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Abstract. Attentive models are inherently permutation equivariant and
need positional encoding to incorporate positional information, which is
crucial to structured data like time series, images and other inputs with
a higher number of positional dimensions. Attentive models are suitable
to represent long-distance relations, although they come with a substan-
tial computational burden that local self-attention is designed to solve.
This work presents a flexible way to produce positional features that
naturally extends to multiple dimensions. We use sinusoidal representa-
tion networks (SIREN) to implicitly represent positional encoding. Our
approach uses a relative positional encoding that integrates with the
attentive model in a way that keeps the model translation equivariant.
SIREN-based positional encoding gives comparable results to models de-
pending on fixed sinusoidal features. We also introduce a differentiable
span, a way to limit the attention span according to a locality feature
inferred from the data. Using local self-attention with a differentiable
span increases the model’s accuracy under specific conditions. It also
has the potential to reduce the computation costs of attention when the
implementation makes use of the learned span to limit the computation
of attention scores.
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1 Introduction

Attentive models have become ubiquitous building blocks in deep learning archi-
tectures and achieved state-of-the-art results in many domains, including Natural
Language Processing (NLP) and Computer Vision [3][7]. One of the main advan-
tages of attention is its ability to model the dependencies between different parts
of the input regardless of the distance between them. However, attention models
face two main challenges: their ignorance of the input’s positional structure, and
the attention operation’s substantial computation costs.

First, the attention operation treats the input as a set of tokens ignoring the spa-
tial or temporal structure of the input that is crucial for adequately interpreting
structured data like time series, images and videos. Here comes the importance
of positional encoding, a set of features that reflects the positional structure
of the input. Attention models are usually augmented with positional encoding
to treat structured inputs properly. For example, the original Transformer[25]
presents a kind of positional encoding that depends on fixed sinusoidal features
with different frequencies that produce different representations for each position
in the input. That positional encoding is then added to the input to insert the
positional information in the representation of the input tokens. That positional
encoding is designed to encode the absolute position of tokens in a 1-dimensional
sequence. Since then, positional encoding has seen further development in mul-
tiple directions to enhance its modelling capacity and make it more parameter
efficient.

This work presents a way to let the network learn the positional encoding of
relative positions from the data by implicitly modelling it with sinusoidal repre-
sentation networks (SIREN). The relative nature of this positional encoding
allows it to be integrated with the attention operation providing new posi-
tional information at each attention layer and keeping the attention operation
translation equivariant. Furthermore, the presented approach can produce po-
sitional encoding for inputs with multiple positional dimensions, capturing the
actual multi-dimensional structure of the input. We show that SIREN-based
positional encoding produces comparable results to models depending on fixed
sinusoidal features for the 1D setting. We also show that it can capture the
multi-dimensional structure of the input.

The second challenge is the substantial computation costs of the attention opera-
tion. For self-attention to model long-distance relations, it computes the relations
between all pairs of input tokens. The complexity of this operation is quadratic
in the size of the input. One way to reduce the resources needed for the atten-
tion operation is to limit a token’s attention span to the local neighbourhood
around that token, called local self-attention. Such models depend on choosing
the attention span beforehand as a hyperparameter. Finding the optimal values
for the attention span for each attention layer presents a new challenge in the
design space.

This work presents a differentiable parameterisation for the attention span that
captures the locality feature for inputs with multiple positional dimensions. This
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approach allows the attention span to be inferred from the data and adapts to the
information density at each attention layer. This approach removes the demand-
ing task of hyperparameter tuning for the attention span of local self-attention
models. We show that using a differentiable span with a number of positional
dimensions matching the input’s structure increases the model’s accuracy by fo-
cusing on the most relevant tokens of the input and discarding the noise coming
from tokens outside the local neighbourhood. Furthermore, the learned span can
be used to reduce the computation costs of the attention operation by limiting
the computed attention scores to the local neighbourhood instead of discarding
the unneeded attention scores after being computed. We present two implemen-
tations that attempt to limit the attention operation using the learned span.
However, both are less efficient than computing all attention scores and discard-
ing those outside the learned attention span. They end up taking much more
memory as a side effect of extracting the local neighbourhood for each query.

We are interested in the following research questions:

• How does SIREN-based positional encoding affect the accuracy of a self-
attention-based model compared to a baseline positional encoding using fixed
sinusoidal features followed by a linear layer?

• How does using a differentiable span affect the accuracy of a self-attention-
based model?

The following sections are organised as follows. Section 2 covers the related work
regarding self-attention, positional encoding, and local self-attention. Section 3
presents the algorithms and parameterisation of the modules we introduce in
addition to the overall network architecture used in our experiments. Section 4
covers the experimental design and the implementation details of the experi-
ments. Section 5 presents the results of the conducted experiments with their
interpretations. Section 6 includes a discussion reflecting on the outcome and
methodology used in this research. Finally, Section 7 concludes this work with
summarised answers to the research questions and Section 8 motivates future
work.

2 Related Work

Self-Attention. The Transformer[25] is the first model that depends entirely
on self-attention. Self-attention-based models, including the Transformer and its
variants [4,18,13], have achieved the state of the art in many domains, including
natural language processing (NLP), computer vision, and others [3][7].

Positional Encoding. Positional encoding (PE) is essential for self-attention
models. Without positional encoding, self-attention becomes permutation equiv-
ariant and ignores the input’s structure, which is crucial for many kinds of in-
puts like images. Positional encoding can be broken down into the following
set of factors which have seen various developments: absolute or relative, where
PE is merged with the attention model (location), what operation is used for
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Table 1:Comparison: Positional Encoding.Displayed in chronological order.
a=absolute, r=relative, d=discrete, c=continuous, outside=once before the first
attention layer, inside=inside each attention layer, N=sequence length or number
of unique positions.

Work a/r location merge
operation

merge
with

representation learnable
params

d/c shared
across
heads

content &
position
bias

[6] a outside add inputs embedding vectors O(N) d no no

[25] a outside add inputs fixed sin features no c no no

[22] r inside add keys &
values

embedding vectors O(N) d yes no

[10] r inside add keys embedding vectors O(N) d no no

[19] r inside add keys fixed sin features no c - no

[4] r inside add keys fixed sin features +
linear layer

O(1) c - yes

[26] r inside concat attention
scores

normalised position
+ linear layer

O(1) c - no

[15] a outside add inputs learned sin features
+ 1-layer GeLU

O(1) c - no

Baseline r inside add keys fixed sin features
+ linear layer

O(1) c no yes

Ours r inside add keys normalised position
+ SIREN

O(1) c no yes

merging (operation), what part of the data it is merged with (augmented with),
the representation of PE, having learnable parameters or not, being discrete or
continuous, and being shared across heads or not. Table 1 compares positional
encoding approaches incorporating various combinations of those factors.

Absolute positional encoding[6,25,15] produces a representation for each po-
sition in the input. This absolute representation then gets merged with the in-
put via a point-wise addition operation. As a result, the absolute positional
encoding will affect the self-attention layer’s queries, keys and values. Relative
positional encoding[22,10,19,4,26] considers the relative position of each key to
each query and produces a representation for each unique relative position. For
example, if the input is a sequence of N tokens, relative positions are in the
range [−(N−1), N−1]. Another way to produce relative positional encoding is
to subtract the absolute positional encoding for two positions[26]. Relative posi-
tional encoding is applied inside each self-attention layer. This makes the model
translation equivariant and provides new positional information at each self-
attention layer. Relative positional encoding can be merged with keys[10,19,4],
with keys and values[22], or with attention scores[26]. The merge operation could
be point-wise addition or concatenation[26].

The representation for either absolute or relative positional encoding is a
function that takes the position and returns a vector representing this posi-
tion. This representation can be discrete [6,22,10] by learning the representation
vectors for the input positions seen during training. However, this approach can-
not produce representations for positions not seen during training. This kind
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of representation requires O(N) learnable parameters where N is the number
of unique positions of the input. Another representation approach is to have
a transformation applied to the position to generate the representation vector.
Such transformation can be parameter-free or incorporate learnable parameters.
Positional encodings that depend on such transformations are called continuous
because they can produce representations for positions outside the range seen
during training. If this transformation has learnable parameters, they need O(1)
parameters that do not depend on the input size. The Transformer [25] uses a
parameter-free transformation function that uses sinusoidal features with dif-
ferent frequencies to construct different representations for different positions.
Transformer-XL [4] adds a linear layer with learnable parameters after those
fixed sinusoidal features. A learnable version of the sinusoidal features where the
frequencies are not fixed is introduced in [15], which also augments the trans-
formation function with a 2-layer feed-forward network with a GeLU activation
for the hidden layer. Another model that does not depend on sinusoidal features
is [26], where the normalised position is fed into a linear layer that provides the
position representation. In most models, the representation vector size is equal to
the content vector size of the inputs or the keys, which gives each attention head
different positional information. Sharing the positional encoding across attention
heads is possible, as shown in [22].

