
Master thesis
Business Analytics

An approach to map textual questions
to a response out of a predefined

response set.

Bob Mes (2650287)

August 2021

First reader:
Dr. M. Cochez

Second reader:
Drs. F. den Hengst

Vrije Universiteit Amsterdam

Faculty of Sciences

De Boelelaan 1081

1081 HV Amsterdam

Company supervisor:
J. Schouten

DutchChannels

Data team

Mozartlaan 27D

1217 CM Hilversum

1

Master thesis BA Vrije Universiteit Amsterdam

Preface

This thesis is written to fulfill the Master Business Analytics at the Vrije Universiteit (VU)
Amsterdam. The research was conducted from February 2021 to August 2021 at DutchChan-
nels, which provided access to customer service data and offered the opportunity to write this
thesis.

I want to thank Jesse Schouten for the excellent guidance, support, and feedback offered
throughout the internship.

Also, I want to thank Aron Peters, who unfortunately could not guide me through the whole
internship. However, the guidance and feedback in the first months were valuable.

I would also like to thank Michael Cochez for being the first supervisor and feedback throughout
the internship. Also, I would like to thank Floris den Hengst for being the second supervisor
and reading the report.

Bob Mes
Amsterdam, 13-8-2021

2

Master thesis BA Vrije Universiteit Amsterdam

Abstract

In the last years, consulting companies have used machine learning to support their clients in
making decisions. Especially in the area of Marketing and the Internet of Things, models are
needed that can deal with many data, unstructured data, and text. DutchChannels also want
to support their customers via Chatbot. This study proposes a model to answer questions in
a well-defined domain, the Subscription Video On Demand (SVOD) Customer Service (CS)
domain. Therefore a model should be developed that maps a textual question to a predefined
response.

The dataset in this research is gathered from the DutchChannels customer service. This data
comes from two different channels: New Faith Network and withLove. Besides English also
Dutch, Norwegian, and Swedish are present in the data. To create one dataset, all questions
are translated to English, and the two channels are merged. The nature of the gathered data
is sources like mail, Facebook, and a portal. Before this dataset was workable, some data
preparation should be done. To solve this problem as a multi-class classification problem,
all agent responses were matched with one of the predefined responses. This was done using
word2vec and the soft cosine similarity score. After, evaluation we choose only to keep the top
scores resulting in a final data set of size 16,905 with an estimated error (in the matching) of
3.5% and a margin of error of 3.8% with 95% confidence.

Two different kinds of classification models are tested. First, multi-class classification models.
These models are trained to classify the type of question. Then with this classification, the
corresponding response to that type is returned to the customer. For this model, the textual
question would first be processed by an NLP pipeline. The text would undergo some transfor-
mations like spellchecking, stopword removal, and lemmatization. A feature vector would be
made with a TF-IDF score for uni- and bigrams and 20 LDA topics with the processed text.

The second classification models that are tested are the binary classification models. These
models get as input the word embeddings of the textual question and the word embedding of
the standard responses (one for one). The question and standard response will be encoded to
a vector by the same network. With these encodings, a matching score will be calculated. The
standard response with the highest matching score will be returned to the customer.

The end result yields a model that can map a textual question to a response. Overall, the
random forest had the best performance with an accuracy of 0.55 and a recall@5 of 0.82. Of
the binary classification models, the BiLSTM + attention network performed the best with an
accuracy of 0.46 and a recall@5 of 0.71.

3

Master thesis BA Vrije Universiteit Amsterdam

Contents

1 Introduction 6
1.1 Chatbots . 6
1.2 DutchChannels . 6
1.3 Research goals . 6
1.4 Report structure . 7

2 Literature study 8
2.1 Chatbot types . 8
2.2 Retrieval-based methods . 9

2.2.1 Vector space model . 10
2.2.2 End-to-end matching methods . 11

2.3 Generative-based models . 12
2.3.1 Modular methods . 13
2.3.2 End-to-end generative methods . 13

2.4 Hybrid models . 13

3 Exploratory Data Analysis 15
3.1 Raw data . 15

3.1.1 Ticket file . 15
3.1.2 Conversation file . 16

3.2 Data cleaning . 17
3.2.1 Cleaning ticket data . 17
3.2.2 Cleaning conversation data . 17

3.3 Data Analysis on final dataset . 20

4 Experimental Setup 24
4.1 Implementation of the two kinds of classification models 25

4.1.1 Multi-class classification models . 25
4.1.2 Binary classification models . 25

4.2 Preprocessing . 26
4.3 Cross validation procedure . 28
4.4 Performance metric . 28

4.4.1 Classification metrics . 28
4.4.2 Ranking metrics . 29

5 Models 30
5.1 Baseline models . 30
5.2 Random model . 30
5.3 Max class model . 30
5.4 Bag of words model . 30
5.5 Classification models . 30

