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Abstract. Relational Graph Convolutional Network (R-GCN) training
on real-world graphs is challenging. Storing gradient information during
R-GCN training on real-world graphs, exceeds available memory on most
single devices. Recent work demonstrated to scale R-GCN training with
a summary graph. The appropriate graph summarization technique is of-
ten unknown and graph and task dependent. Overcoming this problem,
we propose R-GCN pre-training on multiple graph summaries, produced
with attribute and (k)-forward bisimulation summarization techniques.
With pre-training on graph summaries, multiple entity embeddings and
one set R-GCN weights can be obtained. We applied Summation, Multi-
Layer Perceptron and Multi-Head Attention models to transfer multi-
ple entity embeddings and R-GCN weights to a new R-GCN model.
With the new R-GCN model we conducted full-graph training for en-
tity type prediction. Our contribution to existing research is three-fold,
as this work demonstrated how: graph summaries reduce parameters for
R-GCN training, while maintaining or improving R-GCN performance;
the creation of graph summaries can be included in R-GCN training
to maintain or improve R-GCN performance, while reducing computa-
tional time; graph summaries in combination with Multi-Layer Percep-
tron and Multi-Head Attention can be applied to scale R-GCN training
and maintain or improve R-GCN performance, while freezing the gradi-
ents of the R-GCN weights after summary graph pre-training. The code
and datasets are available at GitHub.

Keywords: Knowledge Graph · Graph Summary · Scaling · Entity Em-
bedding · Embedding Model

https://github.com/tiddoloos/Scaling-RGCN-training
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1 Introduction

A (knowledge) graph is a relational data representation, expressing relations be-
tween entities. The Resource Description Framework (RDF) is a common frame-
work to store relational data, such as web data [25]. A subject (entity), predicate
(relation) and object (entity) are the building blocks of the RDF-triple [30]. A
graph can be considered a data collection of RDF-triples. The RDF structure
of the data enables a simple model of the relation between subject and object
and information deduction with logical inference due to the semantics [1]. An
entity/node1 in the graph can have an entity type denoted by an rdf:type2 rela-
tion. An example of a subject-predicate-object RDF-triple is: Tarantino directed
Kill Bill. Looking at the RDF-triple example, entity types can be assigned as:
Tarentino rdf:type director, Kill Bill rdf:type movie.

Building a knowledge graph, commonly, graph data is collected or added with
the use of manually, semi-automated and automated methods [9, 15]. DBPedia,
Wikidata and Yago are examples of constructed knowledge graphs and are im-
pressive considering their size and collection efforts. However, the problem of
incompleteness and missing data remains in these graphs. Missing data regard-
ing graphs, comprise missing edges in the graph [41]. Fundamentals of Statistical
Relational Learning, which is a specific field in graph learning, are link prediction
and entity type prediction. Link prediction in graph learning equals to append-
ing a subject-predicate-object RDF-triple. The aim of entity type prediction is to
complement an entity with an rdf:type label. Entity type prediction for graphs
nodes, is a transductive learning tasks, as the training and evaluation data both
are encountered by the model. Type labels are pruned, while the graph nodes,
for which the prediction is made, remain part of the training data [21].

Graphs, containing multiple entity and relation types, are called heteroge-
neous graphs. Significant research has been conducted on modeling heteroge-
neous graphs for relation type and entity type prediction. On these tasks, a
well-performing model is the Relational Graph Convolutional Network[31] (R-
GCN). The R-GCN model creates convolution kernels to learn relation-specific
weights. Entity vector representations, called entity (or node) embeddings, can
be constructed with R-GCN. R-GCN training on large graphs is computation-
ally costly in terms of computational resource, as for every relation there exists
a weight matrix. Another reason is that for every entity in the graph there ex-
ists an embedding. The entity embeddings are trainable parameters. Gradient
information of the R-GCN weights and the entity embeddings need to be stored
during training. Therefore, training the R-GCN model with real-world graphs,
exceeds the available memory on most single devices. Following from the fact
that R-GCN training on real-world graphs is computationally costly, R-GCN
training time can be extensive as well.

1 entity and node will be used interchangeably, as each entity in the RDF-triple is a
graph node

2 short for: http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
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Considering computational resources, such as memory and time, scaling R-GCN
training is a relevant challenge to facilitate R-GCN training with large graphs.
This research builds on the concept of scaling R-GCN training with graph sum-
maries, proposed in previous research[14]. Summary graphs are smaller graphs
that express the structural characteristics of the original graph (where the sum-
mary graph originates from). In this research we use the attribute and (k)-
forward bisimulation summarization techniques to create graph summaries. Pre-
vious research[14] on scaling R-GCN with graph summaries, fails to conclude
which graph summarization technique is considered appropriate for summariz-
ing heterogeneous graphs. As we do not know what graph summary is suitable
for scaling R-GCN training for each data graph, we investigate models which
exploit pre-training with multiple graph summaries.

From pre-training the R-GCN model with multiple summary graphs, we ob-
tain multiple entity embeddings and one set of pre-trained R-GCN weights. After
pre-training on summary graphs, the node embeddings and R-GCN weights are
transferred to a new R-GCN model to conduct full-batch training on the original
graph for the entity type prediction task. Multiple entity embeddings are trans-
ferred by combining these into one entity embedding fitting the original graph.
The idea is that, by combining the entity embeddings, we enable the R-GCN
model to exploit elements of different graph summaries. To transfer and com-
bine entity embeddings of different graph summaries we propose the following
strategies: Summation, Multi-Layer Perceptron and Multi-Head Attention. The
Summation model transfers multiple entity embeddings by summing the entity
embeddings, produced with summary graph pre-training, into one. The Multi-
Layer Perceptron model transforms multiple summary graph entity embeddings
with two matrix multiplications to produce one entity embedding. The Multi-
Head Attention runs the multiple summary graph entity embeddings through
multiple attention heads in parallel. The output of the attention heads are then
concatenated and linearly transformed into an attended entity embedding.

With graph summaries we expect the R-GCN to learn entity embeddings that
relate to the entity embeddings of the original graph nodes. By transferring
the entity embeddings created with summary graph training, parameters may
be reduced as the entity embedding for the original graph is constructed from
smaller summary node entity embeddings. Previous research[14] measures that
transferring R-GCN weights functions as jump start in the learning process.
Therefore, by transferring the entity embeddings and R-GCN weights, we may
scale R-GCN training, by reducing trainable parameters and training time.

Literature points out that the attribute summarization technique is in most
cases a viable option for summarizing heterogeneous graphs. In terms of com-
pressing heterogeneous graphs, the attribute summarization performs well [8].
Compression of the graph in graph summarization, is desired considering the size
of real-world graphs and the goal of scaling R-GCN training. R-GCN training
on a smaller (summary) graph becomes more manageable in terms of compu-
tational resources. However, heavily compressing a graph may result in a poor
representation of the original graph structure.
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1.1 Research Focus

The reported experiments in this work try to answer the research question: How
can multiple graph summaries scale R-GCN training for entity type prediction
in graphs? Furthermore, we try to answer the sub-questions:

– How does a single graph summary influence scaling of R-GCN training and
R-GCN performance on entity type prediction?

– How do pre-trained entity embeddings and R-GCN weights, obtained with
summary graph training, influence scaling of R-GCN training and R-GCN
performance on entity type prediction?

– How can R-GCN training be scaled and R-GCN performance, on entity type
prediction, be maintained or improved, while freezing the gradient of R-GCN
weights after pre-training on summary graphs?

1.2 Contribution

Our contribution to existing research is three-fold, as this work demonstrated
how: graph summaries reduce parameters for R-GCN training, while maintain-
ing or improving R-GCN performance; the creation of graph summaries can be
included in R-GCN training to maintain or improve R-GCN performance, while
reducing computational time; graph summaries in combination with Multi-Layer
Perceptron and Multi-Head Attention can be applied to scale R-GCN training
and maintain or improve R-GCN performance, while freezing the gradients of
the R-GCN weights after summary graph pre-training.
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2 Related Work: Scaling Graph Learning

Relevant research on scaling graph training has been reported [16, 20, 23, 32,
35]. Facilitating full-batch (whole-graph) training on multiple devices in par-
allel, the NeuGraph[23] and Roc[16] frameworks were proposed. NeuGraph[23]
and Roc[16] propose partitioning an input graph and apply full-batch training
on the graph partitions across multiple compute nodes on a single server. In
NeuGraph[23] and Roc[16], the graph model parameters are replicated on the
compute nodes. The device nodes share feature information to complete each
training iteration. Sharing feature information at each model layer is considered
a drawback. The feature communication can be complex, as the communication
depends on edge connections between nodes in different graph partitions [32].

Contrary to scaling graph training by applying full-batch training on graph
partitions in parallel, scaling graph training by conducting mini-batch training
on graph partitions in parallel has been researched [20, 35]. The goal of parallel
mini-batch training, is to enable compute nodes on a single server to complete a
mini-batch iteration without sharing features across compute nodes during the
training iteration. A proposed architecture[35], demonstrates parallel training
by creating a subset in the graph partition for each available compute node.
For each graph partition, accessible neighboring nodes over n-hops are included,
where n is set to be the number of layers in the graph model. Therefore, neighbor
information over n-hops for each node in the graph partition is available, with-
out having to share node information across devices. Through message passing,
gradients are computed and with AllRedcue gradients are shared. The model is
updated by averaging the gradients. The proposed method[35] speeds up train-
ing 16x on the link prediction task on the FB15k-237 and ogbl-citation2, while
achieving comparable performance to related work. Accomplishing a 16x speed
up, 8 computation nodes in parallel were used during training.

Another method for scaling graph learning, is PaGraph[20]. PaGraph reduces
data loading time regarding node feature movement from CPU to GPU, dur-
ing parallel mini-batch training. Through the use of a cache, PaGraph stores
frequent accessed node information on the GPU’s free space. Furthermore, the
paper[20] discusses a graph partition algorithm to divide workload evenly across
the devices. PaGraph achieves up to a 96.8% reduction of data loading time
during each training epoch, while the Graph Neural Network and the Graph
Convolution Network perform comparable to related work in terms of accuracy.
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3 Graph Summarization

In this chapter we explain graph summarization. First, we provide a background
on graph summarization techniques by discussing related work. Then, we de-
fine core concepts relevant to graph summarization techniques applied in this
research. Using the core concepts, we formally define a Summarization Function
with which graph summaries are created. After that, we explain the approximate
graph summarization and attribute summaries relevant to this work. At last, we
cover precise graph summarization and the (k)-forward bisimulation, a precise
graph summarization technique.

Remark 1. In related research a resulting graph of graph summarization is often
referred to as ’super graph’. This research exploits graph summarization tech-
niques that produce a ’super graph’. However, we use ’summary graph’ to refer
to the resulting product from graph summarization and ’original graph’ is used
to refer to the graph where the summary graph originates from. Evidently, we
use ’original nodes’ and ’summary nodes’ to refer to the set of nodes in the
’original graph’ and ’summary graph’ respectively.

3.1 Related Work: Graph Summarization Techniques

Graph summaries have benefits in various graph tasks like clustering [11], classi-
fication [17], and outlier detection [38]. Graph summarization could make tasks
more manageable, as graph summarization reduces the volume of the graph and
thus its memory footprint while preserving its structure. The graph summariza-
tion technique and its resulting summary graph vary in terms of compression and
complexity. Characteristics of a graph summary depend on the summarization
technique and on the original graph which can be either a weighted, directed,
undirected and heterogeneous graph [22]. Literature proposes summarization
methods that require different input. For example, some graph summarization
methods require static plain graphs (unlabeled nodes end edges) [18, 36], some re-
quire static labeled graphs [4, 8, 36, 37]. Others, less commonly, handle dynamic
graphs [33]. As the term dynamic implies, dynamic graphs change overtime. For
example, when a new user is added to a social network, a new node for that
person is added. When this person adds another person to its friends list a new
edge is created, ’connecting’ these two nodes.

As tasks differ, literature proposes different graph summarization techniques
that build on specific characteristics of a graph summary. Widely researched
graph summarization techniques are: Grouping (attribute based) [4, 8, 46], a
technique that divides nodes into subset of nodes based on the structural char-
acteristics or edge (attribute) types; Bit Compression based [33], where the goal
is to describe the data of the original graph in as few bits as possible. Desired is
that from the summary the original can be reconstructed lossless; Simplification
or sparsification based, this technique banks on pruning less important nodes, to
create a sparsified graph [18, 36]; and influence based, which tries to reveal the
flow-based influence of nodes in large graphs on the rest of the nodes. As the
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node influence is quantified, the summarization task becomes an optimization
problem. The resulting summarization depends on most influential nodes [37].