Transformer-XL introduces a new parameterisation to incorporate relative
positional encoding inside the self-attention layer. This parameterisation pro-
vides clear differentiation among content attention, positional attention, content
bias, and positional bias. We will be building on this parameterisation for the
baseline and our new approach.

Multi-dimensional positional encoding. Inputs with multiple positional di-
mensions are natural in cases like images with two spatial dimensions or videos
with an additional temporal dimension. One way to extend positional encoding
to multi-dimensional spaces is to produce positional encoding for each dimen-
sion separately and then merge them to get a representation for each multi-
dimensional position. The merge operation could be point-wise addition [9] or
concatenation [19,26]. Another way to produce positional encoding for a multi-
dimensional space is to construct a function that takes the multi-dimensional
coordinate of a position as input and gives a representation vector as an output
[15]. The latter can capture more complex positional relations that cannot be
factorised into relations in orthogonal dimensions. Table 2 compares different
approaches to produce multi-dimensional positional encoding.

Sinusoidal Representation Networks. Implicit neural representation can be
used to implement the transformation function needed to generate positional
encoding vectors from position coordinates. Using periodic activation functions
in implicit neural representations proves to be superior in representing spatial
and temporal signals with fine details [23]. Such networks with periodic activa-
tion functions are called sinusoidal representation networks or SIRENs. SIRENs
have been successfully used to model continuous convolution kernels for sequen-
tial data of arbitrary length [21].
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Table 2: Comparison: Multi-dimensional positional encoding.

Work Treat dimensions Merge dimensions operation

[19] separately concat

[9] separately add

[26] separately concat

[15] combined not needed

Ours combined not needed

Local Self-Attention The ability of self-attention to model long-distance rela-
tions in one layer comes with a considerable computational burden where each
token needs to attend to each other token in the input. This results in a quadratic
complexity in FLOPs needed to carry out self-attention. Local self-attention has
been mentioned as future work in the Transformer[25], where each query con-
siders a limited neighbourhood of keys centred around the respective query.
Another way to achieve local attention is to chunk the input sequence into
non-overlapping blocks of queries. Each query only attends to keys inside its
block[16]. This approach can be extended to allow each query block to have a
wider keys block[18], which results in overlapping key blocks. In both cases, the
attention cost per block becomes constant. Consequently, the cost of the atten-
tion layer becomes linear in the size of the input. While local attention limits the
span of attention per layer, a multi-layer self-attention network can still model
long-distance relations.
Differentiable span. In this work, we introduce a differentiable attention span,
where the local neighbourhood size is parameterised and adapted to the data
during training. This idea has been implemented by Flexconv[20] in convolu-
tional neural networks, where the kernel’s size is learned during training.

3 Architecture

This section presents a formal introduction to the ideas incorporated in our
approach, including multi-head attention, relative positional self-attention, the
baseline positional encoding, the SIREN-based positional encoding, multi-
dimensional positional encoding, and differentiable span. The overall network
architecture is also presented for the classification tasks with which we experi-
ment.

3.1 Transformer-based Classifier

The Transformer is the first model that solely depends on self-attention. It con-
sists of an encoder and a decoder stack to be used for tasks like machine trans-
lation. A multi-head attention layer is used in both the encoder and decoder
blocks. However, classification tasks like those we focus on in this work do not
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Fig. 1: Transformer-based classifier

Algorithm 1: Multi-head Self-Attention

input : X ∈ R
N×d where N is the number of input tokens.

output : Y ∈ R
N×d where N is the number of output tokens

(same as input tokens).
parameters : Wq,Wk,Wv,Wo ∈ R

d×d

hyperparameters: d is the number of features for each token.
Q,K, V ← XWq, XWk, XWv Q,K, V ∈ R

N×d

O ← MultiHeadAttention(Q,K, V ) O ∈ R
N×d

Y ← OWo

need the decoder part of the architecture. Figure 1 shows the overall architec-
ture of a transformer-based classifier where a stack of encoder blocks is used.
The representation of the last token at the last layer is used for classification.
It is fed into a feed-forward neural network that gives the probabilities for the
output classes.

3.2 Multi-head Self-attention

The multi-head attention layer is a crucial part of this architecture. Inside en-
coder blocks, the multi-head attention layer gets its queries, keys and values from
the same pool of tokens. Hence, the operation is called self-attention. We collect
the entire operation in a layer called Multi-Head Self-Attention. Algorithm 1
defines the inputs, outputs, parameters and hyperparameters of the Multi-Head
Self-Attention layer alongside how the self-attention operation is carried out.
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Algorithm 2: MultiHeadAttention

input : Q,K, V ∈ R
N×d where N is the number of input tokens.

output : O ∈ R
N×d

hyperparameters: d is the number of features for each token. H is the
number of heads where d mod H = 0.

Q, K, and V are split into H heads where the number of features d is split
into H ∗ dH , and dH is the number of features in one head.

dH ← d/H

The following operations are broadcasted on the heads which means these
operations are effectively applied separately to each head. We’ll use Qh, Kh,
Vh, Oh to refer to one head h extracted from the respective tensors
Q,K, V, Y where Qh,Kh, Vh, Oh ∈ R

N×dH .

Qh ← Q[0, 1, ..., N−1; hdH , hdH+1, ..., (h+1)dH−1]
Kh ← K[0, 1, ..., N−1; hdH , hdH+1, ..., (h+1)dH−1]
Vh ← V [0, 1, ..., N−1; hdH , hdH+1, ..., (h+1)dH−1]

Ah ← QhKh
T /
√
dH Ah ∈ R

N×N

Sh ← softmax(Ah)
where softmax is applied to each row to normalise the scores of keys respective
to a specific query.

Oh ← ShVh Oh ∈ R
N×dH

Notice that it internally uses the MultiHeadAttention operation defined in Al-
gorithm 2.

3.3 Relative Positional Self-Attention

Self-attention treats structured inputs as an unordered set of tokens because
the attention operation is permutation equivariant and does not care about
the positions of tokens. However, such models’ accuracy suffers when the input
tokens’ positional structure is significant to interpret the input and solve the
task at hand correctly. Therefore, adding some positional hint to the attention
operation is crucial for such tasks. That positional hint is represented by the
positional encoding.

Transformer-XL[4] proposes a parameterisation for computing the attention
scores that incorporates relative positional encoding inside the self-attention
layer. Formula 1 shows an adapted version of that parameterisation to fit the pur-
poses of this work. That formula uses the Einstein notation[1], where subscripts
refer to the tensor dimensions. Scaling and softmax operations are omitted to
focus on the four terms contributing to the attention scores.
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Aqk = (QqdKkd)qk
︸ ︷︷ ︸

Content attention

+ (QqdPqkd)qk
︸ ︷︷ ︸

Positional attention

+ (udKkd)k
︸ ︷︷ ︸

Content bias

+ (vdPqkd)qk
︸ ︷︷ ︸

Positional bias

∗

where q is the query dimension (= N)

k is the key dimension (= N)

d is the feature dimension

ud, vd are learnable parameters

Pqkd is the relative positional encoding for all keys
respective to all queries

∗ Einstein notation

(1)

The tensor P is the only piece in Formula 1 that is yet to be defined in
the next section. Notice that the attention scores in Formula 1 consist of the
following terms:

• Content attention is a score representing the similarity between a query
and a key in the feature space.

• Positional attention is a score representing the similarity between the
query and the relative positional encoding of a key respective to that query.

• Content bias is a score that depends solely on the content of the key,
providing bias according to the content of the key.

• Positional bias is a score that depends solely on the relative positional
encoding of the key respective to the query.

In these terms, the similarity is measured by a dot-product in the feature
space represented by the d dimension.

3.4 Positional Encoding

This section defines how to generate relative positional encoding and construct
the tensor P in Formula 1. Before that, let us introduce some definitions.

N is the number of unique positions in the input. For inputs with one po-
sitional dimension, N is the sequence length. This will be extended later to
accommodate multiple dimensions.

Nr is the number of relative positions. For inputs with one positional di-
mension, the relative position of keys respective to queries can take values from
−(N−1) to (N−1). Therefore, the total number of unique relative positions
Nr = 2N−1. Notice that relative positions are, in fact, the relative distances
between keys and queries. The definition of relative positions will be extended
for multiple positional dimensions in section 3.5

Generating the tensor P holding relative positional encoding for all keys
respective to all queries can be split into two steps, as shown in Figure 2.