5.5.1 Features . 30
5.5.2 Hyperparameter search . 31
5.5.3 K nearest neighbours . 31
5.5.4 Logistic regression . 32
5.5.5 Random forest . 32
5.5.6 Support vector machine . 34
5.5.7 XGBoost . 35

4

Master thesis BA Vrije Universiteit Amsterdam

5.6 Binary classification models . 36
5.6.1 Data transformation . 36
5.6.2 Global parameters . 36
5.6.3 Dual Encoder LSTM . 37
5.6.4 Dual Encoder Bidirectional LSTM . 38
5.6.5 Dual Encoder Bidirectional LSTM and CNN 38
5.6.6 Dual Encoder Bidirectional LSTM and Self-Attention 39

6 Results 42
6.1 Performance of the models . 42
6.2 Certainty of predictions . 44

7 Value of implementation for DutchChannels 46

8 Conclusion 48

9 Discussion 50

Appendices 56

A The 46 predefined classes/responses 56

B Most frequent bigrams 58

C Classification results 59

D Ranking results 60

E Character and sentence counts of the questions 62

F Classification results per class 63

G Distribution tickets period (12-07-2021 until 08-08-2021) 73

5

Master thesis BA Vrije Universiteit Amsterdam

1 Introduction

In the last years, consulting companies have used machine learning to support their clients in
making decisions. Especially in the area of Marketing and the Internet of Things, models need to
handle a lot of data, unstructured data, and text. Experts have estimated that eighty to ninety
percent of data in any organization is unstructured, and this amount is growing significantly.
Therefore, techniques that can deal with unstructured data like text need to be developed and
improved. In this study, we propose a model to answer questions in a well-defined domain, the
Subscription Video On Demand (SVOD) Customer Service (CS) domain. A chatbot could, for
example, help run a helpdesk, react to social media messages, or help choose from a series of
products.

1.1 Chatbots

A chatbot is a conversational agent that can interact with humans using natural language.
Chatbots are being developed for multiple domains and different reasons. Chatbots are devel-
oped to answer questions, imitate someone’s writing style, and do many other things. Chatbots
can be classified into two types: retrieval-based and generative-based. As the name suggests,
a retrieval-based chatbot will retrieve the utterance the chatbot will give. This utterance is
retrieved from a predefined set of utterances. Because this chatbot retrieves its utterances from
a predefined set, it is suitable for a closed-domain chatbot. A generative chatbot generates the
utterances itself. This is an exciting field of study because this process, on the surface, will be
more like that of the human mind.

1.2 DutchChannels

DutchChannels is a Subscription Video On Demand (SVOD) company that creates SVOD
channels for niche audiences. The two largest channels are New Faith Network (NFN) and
WithLove (WL), and the company also has some smaller Channels like TheaterThuis. New
Faith Network is a Channel for Christians that offers the largest selection of Christian films,
series, and own productions in the eight countries in which they are active. WithLove is a
Channel for people that love romantic feel-good films and series and is currently active in 4
countries with many more planned in 2021. DutchChannels was established in 2017 and is
growing fast. The company saw its overall subscriber base grow by more than 400% in 2020.
Such fast growth also brings challenges with it. One can expect a significant rise in the number
of questions asked to Customer Service (CS). The company can do several things to keep the
three crucial Key Performance Indicators (KPIs) response time, resolution time, and customer
satisfaction at reasonable levels. The two most obvious ones are expanding its already large
CS team or creating a chatbot (that reduces pressure on CS). The advantages of creating a
chatbot are that it is cost-effective and ”works” 24 hours a day, seven days a week. Enabling
and helping customers find their answers or point them in the right direction at any time.

1.3 Research goals

The main objective of this study is to map a question to the right response out of a predefined
set of responses. When the mapping is done to high quality, many questions could be answered
without the interference of a human. The research question of this paper is:

How do classification models perform when mapping a textual question to a predefined set of 46
answers from the subscription video-on-demand domain?

6

Master thesis BA Vrije Universiteit Amsterdam

In this research, different types of classification models will be tested.

• Multi-class classification

• Binary classification (point-wise ranking)

With multi-class classification, the textual question will be mapped to a class, and the chatbot
will return the corresponding response of that class. The models that will be tested for multi-
class classification are K Nearest Neighbors (KNN), Logistic Regression (LR), Random Forest
(RF), Support Vector Machine (SVM), and XGBoost (XGB).