Despite that it can be argued that every task requires a specific graph sum-
mary (and technique), the FLUID framework[4] is proposed. FLUID is a frame-
work to create flexible graph summaries for data graphs. FLUID exploits com-
monalities in structural graph summaries and enables to quickly define, adapt
and compare graph summaries for different purposes. Graph summaries are cre-
ated with FLUID by exposing structural equivalent parts of a graph by applying
bisimulation. Summarization techniques that use bisimulation for partitioning
belong to the Precise Graph Summarization domain. The graph summary is
precise if every path in the resulting summary graph exists in the original graph
[8]. The FLUID framework offers a (k)-forward bisimulation summarization im-
plementation, which takes neighboring node characteristics into account over
k-hops (steps).

Yet another summarization technique is the Approximate Graph Summariza-
tion. A graph summary is approximate in the sense that nodes are portioned on
a specific characteristic while ignoring others, making the partition an approxi-
mation for the graph. Contrary to the (k)-forward bisimulation, the approximate
graph summaries only account for local (1-hop) node characteristics when cre-
ating the graph summary. Previous work[8] suggests that approximate graph
summaries are to most viable option for summarizing heterogeneous graphs in
most cases. Precise summary graphs depend on equivalent structures, while het-
erogeneous graphs express an inconsistent schema. Therefore, precise graph sum-
maries could result in a very low compression rates until the point that there is
no benefit of graph summarization.

3.2 Graph Summarization Concepts

In this research we focus on heterogeneous graphs where the graph contains
multiple entity and relation types. We define a (knowledge) graph in Definition
1, which involves heterogeneous RDF-triple based graphs.

Definition 1. Graph (adapted from [12])
We define a Graph as a tuple (V, E ,R, T ). V is a set of nodes representing
entities, and E a set of typed edges between the nodes. A function τ : V → 2T

assigns one or more types to every node, where T is a set of entity types. Each
edge in E corresponds to a relation between two nodes vi and vj ∈ V, denoted by
r (vi, vj), where r ∈ R is a relation type.

A core concept of graph summarization techniques that we exploit in this
research, is creating subsets of graph nodes based on a similarity [4, 8]. Creating
subsets from a larger set is referred to as creating a partition. A partition, in the
current research, concerns subsets of graph nodes. We formally define a partition
in Definition 2.
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Definition 2. Partition
Partition P of a set X is a division of elements of X into non-empty, disjoint
subsets covering set X . Therefore, P has the following properties:

– Subsets are non-empty, ∀xi ∈ P, xi ̸= ∅
– Subsets are disjoint, ∀xi, xj ∈ P, i ̸= j → xi ∧ xj = ∅
– Subsets exactly cover the original Uxi∈P xi = X

In order to create a partition, we formally define a subset mapping in Defini-
tion 3. With the subset mapping S, a mapping from graph nodes to a subset in Z
can be be specified. The subset mapping can account for requirements regarding
the mapping from the graph node to a subset.

Definition 3. Subset Mapping (adapted from [8])
Let Go = (Vo, Eo,R, T ) be a graph (Definition 1). Let Z be a set of empty subsets.
We define S to be a subset mapping that maps each node in Vo to a subset in Z
such that:

S ⊆ Vo ×Z

Graph Homomorphism Graph summarization techniques aim to abstract the
graph and mirror its structure. Complexity of summarizing a graph increases if
the graph has an irregular structure containing many relation and entity types.
To ensure that the graph summary captures the structure of the original graph,
the graph summary should act as a graph homomorphism [8]. A graph is homo-
morphic to another graph if there exists a mapping of nodes that matches edges
from the first to the second graph. Mathematically, graph homomorphism can
be considered a function that maps adjacent vertices of one graph to adjacent
vertices of a second graph. Therefore, a map between the two vertex sets of two
the graphs exists respecting each other’s structure. An example of homomorphic
graph summarization is given in Figure 1.

A B

n1

n3

n2

Figure 1. An original graph and its summary graph. The dotted lines indicate the
mapping from the original nodes (n1, n2, n3) to the summary nodes(A,B).



10 Loos, T.

The dotted lines in Figure 1 represent the mapping from original node to sum-
mary node. The nodes n1 and n2 are represented in the upper summary graph
by A and n3 by B. Also, the paths from n1 and n2 to n3 can be taken from A
to B. As is the principle of graph homomorphism, in Figure 1 a mapping exists
from summary nodes to original nodes that matches the edge structure of the
original graph.

Summarization Function Considering a graph (Definition 1), the concept
of graph homomorphism and the definition of a subset mapping (Definition 3),
we define the Summarization Function (Definition 4). We formally define the
Summarization Function, which takes any original graph Go and any subset
mapping S as input, to produce a tuple. The Summarization Function produces
a summary graph Gs and a mapping Ms. According to subset mapping S, the
Summarization Function creates a partition P (Definition 2) by allocating the
original nodes to its mapped subsets. We define the set of non-empty subsets
in Z, to be the partition P. For each subset in P a summary node is created,
resulting in summary node set Vs. Each original node is now represented by a
summary node, as each original node is in a subset and each subset is represented
by a summary node. The graph summary is constructed by substituting original
nodes with the representing summary nodes, respecting the edge connections of
the original graph. As a partition P is created according to subset mapping S,
we define Gs to be the summary graph of Go according to subset mapping S.

The current research applies subset mappings where each original graph node
in Vo is mapped to one subset in Z. Therefore, Ms is a many-to-one mapping
from graph nodes to a subset. However, if for S a mapping from a node to
multiple subsets is created, Ms becomes a many-to-many mapping.

Definition 4. Summarization Function

Let Go = (Vo, Eo,R, T ) be a graph (Definition 1). Let S ⊆ Vo × Z be a sub-
set mapping (Definition 3). Let P be a partition (Definition 2). We define the
Summarization Function F which takes a graph Go and a subset mapping S to
produce a tuple:

F (Go,S) = (Gs,Ms)

Gs = (Vs, Es,R, T ) is a summary graph according to the subset mapping S.
The Summarization Function F creates a partition P, according to the subset
mapping S by allocating each original node in Vo to its mapped subset in Z. We
define the set of non-empty subsets in Z to be the partition P. We define Vs to
be the summary node set of GS, where each node in Vs represents a subset in P.
Es is the set of typed edges between the summary nodes in Vs. Each edge in Es
corresponds to a relation between two summary nodes vsi and vsj ∈ Vs, denoted
by r (vsi, vsj), where r ∈ R is a relation type. We define Ms to be a mapping
from each node in Vo to a summary node in Vs.
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3.3 Approximate Graph Summarization

In heterogeneous graphs, approximate graph summarization techniques create
a partition (Definition 2) based on node characteristics like edge types or node
types [8]. Nodes in the same subset of a partition are similar in some character-
istic (but not all) making the subset of the partition an approximation for the
nodes. Nodes in heterogeneous graphs can have multiple in- and outgoing edges
with multiple edge types (r ∈ R, Definition 1). The attribute summarization
technique partitions on edge types, called attributes. The attribute summary
relies on the semantic structure of the graph as it exploits the attribute set of
each node to create a partition. The resulting attribute summaries differ in size
and structure as a consequence of the differences in the subset mappings and
the graph structure. In the remainder of this section we discuss three attribute
subset mappings, relevant to this research. We define three attribute sets which
encompass the scope of the subset mappings for the attribute summaries. We
support each attribute summary with an example.

Attribute Summary The Incoming (In) attribute summary, Outgoing (Out)
attribute summary and the Incoming/Outgoing (In/Out) attribute summary
respectively partition on the incoming, outgoing and incoming/outgoing at-
tributes. We formally define the incoming and outgoing attribute set with respect
to a single node in Definition 5.

Definition 5. Attribute sets: Incoming & outgoing (adapted from [4])
Let G = (V, E ,R, T ) be a graph (Definition 1).
We define Av in to be the incoming attribute set of a node v ∈ V as:

Av in = {r ∈ R | r(vp, v) where vp ∈ V and r ̸= rdf : type}

We define Av out to be the outgoing attribute set of a node v ∈ V as:

Av out = {r ∈ R | r(v, vo) where vo ∈ V and r ̸= rdf : type}

With attribute sets (Definition 5) we create subset mappings to be used in the
Summarization Function (Definition 4). We formally define the subset mappings
for the In attribute summary, Out attribute summary and the In/Out attribute
summary in Definition 6.
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Definition 6. Subset Mappings of Attribute Summaries (derived from
Definition 5 and [8])

Let there be a graph Go = (Vo, Eo,R, T ). Let F (Go,S) = (Gs,Ms) (Definition
4). Let Av out and Av in be the outgoing and incoming attribute set of a node
v ∈ Vo, respectively (Definition 5).

We call Gs the Out attribute summary graph of Go according to subset mapping
Sout if:

Sout = {u, x ∈ Vo ×Z | Au out = Ax out} and F (Go,Sout) = (Gs,Ms)

We call Gs the In attribute summary graph of Go according to subset mapping
Sin if:

Sin = {u, x ∈ Vo ×Z | Au in = Ax in} and F (Go,Sin) = (Gs,Ms)

We call Gs the In/Out attribute summary graph of Go according to subset map-
ping Sin/out if:

Sin/out = {u, x ∈ Vo ×Z | Au in = Ax in ∧ Au out = Ax out} and
F (Go,Sin/out) = (Gs,Ms)

Attribute Summaries Example We elaborate on the attribute summaries by dis-
cussing the example of the Original Graph in Figure 2. The original graph con-
sists of nodes n1 to n4 and the directed edge set R = {black, red} represented
as arrows. Below each graph of Figure 2, the attributes with its direction ( in,
out) for each node are indicated in a set. From the original graph we derive that

the nodes n1 and n2 of the original graph have exactly the same incoming and
outgoing attributes. However, nodes n3 and n4 have different attribute sets. The
In attribute summary only takes the incoming attributes into account and ne-
glects the outgoing edges, resulting in the attributes sets presented below the In
attribute summary. Logically, n1 and n2 retain the same attribute set {black in}
as both nodes in the original graph have one incoming black relation. Node n3
retains two incoming attributes: black in and red in. Node n4 has no incoming
attributes and retains an empty set. Considering the retained attribute sets, we
see that n1 and n2 have a coinciding attribute set and can be mapped to the
same summary node C. Node n3 is represented by summary node B and n4
by A. We construct the summary graph by substituting the original nodes with
the summary nodes, respecting the edge connections between original nodes.
For summary nodes that have an edge connected to a same summary node, we
display the edge connected to itself (self loop). This results in the In attribute
Summary, consisting of three nodes (Figure 2). The creation of the Out and the
In/Out summaries follows the same steps. In Figure 13 (Appendix A) we provide
an extended visualization of the creation of the In, Out and In/Out attribute
summaries.
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Original Graph Incoming Outgoing Incoming/Outgoing

n1 = {black_in, black_out}
n2 = {black_in, black_out}
n3 = {black_in, black_out, 

red_in}
n4 = {red_out}

n1 = {black_in} → C
n2 = {black_in} → C

n3 = {black_in, red_in} → B
n4 = {} → A

n1 = {black_out} → E
n2 = {black_out} → E
n3 = {black_out} → E
n4 = {red_out} → D

n1 = {black_in, black_out} → H
n2 = {black_in, black_out} → H

n3 = {black_in, black_out, 
red_in} → G

n4 = {red_out} → F

n1 n2

n3

n4

C

B

A

E

D

H

G

F

Figure 2. An example of an original graph and three resulting summary graphs created
with the In attribute summary, Out attribute summary and the In/Out attribute
summarizations. For each graph, the original nodes and their attribute set used for
partitioning is presented. If the attribute sets of nodes coincide, it follows that the
original nodes belong to the same subset of the partition. Nodes with an attribute
empty set belong tot the same subset of the partition (node A of the In attribute
Summary in this example).

3.4 Precise Graph Summarization

Approximate graph summarization partitions nodes on their local schema, while
precise graph summaries have the ability to create structural summaries ac-
counting for neighboring node characteristics over multiple hops [4, 10]. The
quality of the precise summary graph relies evidently on how well the summary
graph mirrors the original graph. Following the concept of homomorphism the
structure of the original graph is preserved in a precise graph summary [8]. A
graph summary is said to be precise if every path in the summary graph exists
in the original graph. The inverse however, may not hold true as every path in
the original graph does not necessarily have to exist in the summary graph. In
order to define a precise graph summarization, we formally define a path set of
existing (distinct) paths in the graph in Definition 7.

Definition 7. Path Set (adapted from [8])
Let G = (V, E ,R, T ) be a graph (Definition 1). Let p = (r(v1, v2)∧...∧r(vn−1, vn))
where v1, ..., vn ∈ V and r ∈ R, be an existing path in G. We define path set W
as the set of distinct paths p in G:

W = {(r(v1, v2) ∧ ... ∧ r(vn−1, vn)) | v1, ..., vn ∈ V , r ∈ R}

With the path sets of both the graph and the summary graph, one can
verify if a graph summary is precise by means of Definition 8. The precise graph
summary definition states that a graph summary is precise if all paths in the
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path set of the summary graph exist in the path set of the original graph after
substituting the original nodes with its representing summary node with subset
mapping S (Definition 4).

