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Abstract

Knowledge graphs are a suitable structure to efficiently store
information in the form of entities and relations. Answering
complex queries on such knowledge graphs, that can be in-
complete, is a fundamental but yet challenging task. Recently
Graph Convolutional Networks (GCNs) were used to encode
the explicit information in the graph thus producing an em-
beddings, that serve various tasks (e.g. link prediction, en-
tity classification, or query answering). Traditional methods
embed entities and queries as points in the vector space, this
can be problematic since even simple queries might have a
large set of answers, and it is not clear how to encode a set
with points. To counteract this problem we propose to embed
the queries and the actual graph entities as boxes (i.e. axis-
aligned hyper-rectangles), where a set of boxes intersecting
the query box, correspond to a set of answers to that query.
The model we are using consists of Relational-Graph Con-
volutional Network (R-GCN) (Schlichktrull et al. 2018) and
relies on a specific scoring function, that take into account
size of intersection and the distance between the boxes.

1 Introduction
Data structures as graphs are extremely suitable for differ-
ent applications, one of which is knowledge representation.
They can store information in the sense of discrete entities
from different domain linked to each other by relations of
various types, thus resulting in a Knowledge Graph (KG).
The relationships between the nodes are explicit, e.g., Alice
worksAt−−−−−→ VU. Answering arbitrary logical queries over KG,

like ”what are the project topics that both Alice and Bob
work on?”, is a fundamental task in query answer retrieval,
knowledge base retrieval, as well as more broadly AI (Ren
et al. 2020). One of the common ways to retrieve an answer
from a KG is to pose a structured query (for example, us-
ing the SPARQL query language (Harris et al. 2013)). In
such cases the queries are answered via logical inferences
based on the information present in the graph. However,
usually the knowledge graphs do not contain all the infor-
mation needed for accurate answer retrieval. Either because
of their dynamic nature, when parts of the graph are con-
stantly changed or updated, or because of the way the graph
was constructed, some relevant information may be missing.
Thus when trying to retrieve information from it there are
cases that no answer is returned simply because of a missing

relation to explicitly point to it.
Other approaches include representing the logical query

as Directed Acyclic Graph and reason according to the
DAGs structure to obtain a valid set of answers. This method
has some drawbacks: (1) The direct subgraph matching be-
comes exponential in the query size, which leads to com-
putational complexities, and cannot be scaled to the size of
modern KGs: (2) Subgraph matching as well as structured
queries are very sensitive to missing relations, and cannot
answer queries that rely on them. To circumvent (2) one
could impute missing relations (Nickel et al. 2015) or to re-
duce the constraint that must be met by an entity to be an
answer (Fakou et al. 2017). But that would either make the
graph denser, which would increase the computational com-
plexity (1), or it might introduce wrong answers.

To circumvent these problems recent works propose an
alternative approach. In it the queries as well as the KG
entities are embedded into a low-dimensional vector space
in a way that entities that are valid answers to a query
are embedded close to the query (Hamilton et al. 2018;
Guu et al. 2015). These approaches are robust in the task
of link prediction and are order of magnitude faster, as the
task answering a query is reduced to identifying the nearest
entities to the embedding of the query in the vector space.

However embedding the queries and entities as vectors
has its limitations. One cannot explicitly define a set of an-
swers to a query if they are just embedded as point. To
address this in our work we make use of a geometric em-
bedding. We are embedding the entities and the queries as
axis-aligned hyper-rectangles, or simply boxes in the vec-
tor space. Thus a query as a box, represent a closed region,
which easily defines a set of answer, when we define a valid
answer to be an entity with a box that has some intersection
with the query one. Thus we can easily extract multiple an-
swers to queries. By embedding also the entities as boxes
has the benefit that an entity box can overlap with multiple
queries, even when the query themselves are not intersect-
ing. Therefore an entity can take part as an answer to ques-
tion of different context, for example Alice can be an answer
to both queries regarding her work and her family, being part
in both contexts as an employee and family member (See Fig.
1). Additionally the benefit of using boxes as an embedding
is better than the use of spheres: (1) spheres grow symmetri-
cally in all dimension, which makes them unsuitable for be-
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Figure 1: Example of a 2-dimensional box embeddings.
Here there are two query boxes, and three entity boxes A,B,
and C. In this case A is a valid answer to only one of
the queries, B is embedded to be an answer to two non-
overlapping queries of different contexts, and C is not an
answer to any of the queries.

ing part in very different contexts, cause it will just make the
entity or query sphere huge, while on the other hand, boxes
(rectangles) can grow independently across the dimensions,
(2) The intersection of two boxes is again a box, whereas in-
tersection of spheres results in figure with a complex shape.

