier detection on
graphs,” CoRR, vol. abs/2206.10071, 2022. doi: 10.48550/arXiv.2206.
10071. arXiv: 2206.10071. [Online]. Available: https://doi.org/10.
48550/arXiv.2206.10071.

[59] Z. Liu, C. Chen, X. Yang, J. Zhou, X. Li, and L. Song, “Heterogeneous
graph neural networks for malicious account detection,” in Proceedings of
the 27th ACM International Conference on Information and Knowledge
Management, CIKM 2018, Torino, Italy, October 22-26, 2018, A. Cuz-
zocrea, J. Allan, N. W. Paton, et al., Eds., ACM, 2018, pp. 2077–2085.
doi: 10.1145/3269206.3272010. [Online]. Available: https://doi.org/
10.1145/3269206.3272010.

[60] E. Lopez-Rojas, A. Elmir, and S. Axelsson, “Paysim: A financial mobile
money simulator for fraud detection,” in 28th European Modeling and
Simulation Symposium, EMSS, Larnaca, Dime University of Genoa, 2016,
pp. 249–255.

[61] L. Lv, J. Cheng, N. Peng, M. Fan, D. Zhao, and J. Zhang, “Auto-encoder
based graph convolutional networks for online financial anti-fraud,” in
IEEE Conference on Computational Intelligence for Financial Engineer-
ing & Economics, CIFEr 2019, Shenzhen, China, May 4-5, 2019, IEEE,
2019, pp. 1–6. doi: 10.1109/CIFEr.2019.8759109. [Online]. Available:
https://doi.org/10.1109/CIFEr.2019.8759109.

[62] X. Ma, J. Wu, S. Xue, J. Yang, Q. Z. Sheng, and H. Xiong, “A compre-
hensive survey on graph anomaly detection with deep learning,” CoRR,
vol. abs/2106.07178, 2021. arXiv: 2106.07178. [Online]. Available: https:
//arxiv.org/abs/2106.07178.

[63] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al., “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. icml, Citeseer, vol. 30,
2013, p. 3.

[64] M. W. Mahoney and P. Drineas, “CUR matrix decompositions for im-
proved data analysis,” Proc. Natl. Acad. Sci. USA, vol. 106, no. 3, pp. 697–
702, 2009. doi: 10.1073/pnas.0803205106. [Online]. Available: https:
//doi.org/10.1073/pnas.0803205106.

[65] L. McInnes and J. Healy, “UMAP: uniform manifold approximation and
projection for dimension reduction,” CoRR, vol. abs/1802.03426, 2018.

Master Project AI 37

arXiv: 1802.03426. [Online]. Available: http://arxiv.org/abs/1802.
03426.

[66] W. McKinney et al., “Data structures for statistical computing in python,”
in Proceedings of the 9th Python in Science Conference, Austin, TX,
vol. 445, 2010, pp. 51–56.

[67] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in 1st International Conference on
Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2013. [Online]. Available: http://arxiv.org/abs/1301.3781.

[68] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” CoRR,
vol. abs/1310.4546, 2013. arXiv: 1310.4546. [Online]. Available: http:
//arxiv.org/abs/1310.4546.

[69] S. Mitrovic, B. Baesens, W. Lemahieu, and J. D. Weerdt, “Tcc2vec: Rfm-
informed representation learning on call graphs for churn prediction,” Inf.
Sci., vol. 557, pp. 270–285, 2021. doi: 10.1016/j.ins.2019.02.044.
[Online]. Available: https://doi.org/10.1016/j.ins.2019.02.044.

[70] A. Mnih and G. E. Hinton, “A scalable hierarchical distributed lan-
guage model,” D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
Eds., pp. 1081–1088, 2008. [Online]. Available: https://proceedings.
neurips.cc/paper/2008/hash/1e056d2b0ebd5c878c550da6ac5d3724-
Abstract.html.

[71] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Confer-
ence on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel,
J. Fürnkranz and T. Joachims, Eds., Omnipress, 2010, pp. 807–814. [On-
line]. Available: https://icml.cc/Conferences/2010/papers/432.
pdf.

[72] U. Nations, “United nations convention against illicit traffic in narcotic
drugs and psychotropic substances, 1988: Adopted by the conference at
its sixth plenary meeting on 19 december 1988,” 1988.

[73] T. E. Oliphant, A guide to NumPy. Trelgol Publishing USA, 2006, vol. 1.
[74] G. Pang, L. Cao, L. Chen, and H. Liu, “Learning representations of

ultrahigh-dimensional data for random distance-based outlier detection,”
CoRR, vol. abs/1806. 04808, 2018. arXiv: 1806.04808. [Online]. Avail-
able: http://arxiv.org/abs/1806.04808.