Definition 8. Precise Graph Summary (adapted from [8])
Let Go = (Vo, Eo,R, T ) be a graph (Definition 1). Let F (Go,S) = (Gs,Ms)
(Definition 4). Let Wo and Ws be the set of paths in Go and Gs, respectively.
Gs is a precise graph summary if:

∀r((v1, v2), ..., r(vn−1, vn)) ∈ Wo:
(r(Ms(v1),Ms(v2)), ..., r(Ms(vn−1),Ms(vn))) ∈ Ws.

With mapping Ms every node vox ∈ Wo is replaced with a summary node vsx ∈
Vs ∈ Gs. Gs is a precise graph summary of Go if all paths in Ws exist in Wo.

(k)-Forward Bisimulation The existence of a bisimulation, or equivalence re-
lation, between parts of a graph implies that the parts are structural equivalent.
Bisimulation is considered a binary relation and holds if two arbitrary nodes and
their inverse are simulations. Furthermore, bisimulation is considered stronger if
the nodes can be substituted by one another, making the bisimulation symmet-
ric [8]. (k)-forward bisimulation captures bisimulation over k-hops. As forward
implies, the forward, or outgoing, paths are considered. Over each hop, the for-
ward path set has to be equivalent for nodes to be in the same equivalence class
[4]. We formally define forward bisimulation in Definition 9.

Definition 9. Forward Bisimulation (adapted from [8])
Let G0 = (Vo, Eo,R, T ) be a graph (Definition 1). Let Wo be the path set of Go

(Definition 7). We define a forward bisimulation ≈fwBisim of two nodes in Vo

as:

∀r(x, x′) ∈ Wo ∃r(y, y′) ∈ Wo ∧ (x′, y′) ∈≈fwBisim

and inverse,

∀r(y, y′) ∈ Wo ∃r(x, x′) ∈ Wo ∧ (x′, y′) ∈≈fwBisim

With the forward bisimulation ∼fwBisim, we define the subset mapping of
(k)-forward bisimulation, ∼(k)−fwBisim, in Definition 10. The subset mappings
consider equivalence classes, resulting from (k)-forward bisimulation. We define
the (k)-forward bisimulation as the forward bisimulation over k-hops.
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Definition 10. Subset Mapping of (k)-Forward Bisimulation Summary
(adapted from [8])

Let Go be a graph (Definition 1) and Wo be the path set (Definition 7) in Go.
Let F (Go,S) = (Gs,Ms) (Definition 4). We define the (k)-forward bisimulation
∼(k)−fwBisim to be a forward bisimulation ∼fwBisim (Definition 9) over for k-
hops, such that:

(∀r(x, x′) ∈ Wo ∃r(y, y′) ∈ Wo ∧ (x′, y′), ...,
∀r(xk, x

′
k) ∈ Wo ∃r(yk, y

′
k) ∈ Wo ∧ (x′

k, y
′
k) ∈≈fwBisim) ∈≈(k)−fwBisim

and inverse,

((∀r(y, y′) ∈ Wo ∃r(x, x′) ∈ Wo ∧ (x′, y′), ...,
∀r(yk, y

′
k) ∈ Wo ∃r(xk, x

′
k) ∈ Wo ∧ (x′

k, y
′
k)) ∈≈fwBisim) ∈≈(k)−fwBisim

We call Gs the (k)-forward bisimulation summary according to the subset map-
ping S(k)−fwBisim if:

S(k)−fwBisim = {u, x ∈ Vo ×Z | u, x ∈≈(k)−fwBisim} and,
F (Go,S(k)−fwBisim) = (Gs,Ms)

Notably, increasing k in the (k)-forward bisimulation summarization gener-
ally results in more distinct equivalence classes in heterogeneous graphs. Less
nodes will be bisimilar, as over more hops forward bisimulation should hold for
nodes to be in the same equivalence class. It is likely that when k in (k)-forward
bisimulation is increased, the summary graph size increases. This may jeopardize
the initial purpose of the (k)-forward bisimulation summarization.

(k)-forward Bisimulation Example The (k)-forward bisimulation summarization
relies on iterative message passing. The messages contain forward path label
sets. Messages are passed in the inverse direction of the forward paths for k-
iterations. In Figure 3 an example of the (2)-forward bisimulation is displayed.
Two fragments, X and Y, of the same graph are visualized. In the first iteration
(k=1), the massage to be passed is the local forward path set of each node.
Nodes n4, n5, n98 and n99 do not posses a forward path. After the first message
passing, nodes n1 and n95 contain the path set {black out, red out}. Nodes n2
and n96 contain the path set {orange out}. Nodes n3 and n97 contain the path
set {blue out}. In the second iteration (k=2), message passing consists of passing
the collected path sets from the first iteration (k=1). Logically, nodes n4, n5,
n98 and n99 pas the empty set. Nodes n1 and n95 cannot pass the collected
paths, as the nodes are not connected in this example. n1 and n95 receive the
messages from n2, n3 and n96, n97, respectively. The resulting path set for n1
and n95 is now {{black out, {orange out}}, {red out, {blue out}}}. Note that,
the messages passed form n2 to n1 is join the path subset of black out. This
way, precise graph summarization is accomplished, as all paths of the summary
graph should exists in the original graph. after k-iterations of message passing,
each equivalence class is a subset in the partition. The (2)-forward bisimulation
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Graph Fragment X Graph Fragment Y (2)-forward bisimulation

n1 = {{black_out, {orange_out}}, 
{red_out, {blue_out}}}
n2 = {orange_out, {}} 
n3 = {{blue_out}, {}}

n4 = {{}}
n5 = {{}} 

n95 = {{black_out, {orange_out}}, 
{red_out, {blue_out}}} 
n96 = {orange_out, {}} 
n97 = {{blue_out}, {}}

n98 = {{}}
n99 = {{}}

{n1, n95} → A
{n2, n96} → B
{n3, n97} → C

{n4, n5, n98, n99} → D

n1

n5n4

B

D

A

n3n2

n95

n97n96

n99n98

C

Figure 3. (2)-forward bisimulation example. X and Y represent graph fragments. For
each node the forward path sets are collected over 2-hops. Below each graph fragment
the paths sets over 2-hops are presented. Partitioning is carried out considering equiv-
alence classes.

summary is created by respecting the equivalence between original graph nodes,
based on the collected forward paths over k-hops (Figure 3).

Remark 2. The (k)-forward bisimulation summarization with parameter k=1 is
the same as the Out attribute summarization. (1)-forward bisimulation parti-
tions on equivalence classes that are created with the forward paths over 1-hop.
This is the same as partitioning on the outgoing attribute.
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4 Relational Graph Convolutional Network

In this section the R-GCN model is discussed. First, we explain the message pass-
ing framework of the Graph Convolution Network (GCN). The R-GCN model’s
core operation is comparable to the message passing framework of the GCN
model.

The GCN model learns the vector representations of the entities in the graph.
The mechanism for GCN relies on the message passing framework. The mes-
sage passing framework can be explained as a matrix multiplication, where the
message passing for a single GCN layer in directed graphs is [40]:

H = σ(AXW ) (1)

Here X is the entity feature matrix. The Weights are denoted by W . σ is a
non-linearity and A is a normalized Laplacian adjacency matrix of the graph.
The feature matrix X indicates presence and absence of features. The operation
of equation 1 is called message passing as the information of neighboring entities
is passed to update every entity. Looking at a single node update with GCN, we
rewrite Equation 1 as [40]:

hi = σ

[

∑

x∈Ni

1

|Ni|
xT
i W

]

(2)

The output vector hi is the updated representation for node i. Ni are the repre-
sentations of incoming edge neighbors. Ni is used to calculate an average of the
sum of vector representations of the neighbors of i. The average is multiplied by
the current representation xi of the to-be-updated node i and a weight matrix
W . Then, a non-linearity σ is applied. Node hi updated is constructed from
neighboring vector embeddings and the previous node embedding of i.

The R-GCN model extends GCN to learn node representations on large
multi-relational graphs [31]. R-GCN accounts for different relations and the di-
rections of edges (incoming and outgoing) for node representation updates. The
message passing operation of a single R-GCN layer with multiple relations can
be derived from Equation 1 as [40]:

H = σ

(

R
∑

r=1

ArXWr

)

(3)

Here, the adjacency matrix Ar describes the edge connections between the nodes.
For each relation in the graph, r ∈ R, there exists a relation specific weight
matrix Wr. The message passing architecture enables training of the model with
back propagation. The update for a single entity vi is derived from the massage
passing framework of the R-GCN layer (Equation 3) as [31]:

h
(l+1)
i = σ





∑

r∈R

∑

j∈N r

i

1

ci,r
W (l)

r h
(l)
j + W

(l)
0 h

(l)
i



 (4)



18 Loos, T.

Ni is the set of neighboring nodes connected via incoming and outgoing edges.
Wr is the relation specific weight and hj is a neighboring node. The sum of the
node vector representations of each neighbor multiplied by the relation specific
weight of the connected edge is taken into account. Furthermore, W0 is a special
weight added to each node that functions as a self-loop. Node i is updated by
taking the neighboring node representations into account as well as the current
representation of i itself. Therefore, stacking two R-GCN layers, the node rep-
resentation at layer l is taken into account for updating the same node at layer
l+1. ci,r is a regularization term which can be modified according to the desired
implementation [31].

5 Methodology

In the following section we elaborate on the methods for scaling R-GCN training
with graph summaries and entity embedding transfer. First, we discuss graph
data is processing. Then, we elaborate on how the entity embedding for the
original graph is created and transferred. We conclude the chapter by providing
an overview of the pipelines of the embedding transfer models and the baseline
model.

5.1 Graph Processing

In order to execute summary graph training, graph summaries are created with
the attribute summarization and with the (k)-forward bisimulation for each
graph. The attribute summaries are constructed with the In, Out and In/Out
attribute summarization technique. The attribute summarizations performed in
this research are inspired by related work[8]. (k)-forward bisimulation summa-
rization is performed using the FLUID framework from [4]. By increasing the
parameter k=1 to k=3 in (k)-forward bisimulation, three summary graphs are
obtained for each graph dataset. For the AM dataset we did not create an (3)-
forward bisimulation due to computational limits. In Appendix B details of the
graph datasets and the graph summaries are presented.

Applying the attribute and the (k)-forward bisimulation summarizations,
the rdf:type relation is excluded from the attribute set and are not accounted
for when creating the graph summaries. A special type of node is the literal
node. Literal nodes contain unstructured data like text, numerical values and
images. Literal nodes have one incoming edge and no outgoing edge and contain
information about the incoming edge node. Each literal node is substituted with
the same literal URI and are taken into account accordingly when summarizing.
Another distinct node is the blank node. A blank node, is a node with an anony-
mous resource. It therefore has no Uniform Resource Identifier (URI)3. Blank
nodes do have a structural function in graph as at connects with other nodes

3 The URI is a sequence of characters that represents a logical or physical source of
the node or relation in the graph.
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just as any node with a URI. From data exploration it was concluded that blank
nodes also occur having an rdf:type relation. blank nodes are summarized and
processed like any other regular node. Triples that contain the Web Ontology
Language predicated are removed as suggested in related work [8].

Graph Labels The entity type prediction task in this research relies on the
rdf:type relation of the entities in the graph. It should be noted that this is a
different task than presented in related literature performs [31, 40]. The labeled
nodes in the train and test data in these latter papers rely on class relations
specific to the graph datasets. literature [3] points out that the resulting training
and test split consist of few instances. The authors of the paper state that small
test and training dataset could ambiguously reflect the performance of the model.
For the experiments in the current research the rdf:type relations are pruned from
the graph and from the relation set R (Definition 1). This prevents that the type
labels and the rdf:type relation are trained. The rdf:type relation is used to create
class labels for each node in the graph and summary graphs. For the original
graph, class labels are created by extracting the rdf:type relation. An example is
provided in Table 1. Four graphs nodes an their rdf:type labels are indicated by
’1’. As Table 1 shows, ’node3’ has two type labels. These labels are vectorized
for training on the original graph.

Labels

Node Relation Male Female Child

node1 rdf:type [ 1, 0, 0 ]
node2 rdf:type [ 1, 0, 0 ]
node3 rdf:type [ 0, 1, 1 ]
node4 rdf:type [ 1, 0, 1 ]

Table 1. Example of graph nodes with type labels denoted by ’1’ for being of that
type and ’0’ for not being of that type. In this example a node can have multiple type
labels indicating a multi-label classification problem.