To address the problem of possible missing relations in
the knowledge graph, we employ a Graph Convolutional
Network (GNN). In particular we are using Relational-
Graph Convolutional Network (R-GCN) (Schlichktrull et al.
2018), which takes into consideration the neighbours of the
node and the relations that link them, thus improving on the
task of link prediction, from which we benefit in our own
task of query answering. The R-GCN performs a message
passing on the graph of the query and then aggregates the re-
sult to produce the final box embedding. The method learns
jointly the embeddings for the entities and the queries, which
are trained and tested on three classical datasets, the knowl-
edge graphs of which contain from thousands to million of
entities and edges.

2 Related work
Multiple approaches for machine learning consider embed-
ding the whole graph in vector space (Bordes et al. 2013;
Wang et al. 2014; Yang et al. 2014). Their application is
limited on the task of query answering. Regarding link pre-
diction their methods need to consider all possible entities,
which becomes exponential in the query size. More recent
work (Daza and Cochez, 2020) proposes a message passing
for query embedding (MPQE) method. Based on relational-
graph convolutional network (R-GCN) (Schlichktrull et al.
2018) they directly encode the query into an embedding
which is further optimized to be similar to the entity em-
beddings. This results in linear complexity in the size of the
query. We closely use the architecture of the MPQE model.
They encode the query and entities as vectors, for which cal-
culate the cosine similarity score. The drawback is that there
is no clearly defined threshold after which an entity is con-

sidered not a valid answer. In contrast to their method, our
resulting vector embeddings for the query and the entities is
interpreted as a box in the vector space, thus we use the box
borders to serve as a natural threshold to disregards the valid
from non-valid answers.

Second line on related work is regarding structured em-
beddings which associated knowledge base concepts with
geometric objects as regions (Vilnis et al. 2018; Ren et
al. 2020). In (Vilnis et al. 2018) they develop probabilis-
tic model for lattices based on hypercube embeddings that
can model both positive and negative correlations. Their
model embeddings and similar probabilistic query embed-
dings (POE) of Lai (Lai and Hockenmaier 2017) represent
subsets of probabilistic event space which are directly in-
tegrated. Embedding the entities as hyper-cubes (or boxes)
they are able to retrieve multiple answers to a given query,
but yet again as in MPQE, a clear threshold cannot be de-
fined.

In contrast Query2Box (Ren et al. 2020) embeds the ac-
tual queries as axis-aligned hyper-rectangles (boxes) and en-
tities as points in lower dimensional vector space. Same as
them we use the geometric property of the box to be en-
closed, thus defining a natural border to be used when clas-
sifying if a certain entity is a valid answer. Additionally we
also embed the actual entities as boxes to address possible
different contexts a specific entity might take part in. Even
though geometric objects were used to model individual en-
tities and pairwise relations between them in previous works
(Vilnis et al. 2018; Vendrov et al. 2015) we are using the geo-
metric objects to model sets of entities and reason over them.
In this sense our work is also related to the classical Venn
Diagrams (Venn 1880), where the boxes are essentially the
Venn Diagrams in the vector space, and the presence or lack
of intersection between them is used as an indicator of an-
swer correctness.

3 Problem definition

We use a similar definition as in (Daza and Cochez, 2020).
A Knowledge Graph (KG) is defined as a tuple (V, E ,R, T ),
where V is a set of nodes representing entities, and E a set
of typed edges connecting the nodes. A function τ : V → T
assigns a type to every node, where T is a set of entity types.
Each edge in E corresponds to a relation between two nodes
vi and vj ∈ V , that we denote by r(vi, vj), where r ∈ R is
a relation type.