[75] G. Pang, C. Shen, L. Cao, and A. van den Hengel, “Deep learning for
anomaly detection: A review,” ACM Comput. Surv., vol. 54, no. 2, 38:1–
38:38, 2021. doi: 10.1145/3439950. [Online]. Available: https://doi.
org/10.1145/3439950.

[76] A. Pareja, G. Domeniconi, J. Chen, et al., “Evolvegcn: Evolving graph
convolutional networks for dynamic graphs,” vol. abs/1902.10191, 2019.
arXiv: 1902.10191. [Online]. Available: http://arxiv.org/abs/1902.
10191.

38 M. Ekert

[77] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-
performance deep learning library,” CoRR, vol. abs/1912.01703, 2019.
arXiv: 1912.01703. [Online]. Available: http://arxiv.org/abs/1912.
01703.

[78] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[79] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” CoRR, vol. abs/1403.6652, 2014. arXiv: 1403.
6652. [Online]. Available: http://arxiv.org/abs/1403.6652.

[80] W. W. Peterson, T. G. Birdsall, and W. C. Fox, “The theory of signal
detectability,” Trans. IRE Prof. Group Inf. Theory, vol. 4, pp. 171–212,
1954. doi: 10.1109/TIT.1954.1057460. [Online]. Available: https:
//doi.org/10.1109/TIT.1954.1057460.

[81] T. Pourhabibi, K. Ong, B. Kam, and Y. L. Boo, “Fraud detection: A sys-
tematic literature review of graph-based anomaly detection approaches,”
Decis. Support Syst., vol. 133, p. 113 303, 2020. doi: 10.1016/j.dss.
2020.113303. [Online]. Available: https://doi.org/10.1016/j.dss.
2020.113303.

[82] S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, and N. F.
Samatova, “Anomaly detection in dynamic networks: A survey,” Wiley
Interdisciplinary Reviews: Computational Statistics, vol. 7, no. 3, pp. 223–
247, 2015.

[83] S. X. Rao, S. Zhang, Z. Han, et al., “Xfraud: Explainable fraud transaction
detection on heterogeneous graphs,” CoRR, vol. abs/2011.12193, 2020.
arXiv: 2011.12193. [Online]. Available: https://arxiv.org/abs/2011.
12193.

[84] R. A. Rossi, B. Gallagher, J. Neville, and K. Henderson, “Modeling dy-
namic behavior in large evolving graphs,” in Sixth ACM International
Conference on Web Search and Data Mining, WSDM 2013, Rome, Italy,
February 4-8, 2013, S. Leonardi, A. Panconesi, P. Ferragina, and A. Gio-
nis, Eds., ACM, 2013, pp. 667–676. doi: 10.1145/2433396.2433479.
[Online]. Available: https://doi.org/10.1145/2433396.2433479.

[85] J. Sachs, C. Kroll, G. Lafortune, G. Fuller, and F. Woelm, Sustainable
Development Report 2021. Cambridge University Press, 2021. doi: 10.
1017/9781009106559.

[86] S. Thudumu, P. Branch, J. Jin, and J. J. Singh, “A comprehensive survey
of anomaly detection techniques for high dimensional big data,” J. Big
Data, vol. 7, no. 1, p. 42, 2020. doi: 10.1186/s40537-020-00320-x.
[Online]. Available: https://doi.org/10.1186/s40537-020-00320-x.

[87] “Transactie monitoring nederland (tmnl).” (), [Online]. Available: https:
//tmnl.nl/. (accessed: 28.01.2022).

[88] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson, “Deep
learning for unsupervised insider threat detection in structured cybersecu-

Master Project AI 39

rity data streams,” CoRR, vol. abs/1710. 00811, 2017. arXiv: 1710.00811.
[Online]. Available: http://arxiv.org/abs/1710.00811.

[89] B. Unger, J. Ferwerda, I. Koetsier, et al., Aard en omvang van criminele
bestedingen, 2018.

[90] S. Vashishth, S. Sanyal, V. Nitin, and P. P. Talukdar, “Composition-
based multi-relational graph convolutional networks,” CoRR, vol. abs/
1911.03082, 2019. arXiv: 1911.03082. [Online]. Available: http://arxiv.
org/abs/1911.03082.

[91] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”
CoRR, vol. abs/1706. 03762, 2017. arXiv: 1706.03762. [Online]. Avail-
able: http://arxiv.org/abs/1706.03762.