Step 1. The first step is to generate positional encoding vectors for all unique
relative positions. This is represented by E ∈ R

Nr×d, where Nr is the number
of relative positions and d is the number of features in each positional encoding



10 Meena Alfons

0 N−1

N Absolute positions

−(N−1) 0 N−1

Nr Relative positions

d

−(N−1) 0 N−1

E ∈ R
Nr×d

Positional encoding for relative posi-

tions

0 N−1

0

N−1

P ∈ R
N×N×d

Relative positional encoding for each

key respective to each query

Step 1

Step 2

Fig. 2: Generating Relative Positional Encoding. N is the number of ab-
solute positions, Nr is the number of relative positions, E holds the positional
encoding vectors for all relative positions, and P is the relative positional en-
coding for all keys respective to all queries.

Algorithm 3: Relative Positional Encoding - Baseline

input : N the number of input positions.
output : E ∈ R

Nr×d

parameters: W ∈ R
d×d, b ∈ R

d

Nr ← 2N − 1

Create meshgrid x ∈ N
Nr×1 of integer positions

xi ← i for all i ∈ [0, Nr)

Create a matrix of sinusoidal features S ∈ R
Nr×d

Si,j =

{

sin(xie
−j∗log(10000)/d), if j is even

cos(xie
−(j−1)∗log(10000)/d), if j is odd

for i ∈ [0, Nr) and j ∈ [0, d)

E ← SWT + bT

vector. Various approaches can be used to generate those positional encodings,
as listed in Table 1. This section will explain the baseline and our new approach,
SIREN-based positional encoding.

Baseline positional encoding. Algorithm 3 is the baseline we use to gen-
erate the positional encoding for relative positions E. It is similar to the one
used in Transformer-XL[4]. First, a matrix of sinusoidal features S is generated
for all relative positions. These are the same sinusoidal features defined in the
Transformer[25]. These sinusoidal features are characterised by their inductive
bias which allows them to generalise to inputs of larger sizes than those seen
during training. That matrix S is then fed into a linear layer with weights W
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Algorithm 4: Relative Positional Encoding - SIREN - 1D

input : N the number of input positions.
output : E ∈ R

Nr×d

parameters : W1 ∈ R
d×1, b1 ∈ R

d, and Wl ∈ R
d×d, bl ∈ R

d for l ∈ [2, L]
hyperparameters: ω0, ω0,initial ∈ R, L number of layers
Nr ← 2N − 1

Create meshgrid x ∈ R
Nr×1 of normalised positions xi ∈ [−1, 1]

xi ← i−(N−1)
(N−1)

for all i ∈ [0, Nr)

z1 ← x ∗WT
1 + bT1

h1 ← sin(w0,initialz1)
For l ∈ [2, L− 1] do:

zl ← hl−1 ∗WT
l + bTl

hl ← sin(w0zl)

E ← hL−1 ∗WT
L + bTL

and b. The only difference between this baseline and the positional encoding in
Transformer-XL is that the latter does not have this bias b.

SIREN-based positional encoding. SIRENs are proven superior in repre-
senting spatial and temporal signals with fine details [23]. Therefore, they are
a good fit for generating positional encoding vectors for each relative position.
Algorithm 4 shows the implementation of a SIREN network with L layers that
generates such positional encodings. First, the coordinates of relative positions
are normalised in the range [−1, 1]. Then, the value of the normalised coordinate
is fed into this feed-forward network to produce the positional encoding for that
coordinate. All hidden layers use the sine activation function, and the last layer
stays without activation.

There are two critical hyperparameters for this network, ω0 and ω0,initial

serve as the base frequencies for the sine activation function. The value of
ω0,initial proves necessary as it interacts with the frequency spectrum of the
input signal. For example, for the normalised positions, a higher frequency is
needed to have multiple full periods in the range [−1, 1]. However, if integer val-
ues are used for the position coordinate, a lower frequency is sufficient because
the input will be in the range [−(N−1), N−1]. Furthermore, the value of ω0

helps boost the gradients to the weight matrix W by the factor ω0.

It’s important to notice that the SIREN network needs a special initial-
isation scheme to maintain normally-distributed inputs to the sine activa-
tion functions as explained in [23]. The weights of the first layer are ini-
tialised with wi ∼ U(−1/n, 1/n) where n is the number of input dimensions
for this layer. The weights of the following hidden layers are initialised with
wi ∼ U(−

√

6/n/ω0,
√

6/n/ω0). The weights of the last layer use Kaiming
initialisation[8]. There is a recommended initialisation for the bias according
to [21]. Unfortunately, we were not aware of a possible improvement by per-
forming bias initialisation, which we were forced to leave to future experiments
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Table 3: Comparison: SIREN-based positional encoding vs Baseline

Baseline SIREN-based

Predefined frequencies Learned frequencies at each layer

Linear combination of sine features Multi-layer network of sine functions

Designed for 1D Naturally extends to multiple dimensions

Treats dimensions separately and combines
them using concatenation or addition giv-
ing a constrained result

Models more complex functions in multiple
dimensions.

because of time and computational resource constraints. Therefore, the bias is
initialised to zero in our experiments.

Table 3 provides a comparison between the baseline and the SIREN-based
approaches.

Step 2. The second step in Figure 2 is to spread the values in E into P ∈
RN×N×d, where the first index refers to the query and the second index refers
to the key. Pij is the positional encoding vector for key j relative to query i.
Therefore, Pij = Ej−i for all i, j ∈ [0, N). For an efficient algorithm to construct
P from E, see Appendix A.1.

3.5 Multi-dimensional Positional Encoding

Positional dimensions are those along which the input tokens are laid out in an
ordered structure that is meaningful for the input domain. Spatial and tempo-
ral dimensions are the most famous positional dimensions. Inputs with multiple
spatial and temporal dimensions are very common. Examples include images
with two spatial dimensions, videos with two spatial dimensions and one tem-
poral dimension (a total of 3 positional dimensions), and other tasks with more
dimensions [15]. The positional encoding for such inputs needs to consider the
input’s multi-dimensional structure.

StructureSize. In this context, we define StructureSize ∈ N
n, a vector holding

the size of the input along each positional dimension where n is the number of
positional dimensions. That means StructureSize0 is the number of absolute
positions along the first positional dimension attributed to input tokens. For
an image of size 50 × 30, StructureSize=[50 30]T . Notice that the number of
input tokens N is the product of the values of StructureSize formulated as
N=prod(StructureSize), which is 1500 in this case.

RelativeSize. Similarly, RelativeSize ∈ N
n holds the number of unique rel-

ative positions along each dimension, which is calculated by RelativeSize=
2StructureSize−1 where 1∈Nn is a vector of ones. For an image with
StructureSize=[50 30]T , RelativeSize=[99 59]T . There are 99 relative posi-
tions in the first dimension in the range [−49, 49]. The total number of relative
positionsNr= prod(RelativeSize)= 5841, which are spread in a two-dimensional
grid ranging from (−49,−29) to (49, 29).
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Algorithm 5: Relative Positional Encoding - SIREN

input : StructureSize ∈ N
n the number of input positions along

each dimension where n is the number of positional
dimensions of the input.

output : E ∈ R
RelativeSize...×d

parameters : W1 ∈ R
d×n, b1 ∈ R

d, and Wl ∈ R
d×d, bl ∈ R

d for l ∈ [2, L]
hyperparameters: ω0, ω0,initial ∈ R, L number of layers.
RelativeSize← 2StructureSize− 1

Create meshgrid x ∈ R
RelativeSize...×n of normalised positions

x...,ij ,...,j ∈ [−1, 1]

x...,ij ,...,j ←
ij−(StructureSizej−1)

(StructureSizej−1)
for all ij ∈ [0, RelativeSizej) and j ∈ [0, n)

Notice that ij indexes the jth dimension of x

z1 ← x ∗WT
1 + bT1

h1 ← sin(w0,initialz1)
For l ∈ [2, L− 1] do:

zl ← hl−1 ∗WT
l + bTl

hl ← sin(w0zl)

E ← hL−1 ∗WT
L + bTL

Extended SIREN-based positional encoding. SIREN-based positional en-
coding can be extended easily to consider multi-dimensional positions accord-
ing to the StructureSize. In the 1D version, the SIREN network takes one
value xi ∈ R as an input representing the coordinate of the position i. In the
multi-dimensional version, the SIREN network takes the multi-valued coordi-
nate xi ∈ R

n representing the position i in n-dimensional space. The result
E ∈ R

RelativeSize0×...×RelativeSizen−1×d of the extended algorithm is the po-
sitional encoding for each relative position is a multi-dimensional grid of size
RelativeSize. From now on, we’ll use the notation R

RelativeSize...×d to refer to
R

RelativeSize0×...×RelativeSizen−1×d. Algorithm 5 shows the extended algorithm.
Formula 1 is still valid for inputs with multiple positional dimensions. Each

token can be referred to with a unique ID in the range [0, N). These unique IDs
are the indices of the q and k dimensions. P still holds the relative positional en-
coding for each key respective to each query extracted from E. The construction
of P from E ∈ R

RelativeSize...×d is shown in Appendix A.1.