Given the KG, we can ask queries that seek certain enti-
ties based on some conditions. A way to define them is to
use conjunctive queries, which are a subclass of Existential
Positive First-order (EPFO) logic. They consists of conjunc-
tions of binary predicates, where entities (as anchors) and
query variables serve as arguments.

To better illustrate this, consider a KG of an academic in-
stitution, where students work on specific topics, and these
topics are related to their projects. Thus we can pose the fol-
lowing query:”get all the cities C, such that university U is
located in C, and both Alice and Bob lectured at U .” The an-
swers for that query are all the entities P which satisfy the
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Figure 2: The architecture of the model we are using (MPQE) (Daza and Cochez, 2020) takes as input a query graph and
outputs the final query embedding. The features of the graph nodes are embedding of entities in the KG. An R-GCN propagates
information across the graph, and an aggregation function is used to retrieve the final query embedding in R2d.

the following condition:

C.∃U,C : located in(C, T )

∧ lectured at(Alice, U) ∧ lectured at(Bob, U).
(1)

These conjunctive queries are formally defined as follows:

q[V?] = V? . ∃V1, . . . , Vk : e1 ∧ e2 ∧ ... ∧ en, (2)

where ei = r(va, V ), V ∈ {V?, V1, . . . , Vk}, va ∈ V, r ∈ R
or ei = r(V, V ′), V, V ′ ∈ {V?, V1, . . . , Vk}, V 6= V ′, r ∈
R. In the notation va represents a non-variable anchor en-
tity, V1, . . . , Vk are existentially bound variables, and V? is
the target variable (answer) of the query. Thus an entity is
considered an answer to the posed query if it satisfies the
defined conditions. The goal is to find the set of entities that
are valid answers and satisfy the query even when some of
the binary predicates would require a missing edge from the
KG. To address that problem and efficiently model a set of
entities in the vector space we use boxes (i.e. axis-aligned
hyper-rectangles. The benefits of this method is that unlike
single points, a box has an interior, thus if an entity em-
bedded as a box is and answer to a query also embedded
as a box, we model the entity box to have an intersection
with the query one. We operate on Rd. Every entity v ∈ V
has an assigned embedding ev ∈ R2d. In addition an em-
bedding method for the query is defined that maps the full
query to a vector q ∈ R2d. We further define a box in Rd by
p = (Cen(p), Off(p)) ∈ R2d as:

Boxp = {v ∈ Rd : (3)
Cen(p)−Off(p) � v � Cen(p) +Off(p)},

3.1 Scoring
We define two variants of scoring function for each entity in
the KG, that will be used in the learning process. Since box
embedding is described as:

p = (Cen(p), Off(p)) ∈ R2d,

...

... ...

Figure 3: Visualization of the Box embedding vector
(Box(p) ∈ R2d), in which the left half represents the Center
vector of the box (Cen(p) ∈ Rd), and the right half is the
Offset vector (Off(p) ∈ Rd).

The dimension-wise length of each side of a single box is
determined as follows:

lp = 2 ∗Off(p) ∈ Rd,
we also retrieve the dimension-wise overlap of the respective
box sides:

linter =Max(0,Min(pmax,qmax)−Max(pmin,qmin)),

where Min and Max are element-wise functions, p and q
are two boxes for which the intersection is calculated, and
the min and max subscripts are defined for the both boxes
as follows: pmax = Cen{q} + Off{q} ∈ Rd, pmin =
Cen{q} − Off{q} ∈ Rd.