Similar node labels are created for the summary graph nodes. Mapping Ms

(Definition 4) is used to produce weighted labels for the summary graph nodes.
The label of a summary node is calculated by counting the occurrence of each
type label of the original nodes that are mapped to the summary node. the
count for each label is divided by the number of nodes mapped to the particular
subset, creating the weighted label. We provide an example in Table 2, where
summary graph nodes and original graph nodes are presented. s nodeA is the
summary node of node1 and node2. s nodeB is the summary node of node3 and
node4. The summary labels are a weighted representation of the original binary
labels of the original node labels. In Table 2 the weighted labels are displayed in
vectorized form for s nodeA and s nodeB.
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Summary Labels

Summary Node Relation Node Male Female Child

s nodeA summaryOf node1, node2 [ 1, 0, 0 ]
s nodeB summaryOf node3, node4 [ 1/2, 1/2, 1 ]

Table 2. Weighted type labels for summary nodes A and B (s nodeA, s nodeB)
created by count each type label of the original nodes in the partition and dividing
each label that has a count higher than 0 by the number of nodes that are mapped to
the summary node.

5.2 Entity Embedding Transfer

The contribution of this research lies in the entity embedding transfer of the
learned embeddings with summary graph training. The entity embedding for
each summary graph has the shape (s, d), where s is the number of summary
graph entities and d is the embedding dimension. During training on the sum-
mary graph the embeddings will be updated through backpropagation. After
training on the summary graph there is one embedding for each summary graph.
each original node is represented by an summary node, which can be retrieved
by using mapping Ms (Definition 4). With one of the below described methods
the embedding for the original graph is constructed and transferred.

Summation For the embedding transfer with the summation model first a list
of tensors is created. The list of tensors consist of tensors of the shape (n, d),
where n is the number of original graph nodes. The number of tensors in the list
is equivalent to the number of summary graphs which are used for pre-training.
Each tensor in the list presents one summary graph. For each node in the original
graph, the representing summary node is located with mapping Ms. Then, the
embedding of the summary node is copied to the index of the original node
in the particular embedding tensor the list. We carry out this process for each
original graph node and each summary graph embedding. Now, we have a list of
embedding tensors. The tensor list is summed in to one tensor by summing the
embeddings for each index in across the tensors in the. The result is one entity
embedding for the original graph of shape (n, d).

Multi-Layer Perceptron For the embedding transfer with the multi-layer
perceptron (mlp), a concatenated embedding tensor is constructed. The first step
is the same is in the summation model. After creating the tensor list with copied
summary node embeddings, the tensor list is concatenated into one tensor. The
result is a tensor of shape (n, x×d), where x is the number of graph summaries.
The concatenated tensor is fed to the mlp model consisting of two linear layers.
The second layer of the mlp outputs an original graph embedding of shape (n, d).
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Multi-Head Attention The multi-head attention implemented in this research
is proposed in [42]. Multiple attention heads enable for diverse attention to be
paid to different elements. Each head represents a separate attention mecha-
nism. The multi-head attention module cycles simultaneously through multiple
attention mechanism. The predicted output is created by linearly combining the
separate attention outputs. Multi-head attention is able to receive input of mul-
tiple features of the same object. In this case, the multi-head attention layer
receives multiple summary node embeddings that can be considered as features
for the original node embedding.

For transferring the summary graph embeddings with multi-head attention,
like in the summation method a tensor list is created. The tensors in the tensor
list are then stacked, yielding a 3-dimensional tensor of shape (x, n, d). The
multi-head attention processes a Query (Q), Key (K) and Value (V) of the same
shape. The stacked tensor is provided as Q, K and V to the multi-head attention.
The output is an attended tensor of the same shape (x, n, d). We use the tensor
at index 0 as input for the R-GCN layers.

5.3 Model Pipelines

The entity and R-GCN weight transfer models have similar pipelines. The models
differ in the embedding transfer method. The steps in the pipeline for each
transfer model are:

1. Graph processing: graph processing involves creating the graph summaries
and creating node labels to perform the entity type prediction task for sum-
mary graph and original graph training.

2. Summary graph training: summary node embeddings and R-GCN weights
are trained. During summary graph training the relation specific weights
of the R-GCN model are shared. Summary graph training yields as many
embeddings as there are summary graphs.

3. Embedding and R-GCN weights transfer: the pre-trained embeddings are
processed into a new embedding that fits the original graph. With summa-
tion, a multi-layer perceptron or a multi-Head attention layer, a new node
embedding is constructed and transferred together with pre-trained R-GCN
weights.

4. Original graph training: the original graph and the constructed entity em-
bedding are input for a new R-GCN model. The new R-GCN model, consists
of two R-GCN layers. The two R-GCN layers are initialized with the pre-
trained R-GCN weights.

A schematic overview of the pipelines for each model, after the graph pro-
cessing step, is displayed in Figure 4. Most left in Figure 4, summary graph
training is displayed. The summary graph training with three summary graphs
produces three entity embeddings. The entity embeddings are transferred to the
summation, mlp or attention model. The embeddings are processed according
to the model specific method. In original graph training (right in Figure 4) the
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constructed entity embedding and the original graph are input for the R-GCN
layers. These R-GCN layers are initialized with R-GCN weights, obtained with
summary graph training.
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Figure 4. The figure presents pipelines for the different models. In this particular
case, three summary graphs are fed to the R-GCN model, resulting in three node
embedding tensors and pre-trained R-GCN weights. In the transfer model pipelines the
embedding tensors are used to create a new node embedding. The new embedding and
the original graph are input for original graph training. The R-GCN layers for original
graph training are initialized with pre-trained R-GCN weights, obtained with summary
graph training. The model names correspond to the embedding transfer method.
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6 Experimental Setup

This chapter presents the experimental setup for evaluating the transfer mod-
els on scaling of R-GCN training. All experiments are carried out on CPU4.
The transfer models proposed in this research are evaluated on the widely
used graph datasets AIFB[2], MUTAG[13] and AM[5]. Full batch (whole graph)
training is conducted for summary graph and original graph training as pro-
posed previously[31, 40]. For each graph dataset a 60%/20%/20% split for train-
ing/validation/testing, respectively, is created.

In the remainder of this section we discuss the activation and loss functions
we use for the transfer models. Then, we discuss metrics to evaluate our models
during run time and on the test sets. After that, hyper-parameters for the trans-
fer models and baseline model are discussed. At last, we present a table with
elements of the transfer models and the baseline models.

6.1 Activation & Loss

For the R-GCN layers in the transfer and baseline models, a nearly same setup
is used for summary graph and original graph training. The R-GCN setups differ
in activation function over the R-GCN output layer and loss computation. The
models consist of a 2-layer R-GCN with a ReLU activation on the output of
the first layer. On the output of the second R-GCN layer a Sigmoid or Softmax
activation is applied. In original graph training, the models apply the Sigmoid
and the Softmax activation over the R-GCN output layer when multi-label and
multi-class classification task, respectively, are performed.

The graphs used for the experiments contain nodes that could have multiple
labels, making it a multi-label classification problem. If a node only contains
one label of the multiple classes, we call it a multi-class classification problem.
In Table 9 in Appendix B, we provide details about the graph datasets that we
use for evaluation. The AIFB dataset contains over 50% multi-labeled nodes.
MUTAG contains no multi-labeled nodes and the AM dataset contains three
multi-labeled nodes. Three multi-labeled nodes is negligible small compared to
the single labeled nodes in the AM dataset (Table 9 in Appendix B). For the three
labeled nodes, we randomly assign only one of the labels. The AIFB dataset and
summary graph training is considered to be a multi-label classification problem,
as nodes could have multiple type labels.

In the case that multiple labels can be predicted, the Sigmoid activation is
desired as we want to make a prediction for each label independently. We do not
only predict the most likely label, as with the Softmax activation. Binary Cross
Entropy Loss (BCELoss) is a suitable loss calculation for multi-label classifica-
tion combined with a Sigmoid activation on the output layer. The BCELoss is
applied as it calculates the loss over each prediction and label value separately,
treating each output independent. BCELoss sets up a classification problem for
each class. For multi-class classification (MUTAG and AM dataset) our setup

4 96 GB Intel Xeon Silver 4110 2.10 GHz processor



24 Loos, T.

is in line with related work [40]. Only one label for each entity is predicted in
multi-class classification. Therefore, a Softmax activation over the R-GCN out-
put is applied. We compute the loss with the Categorical Cross-Entropy Loss
function when we apply the Softmax activation in the multi-class classification.

For the multi-layer perceptron in the mlp model we use a TanH activation on
the first layer. Generally, the TanH activation accounts for larger gradients and
thus larger updates in the weights and entity embeddings. Also, using TanH can
contribute to a faster convergence. Both characteristics of the TanH activation of
interest when scaling R-GCN training. On the second linear layer of the multi-
layer perceptron we do not apply an activation, as this output is the newly
constructed entity embedding.

6.2 Metrics

Data analysis on the graph datasets showed class imbalance in typed entities.
In the MUTAG dataset for example, some entity types only occur two or three
times. We decided to include the less occurring entity types from prediction as
we think this a homogeneity characteristic and could also occur in larger graphs
or unstructured web data. To account for the imbalanced data we evaluate model
performance not only on accuracy, but also on F1 weighted and on F1 macro.
The accuracy is calculated as in related work[40]. As the entity type prediction
task concerns multiple classes, the accuracy is computed for every subset of
predicted labels. The predicted set of labels for a sample must exactly match
the corresponding set of true labels the achieve 100% accuracy. Predicting that
an entity is not of a certain type is accounted for in the accuracy calculation.
The F1 weighted and F1 macro scores rely on the F1 computation, presented in
Equation 5.

F1 = 2 ×
Precision×Recall

Precision + Recall
(5)

The F1 weighted score is calculated by taking the mean of all F1 scores per class
type while considering the support of each class. The F1 weighted score treats
classes unequally according to their support. The F1 macro score is computed
using the unweighted mean. The mean of the summed F1 scores per class is
calculated without accounting for the class support. The F1 macro score treats
all classes equally regardless of their support values.

6.3 Hyper-Parameters

In Table 3 we provide hyper-parameters for the experiments and our models. For
each experiment holds that we iterate the experiment 5 times. For each summary
graph we train for 51 epochs. Then, we train on the original graph for 51 epochs.
In each epoch during original graph training, we first evaluate the model on the
validation set. After 51 training epochs on the original graph, the models are
evaluated on the test set. During, validation runs we found that an embedding
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tensor with dimension d = 63 performed better than the proposed d = 500
in related work [40]. Aside from the embedding dimension, we do not perform
any parameter tuning and implement R-GCN settings found in related work
[31, 40]. In summary graph training and original graph training we use a hidden
layer of 16 units between the two R-GCN layers. l2 regularization of 5 × 10−4

is applied on the two R-GCN layers. For the mlp model we adjust the output
of the first layer according the size of the embedding dimension. Remember,
we create a concatenated tensor as input for the mlp. The hidden units, in the
hidden layer in the mlp, are calculated by 2xd

3 + c, where x is the number of
graph summaries, d the embedding dimension and c the number of prediction
classes. For the multi-head attention layer we set the number of attention heads
to be equal to the amount of graph summaries (x) that we train use in summary
graph training. Dropout in the multi-head attention layer is set to 2× 10−1. We
use Kaiming He initialization for all weights except for the entity embedding
which is initialized with the standard normal distribution N (0, 1). The Adam
optimizer with a learning rate of 10−2 is used for summary graph and original
graph training in each model.

Parameter Value

Epochs 51
Iterations 5
Learning Rate 10−2

Weight Decay 5× 10−4

Embedding Dimension 63
R-GCN Hidden Units 16
mlp Hidden Units 2xd

3
+ c

attention Heads x

attention Dropout 2× 10−1

Table 3. Hyper-parameters of the models during experimentation. x is the number of
graph summaries and d is the embedding dimension.

6.4 Models Overview

An overview of the transfer models is displayed in Table 4. The specific module
layers for each model in summary graph training and original graph training
are indicated. Summary graph training is conducted with the same setup in
each model (Table 4). The RGCNConv[31], Embedding, Linear and Multi-Head
Attention[42] modules are provided by PyTorch. Note that, the baseline model
does not contain a summary graph training module and only conducts original
graph training. Table 4 presents the discussed activation functions (section 6.1)
for each layer. For the mlp and the attention models the multi-layer perceptron
and multi-head attention layer, respectively, are displayed in the original graph
layers column. The column Parameters (AIFB) denotes the trainable parameters

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.RGCNConv
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html
https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html
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for each model including the parameters of the Summary Graph Layers. The
model parameters were calculated based on training with the AIFB graph and
three attribute summaries (In, Out and In/Out), where the embeddings are
frozen (no gradients) after transfer. By default the embedding tensors are frozen
after the embedding transfer. Freezing the transferred node embedding reduces
the amount trainable parameters: the original graph embedding is not trained,
but constructed from summary graph embeddings, which are smaller than the
original graph node embedding. In the model parameter calculation, the R-GCN
weights of the original graph layers contain gradients.