3.6 Differentiable Span

The self-attention operation has a global span by default. This means that each
query attends to all keys. This allows the model to capture long-distance relation-
ships in one layer. However, it comes with a substantial computational burden
that’s quadratic in the number of input tokens O(N2). Local self-attention[16,18]
has been introduced to reduce this computational burden to O(N) by limiting
the attention operation for each query to a subset of the keys contained in a
limited neighbourhood around the query. Local self-attention limits the distance
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of captured relations in one layer. However, long-distance relations can still be
captured in later layers for which the effective receptive field is wider than the
defined local neighbourhood for the local attention.

The size of the local neighbourhood is a crucial hyperparameter for those
models. It needs to be big enough to include tokens that significantly affect
a query. However, the span of this significant neighbourhood is not known a
priori, and it may differ across layers. This makes choosing the size of the local
neighbourhood more challenging. Therefore, we propose using a differentiable
span whose size can be learned from the data during training. This allows the
attention span to adapt to the data and the information density in each layer
and eventually include the significant tokens in the attention operation.

Using a learned span doesn’t guarantee a linear complexity for self-attention
because the learned span could end up including all the keys. However, this is
desirable behaviour. The error signal guides the learned span, prioritising the
model’s accuracy. At the same time, using a differentiable span allows each layer
to learn a different attention span that matches the information density at that
layer. Computation savings come from the layers where the learned span includes
a much smaller set of keys than the global attention span.

Gaussian function. In order to implement this differentiable span, we use a
Gaussian function with parameterised variance σ2 in combination with a con-
stant threshold. The Gaussian function is appropriate to model the locality fea-
ture because it gives high values for positions around the centre and low values for
positions further away. Relatively applying a Gaussian function, centred around
each query, models the locality around each query. The attention scores for keys
relative to a specific query are multiplied by the values of the Gaussian function
centred around this query. This multiplication modulates the attention scores
according to the learned locality feature. The constant threshold is used as a
cutoff value on the Gaussian function to determine the attention span around
a query and limit the attention operation to the keys inside this span. Figure 3
shows an example of the learned attention span in 2D using a Gaussian function
with two independent standard deviations, σ0 and σ1 and a constant threshold
of 0.1.

−1 0 1

0.1

1

−
1

0
1

0
.
1 1

σ0=0.15

σ1=0.3

Query
Learned attention span

Fig. 3: The learned attention span in 2D using Gaussian function with learnable
variance σ2 and a constant threshold of 0.1.
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A multi-dimensional Gaussian function is used to capture the locality feature
in the input’s positional space, which can have multiple positional dimensions.
The mean of the Gaussian function is always 0, and it is always centred around
each query. We need to parameterise the full covariance matrix for a general
parameterisation of the variance of a multi-dimensional Gaussian function. How-
ever, parameterising the covariance matrix is a bit complex while maintaining its
constraint to be positive semi-definite. Instead, we implement a stricter version
where the covariance matrix is diagonal (independent dimensions). This means
there is one standard deviation parameter σi for each dimension i ∈ [0, n). Each
attention layer has a set of parameters σ ∈ R

n whose size is equal to the number
of positional dimensions n. Formula 2 shows the used Gaussian function. Notice
that the highest value of this function is 1, which happens at the origin. This is
important to use the Gaussian function to modulate the attention scores relative
to the query at the centre without attenuating all the scores. Notice that this
is not a probability distribution curve because it doesn’t have the normalising
coefficient.

G(x) = e−0.5x·σ−2

where x ∈ R
n, and σ ∈ R

n (2)

SpanSize. The SpanSize ∈ N
n is a vector holding the size of the learned span

along each positional dimension, where n is the number of positional dimensions.
The SpanSize operates in and limits the space of relative positions defined by
RelativeSize. The SpanSize is calculated using the learned values for σ and the
constant threshold t. The changing value of σ moves the cutoff position where
the value of the Gaussian function equals the threshold t. These cutoff positions
on each dimension define the SpanSize. Algorithm 6 shows the calculation of

Algorithm 6: Calculate SpanSize

input : StructureSize ∈ N
n where n is the number of positional

dimensions of the input.
output : SpanSize ∈ N

n

parameters : σ ∈ R
n

hyperparameters: t ∈ R the threshold.
x←

√

−2log(t) ∗ σ2

where x ∈ R
n contains the position (independently for each dimension) at

which the Gaussian function equals the threshold t

The meshgrid used to generate the Gaussian function uses the range [−1, 1]
for the positional range [−(StructureSizei−1), StructureSizei−1] for each
dimension i ∈ [0, n). Therefore, the SpanSize is calculated as follows:

SpanSize← 2⌈x ◦ StructureSize−1

1
⌉+ 1

Notice that operator ◦ is the Hadamard product.

Limit the SpanSize to the RelativeSize:
SpanSizei ← min(SpanSizei, RelativeSizei) for all i ∈ [0, n)
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Algorithm 7: GaussianFunction

input : StructureSize, SpanSize ∈ N
n where n is the number of

positional dimensions of the input.
output : G ∈ R

SpanSize...

parameters: σ ∈ R
n

Create meshgrid x ∈ R
SpanSize...×n of normalised positions.

x...,ij ,...,j ←
ij−(StructureSizej−1)

(StructureSizej−1)
for all ij ∈ [0, SpanSizej) and j ∈ [0, n)

Notice that ij indexes the jth dimension of x

G← e−0.5x·σ−2

Algorithm 8: Modulate Attention scores with Differentiable Span

input : A ∈ R
N×N the attention scores. G∗ ∈ R

N×N relative Gaussian values
for each key respective to each query. SpanMask ∈ B

N×N boolean
mask generated from SpanSize.

output: A∗ ∈ R
N×N the adjusted attention scores.

Modulate attention scores:
A∗

ij ← Aij ◦G∗

Remove attention scores outside SpanSize:

A∗

ij =

{

−∞ if SpanMaskij is False

A∗

ij if SpanMaskij is True

the SpanSize. This SpanSize is used to limit the calculation of the Gaussian
function instead of calculating it for the full RelativeSize. It also limits the gen-
eration of positional encoding because values outside SpanSize are not needed.
Algorithm 7 shows the multi-dimensional Gaussian function where the Gaussian
function is calculated for relative positions in a grid of size SpanSize.

Modulating attention scores. The generated Gaussian values G ∈
R

SpanSize... need to be transformed into G∗ ∈ RN×N , where each key has the
Gaussian value of its relative position to the respective query. This operation
is similar to transforming E into P , as shown in Appendix A.1. G∗ is then
multiplied element-wise with A to modulate the attention scores, as shown in
Algorithm 8. In addition to modulating the attention scores inside the SpanSize,
all attention scores outside the SpanSize are set to −∞ to remove their effect
altogether. Finally, a boolean mask SpanMask ∈ B

N×N needs to be generated
to indicate which keys are inside the SpanSize respective to each query. The
generation of SpanMask from the SpanSize is shown in Appendix A.1.

Reducing computation costs using the learned attention span. The ini-
tial goal for local attention is to reduce the complexity of the attention operation
from O(N2) to O(N). While this is not guaranteed when a learned attention span
is used, computation savings can still be gained by only computing the attention
scores inside the learned span. We have shown how to learn the attention span,
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use it to modulate the attention scores, and drop the scores outside the learned
span to effectively achieve the local attention operation. We will call this Version
1, whose implementation is shown in Appendix A.1. To achieve any computation
gains, the SpanSize needs to be used to limit the attention scores computed for
each query to only include the attention scores for the keys inside the SpanSize
around the query. We present two attempts to use the SpanSize to limit the
attention operation as Version 2 and 3, whose implementations can be found in
Appendix A.2 and Appendix A.3, respectively. Version 2 uses a tight layout for
the values in memory to compute as few unneeded attention scores as possible.
Version 3 also aims to limit the computation of unneeded attention scores, but
it uses a simpler memory layout than the one used in Version 2. This simplicity
comes with the cost of computing more unneeded scores than in Version 2. Both
versions have the same parameters as Version 1 and produce the same output
and the same gradients on those parameters. However, both implementations
turn out to be less efficient than Version 1 by an order of magnitude for reasons
explained in the comparison provided in Appendix A.4. Further work is needed
to develop an implementation that efficiently applies local attention using the
learned span.