Actual Volumes In the case of partial (full) overlap be-
tween two boxes (across all dimensions) the resulting figure
in the embedding space is again a box. Then by having the
length of the sides the actual box (or the intersection box)
the volume of it is:

V olume =

n∏
i=0

li



Figure 4: 2-dimensional sketch of entity boxes and query
box, where one of the entities has an overlap with the query
box, again of shape of a box.

where n is the total dimensions, li is the side length of the
box in dimension i. In case of calculating the volume of the
intersection box li represents the length of the overlap in
the corresponding dimension. To retrieve the volume of the
entity box which is outside the query one (Fig. 4), we simply
subtract the intersection volume (V olumeinside) from the
total box volume (V olumetotal) since both of them are axis-
aligned hyper rectangles, but the shape of the outer part is
more complex:

V olumeoutside = V olumetotal − V olumeinside (4)

The expected drawback of that metric has to do with two
extreme cases caused but the high dimensional embedding
space. The first is that boxes with side lengths across, a
lot of dimensions, below 1 will result in an a very small
V olume, with the risk to be rounded zero. The second is
the opposite the volume can become exponentially large of
the sides are too wide. Additionally in the case where at
least in one dimension there is no overlap at all the resulting
V olumeinside will be zero until and intersection is achieved
across all dimensions.

Pseudo Volume To address the aforementioned probable
problems with the calculation of the real box volume, we
propose a custom function that yet again make use of the
dimension-wise intersection of the sides. We denote it as
PseudoV olume and calculate it as follows:

PseudoV olume =

n∑
i=0

ln(1 + li) (5)

where n is the total dimensions, li is the side length of the
box in dimension i. In case of calculating the volume of the
intersection box li represents the length of the overlap in the
corresponding dimension. We are taking the normalized log-
arithm to account for the case of no intersection, which will
lead to a side of zero and−inf as a result in the summation.
The benefit of that function is whenever there is an inter-
section in at least one dimension the PseudoV olumeinside
value is not zero, thus the model has a changing value to help
the training. In order to obtain the PseudoV olumeoutside
for each dimension we take the difference between the full
side length of the box and the intersection length.

Distance Because initially there might not be any inter-
section between the query and its targets, and this will pose
setback in the loss function, since the intersection volume
will be zero until by chance they intersect, we define an ad-
ditional metric to help the learning process and to decrease
time of convergence by introducing the distance from the
entity box center to the closest point on the query box. This
distance is defined as:

distoutside(Cen{e};q) = (6)
‖Max(Cen{e} − qmax,0) +Max(qmin − Cen{e},0)‖1

where qmax = Cen{q} + Off{q} ∈ Rd, qmin =
Cen{q} − Cen{q} ∈ Rd (Fig. 5).

Figure 5: The Manhatan distance (L1 norm) between the
center of the entity box and the nearest corner of the query
box.

Score The final score has two forms depending on the
choice of Volume calculation method. By using the actual
volumes of boxes in the embedding space, the resulting
score function used during learning is:

scorevolume(e,q) = −ln(1 + V olumeinside) (7)
+ ln(1 + V olumeoutside) + distoutside(Cen{e},q)

where e is the entity box, q is the query box,
V olumeinside is the volume of the intersection box between
the query and entity boxes, V olumeoutside is the volume of
the part of the entity box that is not intersecting with the
query box, and distoutside is the distance in the vector space
between the entity box center and the nearest point part of
the query box. We are taking the logarithm of the volume to
scale down its value to be comparable to the distance metric,
and use one plus the volume to account the case where there
is no intersection and V olumeinside = 0. For the case of
PseudoV olume the score we obtain is defined as follows:

scorepseudovolume(e,q) =− PseudoV olumeinside
+ PseudoV olumeoutside,

(8)

where PseudoV olumeinside is the value for the
intersection box, calculated dimension-wise, and
PseudoV olumeoutside is the value for the part of the
entity box that is not overlapping with the query.



4 Model definition
At first we need to set the initial embedding for the entities in
the graph and the variable types. Since we are dealing with
boxes and each embedding is a concatenated vector contain-
ing theCen(e) ∈ Rd and theOff(e) ∈ Rd, we need to take
this into account, and not to begin with a fully random em-
beddings, which will be boxes all over the embedding space
with various sizes. To address this problem we propose to
sample the Center vector from a uniform distribution, this
results in a more evenly distributed boxes in the embedding
space.

Cen(e) ∼ U(a, b) (9)

To solve the problem of having random size boxes, we
sample the Offset vector from a normal distribution, to pro-
duce relatively similar box sizes.