Model Name Summary Graph Layers Embedding Trick Original Graph Layers Parameters (AIFB)

summation
Embedding
RGCNConv (ReLU)
RGCNConv (Sigmoid)

Summation
Embedding
RGCNConv (ReLU)
RGCNConv (Sigmoid/Softmax)

116566

mlp
Embedding
RGCNConv (ReLU)
RGCNConv (Sigmoid)

Concatenation

Linear (TanH)
Linear (None)
RGCNConv (ReLU)
RGCNConv (Sigmoid/Softmax)

195059

attention
Embedding
RGCNConv (ReLU)
RGCNConv (Sigmoid)

Stacking
MultiHeadAttention
RGCNConv (ReLU)
RGCNConv (Sigmoid/Softmax)

132694

baseline None None
RGCNConv (ReLU)
RGCNConv (Sigmoid/Softmax)

584152

Table 4. Overview of the models with different embedding transfers. For each model
the layer modules and activation functions are indicated. The summary graph training
always has the same set up in each model. The model parameters are calculated on the
AIFB dataset with three attribute summaries. The last column of table displays that
the transfer models contain less trainable parameters than the baseline.
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7 Experiments & Results

In this section we present experiments to answer our research questions. We ana-
lyze the results of each experiment after describing the experiment. Our findings
are supported with tables and figures. Note that we iterate every experiment 5
times (Table 3). In the figures we always present metric curves that represent the
average value of the sample. The standard deviation of the sample is displayed
by a same colored area around the mean.

7.1 Multiple Summary Graphs Experiments

How can multiple graph summaries scale R-GCN training for entity type predic-
tion in graphs?

With this experiment, we aim investigate how multiple graph summaries can
scale R-GCN training. Summary graph training is conducted with the In, Out
and In/Out attribute summaries. For (k)-forward bisimulation the k=1, k=2
and k=3 summary graphs are used for summary graph training. After sum-
mary graph training the R-GCN weights and node embeddings are transferred
by the transfer models. We track run time during training of the summation
and baseline model on the AIFB dataset where we include the creation of the
attribute summaries and summary graph training in the run time for the sum-
mation model. We do not carry out the run time experiment with (k)-forward
bisimulation because the creation of these summaries is computationally inten-
sive and is relatively time consuming. After the embedding trick (Table 4) we
freeze the node embeddings. We feed the constructed embedding to the model
and is not updated by backprogation during original graph training. Note that,
the R-GCN weights and the weights of the mlp and attention model do have
gradients. We evaluate the models on validation accuracy and loss during orig-
inal graph training. On the test sets, we report the accuracy, F1 weighted and
F1 macro scores.

Multiple Summary Graphs Experiments: Results In Figures 5 and 6 we
display the average AIFB validation accuracy during training epochs, of the sum-
mation and attention models, respectively. The summation and attention model
are initialized with embedding and R-GCN weight transfer. The pre-trained
embedding and R-GCN weights resulted from summary graph training on the
attribute summary set. What notice that the summation model predicts with
an higher accuracy on the validation set than the attention and baseline model
in epoch 0. The attention model intersects the y-axis at 0.01 (1.24%) and the
baseline model at 0.00 (0.0%). The curve of the summation model intersects the
y-axis at 0.39 (39.11%). This is an expected result since the summation model
does not contain any trainable parameters, besides the R-GCN weights. The
attention weights of the attention model explain the lower y-axis intersection
as the attention weights are not trained yet. The prediction at epoch 0 of the
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attention model is comparable to the baseline model. Both curves of the sum-
mation model (Figure 5) and attention model (Figure 6) show a steep increase
in the validation accuracy in earlier training epochs compared to the baseline,
indicating scaling of R-GCN training.

For the summation and baseline model, run time was measured on the AIFB
dataset (Figure 5). The run time was measured, including attribute summary
graph creation, summary graph training and original graph training. We found
that the baseline model predicts on average with a highest accuracy of 74.00%
after epoch 40 on the AIFB validation set. The run time at this point for the
baseline model is 15 seconds. After 15 seconds of run time, including the creation
of the attribute summaries, the summation model predicts with a validation
accuracy of 88.89% on the AIFB dataset in epoch 15.

We analyzed the AIFB validation accuracy curve during training epochs of
the summation, mlp and attention models that conduct summary graph training
on the (k)-forward bisimulation set. We observe similar accuracy curves as for the
summation and attention model that trained on the attribute summary graph
set (Figures 5, 6). The mlp model was the best performing model with the (k)-
forward bisimulation summary graph training. The validation accuracy curve
of the mlp model with the (k)-forward bisimulation summary graph training is
displayed in Figure 14 (Appendix C).

Figure 5. summation and baseline model
mean accuracy on the AIFB validation set.
The summation model predicts with an ac-
curacy of 39.11% in epoch 0. The summa-
tion model has a steeper learning curve in
early epochs and predicts with a significant
higher accuracy after 51 training epochs
than the baseline model.

Figure 6. Attention and baseline model
accuracy on the AIFB validation set. The
attention model predicts with a 1.24% in
epoch 0 on the validation set. The atten-
tion model has a steeper learning curve in
early epochs and predicts with a significant
higher accuracy after 51 training epochs
than the baseline model.

Figure 7 and Figure 8 display the accuracy and the loss, respectively, on the
MUTAG validation set for the attention and the baseline models. The attention
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model conducted summary graph training on the attribute summary set. In Fig-
ure 7 we observe a steeper accuracy curve in early epochs for the attention model
compared to the baseline, indicating scaling of R-GCN training. We do notice a
accuracy drop with higher standard deviation around epoch 4. From epoch 5 and
further it seems that the attention model converges. The baseline model seems
to converge in epoch 28. The cross entropy loss curve (Figure 8) of the attention
model suggest that the attention model has converged. In the loss curve of the
attention model we measure a steep decline in early epochs, corresponding to
the steep increase in validation accuracy in early epochs. Furthermore, A lower
intersection with the y-axis for the attention loss curve compared to the baseline
loss curve is measured. The baseline loss curve seems to indicate that the model
has not converged after 51 training epochs (Figure 8). The accuracy result on
the validation set during training epochs suggests that the attention model with
the embedding transfer scales training for the MUTAG dataset as it displays as
steeper curve in early epochs.

Figure 7. attention and baseline model
accuracy on the MUTAG validation set.
The attention model predicts with an ac-
curacy of 0.33% in epoch 0. The attention
model has a steeper learning curve in early
epochs. The attention model predicts with
a comparable accuracy on the validation
set in epoch 51.

Figure 8. attention and baseline model
loss on the MUTAG validation set. A steep
decline in loss can be reviewed for the at-
tention model in early epochs. The loss
curve of the attention model seems to in-
dicate that the model has converged. The
baseline model loss curve seems not to be
converged after epoch 51.

Validation accuracy curves of the summation, mlp and attention model on
the AM dataset show similar results compared to the AIFB dataset curves. The
Figures 9 and 10 display the average accuracy curves of the mlp and baseline
models on the AM validation set during training epochs. The accuracy curves of
the mlp model, trained on the attribute summaries (Figure 9) and (k)-forward
bisimulation summaries (Figure 10), show scaling of R-GCN training. The ac-
curacy curves of the mlp model trained on the attribute summaries shows to
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have a higher standard deviation between epoch 3 and 5, compared to the mlp
model trained on (k)-forward bisimulation summaries. Figure 11 displays the
average attention and baseline accuracy curves on the AM validation set. We
measured a higher standard deviation of the mean validation accuracy of the
attention model between epoch 2 and 6. For the summation model we observe
R-GCN scaling on the AM validation with both the attribute and (k)-forward
bisimulation summaries (Figures 16, 17, Appendix C). The summation, mlp and
attention models predict with a significant higher accuracy on the AM validation
set after 51 training epochs compared to the baseline (Figures 9, 10, 11, 16, 17).

Figure 9. mlp and baseline model accu-
racy on the AM validation set. The mlp
model conducted summary graph training
with attribute summaries. A steeper in-
crease of the prediction accuracy of the
mlp model in early epochs is observed com-
pared to the baseline. The mlp model pre-
dicts with a higher accuracy on the vali-
dation set at epoch 51 than the baseline
model.

Figure 10. mlp and baseline model accu-
racy on the AM validation set. The mlp
model conducted summary graph training
with (k)-forward bisimulation summaries.
A steeper increase of the prediction ac-
curacy of the mlp model in early epochs
is observed compared to the baseline. The
mlp model predicts with a higher accuracy
on the validation set at epoch 51 than the
baseline model.

After training epochs, the models are evaluated on the test set measuring the
accuracy, F1 weighted and F1 macro. The results are provided in Table 5. A
general observation is that the F1 macro results are relatively low compared to
the accuracy and F1 weighted scores. This was to be expected due to the class
imbalance in the datasets. The F1 weighted and F1 macro results of the AIFB
and AM datasets indicate that the models learn to predict on the type classes
that have a larger support in the training dataset. The F1 weighted scores for
the MUTAG dataset suggest that that there is significant support for class types
that are predicted with low recall and precision. Analyzing the raw prediction
results for the MUTAG test set, we notice indeed that despite the support of
some classes, the model is not able to predict well on these classes. Therefore,
accounting for the support, the F1 weighted score will be affected.
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In Table 5 we observe that the transfer models outperform the baseline on
accuracy, F1 weighted and F1 macro in the experiments on all datasets. For
the AIFB and AM dataset the test set results of the models that pre-train
on attribute summaries seem to outperform models that pre-train on the (k)-
forward bisimulation summaries. For the AIFB dataset the highest prediction
accuracy of 92.53% was yield by the attention model with attribute summary
graph pre-training. The validation accuracy during training epochs of this at-
tention model is presented in Figure 6. The mlp model in combination with
the (k)-forward bisimulation summaries, predicted with 90.37% accuracy on the
AIFB test set (accuracy curve in Figure 14). It seems that the (k)-forward bisim-
ulation summary graph training in combination with the attention model has
the best influence on the MUTAG test set prediction. The attention model that
used (k)-forward bisimulation summary graph training, yields a 52.39% accuracy
on the MUTAG test set. The validation accuracy of this model during training
epochs is displayed in Figure 7. On the AM dataset, the mlp model that used
attribute summary graph training had the best accuracy performance on the test
set of 99.99%. The validation accuracy on the AM dataset of this mlp model is
displayed in Figure 9.

AIFB MUTAG AM
Acc F1w F1m Acc F1w F1m Acc F1w F1m

baseline 72.85 ± 1.05 84.15 ± 0.48 40.27 ± 1.70 48.67 ± 0.83 32.71 ± 0.64 3.92 ± 0.44 90.48 ± 0.18 93.07 ± 0.03 72.32 ± 0.05
attribute
summation 92.14 ± 0.54 95.44 ± 0.49 63.49 ± 1.4 50.19 ± 0.21 37. 82 ± 0.22 4.25 ± 0.23 99.97 ± 0.04 99.97 ± 0.04 76.08 ± 0.15

mlp 91.19 ± 0.59 94.95 ± 0.45 62.25 ± 1.2 50.12 ± 0.19 37.67 ± 0.20 4.17 ± 0.35 99.99 ± 0.01 99.99 ± 0.01 76.15 ± 0.02
attention 92.53 ± 0.40 95.49 ± 0.24 63.49 ± 0.35 50.33 ± 0.21 37.84 ± 0.20 4.67 ± 0.35 99.92 ± 0.05 99.92 ± 0.05 75.95 ± 0.20

(k)-f. bisim.
summation 89.13 ± 0.84 93.42 ± 0.35 58.99 ± 1.60 52.31 ± 0.15 39.71 ± 0.15 5.91 ± 0.49 99.91 ± 0.01 99.91 ± 0.01 76.13 ± 0.01

mlp 90.37 ± 0.58 94.01 ± 0.39 60.36 ± 0.75 52.25 ± 0.17 39.55 ± 0.27 5.82 ± 0.66 99.96 ± 0.01 99.96 ± 0.01 76.16 ± 0.01
attention 88.53 ± 0.56 93.12 ± 0.39 56.87 ± 1.61 52.39 ± 0.15 39.75 ± 0.11 5.56 ± 0.23 99.70 ± 0.12 99.70 ± 0.12 75.80 ± 0.18

Table 5. Test set results of R-GCN scaling with multiple summary graphs. Accuracy,
F1 weighted and F1 macro of the transfer models and baseline model on the AIFB,
MUTAG and AM test sets. The baseline model trains only on the original graph. The
Transfer models were initialized with a node embedding and R-GCN weights yield
with summary graph training. Summary graph training occurred on three attributes
summaries or on three (k)-forward bisimulation summaries. After the embedding and
R-GCN weight transfer, the transfer models train on the original graph. Remarkable is
that the transfer models outperform the baseline model on each test set on accuracy,
F1 weighted and F1 macro.
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7.2 Single Summary Graph Experiments

How does a single graph summary influence scaling of R-GCN training and R-
GCN performance on entity type prediction? We investigate if R-GCN training

can be scaled with a single summary graph, created with the attribute and
(k)-forward bisimulation summarizations. The following experiment extends the
results of previous research [14] by conducting summary graph training on var-
ious graph summaries5. In this experiment we transfer the entity embedding
and R-GCN weights obtained with single summary graph training. Between the
transferred embedding and the R-GCN model there is no layer or trick that mod-
ifies the embedding. We assign each original graph node the entity embedding
of the representing summary graph node. The embedding is frozen (no gradient)
after transfer. After embedding and R-GCN weight transfer, the R-GCN weights
have a gradient. We evaluate the models on validation accuracy during original
graph training. On the test set, we report the accuracy, F1 weighted and F1
macro scores.