3.7 Positional Multi-Head Self-Attention Block

Figure 4 puts the presented modules into perspective. The Differentiable Span
module takes a meshgrid of normalised relative positions and produces the rela-
tive Gaussian values. The Relative Positional Encoding module takes a meshgrid
of normalised relative positions and produces the relative positional encoding.
The results of both modules are fed into the Positional Multi-Head Attention
module, which computes the attention scores, including the relative positional
encoding as shown in Formula 1 and modulates the attention scores using the
Gaussian values. Finally, the whole operation is encapsulated in a new block
called Positional Multi-Head Self-Attention.

4 Experiments

4.1 Task & Datasets

In this work, we focus on the image classification task to compare the validation
accuracy produced by different models. The MNIST dataset[5] is found to be
too easy as an image classification task (even in its sequential form) to compare
the models we propose and differentiate between them. Instead, the CIFAR-10
dataset[14] is used in an image classification setting to test the different models
in this work and the hypotheses around them. CIFAR-10 has ten classes with 6K
images per class, meaning a random choice algorithm would give an accuracy
of 10%. The dataset provides 50K training images and 10K test images. The
test images are not used in this work at all because this work doesn’t aim to
provide a comparison with external baselines. Instead, it focuses on introducing
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Positional
Multi-head
Attention

Relative
Positional
Encoding

Differentiable
Span

Positional
Multi-head
Self-Attention

Add & Norm

Feed Forward

Add & Norm

Nb×

Meshgrid of
relative positions

Linear

Inputs

Feed Forward

Last Token

Softmax

Output Probabilities

Fig. 4: Transformer-based classifier with Positional Multi-head Self-Attention
which includes Relative Positional Encoding and Differentiable Span.

new approaches and validating their effectiveness by comparing them to other
approaches. Therefore, an 80/20 split is used to randomly split the 50K training
images into a train dataset of 40K images and a validation dataset of 10K images.

4.2 Experimental Setup

The training process of deep learning models depends on pseudo randomness
for many aspects, including parameter initialisation, dataset shuffling, and the
internal operation of some modules (e.g. dropout). A RandomState variable is
used to control the pseudo randomness in the training process, supporting re-
producibility. A set of 5 RandomStates are randomly chosen to be used in exper-
iments comparing different treatments. Each treatment is tested multiple times,
once for each RandomState value. Using the same set of RandomState values
when comparing two different models eliminates the randomness coming from
dataset shuffling. However, parameter initialisation and other internal operations
requiring random variables go out of sync because the two models have different
parameters and different internal operations.

SIREN-based Positional Encoding vs Baseline. In this experiment, we
test the difference in validation accuracy between two architectures, one using
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the baseline positional encoding and the other using SIREN-based positional
encoding. Both are being tested on an image classification task using the se-
quential CIFAR-10 dataset[24], where the image is treated as a 1D sequence of
pixels where each pixel has three colour channels. No local attention is applied
to these experiments. The tested hypothesis is as follows:

• H0: Both approaches have the same modelling capacity, and there is no
difference in the resulting validation accuracy.

• H1: SIREN-based positional encoding achieves higher validation accuracy.

Differentiable Span without threshold. In this experiment we test the effect
of multiplying the attention scores with the values of a relative Gaussian function
centred around each query. This Gaussian function can model local attention
without applying any threshold because it already modulates the attention scores
giving higher values for keys around the query and lower values further away.
Two treatments are tested, one where the attention scores are not modulated and
the other where attention scores are modulated using the values of the relative
Gaussian function. In both cases, the SIREN-based positional encoding is being
used. This allows us to test the effect of the Gaussian function in 1D and 2D
settings because the SIREN-based positional encoding can work with multiple
positional dimensions. The tested hypothesis is as follows:

• H0: Modulating the attention scores with the values of a relative Gaussian
function does not affect the validation accuracy.

• H1: Modulating the attention scores with the values of a relative Gaussian
function decreases the validation accuracy.

Differentiable Span with threshold. In this experiment, we test the effect of
applying a threshold to limit the attention span in addition to multiplying the
attention scores with the values of a relative Gaussian function. The threshold
interacts with the Gaussian function’s variance to produce a learned span. All
attention scores outside this span are discarded by setting them to −∞. Two
treatments are tested, one where the threshold is set to 0 (no threshold) and the
other where the threshold is set to 0.1. In both cases, the SIREN-based positional
encoding is being used. This allows us to test the effect of the differentiable
span with threshold in 1D and 2D settings. We hypothesise that limiting the
attention scores to the SpanSize will allow the positional encoding to focus
more on modelling the relative positions inside the SpanSize and remove noise
from tokens outside the SpanSize. The tested hypothesis is as follows:

• H0: Discarding the modulated attention scores outside a learned span defined
by a threshold is as good as using the modulated attention scores for all the
inputs regarding the resulting validation accuracy.

• H1: Discarding the modulated attention scores outside a learned span defined
by a threshold gives higher validation accuracy than using the modulated
attention scores for all the inputs.
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Notice that the computation costs of the model with a differentiable span are
not being tested in these experiments because Version 1 of the implementation
is being used, which does not make any attempt to use the SpanSize to reduce
the costs of the attention operation. Version 2 and 3, which attempt to do so,
are less efficient than Version 1, as explained in Appendix A.4.

Statistical testing. The normality of each group of samples is tested by the
Jarque–Bera test[11] and found not to be significantly different from a normal
distribution. We cannot assume equal variances for the resulting groups. There-
fore, Welch’s t-test[17] is used to compare the means of the samples generated
by different treatments. A power analysis is conducted on the observed results
and found that the Welch’s t-test has a power of 50.25% to detect the observed
differences at a significance level of 0.05 using 5 points for each sample. This is
lower than the usual power of 80% at a significance level of 0.05. Hence, the tests
may not give a significant result even if a significant effect is present. Therefore,
we are using boxplots to visually present the differences between the models in
addition to reporting the p-values for the significance of the treatment effect in
Welch’s t-test.

4.3 Implementation

A cross-entropy loss function is used to provide an error signal that boosts the
probability of the correct class for an image. Adam optimiser[12] is used with
parameters β1=0.9, β2=0.999 and a learning rate of 0.001. The train dataset is
shuffled before each training epoch. Each model is trained for 80 epochs to ensure
that it has enough training steps to achieve its highest validation accuracy. The
initial experiments show that at epoch 80, the validation accuracy for the tested
models is stabilised for the last ten epochs. All experiments are done using one
Nvidia Titan RTX GPU, where one training run takes 30-40 hours.

Multiple models were initially tested to find a model that is big enough to
achieve high validation accuracy but small enough to fit in the 24GB GPU with
an appropriate BatchSize. We eventually settled on using a model with six
encoder blocks, each including the Positional Multi-head Self-attention module,
as shown in Figure 4. The model has d=64 features and H=8 attention heads.
Gradient accumulation is used with two steps each of BatchSize=20, giving an
effective BatchSize of 40.

Each attention block has its own positional encoding and differentiable span
modules. The positional encoding module generates positional encoding vectors
with a number of features matching the model features d=64. Therefore, the
positional encoding is not shared across attention heads.

The SIREN network used for SIREN-based positional encoding has three
layers. The initial experimentation shows that the SIREN network is sensitive
to the hyperparameters ω0 and ω0,initial. A selective hyperparameter tuning for
ω0, ω0,initial ∈ [0.1, 100] shows that ω0=ω0,initial=10 is a good enough combina-
tion for this task.
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Table 4: Hyperparameter values

Hyperparameter value

RandomState 9188, 2755, 361, 1321, or 833

BatchSize 20

Gradient accumulation steps 2

Number of training epochs 80

Learning rate 0.001

Nb Number of encoder blocks 6

d Number of features 64

H Number of heads 8

Dropout probability 0.1

Hidden dimension in feed-forward networks inside

encoder block 128

Hidden dimension in the output feed-forward network 64

SIREN-based Positional Encoding

L Number of layers 3

ω0 10

ω0,initial 10

Differentiable Span

t Threshold 0.1

Initial σ 0.3

The differentiable span starts with an initial σ=0.3 for each positional di-
mension which gives an initial attention span that includes all tokens. Table 4
lists all the hyperparameters used for the final models.

In order to make our research reproducible, we open-sourced the code1 used to
run the experiments and get these results. The code includes the implementation
of all the modules introduced in this work in addition to a command-line interface
to assemble the whole architecture and run those experiments. Furthermore,
the configurations for all experiments are included in addition to the statistical
analysis carried out on the results.

5 Results

5.1 SIREN-based Positional Encoding vs Baseline

Table 5 shows the max, mean and standard deviation values for the validation ac-
curacy achieved for each treatment. Figure 5 shows the boxplots of the validation
accuracy for each treatment. It is clear that the SIREN-based positional encod-
ing can produce comparable results to the Baseline. However, the Baseline seems

1 https://github.com/MeenaAlfons/posattn

https://github.com/MeenaAlfons/posattn
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Table 5: Validation accuracy achieved by the model for SIREN-based positional
encoding vs Baseline.