With binary classification, all the predefined responses will get a score (in combination with
the question), and the chatbot will return the response with the highest score. For binary
classification, the dual encoder architecture is tested. We tried to enhance the performance
of this architecture by adding different layers like BiLSTM, CNN, self-attention, and 1-max
pooling layer.

1.4 Report structure

The report is structured as follows. Chapter 2 is a literature study on chatbots. First, the
different types of chatbots are described. Hereafter some insight is given to different techniques
used to match context and responses. In chapter 3, the data that is used in this research is
analyzed. Also, the cleaning procedure of this data is discussed in this chapter. In chapter
4, the experimental setup of this research is given. The implementation, preprocessing, cross-
validation procedure, and performance metrics are exhaustively discussed. Then in chapter 5,
all the models that are tested are described. In chapter 6, the results of the models on the test
set are investigated. Hereafter in chapter 7, the value of implementing two of these models for
DutchChannels is discussed. In the last two chapters, the conclusion and discussion are given.

7

Master thesis BA Vrije Universiteit Amsterdam

2 Literature study

As we study the literature around chatbots, we note a wide variety of chatbots and chatbot
techniques. In section 2.1 we will discuss the different chatbot types. Retrieval-based and
generative-based models are described in sections 2.2 and 2.3. In section 2.4 a combination of
these two models is reviewed (called hybrid models).

2.1 Chatbot types

There are multiple ways to categorize chatbots [2]. A common way to divide chatbots is on
how they produce their answer [61] [12] and on what domain they work [2]. In figure 1 a rough
categorization using the above mentioned characteristics is shown. In this figure, chatbots
are categorized into four different sections. The type of domain the chatbot operates (open
or closed) and how the chatbot gives his/her answer (retrieval or generative). Open-domain
chatbots are chatbots that operate on an open domain. This means that it can answer a
variety of different topics. On the other hand, close domain chatbots only answer questions of
a specific domain. Therefore, a chatbot that can answer a wide variety of questions like the
weather, the price of stock x, did Ajax win the Eredivisie in 2020, etc., is classified as an open
domain chatbot. A chatbot that can only answer questions about the weather (for example) is
classified as a close domain chatbot. Hence, the chatbot that is made in this research will fall
under the closed domain chatbots.

Figure 1: Types of chatbots, from [23]

The next split is done on how the chatbot creates its answers. This can be done either
retrieval-based or generative-based. With retrieval-based, the chatbot retrieves its answer from
a (knowledge) database. Whereas generative chatbots generate their answers fully by them-
selves. In figure 1 we can see that chatbots can be categorized into the following groups:

1. Open-domain retrieval-based chatbots Chatbots in this domain receive their answers from

8

Master thesis BA Vrije Universiteit Amsterdam

a fixed set and give answers in an open domain. Hence, this set should cover an enormous
set of questions (any possible question you can think of). Alternatively, it could use a
search engine in the background to obtain their response set.

2. Open-domain generative-based chatbots This kind of chatbot again works on an open
domain and hence should answer all questions. However, generative chatbots can, in
theory, generate every answer that is possible. To do this, the chatbot should be able to
perform the same intellectual tasks humans successfully. Although this area is heavily
researched, we are far from completing this task.

3. Closed-domain generative-based chatbots Here the chatbot generates their answers on
a fixed domain of questions. Because of the generative character of the chatbot, it can
handle questions presented in the underlying dataset and new questions. This type of
chatbot is suited for more human-like interaction and can have its own ”personality.”
Nevertheless, there are also some downsides to this kind of chatbot. Generating answers
increase the complexity of the problem by a lot. These answers can have grammatical
and spelling errors, and the chatbot often learns a global/standard response like ”I do
not know” to a lot of questions [52] [12].

4. Closed-domain retrieval-based chatbots In this area, the chatbot is made to answer ques-
tions on a specific domain. This means it is not designed to answer every question possible
but rather a fixed/predefined number of questions. Therefore, this problem can be solved
(to a certain level) with today’s techniques and machines. This is how most companies
solve/create their chatbot.

Lately, also a new type of chatbot has risen. The hybrid chatbot. This chatbot is a
combination of retrieval and generative-based chatbot.

2.2 Retrieval-based methods

A retrieval-based system should pick the most relevant response of a fixed set of responses.
In table 1 an example of how a retrieval-based should work is given. Here it is given a set of
two responses, and it should pick the first one to return. Matching two textual segments is
a challenging problem as the system needs to model the segments, as well as their relations
[62]. We will divide retrieval-based systems into two groups: vector space models and matching
models.

Context
C I would like to unsubscribe please.

Response
3 Thank you for your message, we regret to read that you wish to cancel your subscription.

You can do so by logging in via this website: www.newfaithnetwork.com/login.
After you have logged in, at the top of your screen, select ‘Account’ > ‘Membership’
> ‘Update’ > ’Cancel’.