Off(e) ∼ N(µ, σ2) (10)

Then we follow a similar procedure to (Daza and Cochez,
2020). When initializing the nodes on the query graph, each
one (v) has a feature vector, which is given by a one-hot
representation h(0)v with a total of N elements, where N is
the amount of entities in the graph. In the case of v being
a variable node in the query graph and not a known an-
chor it is represented by h

(0)
v with |T | elements, where T

is the amount of different node types. This one-hot embed-
ding serves as a key to a look-up matrix with the initial box
embeddings.

We define a matrix of entity embeddings Me ∈ R2d×N ,
where 2d is the dimension of the embedding space, because
each box is (Cen(p), Off(p)) ∈ R2d, and type embeddings
with the corresponding matrix Mt ∈ R2d×T . The resulting
node embedding function is as follows:

h(1)
v = emb(h(0)

v ) =

{
Meh

(0)
v ifv ∈ Vqe

Mth
(0)
vt ifv ∈ Vqv

(11)

The result is that each entity has its own embedding as a box
in the vector space, and each variable in the query graph is
initialized by a representation of its type.

After we have defined node features for the query graph,
we proceed of applying L steps of message passing with a
GNN. In order to address the influence from the neighbour
nodes and the task of link prediction, we employ a Relational
Graph Convolutional Network (R-GCN) (Schlichktrull et al.
2018). The benefits of the model are taking into account the
type of the relations involved and the neighbour nodes in the
graph, when updating the features of a node. We are using
the standard R-GCN propagation rule where at step l+1 the
representation of node v is given as follows:

h(l+1)
v = f

W
(l)
0 h(l)

v +
∑
r∈R

∑
j∈N r

v

1

|N r
v |
W(l)

r h
(l)
j

 ,

(12)
where h(l)j is the hidden state at layer l for node j, h(l)v is
the hidden state at layer l for node v, f is non-linearity (in

our case ReLU ), N r
v is the set of indices of neighbours of

node v through relation type r, and W
(l)
r is a relation spe-

cific weight matrix,and W
(l)
0 is the weight matrix for self-

connections in the R-GCN.
After L applications of the R-GCN layer, the representa-

tions of all the nodes from the query graph can be combined
to produce the vector in R2d that acts as a box embedding of
the query itself, by means of aggregation function φ:

qφ = φ
(
{h(L)

v |v ∈ Vqe ∪ Vqv}
)
; (13)

we continue with the definition of few options for that func-
tion.

Traditional aggregation functions can leverage the em-
bedding representations of other nodes in the query graph.
Simple permutation invariant functions include the sum and
maximum of:

qSUM =
∑
v∈Vq

h(L)
v , qMAX = max(h(L)

v , v ∈ Vq)

(14)
Given the method we interpret the query embedding as a
box, with the final goal of answer entities to be embedded
with an overlap to that box, using the qSUM will result in
larger box offsets and a further center location.

For alternative aggregation function we make use of Tar-
get Message (TM) aggregation function (Daza and Cochez,
2020). Let us denote with D the diameter of the query, to
represent the longest shortest path between two nodes in the
graph. In the query structures we are considering (Fig. 3),
d ∈ [1, 3]. By noting that at most D steps are needed to
propagate messages from all the query nodes to the target
node, an adaptive query embedding method is used. Given
the specific query structure and its diameter D the method
performs D steps of message passing in the R-GCN, and
then it selects the representation of the target node:

qTM = h
(D)
Tq

(15)

We also consider an aggregation function that considers
additional parameters (Hamilton et al. 2017), it passes all
the final representations of nodes taking part in the query
through a Multi-Layer Perceptron (MLP) and then sums the
result, which is uses as embedding for the query:

qMLP =
∑
v∈Vq

MLP
(
h(L)
v

)
(16)

The parameters of the model consist of entity and type
embeddings and the parameters of the R-GCN itself. As
in previous work on the task of query embedding (Ren et
al. 2020; Hamilton et al. 2018; Mai et al. 2019; Daza and
Cochez, 2020) we optimize the model using gradient de-
scent. Given a training set of queries q and their embed-
ding q, we optimize a negative sampling loss (Mikolov et
al. 2013):

L = −log σ(γ − score(e+,q))

−
k∑
i=1

1

k
log σ(score(e−,q)− γ), (17)


too much about concrete implementation 



Figure 6: Used query structures for evaluation on query an-
swering. Green nodes correspond to anchor entities, gray
nodes are the variables in the query, and the blue nodes rep-
resent the targets (answers) of the query.

where γ represents a fixed scalar margin, e+ is a positive
sample that represents an entity in the knowledge graph that
answers the query, and e− are negative samples which are
entities taken at random that are not a valid answer, but has
the same type as the target.