Treatment Validation accuracy Effect p-value

max mean std

Baseline 0.7624 0.7493 0.01065

SIREN-based 0.7562 0.7269 0.02311 -0.0224 0.0995

0.7 0.72 0.74 0.76

SIREN-based

Baseline

validation accuracy

Fig. 5: Validation accuracy achieved by the model for SIREN-based positional
encoding vs Baseline.

more consistent in giving a higher validation accuracy than the SIREN-based
one. The results show that SIREN-based positional encoding has a lower valida-
tion accuracy of 2.2% than the Baseline on average. One reason for SIREN-based
to underperform is the choice of hyperparameters. SIREN networks are sensitive
to the ω0 and ω0,initial hyperparameters[21]. Further investigation is needed to
show why the specific choices we use for the SIREN network do not achieve
similar validation accuracy while SIREN networks can theoretically model the
Baseline.

5.2 Differentiable Span without threshold

Table 6 shows the max, mean and standard deviation of the validation accuracy
achieved by each treatment for the 1D and 2D settings. Figure 6a and 6b show the
boxplots for each treatment in the 1D and 2D settings, respectively. The results
show that modulating the attention scores with a relative Gaussian function in
the 1D setting decreases the validation accuracy. On the other hand, modulating
the attention scores with a relative Gaussian function in a 2D setting does not
significantly decrease the accuracy. In fact, the box plot for the 2D setting moves
closer to the higher end of validation accuracy. This difference in the effect of
applying the differentiable span between 1D and 2D settings makes sense because
the learned 1D span does not perfectly reflect the actual locality feature in the
data and tends to include many tokens outside the local neighbourhood. Figure 7
demonstrates this difference.
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Table 6: Validation accuracy achieved by the model for No differentiable span
vs Differentiable span without threshold.

Treatment Validation accuracy Effect p-value

max mean std

1D
No differentiable span 0.7562 0.7269 0.02311

Differentiable span
without threshold

0.7325 0.7094 0.02158 -0.01750 0.2511

2D
No differentiable span 0.8134 0.7991 0.008688

Differentiable span
without threshold

0.8130 0.8026 0.01579 0.00346 0.6823

Table 7: Validation accuracy achieved by the model for Differentiable span with-
out threshold vs Differentiable span with threshold.

Treatment Validation accuracy Effect p-value

max mean std

1D
Without threshold 0.7325 0.7094 0.02158

With threshold 0.7352 0.7168 0.01776 0.00742 0.5697

2D
Without threshold 0.8130 0.8026 0.01579

With threshold 0.8130 0.8095 0.003782 0.00694 0.3882

0.68 0.7 0.72 0.74 0.76

Differentiable span
with threshold

Differentiable span
without threshold

No differentiable
span

validation accuracy

(a) 1D

0.78 0.8

validation accuracy

(b) 2D

Fig. 6: Maximum validation accuracy achieved by differentiable span with and
without threshold for 1D and 2D settings.

5.3 Differentiable Span with threshold

Table 7 shows the max, mean and standard deviation of the validation accuracy
achieved by each treatment for the 1D and 2D settings. Figure 6a and 6b show the
boxplots for each treatment in the 1D and 2D settings, respectively. Discarding
the modulated attention scores outside the learned span seems to have a similar
or slightly better effect than including them. That means that including the
modulated scores outside the learned span has no positive effect on the validation
accuracy, and they are better discarded.
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Relevant keys

Query

Learned span
in 2D setting

Learned span
in 1D setting

Fig. 7: The learned span in 1D and 2D settings for an input with inherent 2D
structure.

6 Discussion

How does SIREN-based positional encoding compare with the Base-

line? SIREN-based positional encoding with the hyperparameters we used
achieves a lower validation accuracy than the Baseline (by 2.2% in our experi-
ments). However, this does not discredit the approach in general because it can
theoretically model the Baseline itself. Further work is needed to investigate the
modelling power of both approaches by comparing them in a reconstruction task
like the experiments done in [23] to compare SIRENs with other implicit neural
representations.

Hyperparameters sensitivity of SIREN-based positional encoding We
clearly see the huge effect of the hyperparameters ω0 and ω0,initial on the SIREN-
based approach. In a selective hyperparameter tuning, we noticed that using
ω0 = ω0,initial ∈ [0.1, 100] results in validation accuracy in the range [0.46, 0.74].
In another setting where a constant ω0 = 1 is used and ω0,initial ∈ [0.1, 100], the
validation accuracy spread in the range [0.57, 0.70].

How does SIREN-based positional encoding perform in multiple po-

sitional dimensions? SIREN-based positional encoding can easily make use
of multiple positional dimensions. When used with multiple positional dimen-
sions that match the positional dimensions of the input, SIREN-based positional
encoding indeed captures the relative hints in the multi-dimensional space and
boosts the validation accuracy reflecting the inherent structure in the data.

How does Differentiable Span affect the accuracy? Using a differentiable
span is about balancing two things. On one side, it tries to use the locality
feature in the data and focuses on modelling a limited neighbourhood. On the
other side, it needs to keep the receptive field of each layer wide enough so that
the effective receptive field of later layers covers the whole input and captures
the long-distance relations. The Differentiable Span allows the network to adapt
and find the sweet spot to balance between the relations captured in one layer
and the relations that will be discovered across multiple layers.

The results show that using a differentiable span with a number of posi-
tional dimensions that match the original positional dimensions in the input
reflects the actual locality feature in the data and does not reduce the validation
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accuracy. However, using a number of positional dimensions smaller than the
actual positional dimensions in the input decreases the validation accuracy (in
our experiments by 1.75%).

Can Differentiable Span reduce the computation costs of Self-

attention? Given that applying the differentiable span does not decrease the
validation accuracy (with the conditions mentioned above), this opens the door
for using the learned span to reduce the computation costs of self-attention.
We tried two different implementations to use the learned span, but both were
not computationally efficient. While we identified the bottlenecks for the spe-
cific implementations we present, we did not identify any intrinsic bottlenecks
that would prevent computation savings from applying the learned span. Further
work is needed to investigate and develop a way to efficiently make vectorised
operations on selective ranges of the tensors involved.

Statistical significance. Our power analysis shows that using nine samples for
each treatment would have had a power of 80.4% at a significance level of 0.05.
With such higher power, there is a higher probability of detecting a significant
effect when it exists. Therefore, using four more samples for each treatment
would have made the results more statistically significant.

7 Conclusion

We introduce SIREN-based positional encoding, a simple way to add multi-
dimensional positional encoding to attentive models. It is a parameter-based
alternative to positional encodings based on fixed sinusoidal features that can
easily extend to multiple positional dimensions. However, we have shown that
in the 1D setting, fixed sinusoidal features followed by a linear layer (the base-
line) consistently outperforms SIREN-based positional encoding. The scope of
this result is only limited to the hyperparameters we used for the SIREN-based
positional encoding.

We also introduce Differentiable Span, a way to limit the attention span accord-
ing to a locality feature inferred from the data. We have shown that it boosts
the model’s accuracy when the used positional dimensions match the input’s
inherent structure. However, we failed to develop an implementation to reduce
the computation costs of self-attention depending on the learned span.

8 Future Work

How to improve SIREN-based positional encoding? A comprehensive
comparison is needed to get deeper insights into what is holding SIREN-based
positional encoding from outperforming the baseline while the former has the
theoretical capacity of modelling the baseline. Moreover, the parameterisation
for the SIREN-based positional encoding is very sensitive to the values of the
hyperparameters. Therefore, a more stable parameterisation is needed to reduce
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the challenging effort of hyperparameter search. Another idea is to include these
hyperparameters (ω0, ω0,initial) as learnable parameters in the model.

How to improve Differential Span? Besides the possible improvement in
accuracy when using local self-attention, the main goal is to reduce the com-
putation costs of the attention operation. Further work is needed to develop
an efficient implementation that translates the (learned) reduced attention span
into reduced computation costs. Moreover, this work assumed a diagonal co-
variance matrix for the Gaussian function for simplicity. Supporting a general
covariance matrix allows the model to capture local areas of shapes that are not
parallel to the positional dimensions. However, the resulting attention span will
not be aligned with tensor dimensions which poses a challenge to implement it
efficiently.
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Appendix

A Implementation Details

StructureSize = 5
SpanSize = 3

E ∈ R
RelativeSize...×d

-4 -3 -2 -1 0 1 2 3 4

d

P ∈ R
N×N×d

-4 -3 -2 -1 0

-3 -2 -1 0 1

-2 -1 0 1 2

-1 0 1 2 3

0 1 2 3 4

SpanMask ∈ R
N×N

0 0 0 1 1

0 0 1 1 1

0 1 1 1 0

1 1 1 0 0

1 1 0 0 0

Fig. 8: Version 1 - Alignment. This is
a 1D example to show the alignment of
values in P and SpanMask in an N×N
structure. G∗ has the exact alignment as
P .