7 Thank you for bringing this to our attention. We are working hard to solve this issue and
advise you to try it again later. Meanwhile we advise you to use the Google Chrome internet
browser on your device. You can enjoy New Faith Network here: www.newfaithnetwork.com/login.
Our apologies for the inconvenience.

Table 1: Example of response selection (taken from DC dataset)

9

Master thesis BA Vrije Universiteit Amsterdam

2.2.1 Vector space model

Vector space models are typically considered simple. Hence it is often used as a baseline.
Here a mathematical model is used to represent the text documents. This is done via Term
Frequency-Inverse Document Frequency (TF-IDF) [45]. This is a statistical method to calculate
the importance of a word in a document regarding its importance in a corpus. It presumes that
a word is important in a document when it appears a lot in that given document and is less
frequent in the whole corpus.

TF − IDF (wi,j) = TF (wi,j) ∗ log (
N

DF (wi,j)
) (1)

Here TF denotes Term Frequency which is the number of occurrences of the word in a
document, DF stands for Document Frequency which represents the number of documents that
contains the word, and N is the total number of documents in the corpus. TF-IDF is widely
used in Information Retrieval and still represents a strong baseline for multiple domains like
keyphrase extraction [26]. [35] also used TF-IDF as a baseline for their research. All the
utterances (of the dialogue) are concatenated and represented as a vector with TF-IDF scores
(for all the words). This TF-IDF vector is also created for all the candidate responses. Then it
hypothesizes that the “good” response is most similar to the context in terms of word frequency.
To obtain the similarity between two documents, the computed the cosine similarity.

cosθ =
d1 ∗ d2
∣∣d1∣∣ ∗ ∣∣d2∣∣

(2)

Where d1 and d2 are vectors for documents one and two (that need to be compared). A
limitation of this model is that the words in one document should exactly match the words in
the other document. This means two different words with roughly the same meaning will be
processed as different words. Hence, they do not positively influence the similarity score where
in reality, it should have.

Before any of the above calculations are done with text, it usually first undergoes different pre-
possessing steps. [29] and [58] stress the importance of preprocessing in text mining techniques
and applications. Some of the different preprocessing steps are:

• Tokenization: identifying individual tokens (e.g., word, punctuation) within a sentence.

• Part-of-speech tagging: the process of marking up a word as corresponding to a particular
part of speech

• Stop-word removal: the process of removing certain words. This is done because stop-
words, by definition, are meaningless words that have low discrimination power [33].

• Stemming: A technique to bring different alterations of a word back to its base word
[47]. The four common types of stemming are table lookup approach, successor variety,
N-gram stemmers, and Affix removal stemmers. [29]

• Lemmatization: A technique to bring different alterations of a word back to its base word.
With this process, a word is transformed back to its dictionary form (called lemma). [47]

• N-grams: stands for the number of tokens used as a feature. Where 1-grams (unigrams)
are features consisting of 1 token, 2-grams (bigrams) are features consisting of two tokens,
and so on. With N-gram models, the probability of a certain token following a sequence
of tokens is estimated.

10

Master thesis BA Vrije Universiteit Amsterdam

2.2.2 End-to-end matching methods

Here models are discussed that compute a matching score between the context and candidate
response. In outlines, these models look the same as the vector space in that they compute a
matching/similarity score between two vectors. However, the matching models consist of two
networks (encoders) that encode the context and response into a vector (instead of TF-IDF).
These models can backpropagate the result through the network (hence it learns), whereas the
vector space model is static (it cannot learn).

The input to models like these is usually word embeddings. Word embeddings are vectors that
represent a word [37]. These are the latent representations of the corresponding words, and
arithmetic operations are possible between words with these vectors. In equation 3 an example
is given. When adding the embeddings king and woman to each other, one would get the queen
vector.

embedding(king) + embedding(woman) = embedding(queen) (3)

There are different word embeddings techniques like word2vec from [37] or glove embeddings
[42]. Word2Vec uses a combination of the continuous bag of words (CBOW) and skip-gram
model. Both of these are shallow neural networks. CBOW will predict the current word based
on the context (words surrounding the current word), where the skip-gram model will predict
the surrounding words given the current word. This process is shown in figure 2. Then the
hidden representations of CBOW or the skip-gram model can be used as word embeddings (the
projection layer in the figure).

Figure 2: CBOW and Skip-gram, from [37]

GloVe, however, uses matrix factorization techniques on the word-context matrix. A large
matrix is constructed with rows representing a word and columns representing a context. The

11

Master thesis BA Vrije Universiteit Amsterdam

value in row i column j then stands for the number of times we see this word in this context.
This ”big” matrix is then factorized to yield a lower-dimensional matrix, where each row now
is a word embedding.