Single Summary Graph Experiments: Results We observe differences in
the accuracy validation curves between the single summary graph training mod-
els and the multi summary graph training models. This difference in accuracy
validation curve indicates a difference in scaling of R-GCN training. We compare
the accuracy validation curve of training with the single In/Out graph sum-
mary(Figure19, Appendix C) with the curve of the summation model(Figure
5), pre-trained on multiple attribute summaries. The y-axis intersection of the
In/Out transfer model is at 0.09. The summation model intersects the y-axis
at 0.39. Furthermore, we measure that the validation accuracy increase persists
slightly longer in early epochs for the summation model compared to the valida-
tion accuracy curve of the In/Out model (Figure 19). In epoch 10 the summation
model predicts on average with a 87.56% accuracy on the AIFB validation set.
The In/Out summary model predicts on average with an 84.80% accuracy in
epoch 10 on the AIFB validation set. The validating accuracy of the In/Out
attribute summary model, after 51 training epochs, is significantly higher com-
pared to the baseline validation accuracy at epoch 51.

We measure comparable differences between the summation and the Out
attribute summary model on the AM dataset regarding the intersections with
the y-axis and the validation accuracy curve. For MUTAG, the intersection with
the y-axis is higher when multiple summary graph are used for summary graph
training compared to a single summary graph.

In Table 6 the accuracy, F1 weighted and F1 macro results of the single summary
graph experiments are displayed. Table 6 indicates that the attribute summaries
overall performed better compared to the (k)-forward bisimulation summaries
in terms of accuracy, F1 weighted and F1 macro on the AIFB test set. The

5 The Out attribute summary and (3)-forward bisimulation summaries were researched
in previous work[14]
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In/Out attribute summary yields the highest accuracy, F1 weighted and F1
macro scores on the AIFB test set. Summary graph training with the In/Out
attribute summary yields a 91.29% accuracy(Table 6) on the AIFB test set,
which is comparable to the 92.53% accuracy(Table 5), yield by the attention
model with the multiple attribute summaries pre-training. It should be men-
tioned, that the In/Out summary counts more edges than the other attribute
summary graphs of the AIFB dataset (Table 10). When taking the compression
rate of the summary graphs into account, the In attribute summary is also a
remarkable performer on the AIFB dataset. The (3)-forward bisimulation sum-
mary graph was the worst performing summary graph (73.77% accuracy) on the
AIFB test set (Table 5).

On the MUTAG and AM test set the separate graph summaries yield com-
parable results to the models where summary graph training on multiple graph
summaries occurred. On the AM test set we measured that the Out attribute
summary yield the highest accuracy of 99.94%. We measured that the (2)-
forward bisimulation yield the highest accuracy of 51.80% on the MUTAG test
set. The (k)-forward bisimulation summaries seem to have a better effect on the
MUTAG test set performance than the attribute summaries. This result is in
line with the results of the Multiple Summary Graphs Experiments, where we
observed that the (k)-forward summaries outperformed the attribute summaries
on the MUTAG dataset (Table 5). We do notice the In/Out attribute summary
graph training on the MUTAG test set scores slightly higher on F1 weighted
and F1 macro scores. remarkable are the standard deviations for the measured
F1 weighted and F1 macro, which are slightly higher for the In/Out summary
graph on the MUTAG dataset.

AIFB MUTAG AM
Single Summary Acc F1w F1m Acc F1w F1m Acc F1w F1m

In 88.21 ± 0.52 91.74 ± 0.41 59.43 ± 1.08 50.37 ± 0.13 37.78 ± 0.57 4.62 ± 0.18 99.93 ± 0.02 99.93 ± 0.02 71.28 ± 0.07
Out 89.81 ± 0.46 93.83 ± 0.21 60.68 ± 1.16 50.28 ± 0.19 37.95 ± 0.12 4.18 ± 0.06 99.94 ± 0.05 99.94 ± 0.05 76.13 ± 0.04

In/Out 91.29 ± 0.72 94.25 ± 0.37 61.32 ± 0.69 50.97 ± 0.89 39.28 ± 1.23 4.82 ± 0.69 99.83 ± 0.13 99.13 ± 0.13 76.05 ± 0.05
k=1 88.07 ± 0.48 92.62 ± 0.47 57.51 ± 0.88 51.56 ± 0.60 39.02 ± 0.46 4.08 ± 0.55 99.88 ± 0.06 99.88 ± 0.06 71.32 ± 0.06
k=2 84.21 ± 0.47 90.48 ± 0.41 50.25 ± 1.60 51.80 ± 0.05 39.05 ± 0.50 4.04 ± 0.37 99.73 ± 0.09 99.73 ± 0.09 71.29 ± 0.05
k=3 73.77 ± 1.09 84.06 ± 0.56 53.67 ± 1.30 51.50 ± 0.21 37.62 ± 0.15 3.83 ± 0.34 - - -

Table 6. Single summary graph training results. The model is initialized by entity
embedding and R-GCN weight transfer after single summary graph training. The per-
formance is measured on the test set. The In, Out and In/Out summary belong to the
attribute summary set. The k=1, k=2 and k=3 summaries belong to the (k)-forward
bisimulation summary set.
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7.3 Embedding & R-GCN Weights Transfer Experiments

How do pre-trained entity embeddings and R-GCN weights, obtained with sum-
mary graph training, influence scaling of R-GCN training and R-GCN perfor-
mance on entity type prediction?

With the Embedding & Weight Transfer Experiments we evaluate the influence
of the embedding and R-GCN weight transfer on R-GCN scaling and R-GCN
performance. The attribute and (k)-forward bisimulation summaries are used for
summary graph training. After summary graph training, we ether transfer the
entity embedding or the R-GCN weights. When we transfer the embedding, we
freeze the embedding. When do not transfer the embedding, the node embed-
ding is newly initialized for original graph training and has a gradient. When
we do not transfer R-GCN weights, we newly initialize R-GCN weights. In this
experiment, the R-GCN weights always contain a gradient. The prediction ac-
curacy on the validation set at epoch 0 is used as a measure for R-GCN scaling.
We use the summation model only for this experiment. The attention and mlp
model have additional weights besides R-GCN weights. These weights influence
the prediction accuracy at epoch 0.

In previous experiments, the F1 weighted and F1 macro scores exposed the
class imbalance in the data graphs. We decide not to report on the F1 weighted
and F1 macro score for the upcoming experiments to focus on accuracy. We
measure the accuracy on the validation and test sets.

Embedding & R-GCN Weights Transfer Experiments: Results The
results of the Embedding & Weights Transfer Experiments are presented in Table
7. We observe for AIFB, MUTAG and AM, that the prediction accuracy at epoch
0 on the validation sets are better when R-GCN weights are transferred. For
example, looking at the AIFB dataset, when (k)-forward bisimulation summaries
are used to transfer R-GCN weights only, the summation model predicts with
25.17% accuracy in epoch 0. The prediction accuracy is 0.0% at epoch 0 on the
AIFB validation set when we do not transfer the R-GCN weights, but only the
summed entity embeddings. Similar results are measured for MUTAG and AM,
where the initialization of the summation model when the R-GCN weights are
transferred only seems to be improved, compared to only transferring the entity
embedding.

What is remarkable, the highest prediction results on the AIFB and AM
test sets are yield, when the entity embedding is pre-trained and transferred. A
test set accuracy of 91.01% and 99.90% for AIFB and AM are yield when we
only transfer the pre-trained entity embedding. In this case, the R-GCN weights
are newly initialized and are updated by backprogation during original graph
training.

Results on the MUTAG dataset are contrasting the AIFB and AM results.
When the attribute summary graph training is conducted and only R-GCN
weights are transferred, the highest accuracy of 70.28% is yield on the MUTAG
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test set. When the (k)-forward bisimulation summary graph training is con-
ducted to transfer R-GCN weights only, an accuracy of 69.31% is yield. When
the entity embedding is transferred the tests set accuracy is 50.25% for at-
tribute summary graph training and 52.28% for (k)-forward bisimulation sum-
mary graph training. These results seem to indicate that the produced entity em-
bedding with summary graph training actually prevents the model from training
properly, as we observe similar MUTAG test set accuracy results in the Multi-
ple Summary Graphs Experiments (Table 5). When only transferring R-GCN
weights, retaining the R-GCN gradient and initializing a new embedding, the
model is comparable to the baseline model, that trains for more epochs. The
validation accuracy of this model on the MUTAG dataset during training epochs
is displayed in Figure 18 (Appendix C).

summaries model embedding transfer weight transfer start acc AIFB test acc AIFB start acc MUTAG test acc MUTAG start acc AM test acc AM

- baseline False False 0.0 ± 0.0 72.85 ± 1.05 0.01 ± 0.01 48.67 ± 0.83 0.0 ± 0.0 90.48 ± 0.18

attribute summation False True 17.66 ± 6.05 78.12 ± 1.46 17.35 ± 4.14 70.28 ± 0.33 15.80 ± 2.55 91.34 ± 1.12

(k)-f. bisim. summation False True 25.17 ± 1.27 81.49 ± 0.75 15.34 ± 2.46 69.31 ± 0.67 14.04 ± 3.11 91.72 ± 0.11

attribute summation True False 0.0 ± 0.0 91.01 ± 0.53 1.30 ± 1.95 50.26 ± 0.20 5.78 ± 7.55 99.90 ± 0.14

(k)-f. bisim. summation True False 0.0 ± 0.0 87.04 ± 0.17 0.26 ± 0.19 52.28 ± 0.10 5.12 ± 2.73 99.89 ± 0.07

Table 7. Embedding & Weight transfer results. The start acc {dataset} is measured on
the validation set at epoch 0. The test set evaluation is carried out after original graph
training. The results indicate that transferring pre-trained R-GCN weights contribute
mostly to a better R-GCN initialization. Highest accuracy on the test set is yield when
the embedding is pre-trained and transferred. The MUTAG dataset is an exception
where the highest test set result is yield with the R-GCN weight transfer only.

7.4 Freezing Embedding & R-GCN Weights Experiments

How can R-GCN training be scaled and R-GCN performance, on entity type
prediction, be maintained or improved, while freezing the gradient of R-GCN
weights after pre-training on summary graphs?

We carry out experiments where we evaluate the performance of the summa-
tion, mlp and attention models, when R-GCN weights are frozen after summary
graph training. Note that, the entity embeddings always remain frozen after
transfer in these experiments. The attribute summary set and the (k)-forward
bisimulation summary set are used for summary graph training. We also use the
single (best performing) summary for summary graph training in combination
with the mlp and attention models. In the Single Summary Graph Experiments
we measured that the In/Out attribute, (2)-forward bisimulation and the Out
attribute summaries yield best predictions on the AIFB, MUTAG and AM test
sets, respectively.

After discussing the accuracy on the test sets, we evaluate the validation
accuracy curve during original graph training epochs where the R-GCN weights
are frozen.
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Freezing Embedding & R-GCN Weights Experiments: Results The ac-
curacy results on the test set for the Freezing Embedding & R-GCN Weights
Experiments are presented in Table 8. The baseline accuracy results correspond
to the presented results in Table 5. For the summation model, as the R-GCN
weights are frozen after transfer, we retain the gradient of the embedding. The
results of the summation model indicate that it is not possible for the summa-
tion model to scale R-GCN training while the R-GCN weights are not frozen.
We measure no prediction improvement during training of the model. The re-
sult could be expected as the R-GCN weights account for updating the entity
embedding.

In rows four and five of Table 8 we present results for the mlp model when the
R-GCN weights are frozen after transferring the entity embedding and R-GCN
weights. Summary graph training with the attribute summaries in combination
with the mlp model yields the highest accuracy of 89.50% on the AIFB test set.
The standard deviation of the results of the mlp model on the AM test set imply
fluctuating performance. The performances of the mlp models, pre-trained on
the attribute and the (k)-forward bisimulation summaries, on the MUTAG and
AM test sets are comparable to the baseline performance.

Now, the attention model combined with summary graph training on (k)-
forward bisimulation summary graphs yield a 99.17% AM test set accuracy with
a standard deviation of 0.15. This setup of the attention model outperforms the
baseline model, which yields a 90.48% accuracy (Table 8). The validation ac-
curacy curve of the best performing attention model on the AM validation set,
where the R-GCN weights are frozen after transfer, is displayed in Figure 12.
The validation accuracy curve of the attention model where we do not freeze the
R-GCN grads is displayed in Figure 11. Comparing these curves we notice that
the R-GCN training is less scaled, when the R-GCN weights are frozen after
transfer (Figure 12). we observe a less steep increase starting around epoch 5.
In epoch 20 the attention model, where the R-GCN weights are frozen (Figure
12), catches up with the validation accuracy of the model where R-GCN weights
are not frozen. The same attention model, using the attribute or (k)-forward
bisimulation summaries, outperforms the baseline on the AIFB test set. The
attention model combined with summary graph training on (k)-forward bisim-
ulation summary graphs yields on the MUTAG test set an improved prediction
accuracy (51.52%), compared to the baseline accuracy (48.67%).