5 Experiments
We evaluate the performance of the model on the task of
query answering over incomplete knowledge graphs, by
considering 7 different query structures (see Fig. 6). These
structures are chosen such that to be comparable to other
related work (Ren et al. 2020; Daza and Cochez, 2020;
Hamilton et al. 2018; Mai et al. 2019). Namely we use three
types of chain queries with the range from one to three con-
necting relations (1-, 2-, and 3-chain), two intersection struc-
tures that are composed of different amount of anchor edges
(2- and 3-inter), and two complex ones that combine chain
and intersection parts (3-chain-inter and 3-inter-chain). The
goal is to test the model on the additional task of retrieving
multiple valid answers to a query, thus we also train and test
on queries with more than one answer, whereas in the vali-
dation test phase these queries rely on missing edges in the
KG.

5.1 Datasets
For our experiments we use publicly available knowledge
graphs that have been used in other literature of graph repre-
sentation learning (Schlichktrull et al. 2018) and query an-
swering (Daza and Cochez, 2020; Hamilton et al. 2018)
containing from thousands to millions of entities:

• AIFB: a KG of an academic institution, where entities are
persons, organizations, projects, publications, and topics;

• MUTAG: a KG of carcinogenic molecules, where entities
are atoms, bonds, compounds, and structures;

• AM: contains relations between different artifacts in the
Amsterdam Museum, including locations, makers, and
others;

Table 1: Statistics of the knowledge graphs that were used
for training and evaluation.

AIFB MUTAG AM

Entities 2,601 22,372 372,584
Entity types 6 4 5
Relations 39,436 81,332 1,193,402
Relation types 49 8 19

Table 2: Average number of multiple answers to different
queries structures, across the used datasets.

AIFB MUTAG AM
Structure Train Test Train Test Train Test

1-chain 3.4 1.2 1.9 1.1 1.2 1.0
2-chain 34.5 6.4 13.4 4.7 10.2 3.5
3-chain 47.0 7.2 17.6 5.4 13.8 3.7

2-inter 9.3 3.2 1.6 1.3 9.1 3.5
3-inter 5.1 2.8 1.0 1.0 7.4 2.9

3-inter-chain 15.5 4.2 1.9 1.7 10.3 3.5
3-chain-inter 22.8 5.6 2.6 2.3 15.2 4.4

A table with their statistics can be found in table 1.

5.2 Query generation
To obtain query graphs, we sample sub-graphs from the KG,
following the structures shown in Figure 2. For each query
depending on the structure, we sample anchor nodes and
also the relations between them, the variable nodes and the
target nodes. Then for that set of anchors, relations and struc-
ture we retrieve all the targets that are answers to the specific
query. In the case of 2-chain and 3-chain queries in some
cases the amount of valid answer is too high (over 100 000),
this happens due to existence of more than one central nodes
connected to multiple others via the same relation used in the
query. This is observed mainly in the datasets of AIFB and
MUTAG, whereas in the case of AM we observe similar be-
haviour in the query structure 3-chain-intersection, but yet
again high values for the cases of 2-chain and 3-chain. thus
we introduce a threshold of 100 answers for a given query,
in order to train on multiple different queries, but to keep up
to 100 valid answers per query. See table 2 for more details
on the the average number of targets after query generation.
Additionally for each query we obtain a negative sample,
these are entities that are invalid answers. For the case of in-
tersection queries, also a hard negative sample is obtained,
an entity that would be a valid answer of the conjunction is
relaxed to a disjunction.