Matching models can be divided into single turn matching models and multi-turn matching
models. Single-turn models match the response only once with the whole context or with only
the last utterance. In comparison, multi-turn models match the response with each utterance
(in the context) separately and then aggregate these scores into a final score. These categories
both will be discussed in more detail in the following two sections.

End-to-end single-turn matching models The first end-to-end single-turn matching
model was the dual encoder of [34]. Here, they represent the context and candidate responses
using an embedding layer (that is finetuned during training). They use a siamese network
consisting of two RNNs with tied weights to produces encodings (vectors) for the context and
response. With these two vectors, the matching score is calculated in the following way:

match(c, r) = cTMr (4)

This approach is also used by [8] and has been widely used as a scoring model in information
retrieval and question answering [18]. Here c ∈ Rd vector representation of the context, r ∈ Rd

that of the response, and M ∈ Rdxd is a matrix that is learned by the model. This can be
thought of as a generative approach. Given some input response, we generate a context vector
with the product of ĉ = Mr. When ĉ and c are similar, the dot product between the two
vectors will give a high score. [34] evaluated the dual encoder by feeding it a list of candidate
responses (of size 10). Hence, one context is compared with ten responses. After this comparing
the responses are ranked accordingly to the binary probability given by the model. On this
ranking, they calculated recall 1, 2, and 5.

This is a framework has been the basis of multiple single-turn matching models. [28] tried
replacing the ”normal” RNN layer with a CNN or Bidirectional LSTM layer. [55] not only
changed layer types but also changed the loss function from binary cross-entropy to a hinge
loss function utilizing cosine similarity. Also, they researched adding a CNN or attention layer
on top of a Bidirectional LSTM layer. [60] proposed a system called MV-LSTM. This allows
the matching to be based on the positional sentence representations. In [10] they replaced
equation 4 with a cross product between vectors c and r connected to a fully connected layer
which ”predicts” the similarity score.

End-to-end multi-turn matching models [67] also exploited the word level similarity
between the context and responses. Two different similarity scores are computed in this model,
and the model is trained to minimize two losses. Both word and sequence level similarities are
computed. This model is called Sequential Marching Network (SMN).[63] improved the SMN
by matching the context with the response on multiple levels of similarity. Deep Attention
Matching Network (DAM) is an extension of the SMN. DAM is created by [68] and is entirely
based on the attention mechanism [4]. With this, they want to eliminate the limitations of
recurrent neural networks.

2.3 Generative-based models

Generative chatbots are like humans in that they generate responses word by word (however,
how they do this generation is not necessarily human-like). At first, they process the incoming
text, then generate a response to this text. This field is extensively researched in the last years
and applied in many different domains like machine translation, image captioning, etc. There
are two different architectures of generative models: modular and end-to-end.

12

Master thesis BA Vrije Universiteit Amsterdam

2.3.1 Modular methods

A modular architecture is composed of 4 key components:

1. Natural Language Understanding (NLU): Parses the incoming question (text) into pre-
defined semantic slots.

2. Dialogue State Tracker (DST): It processes the dialogue history and together with the
(new) information of the NLU, it will output the current dialogue state.

3. Dialogue Policy Learning (DPL): Uses the current state to choose the next action

4. Natural Language Generation (NLG): The NLG will generate a response based on the
chosen action.

This architecture has two main limitations [66]. One is the credit assignment problem, where
the user’s feedback is hard to propagate back through the architecture. The second problem
is the interdependence of the components. The input of a component is the output of another
component; hence when one component changes, the whole system changes. Nevertheless,
because the components are often made individually, an improvement of a component does
not necessarily mean improving the whole system. When one module is adapted to a new
environment, all the modules should be adapted accordingly to ensure global optimization.
Adapting components to a new environment requires significant human effort. With the rise of
neural networks, an increasing interest came in joining the multiple components in one module.
This resulted in the end-to-end architecture.

2.3.2 End-to-end generative methods

End-to-end models, as the name already says, do everything in one model. This kind of model
is widely adopted in many domains is it allows to alleviate the limitations of the modular
architectures. Therefore, less human interaction is needed. Also, when the whole model is
differentiable, the model can be optimized through backpropagation [21]. This is the main
advantage of end-to-end models over modular ones.

End-to-end generative models are trained on a large human-to-human conversation using
deep learning networks to learn to generate human-like text [48]. The encoder-decoder model is
one of the most used and powerful models for dialogue generation [15], [59]. [53] introduced the
first framework of the encoder-decoder model called sequence-to-sequence. The idea behind it
is to map the input sequence to the output sequence. This “simple” framework has impressive
performances in different NLP tasks, machine translation [65], dialogue generation [39], image
captioning [44], etc. However, generating responses is a difficult task. Because of the problems
with handling long conversations due to the memory issues of LSTM and RNN [5] utterances
generated by this framework were mostly short, and general [59]; [52].