In this work, we present the possi-
bility and prove the effectiveness of
learning the attention span size from
the data during training. However,
the learned span must be used to limit
the operations involved to make any
gains in computation costs. The fol-
lowing sections focus on implement-
ing Self-Attention with Relative Po-
sitional Encoding and Differentiable
Span in vectorised form using ten-
sors. Version 1 takes a standard atten-
tion implementation and applies the
learned span as an additional step,
thus making no computation gains.
Versions 2 and 3 try to use the learned
span to limit the operations and re-
duce the computation costs. All three
versions have the same parameters,
produce the same outputs, and result
in the same gradients on the model
parameters.

A.1 Version 1

Many tensors are involved in the operations of self-attention with relative posi-
tional encoding and differentiable span. Therefore, the layouts of those tensors
need to be aligned to allow efficient and straightforward operations. For Version
1, the involved tensors have the following shapes:

• A ∈ R
N×N

• P ∈ R
N×N×d

• G∗ ∈ R
N×N

• SpanMask ∈ B
N×N

• N = prod(StructureSize)

Notice the similar structure N × N in all these tensors where the first di-
mension represents the queries and the second dimension represents the keys.
Therefore, the values of any of those quantities for keys relevant to a specific
query i are laid out in a row with the query index i. Figure 8 depicts an example
showing the aligned values. The example uses a 1-dimensional structure where
StructureSize=5 and SpanSize=3.
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While the input has a multi-dimensional structure whose size is represented
by StructureSize ∈ N

n, all the input tokens have unique IDs in the range
[0, N). These IDs are assigned according to the row-major convention. Therefore,
the queries or keys dimension with size N can be factorised and represented
with multiple dimensions StructureSize0 × ...× StructureSizen−1 as shown in
Formula 3. Going back and forth between the factorised and flattened dimensions
will prove helpful in efficiently generating those tensors and operating on them.
The same idea applies to RelativeSize, flattened into Nr=prod(RelativeSize).

A ∈ R
N×N

content-wise
≡ A ∈ R

StructureSize...×StructureSize... (3)

In Version 1, the positional encoding vectors are generated for all the
relative positions in a multi-dimensional grid of size RelativeSize producing
E ∈ R

RelativeSize...×d. The generated positional encoding in E is then used to
construct P by extracting the relative positional encoding for each key respec-
tive to each query and putting them in the adopted layout. The steps involved
in constructing P from E are shown in Algorithm 9.

Similarly, the values of the Gaussian function are generated for all the
relative positions in a multi-dimensional grid of size RelativeSize producing
G ∈ R

RelativeSize.... The generated positional encoding in G is then used to con-
struct G∗ by extracting the relative Gaussian values for each key respective to
each query and putting them in the adopted layout. G∗ construction from G
uses the same steps in Algorithm 9 by removing the feature dimension d.

Finally, a boolean mask SpanMask ∈ B
N×N is generated to indicate which

keys are inside the local neighbourhood of the respective query according to the
learned span of size SpanSize. The construction of SpanMask from SpanSize
is shown in Algorithm 10.

Algorithm 9: Version 1: Construct P from E

input : E ∈ R
RelativeSize...×d the positional encoding for all relative positions

in a multi-dimensional region of size RelativeSize.
output: P ∈ R

N×N×d the relative positional encoding for each key respective
to each query.

1. Unfold patches of size StructureSize from the full volume E of size
RelativeSize. The features d are extracted for each patch. This results in:
P ∈ R

StructureSize...×StructureSize...×d

2. Flip the positional dimensions for queries.
P [..., StructureSizei−j, ...] = P [..., j, ...] for j ∈ [0, StructureSizei) and
i ∈ [0, n)

3. Flatten each set of positional dimensions StructureSize into
N=prod(StructureSize) which results in:
P ∈ R

N×N×d
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Algorithm 10: Version 1: Construct SpanMask from SpanSize

input : SpanSize ∈ R
n The size of a relative multidimensional span centred

around a query.
output: SpanMask ∈ B

N×N a boolean mask marking the keys lying inside
the SpanSizerespective to each query.

Start with a tensor SpanMask ∈ B
StructureSize...×StructureSize... and fill it as

follows (upper triangle and lower triangle indices can be manipulated to
achieve this effect):

SpanMask[..., ij , ..., ij+n, ...] =











False if ij +
SpanSizej−1

2
< ij+n

False if ij − SpanSizej−1

2
> ij+n

True otherwise

where j ∈ [0, n)

Flatten each set of positional dimensions StructureSize into
N=prod(StructureSize) which results in:

SpanMask ∈ B
N×N

A.2 Version 2

Version 2 tries to use a tight layout for the values to reduce the memory used for
unneeded values outside the SpanSize and remove their computation costs. This
requires changing the form of attention scores A mainly to include the needed
attention scores. For Version 2, the involved tensors have the following shapes:

• A ∈ R
N×Np

• P ∈ R
N×Np×d

• G∗ ∈ R
N×Np

• SpanMask ∈ B
N×Np

• Np = prod(PatchSize)
• PatchSize = [pi|pi = min(SpanSizei, StructureSizei)∀i ∈ n]T

Notice that the keys dimension no longer holds all the N keys. Instead,
it holds the Np keys inside a patch of size PatchSize. This PatchSize will
equal the SpanSize if the learned span is smaller than the StructureSize, hence
including a smaller number of keys. However, if the SpanSize is larger than the
StructureSize, the PatchSize will equal the StructureSize, and all the keys
will be included. Notice that each dimension’s size in SpanSize is independently
compared with the corresponding dimension’s size in StructureSize, producing
the corresponding dimension’s size of the patch.

In order to carry out the operations in Version 2, an additional tensor K∗ ∈
R

N×Np×d needs to be constructed, holding the relevant keys for each query.
K∗ is then used with Q ∈ R

N×d and P ∈ R
N×Np×d to calculate the attention

scores A, as shown in Formula 4. The steps involved in constructing K∗ from
the keys tensor K ∈ R

N×d are shown in Algorithm 11. The implications of
generating this additional tensor on the total computational costs are discussed
in the comparison held in Appendix A.4.
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StructureSize = 5
SpanSize = 3

K ∈ R
N×d

1 2 3 4 5

d

K∗
∈ R

N×Np×d

c 4 5

3 4 5

2 3 4

1 2 3

1 2 c

E ∈ R
SpanSize...×d

-1 0 1

d

P ∈ R
N×Np×d

c -1 0

-1 0 1

-1 0 1

-1 0 1

0 1 c

SpanMask ∈ R
N×Np

0 1 1

1 1 1

1 1 1

1 1 1

1 1 0

Fig. 9: Version 2 - Alignment. This
is a 1D example to show the alignment
of values in K∗, P , and SpanMask in
an N × Np structure. G∗ has the ex-
act alignment as P . c is an arbitrary
constant to fill positions in the tensor
that will be discarded, eventually.

StructureSize = 5
SpanSize = 3

K ∈ R
N×d

1 2 3 4 5

d

K∗
∈ R

N×Np×d

4 5 c

3 4 5

2 3 4

1 2 3

c 1 2

E ∈ R
SpanSize...×d

Ê ∈ R
Np×d

-1 0 1

d

SpanMask ∈ R
N×Np

1 1 0

1 1 1

1 1 1

1 1 1

0 1 1

Fig. 10:Version 3 - Alignment. This
is a 1D example to show the alignment
of values in K∗, Ê and SpanMask in
an N ×Np structure. c is an arbitrary
constant to fill positions in the tensor
that will be discarded, eventually.

Figure 9 contains an example showing the aligned values. The example uses 1-
dimensional structure where StructureSize=5 and SpanSize=3. Algorithm 12
shows the construction of P from E, which also works for constructing G∗ from
G. Finally, Algorithm 13 shows the construction of SpanMask from PatchSize.

Aqk = (QqdK
∗

qkd)qk
︸ ︷︷ ︸

content attention

+ (QqdPqkd)qk
︸ ︷︷ ︸

positional attention

+(udKqkd)qk
︸ ︷︷ ︸

content bias

+ (vdPqkd)qk
︸ ︷︷ ︸

positional bias

∗

where q is the query dimension (= N)

k is the key dimension (= Np)

d is the feature dimension

ud, vd are learnable parameters

Pqkd is the relative positional encoding for all keys
respective to all queries

K∗

qkd is the relevant keys for each query
∗ Einstein notation

(4)
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Algorithm 11: Version 2: Construct K∗ from K

input : K ∈ R
N×d the keys. The PatchSize ∈ R

n where n is the number of
positional dimensions.

output: K∗ ∈ R
N×Np×d the relevant keys for each query lying inside the

relative region of PatchSize centred around the respective query
where Np is the total number of relative positions in the region of
size PatchSize.