The mlp and attention model yield remarkable results on the AIFB test set
in combination with the In/Out attribute summary graph training (rows 8 and
9 in Table 8). The mlp and attention model predict with a 87.79% and 86.05%
accuracy on the AIFB test set. The mlp and attention model, combined with the
In/Out attribute summary graph, outperform the baseline accuracy on the AIFB
test set (72.85%) significantly. Using the best performing single summaries, these
models yield comparable results to the baseline model on the MUTAG and AM
test sets. Noticeable, are the relatively high standard deviations on the AM test
set, when the R-GCN weights for the mlp and attention models are frozen, after
summary graph training on the Out attribute summary.
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summaries model embedding transfer embedding grad. R-GCN weight transfer R-GCN weight grad. test acc AIFB test acc MUTAG test acc AM

- baseline False True False True 72.85 ± 1.05 48.67 ± 0.83 90.48 ± 0.18

attribute summation True True True False 12.04 ± 8.78 33.57 ± 5.96 30.66 ± 4.63
(k)-f. bisim. summation True True True False 37.35 ± 2.03 37.0 ± 15.14 36.44 ± 3.90

attribute mlp True False True False 89.70 ± 0.39 48.73 ± 1.79 89.97 ± 9.67
(k)-f. bisim. mlp True False True False 80.88 ± 0.98 50.28 ± 0.56 91.28 ± 4.81

attribute attention True False True False 88.74 ± 1.24 49.60 ± 0.71 98.15 ± 2.97
(k)-f. bisim. attention True False True False 82.62 ± 1.92 51.62 ± 0.37 99.17 ± 0.15

single (best) mlp True False True False 87.79 ± 1.44 50.40 ± 0.22 89.12 ± 5.14

single (best) attention True False True False 86.05 ± 0.78 49.76 ± 0.10 89.48 ± 3.58

Table 8. Results of the embedding and R-GCN weights freezing experiments. The mlp
and attention model showed to improve R-GCN performance compared to the baseline
on the AIFB, MUTAG and AM test sets while the embedding and R-GCN weights are
frozen.

Figure 11. attention and baseline model
accuracy on the AM validation set. The
(k)-forward bisimulation summary set for
summary graph training was use to initial-
ize the attention model. The entity embed-
ding and R-GCN weight transfer with the
attention model, allow for R-GCN scaling
while increasing model performance on the
validation set compared to the baseline.

Figure 12. attention and baseline ac-
curacy on the AM validation set. The
(k)-forward bisimulation summary set for
summary graph training was use to ini-
tialize the attention model. The trans-
ferred embedding and R-GCN weights are
frozen. The attention weights allow for R-
GCN scaling while increasing model per-
formance compared to the baseline.

Remark 3. In Figures 11, 12, 16 and 17 the upper bound of the standard de-
viation area of the attention models is above 1.0. In Figures 11 and 12 at
epoch 5 and epoch 20, respectively, the sample mean plus one standard devia-
tion is higher than 1.0. The following sample example explains how: sample =
0.95, 0.95, 0.95, 0.95, 0.7. then, µ = 0.9 and std = 0.11. Then it follows µ+ std >

1.0. Validation accuracy during training epochs, could never exceed 1.0.



38 Loos, T.

8 Discussion

The results of the Multiple Summary Graphs Experiments show that scaling R-
GCN training can be achieved with multiple summary graphs, by transferring
the multiple entity embeddings adn R-GCN weights with the summation, mlp
and attention models. Besides R-GCN scaling, the entity embedding and R-GCN
weights transfer improves the test set accuracy significantly for the AIFB and
AM dataset compared to the baseline model. For the MUTAG the test set re-
sults of the transfer models indicate to outperform the baseline, but with a less
margin. By transferring and freezing an entity embedding trainable parameters
are reduced in the transfer models. The summation, mlp and attention model
in combination with the attribute summary graph set seem to perform slightly
better compared to (k)-forward bisimulation summary graph set on the AIFB
dataset. There is no clear difference between the attribute and (k)-forward bisim-
ulation summaries on the AM dataset. For MUTAG it seems that (k)-forward
bisimulation summary graph training with the summation, mlp and attention
model yield better test set accuracy. The F1 weighted and F1 macro scores of
the baseline and transfer models on the MUTAG dataset indicate that there are
many classes that are not learned to predict by the models. The F1 weighted
and F1 macro scores are caused by the class imbalance in the MUTAG dataset.

There is no clear distinction measured in R-GCN scaling performance be-
tween the summation, mlp and attention model in the Multiple Summary Graph
Experiments. However, the embedding transfer capabilities of the mlp and at-
tention models come to light in the Freezing Embedding & R-GCN Weights
Experiments. The results indicate that some setups with the mlp and attention
models are able to scale R-GCN training compared to the baseline, while the
embedding and R-GCN weights are frozen. The mlp and the attention layers
contain the trainable parameters and are able to modify the entity embedding
to improve prediction results for the R-GCN model while the R-GCN weights
are frozen. These setups for the mlp and the attention model outperform or
match the test set prediction accuracy on the AIFB, MUTAG and AM datasets.
The experiments, most importantly, strongly suggest that the attention and mlp
model could update the R-GCN model without having to retrain R-GCN weights
on the original graph. For example, when a new node is added to the graph, new
graph summaries can be created. Then, with an existing set of R-GCN weights
(frozen) the entity embedding for the summary nodes can be trained. Most likely,
the mlp and attention models are able to transfer the entity embedding to update
the R-GCN model while the R-GCN weights remain frozen.

In the Single Summary Graph Experiments we measured that pre-training
on a single summary graph can yield comparable results to training on multi-
ple summary graphs for the AIFB, MUTAG and AM datasets. Training on a
single summary graph, reduces model parameters compared to training on multi-
ple graph summaries. The entity embedding for the original graph is constructed
from one summary graph embedding, instead of multiple embeddings. For AIFB,
the single summary graphs seemed to perform slightly worse in terms of R-GCN
scaling and R-GCN performance compared to the multi-summary graph train-
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ing. The In/Out attribute summary graph performed best on the AIFB test set,
yielding 91.29% accuracy. The differences in validation accuracy curves of the
single summary graph models and the multiple summary graph models can be
explained by the amount of training epochs. Each summary graph trains for 51
epochs in summary graph training. This means that in the case of the sum-
mation model of Figure 5 the summary graph training counts 153 epochs. The
In/Out summary model of Figure 19 (Appendix C) used one summary graph,
accounting for 51 epochs of summary graph training. More epochs of summary
graph training means that the relation specific R-GCN weights are more exposed
to the relations in the summary graphs. Furthermore, the Embedding & R-GCN
Weights Transfer Experiments revealed that for the AIFB and AM datasets, the
R-GCN weight transfer is of significant importance for the validation accuracy
at epoch 0. It seems that the model with multiple summary graph pre-training
accounts for a better model performance at epoch 0. Therefore, it can be logically
explained that the validation accuracy at epoch 0 is lower for models that train
on one summary graph compared to models that train on multiple summary
graphs.

Results of the Embedding & R-GCN Weights Transfer Experiments showed
that the MUTAG test set prediction improved if only R-GCN weights were trans-
ferred. By only transferring R-GCN weights model parameters are increased, as
an entity embedding exists for each node in the original graph. Not transfer-
ring an entity embedding, increases the number of trainable parameters to be
equal to the number of trainable parameters of the baseline model. The trans-
fer model, where only pre-trained R-GCN weights are transferred is comparable
to the baseline model trained for more epochs. The loss curve of the baseline
model on the MUTAG dataset indicated that the model has not converged af-
ter 51 epochs (Figure 8). Increasing training epochs for the baseline model on
the MUTAG dataset, most likely improves the test set performance and could
potentially outperform the embedding transfer models proposed in this work.

Previous work found that R-GCN training can be scaled with a single graph
summary [14]. Furthermore, the research showed that prediction performance of
the R-GCN model can improve by transferring R-GCN weights to a new model
for training on the original graph. Our results indicate that scaling R-GCN
training can be achieved with summary graph training. With multiple or on a
single summary graph training an entity embedding and R-GCN weights can be
pre-trained and transferred for training on the original graph. Comparing our
baseline model to the ”benchmark” model of previous work[14], we find different
accuracy scores on the AIFB, MUTAG and AM test sets after 51 training epochs.
The difference in accuracy scores of the baseline model can be explained by the
fact that the accuracy is differently calculated. We use the accuracy calculation
from related work[40], which evaluates each label separately in every prediction.
Also, our transfer models exploit different loss and activation functions for the
MUTAG and AM dataset compared to previous work[14]. For the MUTAG and
AM dataset our models use the cross-entropy loss and the Softmax activation
function, as proposed in related work[31, 40].
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Related work on graph summarization concluded that attribute summaries
are the most viable option for graph summarization of heterogeneous graphs [8].
Our research does not conclude whether the attribute or (k)-forward bisimulation
summarization in general have a better influence on scaling R-GCN training and
R-GCN performance.

We demonstrated, how the attribute summarization can be integrated in
the training pipeline to scale R-GCN training, while improving or maintaining
R-GCN performance. Creating graph summaries within the training pipeline
scales R-GCN training, reducing parameters and training time. The creation of
the (k)-forward bisimulation summaries with FLUID[4], on the other hand, is
computationally intensive and relatively time consuming. We want to empha-
size that the FLUID framework was not designed for this specific task. It is
therefore wrong to undervalue the (k)-forward bisimulation summary creation
because of its relatively long computation time. We found that for scaling R-
GCN training with graph summaries, we agree with related work[8] that the
attribute summaries are a viable option. We did not observe that (k)-forward
bisimulation summaries are not a viable option for scaling R-GCN training. (k)-
forward bisimulation summaries showed to scale R-GCN training and improve
R-GCN performance as well.

The graph summaries created in this research for the MUTAG and AM dataset
show high compression rates (Table 10). We encounter graph summaries where
the number of summary nodes and edges are less than 1% of the original amount
of nodes and edges. For example, the In attribute summary of the AM graph
consists of 420 nodes and 7611 edges, while the full AM graph counts 1.6M
nodes and 5.9M edges. The AM dataset is constructed from archive data [5].
The archive data could be well structured and could result in a more structured
and less heterogeneous data graph. This may explain the relatively small graph
summaries for the AM dataset. For the AM graph, the results indicate that
R-GCN performance improved, when summary graph training occurred on the
highly compressed graph summaries. The compression rated of the MUTAG
graph summaries rely on compound/molecule characteristics. In the MUTAG
dataset a compound is built from atoms (entity) and bonds (entity). A compound
in the MUTAG dataset is often contains the hasbond or hasatom predicate. The
compounds are build with very similar attribute sets. Also, the MUTAG dataset
contains 22 relation types (Table 10). This number is relatively small, compared
to the size of the MUTAG dataset and the number of relations in the AIFB
and AM dataset. This may cause the compression rates of the attribute graph
summaries of the MUTAG dataset. On the MUTAG dataset we measured that
the test set prediction accuracy increased, when pre-trained R-GCN weights
were transferred only. Considering the nature of the MUTAG dataset, the node
representations being too uniform could explain the contrasting results when
R-GCN was trained with the transferred summary graph embedding. It could
be the case, that nodes share the same node embedding, while their types differ.



Scaling R-GCN Training with Graph Summaries 41

8.1 Limitations & Future Work

This research has limitations and results should be interpreted accordingly. A
limitation of this research is that our results are not comparable to the results
of related work[31, 40]. A different classifications task is performed in this re-
search. Furthermore, our baseline model is based on the originally proposed
implementation[31] of the R-GCN model. Our baseline model is a simplified im-
plementation as we use l2 regularization on both (two) R-GCN layers. We do not
apply basis- and diagonal-block-decomposition. Also, we kept the hidden layers
of the R-GCN constant at 16 hidden units for all datasets. The original R-GCN
implementation[31] reduces the R-GCN hidden layer to 10 units when experi-
menting on the AM dataset. Considering these differences in implementation,
the relative difference between the performance of our transfer models and our
baseline model could be skewed. With the original R-GCN implementation[31],
it could be the case that the baseline model predictions turn out to be higher.
However, the R-GCN layers in the transfer models get equipped with the more
sophisticated settings as well and may benefit.