5.3 Evaluation
The performance of the method is judged by queries that re-
quire information not present in the graph during the training



Figure 7: Model of the confusion matrix used for evaluation
of the results, the yellow box is representation of a query,
the green box and the red box are respectively a valid and a
invalid answer to the query.

phase. To achieve that initially we marked 10% of the graph
edges with label removed. During the query generation step
for each set of anchors, relations and a target we check if
all the edges are present in the graph and not marked as re-
moved, if so this query will be part of the training set, these
queries are used to optimize eq. (17). In the case where at
least on of the query edges is removed with probability of
10% we store it in the validation set, otherwise it is part of
the test set. In such a way we ensure that queries used for val-
idation/test contain at least one unseen edge in their graph.
This is done in order to evaluate the method performance be-
yond the traditional graph traversal techniques, which would
not find an answers because of the missing edges.
From the incomplete graph 2 million query targets are ex-
tracted and each respective query has between 1 and 100
valid answers. Additionally 300 000 query targets and their
corresponding queries are used for testing, and 30 000 are
used for validation in order to perform early stopping during
the training phase, the results are reported on the test set.
For the final evaluation we are using the box embeddings of
the query and the entities (the valid answers and the nega-
tive ones) to retrieve a binary score. The score reflects on
whether there is an intersection between the query box and
the entity box, meaning it is embedded as a valid answer,
and whether there is no overlap, thus not being an answer.
Then with the obtained binary scores a confusion matrix is
constructed to give the precision and the recall of the method
on the specific query type (Fig. 7).

5.4 Model
We evaluate the performance of the model under the dif-
ferent aggregation functions (SUM, MAX, TM, MLP). All
initial embeddings we initialize using the stated protocol
of sampling the Center form an uniform distribution in the
range [0, 10], and the Offset from a normal distribution with
mean = 3 and std = 1. We are using 3 R-GCN layers,
which is in correspondence with the TargetMessage aggre-
gation function, in which the amount of message passing

steps is given by the query diameter (in our case the maxi-
mum diameter of a query is 3). In the case of the Multi-Layer
Perceptron aggregation (MLP) we use similarly to (Daza and
Cochez, 2020) two fully-connected layers. In all the cases
the nonlinear function used in the models is ReLU. We min-
imize eq. 17 using the Adam optimizer with a learning rate
of 0.01, using an embedding of 64 dimension, which means
the effective boxes are embedded in a 32 dimensional vec-
tor space. For the implementation PyTorch and the PyTorch
Geometric library were used (Fey and Lenssen 2019). As
a baseline we consider the Graph Query Embedding (GQE)
method by Hamilton et al. (Hamilton et al. 2018) and also
the Message Passing Query Embedding (MPQE) method by
Daza and Cochez (Daza and Cochez, 2020). The main dif-
ferences between the two are the use of a projection and in-
tersection operators in the case of (Hamilton et al. 2018) and
the use of R-GCN layers in (Daza and Cochez, 2020). Since
both show comparable results tested on the data sets consid-
ered in the current work - AIFB, MUTAG and AM (Daza
and Cochez, 2020), but MPQE does not always outperform
GQE we will use the both.

6 Results
The model was trained for over 200 000 iterations, but still
we suspect it has not reached a convergence. We observe
that still no actual intersection occurred between the boxes
of the queries and the target nodes. We believe that it has to
be trained for more time, and maybe even to try lowering the
amount of train/test queries. In order to still produce some
results we examined the trained models on the AIFB dataset,
each with a different aggregation function. Since currently
we cannot evaluate it based on the presence of intersection
in order to produce a proper confusion matrix, we use the
L1 distance metric we defined in eq. (7) to check whether
at least the target entity box is ”moving” closer to the query
embedding in comparison to a negative node of the same
type. Even though the model using the Multi-Layer Percep-
tron was trained for a reasonable amount of iterations, it still
shows no improvement. Thus a further extensive testing on
the parameters used will be performed. On the other hand
both agregations SUM and TM show reasonable and close
results. TM has slightly better performance which we ex-
plain with the fact that it takes into account the diameter of
the query and uses the representation of the target node from
the last layer, whereas the SUM just sums the embedding of
all node taking part in the query graph. We observe a no-
tably higher results on queries that contain chain structures
in comparison to the intersection ones, which further moti-
vates an experiment that trains the model only on 1-chain
queries.