[92] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y.
Bengio, “Graph attention networks,” CoRR, vol. abs/1710. 10903, 2017.
arXiv: 1710.10903. [Online]. Available: http://arxiv.org/abs/1710.
10903.

[93] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax,” CoRR, vol. abs/1809.10341, 2018. arXiv:
1809.10341. [Online]. Available: http://arxiv.org/abs/1809.10341.

[94] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol, “Stacked
denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion,” J. Mach. Learn. Res., vol. 11, pp. 3371–
3408, 2010. doi: 10.5555/1756006.1953039. [Online]. Available: https:
//dl.acm.org/doi/10.5555/1756006.1953039.

[95] A. Z. Wang, R. Ying, P. Li, N. Rao, K. Subbian, and J. Leskovec, “Bipar-
tite dynamic representations for abuse detection,” in KDD ’21: The 27th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Virtual Event, Singapore, August 14-18, 2021, F. Zhu, B. C. Ooi, and C.
Miao, Eds., ACM, 2021, pp. 3638–3648. doi: 10.1145/3447548.3467141.
[Online]. Available: https://doi.org/10.1145/3447548.3467141.

[96] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, August
13-17, 2016, B. Krishnapuram, M. Shah, A. J. Smola, C. C. Aggarwal, D.
Shen, and R. Rastogi, Eds., ACM, 2016, pp. 1225–1234. doi: 10.1145/
2939672.2939753. [Online]. Available: https://doi.org/10.1145/
2939672.2939753.

[97] D. Wang, J. Lin, P. Cui, et al., “A semi-supervised graph attentive net-
work for financial fraud detection,” CoRR, vol. abs/2003.01171, 2020.
arXiv: 2003.01171. [Online]. Available: https://arxiv.org/abs/2003.
01171.

[98] J. Wang, S. Zhang, Y. Xiao, and R. Song, “A review on graph neural
network methods in financial applications,” CoRR, vol. abs/2111.15367,
2021. arXiv: 2111.15367. [Online]. Available: https://arxiv.org/abs/
2111.15367.

40 M. Ekert

[99] Z. Wang and C. Lan, “Towards a hierarchical bayesian model of multi-
view anomaly detection,” in Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2020, C. Bessiere,
Ed., ijcai.org, 2020, pp. 2420–2426. doi: 10.24963/ijcai.2020/335.
[Online]. Available: https://doi.org/10.24963/ijcai.2020/335.

[100] M. Weber, J. Chen, T. Suzumura, et al., “Scalable graph learning for anti-
money laundering: A first look,” CoRR, vol. abs/1812.00076, 2018. arXiv:
1812.00076. [Online]. Available: http://arxiv.org/abs/1812.00076.

[101] M. Weber, G. Domeniconi, J. Chen, et al., “Anti-money laundering in
bitcoin: Experimenting with graph convolutional networks for financial
forensics,” CoRR, vol. abs/1908.02591, 2019. arXiv: 1908.02591. [On-
line]. Available: http://arxiv.org/abs/1908.02591.

[102] D. B. West et al., Introduction to graph theory. Prentice hall Upper Saddle
River, 2001, vol. 2.

[103] R. Wirth and J. Hipp, “Crisp-dm: Towards a standard process model for
data mining,” in Proceedings of the 4th international conference on the
practical applications of knowledge discovery and data mining, Manch-
ester, vol. 1, 2000, pp. 29–40.

[104] F. Wu, T. Zhang, A. H. S. Jr., C. Fifty, T. Yu, and K. Q. Weinberger,
“Simplifying graph convolutional networks,” vol. abs/ 1902.07153, 2019.
arXiv: 1902.07153. [Online]. Available: http://arxiv.org/abs/1902.
07153.

[105] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A compre-
hensive survey on graph neural networks,” IEEE Trans. Neural Networks
Learn. Syst., vol. 32, no. 1, pp. 4–24, 2021. doi: 10.1109/TNNLS.2020.
2978386. [Online]. Available: https://doi.org/10.1109/TNNLS.2020.
2978386.

[106] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnexplainer:
Generating explanations for graph neural networks,” in Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, H. M. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp. 9240–9251.
[Online]. Available: https://proceedings.neurips.cc/paper/2019/
hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html.

[107] D. C. C. Yip and M. van Dijck Nemcsik, Anti-money laundering transac-
tion monitoring systems implementation : finding anomalies, ser. Wiley
and SAS business series. John Wiley & Sons, 13, isbn: 9781119381808.