The current research exploits the rdf:type relation of the AIFB, MUTAG and
AM dataset for entity type prediction. This design decision was made to increase
the number of training, validation and test instances compared to the prediction
task that related literature performs [31, 40]. Related literature performs the
entity type prediction task (besides AIFB, MUTAG and AM) on another dataset
called BGS. however, the decision to pursue the rdf:type prediction task made
the BGS dataset not suitable to use: The BGS dataset contained one entity
type with enough support throughout the dataset making the prediction task
meaningless. Because we did not perform our experiments on this dataset our
results become even less comparable to related work.

Another limitation concerns the comparison of the results of single summary
graph training with multiple summary graph training. We conducted multi-
summary graph training with the attribute and (k)-forward bisimulation set.
These summary sets contain both three attribute summaries. For each summary
graph we trained for 51 epochs in summary graph training. This accounts for
153 training epochs. For the single summary graph experiments we conducted
summary graph training on one summary graph. This accounts for 51 epochs.
Therefore, the comparison between the multi-summary graph transfer models
and the single summary graph transfer models is skewed. It would be a stronger
comparison, if a 153 epochs single summary graph training was conducted.

For future work, we recommend to overcome the experiment design limitations
of our work. Also, we suggest to implement R-GCN scaling on the entity type
and link prediction task of related work[31, 40]. The correctness of the entity
type prediction task of related work can be argued, because of the number of
training/test instances [3]. However, results become comparable to related work
if the entity type and link prediction prediction task is conducted as proposed.

We recommend to further investigate, whether the mlp and attention models
are able to update the R-GCN model with the use of graph summaries, without
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retraining the R-GCN weights. We propose an experiment where a set of trained
R-GCN weights is obtained and not updated by backprogation throughout the
experiment. Then, the R-GCN weights are used for summary graph training
to obtain an entity embedding, while the R-GCN weights are frozen. The em-
beddings, resulting from summary graph training are transferred with the mlp
or attention model. Original Graph training is conducted while the multi-layer
perceptron and multi-head attention layers contain gradients and the R-GCN
weights remain frozen. Accuracy on the test set after training must be compared
to a baseline. We expect that this set up can account for a graph update for the
entity type prediction task, without the need for retraining the R-GCN weights.

Furthermore, experimentation with larger graphs is needed. We assume, in
general, that summarization of larger graphs with more entity and relations
types, yield larger graph summaries. As large graphs could exceed available
resources on a single device, the graph summaries could exceed the available
resources as well. In this case, mini-batch training or mini-batch training in
parallel over multiple devices as proposed in related work[20, 35], should be
considered.

Other important research could be done on what aspects of graph summaries
are important for the R-GCN model. Graph summary features for the creation
of a node embedding with graph summary training, could be investigated by
researching the attention weights of the Multi-Head Attention layer, used in
this research. For example, visualizing attention weights could reveal important
summary graph features. Knowing which graph summary is suitable for scaling
R-GCN training is valuable, as training on a single, suitable summary graph may
achieve better R-GCN scaling results and R-GCN performance. The ultimate
goal is to be able to explain why a certain graph summary is a good graph
summarization and why the graph summarization fits the R-GCN scaling task.

As a last suggestion for future work, we recommend to visualize entity em-
beddings. t-Distributed Stochastic Neighbor Embedding (t-SNE)[24] can be used
to visualize high dimensional embeddings in 2-d scatter plots. Comparing em-
beddings, resulting from training with summary graphs and with the baseline
model, could provide information about how the entity embeddings contributed
to improvement of the R-GCN performance on the AIFB and AM datasets.
Also, it can be researched why the entity embedding, resulting from summary
graph training with the MUTAG summary graphs, seems to suppress a proper
training of the R-GCN model on the MUTAG graph. We started this research,
however we were not able to draw conclusions from it in the current work. We
provide visualized entity embeddings, created with t-SNE, in Appendix D. The
entity embeddings are the summed summary graph embedding, created by the
summation model.
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9 Related Work: Graph Learning Models

Over the last decade, relation and entity type prediction with the use of graph
embeddings have been researched and numerous models have been proposed.
Both RESCAL [29] and NTN [39] are compositional models, which use tensor
products to capture complex relations between graph nodes. However, comput-
ing the tensor product for modeling graph relations requires a high number of
parameters, making it a computational expensive process. The Holographic Em-
bedding model (HolE) uses circular correlation of entity embeddings to produce
more efficient and scalable compositional vector representations [28]. Circular
correlation compresses the tensor product, enabling weight sharing for semanti-
cally similar interactions and does not increase the dimensionality of the com-
posite representation. Memory complexity of a (subject, object) tuple is linear
regarding dimensionality d of the entity representation. Comparing to RESCAL,
the composite representation would be d2 due to the tensor product, making the
RESCAL significantly larger in size.

Translation distance models calculate the plausibility of a fact as the distance
between subject and object entities regarding the relation between them [45].
The translational models TransE [6] and TransH [44] were two effective graph
embedding approaches and produced state-of-the-art prediction results in 2013.
TransE embeds entities and relations into the same vector space. The core notion
behind TransE is that the relationship between two entities in the graph corre-
sponds to a translation of the relation of the two entities in their embedding.
However, since TransE has difficulty representing entities that have 1-to-many,
many-to-1 and many-to-many relationships, the TransH model was proposed.
TransH allows an entity to have alternative representations when it has mul-
tiple relations with various relation types [19, 44, 45]. Inspired by TransE and
TransH, TransR[19] was proposed. The TransR model separates entity embed-
dings from relation embeddings to be exploited in different classification tasks.
In their paper[19], the authors showed that TransR outperformed state of the
art models like TransE and TransH on the datasets WN18 and FBK15 for link
prediction and entity classification. TransR requires more parameters to train
compared to TransE and TransH [28], but TransE and TransH are argued to
lack expressiveness of the graph embedding [26].

ConvE[34] and ConvKB[27] are Convolution Neural Network based models.
These convolution models use 2-D kernels to generate expressive feature map
that encodes both the local graph structure and features of nodes. These mod-
els are parameter efficient but fail to map interactions between triples, instead
these models handle each triple independently. The Graph Convolutional Net-
work (GCN) learns node representation with convolution kernels by accounting
for neighborhood nodes. This model is designed to learn on directed and undi-
rected graph containing on relation type. The R-GCN model is proposed as an
extension on Graph Convolutional Network (GCN) to learn node representations
on large multi-relational graphs [31]. R-GCN extends GCN by accounting for dif-
ferent relations and the directions of edges (incoming and outgoing) connected
to a node. R-GCN performance on the link prediction and entity type predic-
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tion task alongside parameter settings are investigated in the paper[31] proposing
R-GCN. Extending the R-GCN research[31], other literature[40] provides a thor-
ough explanation on the R-GCN model. Furthermore, the literature[40] presents
new parameter efficient configurations for the R-GCN model and reproduces the
results of the original paper[31] proposing the R-GCN model.

In other work[43], the authors argue that assigning equal weights to the
neighborhood entities is a shortcoming of graph convolutional models and pro-
pose the Graph Attention Network (GAT). With an attention mechanism, GAT
assigns varying weights to edges representing the importance of the neighboring
nodes. The Relation Graph Attention network is proposed as addition to GAT
for attending multi-relation graph nodes. RGAT preforms similar, or in some
cases worse compared to the R-GCN model [7].

10 Conclusion

In this research we proposed models to successfully scale R-GCN training with
graph summaries, by transferring an entity embedding and R-GCN weights. The
transfer models, proposed in this research, reduce trainable parameters compared
to the baseline model. The results indicated that R-GCN training can be scaled,
while improving model performance on the AIFB and AM datasets. Our models
were able to scale R-GCN training for the MUTAG dataset as well. We do expect,
however, that the baseline model trained for more epochs, would outperform our
proposed embedding and R-GCN weights transfer models.

The summation model counts the fewest trainable parameters compared to
the mlp, attention and baseline model. The summation model showed compa-
rable performance to the mlp and attention model. However, the summation
model is not appropriate to transfer an entity embedding when the R-GCN
weights are frozen after summary graph training. With the mlp and attention
model we demonstrated how R-GCN training can be scaled and that the test
set prediction accuracy of the R-GCN model can be improved, while freezing
the node embedding and R-GCN weights after summary graph training. This
result suggests that the mlp and attention model may be able to account for a
graph update, such as an added node, without the need for retraining R-GCN
weights. For future work, we recommend investigating the ability of the mlp and
attention model to update the R-GCN model, without retraining the R-GCN
weights.

Furthermore, investigating single summary graphs for scaling R-GCN train-
ing is necessary, since an appropriate graph summary could achieve comparable
scaling of R-GCN training and R-GCN performance, compared to summary
graph training with multiple summary graphs. However, if uncertainty about a
suitable graph summary remains, the summation, mlp and attention models are
appropriate models to transfer R-GCN weights and entity embeddings of multi-
ple summary graphs to scale R-GCN training and maintain or improve R-GCN
performance.
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Appendix

A Attribute Summaries: Extended Example

Original Graph Incoming Outgoing Incoming/Outgoing

n1 = {black_in, black_out}
n2 = {black_in, black_out}

n3 = {black_in, black_out, red_in}
n4 = {red_out}

n1 = {black_in} → C
n2 = {black_in} → C

n3 = {black_in, red_in} → B
n4 = {} → A

n1 = {black_out} → E
n2 = {black_out} → E
n3 = {black_out} → E
n4 = {red_out} → D

n1 = {black_in, black_out} → H
n2 = {black_in, black_out} → H

n3 = {black_in, black_out, red_in} → G
n4 = {red_out} → F

E

D

E E

E

E

E

D D

B

A

C C

B

C

A

G

F

H H

G

H

F

n1 n2

n3

n4

C

B

A

E

D

H

G

F

n1 n2

n3

n4

Incoming

Outgoing

Incoming/
Outgoing

n1 n2

n3

n4

n1 n2

n3

n4

Figure 13. Extended visualization of the creation of the Incoming, Outgoing and
Incoming/Outgoing attribute summaries.
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B Graph Datasets & Graph Summaries

AIFB MUTAG AM

Nodes 8,285 23,644 1,666,764

Edges 29,043 74,227 5,988,321

Classes 26 113 21

Relations 45 23 132

Multi labeled 1300 0 3

Single labeled 1024 22534 1028595
Table 9. Graph statistics of the AIFB, MUTAG and AM datasets.

AIFB MUTAG AM
Attribute Summaries Nodes Edges Nodes Edges Nodes Edges

Incoming 44 453 11 45 420 7611
Outgoing 359 5518 62 530 6970 195673

Incoming/outgoing 418 7102 70 547 8227 216679
(k)-forward bisimulation

k=1 363 3291 66 588 7800 148439
k=2 1278 10589 76 620 39463 742917
k=3 2446 19742 85 644 - -

Table 10. Number of nodes and edges of the summary graphs created for the AIFB,
MUTAG and AM datasets.
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C Experiment Results

Figure 14. mlp and baseline accuracy
on AIFB validation set during train-
ing epochs. The mlp model uses embed-
ding and weight transfer from (k)-forward
bisimulation summary graph training.

Figure 15. attention and baseline accu-
racy on MUTAG validation set during
training. The attention model uses embed-
ding and weight transfer from (k)-forward
bisimulation summary graph training.

Figure 16. summation and baseline accu-
racy on AIFB validation set during train-
ing epochs. The summation model uses
embedding and weight transfer from at-
tribute summary graph training.

Figure 17. summation and baseline ac-
curacy on MUTAG validation set during
training. The summation model conducts
(k)-forward bisimulation summary graph
training.
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Figure 18. summation and baseline ac-
curacy on MUTAG validation set during
training epochs. The embedding is not
transferred to the summation model. The
R-GCN weights are trained with summary
graph training on the attribute summary
set. The R-GCN weights contain a gradi-
ent after transfer.

Figure 19. In/Out and baseline accuracy
on AIFB validation set during training
epochs. The In/Out model conducts sum-
mary graph training with the In/Out at-
tribute summary graph. A less-long per-
sisting increase of the validation accuracy
curve of the summation model can be ob-
served compared to Figure 5.

Figure 20. mlp and baseline accuracy
on AIFB validation set during training
epochs. The mlp model uses embedding
and weight transfer from attribute sum-
mary graph set training. The embedding
and R-GCN weights of the mlp model are
frozen after transfer.

Figure 21. mlp and baseline accuracy
on AIFB validation set during training
epochs. The mlp model uses embedding
and weight transfer from In/Out attribute
summary graph training. The embedding
and R-GCN weights of the mlp model are
frozen after transfer.
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D Embedding Visualizations with t-SNE

Figure 22. Visualization of the AIFB en-
tity embedding produced with the baseline
model.

Figure 23. Visualization of the summed
entity embedding produced with AIFB at-
tribute summary graphs.

Figure 24. Visualization of the MUTAG
entity embedding produced with the base-
line model.

Figure 25. Visualization of the summed
entity embedding produced with MUTAG
attribute summary graphs.
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Figure 26. Visualization of the summed
entity embedding produced with AM at-
tribute summary graphs.

Figure 27. Visualization of the summed
entity embedding produced with AM (k)-
forward bisimulation summary graphs.
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