Many extensions and improvements have been introduced to the encoder-decoder frame-
work. An important extension is the use of the attention mechanism [4], [36] what enables the
framework to better handle long sequences [56].

2.4 Hybrid models

Generative and retrieval models can also be combined into hybrid models. They are combining
the advantages of the two different approaches. For example, retrieval-based models often give
precise but dull answers, whereas generative-based models tend to give fluent but meaningless
responses. [51] propose a combined model that retrieves a response. With the original (input)

13

Master thesis BA Vrije Universiteit Amsterdam

text, this response is fed into a generator that returns a generated response. The retrieved and
generated response are then ranked using a re-ranker. In the case of [51], they used a Gradient
Boosting Decision Tree (GBDT) using several high-level features like term similarity, Topic
similarity, etc., as re-ranker.

14

Master thesis BA Vrije Universiteit Amsterdam

3 Exploratory Data Analysis

In this section, customer service data is analyzed from a customer service platform called
FreshDesk. Freshdesk enables a company to interact with the customer in many ways, like
email, a portal, or Facebook. This section provides details regarding the primary datasets and
data cleaning procedure used during this research.

3.1 Raw data

The raw data collected from the Freshdesk Application Programming Interface (API) consists of
two files. One file contains the customers’ first question, and another contains the conversations
between the customer and agent. With conversations meaning all the responses, the agent and
customer send to each other. The file with the first question will be referred to as a ticket file
(ticket is is a term in Freshdesk). The other file will be called the conversation file. Both files
will be further described in the following sub-sections.

3.1.1 Ticket file

The ticket file consists of the first question the customer asks the agent. Some other interesting
data that this file contains are type and subtype. This data is filled in manually by the agents
that treat the ticket. The columns of the raw ticket file are given in table 2.

Column type Columns
String subject, description text, due by, fr due by,

fwd emails, relpy cc emails, type, tags, cc emails, to emails
cf technical, cf payments, cf filmseries related, cf device, cf brand,
cf other, cf refund, cf cancellation, cf screenshot, cf acc and subs

Boolean fr escalated, is escalated, spam
ID (key) email config id, id, group id, product id, requester id, responder id,

status, priority, source, tweet id
Datetime created at, updated at

Table 2: Ticket dataset and columns

As one can see in table 2 subtype is not present. This is because the subtype is distributed
over different columns. All columns where the name start with ”cf” is a subtype column. The
different types (including a short description) that are present in the data are:

1. Account and subscription: This contains questions about their account, such as ’how do
I cancel’ or ’how do I become a member.’

2. Collaboration: Are messages of people that want to collaborate with DutchChannels.

3. Film/series related: Questions about the content of the platform.

4. Payments: Payment related questions like why the payment failed or different kinds of
payment methods

5. Technical: Questions about the technical part. These mostly question about how to watch
on tv and malfunctions. Also, questions like how to use subtitles belong to this type.

6. Other: All other types are in this category. This also contains Facebook comments.

15

Master thesis BA Vrije Universiteit Amsterdam

Figure 3: Distribution of the raw ticket dataset

The data is gathered from different sources. The most important sources are email, portal,
and Facebook. Before cleaning, the ticket file consists out of 93.161 rows. The data collected
comes from the two different platforms (NFN and WL) and consists of 4 different languages.
The distribution of the raw data is given in table 3.

NFN WL
Dutch 31,182 Dutch 19,116

Swedish 5,740 Swedish 1,303
Norwegian 4,872 Norwegian 567

English 20,558
Total 66,470 Total 22,021

Table 3: Distribution of the ticket dataset (before cleaning)

3.1.2 Conversation file

This file consists of all the utterances that are done on a ticket. This means all the answers
an agent (customer service employee) gives on the ticket and all the responses CS gets from
the customer. Because of this, the file has significantly more rows than the ticket file. The
conversation data consists of 157.370 rows. To this data, no metadata is added by the agents.
The raw ticket file is shown in table 4.

16

Master thesis BA Vrije Universiteit Amsterdam

Column type Columns
String body text, from email, bcc email, support email, cc emails, to emails
Boolean private, incoming
ID (key) id, user id, ticket id, source
Datetime created at, updated at

Table 4: Conversation dataset and columns

3.2 Data cleaning

Before one can work with the obtained data, much cleaning is required. In the next section,
the process of cleaning the ticket and conversation file is described.