1. Reshape K by decomposing the dimension N into its positional structure
with dimensions StructureSize. This results in:
K ∈ R

StructureSize...×d

2. Unfold patches of size PatchSize from the full volume K of size
StructureSize. The features d are extracted for each patch. This results in
patches for each position in a region of size
UnfoldedSize=StructureSize−PatchSize+1.
K∗ ∈ R

UnfoldedSize...×PatchSize...×d

4. Repeat the first and last patch in K∗ until the first set of positional
dimensions in K∗ become StructureSize. This results in:
K∗ ∈ R

StructureSize...×PatchSize...×d

5. Flatten the first set of positional dimensions StructureSize into
N=prod(StructureSize) and the second set of positional dimensions
PatchSize into Np=prod(PatchSize), which results in:
K∗ ∈ R

N×Np×d

A.3 Version 3

Version 3 uses a tight layout that is different from the one used in Version 2.
Version 3 uses a simpler approach that assumes that most of the time, the learned
SpanSize will be smaller than the StructureSize. In general, SpanSize could
grow up to RelativeSize=2StructureSize−1. With this assumption in mind,
the PatchSize is taken to always equal SpanSize, which is simpler than its
counterpart in Version 2. For Version 3, the involved tensors have the following
shapes:

• A ∈ R
N×Np

• G∗ ∈ R
N×Np

• SpanMask ∈ B
N×Np

• Np = prod(SpanSize)

The chosen layout in Version 3 removes the need for constructing P ∈
R

N×Np×d because all its rows will have the same content, a flattened version
of E ∈ R

SpanSize...×d, which we will call Ê ∈ R
Np×d. Ê will be used instead

of P in calculating attention scores A, as shown in Formula 5. For the same
reason, G∗ is no longer needed because all its rows will have the same content.
Instead, Ĝ ∈ R

Np , a flattened version of G ∈ R
SpanSize..., is used to modulate
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Algorithm 12: Version 2: Construct P from E

input : E ∈ R
PatchSize...×d the positional encoding for relative positions in a

multi-dimensional region of size PatchSize ∈ R
n where n is the

number of positional dimensions.
output: P ∈ R

N×Np×d the relative positional encoding for each key in Np

respective to each query where Np is the total number of relative
positions in region of size PatchSize.

1. Pad E with an arbitrary constant c in order to achieve the size
PaddedSize=2PatchSize−1. This results in:
Epadded ∈ R

PaddedSize...×d

2. Unfold patches of size PatchSize from the full volume E of size
PaddedSize. The features d are extracted for each patch. This results in:
P ∈ R

PatchSize...×PatchSize...×d

3. Flip the positional dimensions for queries.
P [..., StructureSizei−j, ...] = P [..., j, ...] for j ∈ [0, StructureSizei) and
i ∈ [0, n)

4. Repeat the middle patch in P number of times equal
StructureSize−PatchSize+1. This results in:
P ∈ R

StructureSize...×PatchSize...×d

5. Flatten the first set of positional dimensions StructureSize into
N=prod(StructureSize) and the second set of positional dimensions
PatchSize into Np=prod(PatchSize) which results in:
P ∈ R

N×Np×d

the attention scores A ◦ Ĝ by broadcasting the Hadamard product with Ĝ on all
the rows of A.

Similar to Version 2, K∗ ∈ R
N×Np×d needs to be constructed holding the

relevant keys for each query. Algorithm 14 shows the construction of K∗ from
K. Finally, Algorithm 15 shows the construction of SpanMask from PatchSize.
Figure 10 contains an example showing the aligned values. The example uses 1-
dimensional structure where StructureSize = 5 and SpanSize = 3. Notice that
Ê looks the same as E for this 1-dimensional example.

Aqk = (QqdK
∗

qkd)qk
︸ ︷︷ ︸

content attention

+ (QqdÊkd)qk
︸ ︷︷ ︸

positional attention

+(udKqkd)qk
︸ ︷︷ ︸

content bias

+ (vdÊkd)k
︸ ︷︷ ︸

positional bias

∗

where q is the query dimension (= N)

k is the key dimension (= Np)

d is the feature dimension

ud, vd are learnable parameters

Pqkd is the relative positional encoding for all keys
respective to all queries

K∗

qkd is the relevant keys for each query
∗ Einstein notation

(5)
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Algorithm 13: Version 2: Construct SpanMask from PatchSize

input : SpanSize ∈ R
n The size of a relative multidimensional span centred

around a query.
output: SpanMask ∈ B

N×N a boolean mask marking the keys lying inside
the SpanSizerespective to each query.

Start with a tensor SpanMask ∈ B
StructureSize...×PatchSize... and fill it as

follows (upper triangle and lower triangle indices can be manipulated to
achieve this effect):
SpanMask[..., ij , ..., ij+n, ...] =










False if ij +
SpanSizej−1

2
< ij+n

False if ij − SpanSizej−1

2
− StructureSizej + PatchSizej > ij+n

True otherwise

where j ∈ [0, n)

Flatten the first set of positional dimensions StructureSize into
N=prod(StructureSize) and the second set of positional dimensions
PatchSize into Np=prod(PatchSize), which results in:
SpanMask ∈ B

N×Np

A.4 Comparison V1 vs V2 vs V3

Versions 1, 2 and 3 are all similar in their effect. The differences are in the
data alignment and the respective operations working on that alignment to give
the same effect. Versions 2 and 3 were motivated by reducing the memory and
time needed for the involved operations. However, they turn out to be slower in
practice. The reason stems from an additional dimension that has been neglected
during the previous presentation of all three versions, which is the BatchSize.
Figure 11 shows the operations in all three versions with the involved tensors
sizes at each step, including the BatchSize.

A closer look at these operations while taking the BatchSize into account
shows that the generation of K∗ significantly affects the memory needed for the
algorithm. K∗ has an order of magnitude more memory than any other tensor in
these operations by the magnitude of BatchSize. While Versions 2 and 3 try to
save memory on the generation of positional encoding P and Differentiable Span
G∗ and save FLOPs by only computing the needed attention scores, they end up
using much more memory by unfolding K into K∗. On the other hand, Version
1 uses an alignment where all keys exist for each query, and adapts P and G∗

to that alignment. In doing so, Version 1 uses less memory by not carrying out
the massive operation of constructing K∗ while increasing the memory needed
for P and G∗ with a constant factor.
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Algorithm 14: Version 3: Construct K∗ from K

input : K ∈ R
N×d the keys. The SpanSize ∈ R

n where n is the number of
positional dimensions.

output: K∗ ∈ R
N×Np×d the relevant keys for each query lying inside the

relative region of SpanSize centred around the respective query
where Np is the total number of relative positions in region of size
SpanSize.

1. Reshape K by decomposing the dimension N into its positional structure
with dimensions StructureSize. This results in:
K ∈ R

StructureSize...×d

2. Pad K with an arbitrary constant c in order to achieve the size
PaddedSize=StructureSize+SpanSize−1. This results in:
Kpadded ∈ R

PaddedSize...×d

3. Unfold patches of size SpanSize from the full volume K of size
PaddedSize. The features d are extracted for each patch. This results in:
K∗ ∈ R

StructureSize...×SpanSize...×d

4. Flatten the first set of positional dimensions StructureSize into
N=prod(StructureSize) and the second set of positional dimensions
SpanSize into Np=prod(SpanSize) which results in:
K∗ ∈ R

N×Np×d

Algorithm 15: Version 3: Construct SpanMask from SpanSize

input : SpanSize ∈ R
n The size of a relative multidimensional span centred

around a query.
output: SpanMask ∈ B

N×N a boolean mask marking the keys lying inside
the SpanSizerespective to each query.

Start with a tensor SpanMask ∈ B
StructureSize...×SpanSize... and fill it as

follows (upper triangle and lower triangle indices can be manipulated to
achieve this effect):
SpanMask[..., ij , ..., ij+n, ...] =










False if ij + ij+n <
SpanSizej−1

2

False if ij + ij+n >
SpanSizej−1

2
+ StructureSizej − 1

True otherwise

where j ∈ [0, n)

Flatten the first set of positional dimensions StructureSize into
N=prod(StructureSize) and the second set of positional dimensions
SpanSize into Np=prod(SpanSize) which results in:
SpanMask ∈ B

N×Np
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fill
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fill
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Fig. 11: Comparison V1 vs V2 vs V3 This is the implementation of three
versions for self-attention with relative positional encoding and differentiable
span, including the sizes of the involved tensors.
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