7 Future experiments
Regarding future testing on the model we are planning thor-
ough analysis on its performance using the MUTAG and the
AM datasets. Both have greater amount of entities differing
in magnitude, also an increase in the number of the relations
in the graph in comparrisson to AIFB (see Table 2). Regard-
ing the types of entities and relations in the three datasets,









Table 3: Percentage (%) of answers embedded closer to the
query box compared to a non answer, with regard to the
query structure, using different aggregation function. Tested
on AIFB dataset.

AIFB
Structure SUM TM MLP

1-chain 67.48 69.84 0.0
2-chain 68.78 75.85 0.0
3-chain 76.55 79.86 0.0

2-inter 62.09 63.10 0.0
3-inter 63.32 63.35 0.0

3-inter-chain 67.61 67.91 0.0
3-chain-inter 68.87 72.43 0.0

all of them have relatively same entity types, whereas the
main difference is observed in the relation types. Thus we
will perform an extensive test if any context clusters are
formed in the final embedding space. With MUTAG hav-
ing only 8 types of relations we are expecting the entities
that share context to be grouped closer to each other in the
vector space, and to observe lesser amount of and more con-
densed groups (or clusters) in comparrisson to the other two
datasets (AIFB with 49 relational types, and AM with 19).
We will check if for more uniform knowledge graphs, like
MUTAG, that hold information for strictly specific area (e.g.
carcinogenic molecules) it is easier to define and observe
context. MUTAG is observed to have reasonably low aver-
age amount of multiple answers in more complex queries
that include intersection (see Table 1.

We would perform test against all three datasets, by train-
ing only on 1-chain queries, and testing on all seven query
structures. As stated by (Daza and Cochez, 2020) this line
of training also proves to be successful in the task of query
answering even on structures that were not explicitly trained.
We will check that claim against our box embedding model
and the respective loss function.

A further investigation on the resulting size of the box
embeddings in the vector space will be conducted. The goal
is to check whether query boxes enlarge or shrink in accor-
dance to the amount of valid answers they contain, thus we
will answer the question if the query box size is relevant
of the amount of answers. Additionally to check if the en-
tities remain embedded as boxes with relatively large size
of they tend to shrink to an extent they can be just embed-
ded as point, thus we will make a direct comparison to the
Query2Box (Ren et al. 2020) method, where indeed they
embed the entities as points in the vector space. Thus we
will gather insight if the use of boxes as embedding for the
entities is actually more beneficial in the task of multiple an-
swer retrieval to incomplete knowledge graph, or the results

are comparable to the case where entities are points.
Regarding the scoring function we plan an extensive test

on which variant gives better results. Thus the scorevolume
and scorepseudovolume will be compared not only based
on the final results in embedding, but also the time it takes
for the model to converge, since V olumeinside changes
from zero only when there is an intersection across all di-
mensions, whereas PseudoV olumeinside has impact on the
score already when at there is an intersection in at least one
dimension.

Additionally an extensive hyper-parameter testing. We
will test different ranges for initial embedding regarding the
input parameters to the uniform and the normal distribution
parameters used in eq. (9) and eq. (10). Testing on different
values of the scalar margin γ used in the loss function, and
different number of the R-GCN layers needed (beside the
case of TM aggregation function, where the layers depend
on the size of the query).

8 Conclusion
In this work we presented a new method for query answer-
ing, that combines and further develops the use of embed-
ding both queries and entities in a lower vector space, as
axis-aligned hyper-rectangles, and the use or a Relational-
Graph Convolutional Network to perform the message pass-
ing between the relevant nodes, taking into account their
neighbours and the relations connecting them. We defined
a custom scoring that depend on the presence of intersec-
tion between the box embedding (either across all dimen-
sions or at least on one) and the distance between the boxes.
Due to constraints during training we were able to test it
partially only on one of the planned Knowledge Graph, but
still proves promising in the results. Further extensive exper-
iments are needed to conclude and adequately compare the
performance of the model with other models dealing with
the task of query answering.
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