3.2.1 Cleaning ticket data

The data has to be cleaned in multiple ways. In the ticket file, questions from all kinds of
platforms are collected. Because of this also Facebook comments (under posts of DutchChan-
nels) are present in the data. These are just comments (no questions) and hence do not carry
any value for training the chatbot. After deleting these comments, the leftover part is merged
with the conversation file (with an inner join). This way, all the tickets for which there is no
response are deleted. The distribution of the tickets over the channels and countries is shown
in table 5.

NFN WL
Dutch 12,448 Dutch 8,060

Swedish 3,303 Swedish 1,009
Norwegian 3,067 Norwegian 432

English 7,818
Total 28,967 Total 9,813

Table 5: Distribution of the ticket dataset (after cleaning)

In total, 38,780 tickets with responses of agents are collected. However, this does not mean
that the final data set has 38,780 question-answer pairs. Still, many of these ”first” questions
are not questions but comments or other things (like a question to cooperate). Also, in the
conversation following a ticket, customers sometimes ask another question, which means that
one ticket with its conversation can have multiple ”interesting” question-answer pairs available
for the final data set.

3.2.2 Cleaning conversation data

All the utterances of the agents are matched with the predefined responses. This is done so that
the chatbot can give general/standard responses to question, and this way, the problem can be
transformed into a classification problem. The matching is done in the following way. First,
a document vector was created for all the utterances and standard responses. This document
vector was obtained via TF-IDF, and word2vec [37]. A textual question is transformed into a
vector using the TF-IDF technique. The final text vector was obtained by multiplying the TF-
IDF scores with the corresponding word2vec embeddings and adding the resulting vectors to
create one vector of length 300. Then the soft cosine similarity score is computed between the

17

Master thesis BA Vrije Universiteit Amsterdam

utterance and all the standard responses. The soft cosine similarity is a lot like the ”regular”
cosine similarity score (described in section 2.2.1).

Soft Cosine(a, b) =
∑∑

N
i,j=1 aijbij

√

∑∑
N
i,j=1 sijaijaij

√

∑∑
N
i,j=1 sijbijbij

(5)

Where sij = sim(fi, fj), here fi and fj are features corresponding to the basis vectors and
sim(.) is a similarity measure. When there is no correlation between fi and fj this equation is
the same as the ”normal” cosine similarity formula 4.

The idea behind equation 5 is to compute the cosine similarity score of the text vectors
projected on a non-orthogonal basis, where the angle between two basis vectors is derived
from embeddings vectors of the corresponding words [50]. Because of this, text vectors with
different words but with (roughly) the same meaning will get higher similarity scores than with
using “normal” cosine similarity. To use word2vec and hence the technique mentioned above,
the languages other than English are translated to English. This is done via the Microsoft
translator.

To evaluate the matchings made with the technique above, bins are made on the similarity
score. For the different combinations of country and channel, these bins are evaluated. These
bins are too big to evaluate every question. Hence (random) samples out of the bins are taken
and evaluated. For all combinations except WL-NO, samples of size 60 were taken. For WL-
NO, samples of size 20 were taken. In table 6 the results of the evaluation are given. The
margin of errors are calculated with the following equation:

z ∗
√
p(1 − p)/

√
(N − 1) ∗ n

N − n
(6)

Where p is the sample proportion, z the z-score associated with a level of confidence, n the
sample size, N the population size.

Channel - Country Bin size Sample size Margin of error (95% confidence)
NFN - NL 1,825 60 12.5%
NFN - NO 503 60 11.9%
NFN - SE 459 60 11.9%
NFN - EN 1,071 60 12.5%
WL - NL 1,222 60 12.4%
WL - NO 59 20 18%
WL - SE 147 60 9.8%

Table 6: Bin and sample sizes with their margin of error

In figures 4 and 5, the percentage wrongly matched utterances per bin are given.

18

Master thesis BA Vrije Universiteit Amsterdam

Figure 4: Percentage wrong in NFN bins (1 is ”best” bin)

Figure 5: Percentage wrong in WL bins (1 is ”best” bin)

It is, of course, essential for the final performance of the chatbot to have a small number
of wrongly matched data present. As can be seen in the two figures is that the matching went
pretty well in the “best” bins but pretty quickly made too many errors. In table 7 the bins that

19

Master thesis BA Vrije Universiteit Amsterdam

are kept in the final data set are shown. We choose to keep the two best bins for all channel
country combinations to have sufficient data present from all combinations in our final dataset.
When the third-best bin was below 5% error rate, this bin is also added to the final dataset.