[108] T. Yu and H. Zhu, “Hyper-parameter optimization: A review of algo-
rithms and applications,” CoRR, vol. abs/2003.05689, 2020. arXiv: 2003.
05689. [Online]. Available: https://arxiv.org/abs/2003.05689.

[109] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in 2nd USENIX Workshop
on Hot Topics in Cloud Computing, HotCloud’10, Boston, MA, USA,
June 22, 2010, E. M. Nahum and D. Xu, Eds., USENIX Association, 2010.

Master Project AI 41

[Online]. Available: https://www.usenix.org/conference/hotcloud-
10/spark-cluster-computing-working-sets.

[110] J. Zhou, G. Cui, S. Hu, et al., “Graph neural networks: A review of
methods and applications,” AI Open, vol. 1, pp. 57–81, 2020. doi: 10.
1016/j.aiopen.2021.01.001. [Online]. Available: https://doi.org/
10.1016/j.aiopen.2021.01.001.

42 M. Ekert

Appendix

Appendix A: Node Embeddings

The node embeddings were created using DGI + an encoder as well as node2vec.

AMLSim data set Node Embeddings with DGI + encoder.

(a) Node Embeddings with DGI +
GCN for the AMLSim data set.

(b) Node Embeddings with DGI +
SGCN for the AMLSim data set.

(c) Node Embeddings with DGI +
GAT for the AMLSim data set.

(d) Node Embeddings with DGI +
GATv2Conv for the AMLSim data set.

Fig. 16: Node Embeddings with DGI + encoder for the AMLSim data set.

Master Project AI 43

Node Embeddings with node2vec.

Fig. 17: Node Embeddings with node2vec for the AMLSim data set.

44 M. Ekert

Elliptic data set Node Embeddings with DGI + encoder.

(a) Node Embeddings with DGI +
GCN for the Elliptic data set.

(b) Node Embeddings with DGI +
SGCN for the Elliptic data set.

(c) Node Embeddings with DGI +
GAT for the Elliptic data set.

(d) Node Embeddings with DGI +
GATv2Conv for the Elliptic data set.

Fig. 18: Node Embeddings with DGI + encoder for the Elliptic data set.

Master Project AI 45

Node Embeddings with node2vec.

Fig. 19: Node Embeddings with node2vec for the Elliptic data set.

46 M. Ekert

Appendix B: Precision-Recall curves

Besides the ROC curves, the performance of the different approaches was com-
pared to one another in terms of the trade-off between precision and recall, i.e.
precision-recall curves presented below.

AMLSim data set - Anomaly Detection Precision-recall curves for anomaly de-
tection of the AMLSim data set.

(a) Precision-Recall Curve with error
bars for anomaly detection using the
stepwise approach: DGI/node2vec +

IF.

(b) Precision-Recall Curve with error
bars for anomaly detection using the

joined model: DONE.

Fig. 20: Evaluation of anomaly detection for the AMLSim data set: trade-off
between precision and recall.

Master Project AI 47

AMLSim data set - Classification Precision-recall curves for classification of the
AMLSim data set.

(a) Precision-Recall Curve with error
bars for classification using the

stepwise approach: DGI/node2vec +
LR.

(b) Precision-Recall Curve with error
bars for classification using the

stepwise approach: DGI/node2vec +
XGBoost.

(c) Precision-Recall Curve with error bars for classification using the joined model:
GCN + softmax.

Fig. 21: Evaluation of classification for the AMLSim data set: trade-off between
precision and recall.

48 M. Ekert

Elliptic data set - Anomaly Detection Precision-recall curves for anomaly detec-
tion of the Elliptic data set.

(a) Precision-Recall Curve with error
bars for anomaly detection using the
stepwise approach: DGI/node2vec +

IF with.

(b) Precision-Recall Curve with error
bars for anomaly detection using the

joined model: DONE.

Fig. 22: Evaluation of anomaly detection for the Elliptic data set: trade-off be-
tween precision and recall.

Master Project AI 49

Elliptic data set - Classification Precision-recall curves for classification of the
Elliptic data set.

(a) Precision-Recall Curve with error
bars for classification using the

stepwise approach: DGI/node2vec +
LR.

(b) Precision-Recall Curve with error
bars for classification using the

stepwise approach: DGI/node2vec +
XGBoost.

(c) Precision-Recall Curve with error bars for classification using the joined model:
GCN + softmax.

Fig. 23: Evaluation of classification for the Elliptic data set: trade-off between
precision and recall.