Channel - Country Bins taken
NFN - NL [1, 2, 3]
NFN - NO [1, 2, 3]
NFN - SE [1, 2]
NFN - EN [1, 2, 3]
WL - NL [1, 2, 3]
WL - NO [1, 2]
WL - SE [1, 2]

Table 7: The bins that are chosen for the final dataset

This resulted in a dataset of 17.543 matched utterances. This contains an estimated per-
centage of wrongly matched responses of roughly 3.5% with a margin of error of 3.01%. This
margin of error has a 95% confidence. Some manual manipulation is done after testing models
resulting in a final set of 16.905 records.

3.3 Data Analysis on final dataset

In tables 8 and 9 the distribution of the five least and most occurring question types are given.
As one can see, the dataset is highly imbalanced, with one type (cancel subscription) by far the
biggest one. The distribution of all question types are given in table 22 in appendix A. After
the top 3 most occurring types, there is a big gap to the other questions types. After this, there
is a standard decrease in the size of the types, with the least occurring type (app available)
having a size of only 15 rows. Figure 6 also confirm the highly imbalanced nature of our data.

Question type Number of occurrences Percentage of dataset
App available 15 0.0886%

Devices compatible 15 0.0886%
What is 15 0.0886%

Refund after trial period 16 0.0945%
Why subscription cancelled 17 0.101%

Table 8: 5 least occurring question types

Question type Bins taken Percentage of dataset
Cancel subscription 5675 33.55%

Technical issues 2727 16.12%
Account details 2726 16.12%

Watch tv 597 3.53%
Login details 515 3.04%

Table 9: 5 most occurring question types

20

Master thesis BA Vrije Universiteit Amsterdam

Figure 6: Distribution of the cleaned ticket dataset

To get a feeling of what kind of words are used in the questions, in figure 7 the most common
unigrams are given. In figure 22 in appendix B the most common bigrams are shown 1.

1This is after lemmatization and stopword removal

21

Master thesis BA Vrije Universiteit Amsterdam

Figure 7: Most commen unigrams present in questions

One can see that the most occurring unigrams and bigrams correlates with the most occur-
ring question type (cancel subscription) with unigrams like subscription and cancel and bigrams
like cancel subscription. The unigrams and bigrams fit the first expectation one has with the
most occurring words in this domain.

In figure 8 the distribution of the number of words is given. As one can see, all the histograms
are (highly) left-skewed. This was also expected from the data as the customer asks questions
succinctly. The boxplot (right figure) shows the same result but nicely shows that the data
still contains some outliers (long questions). These outliers will not be deleted from the data
as we assume that some customers also can ask long questions to the chatbot. In appendix E
the same figure (as figure 8) are shown but then for the number of characters and sentences.
These figures confirm the situation of figure 8.

22

Master thesis BA Vrije Universiteit Amsterdam

Figure 8: Histogram and boxplot of word counts

23

Master thesis BA Vrije Universiteit Amsterdam

4 Experimental Setup

The main focus of the experiments is to propose a model that retrieves the correct answer for
a question. Figure 9 describes the workflow used in this research.

Figure 9: Workflow used in research

First, some minor preprocessing steps are performed on the data, after which an explanatory
data analysis is conducted. Hereafter the project undergoes an experimental phase. The
first step in the experimental phase is to create some baselines and produces results with
these baselines. Hereafter, the multi-class classification models will be made. These models
will classify an incoming question to one of the created classes. Then the chatbot gives the
corresponding answer back. At last, the binary classification models are tested and created.
These models will match an incoming question with all the candidate responses.

24

Master thesis BA Vrije Universiteit Amsterdam

4.1 Implementation of the two kinds of classification models

In this section, the implementations of the two different kinds of researched classification models
are discussed.

4.1.1 Multi-class classification models

In figure 10 an overview of the implementation of the multiclass models is given. The first step
is data preprocessing. This is done with the pipeline described in section 4.2.

In the second step, the features are created from the processed text. These features include
TF-IDF scores and LDA topics. More about these features are described in section 5.5.1.

In the multiclass classification model step, a model will classify what kind of question the
user asks.

Finally, the corresponding answers of the predicted class are returned to the user.

Figure 10: Implementation multi-class classification models

4.1.2 Binary classification models

In figure 11 an overview of the implementation of the binary classification models is given. The
first step is converting the words to the corresponding word embeddings.

25

Master thesis BA Vrije Universiteit Amsterdam

In the binary class classification model step, a model will score all the predefined answers.
These represent how good this answer is for the question.

Finally, the predefined answers are ranked on the scores, and the answer with the highest
score is returned to the user.

Figure 11: Implementation binary classification models

4.2 Preprocessing

To enhance the performance of the models, the raw text will first undergo an NLP pipeline
shown in figure 12. The transformations are done on the right side (blue boxes) on the example
question ”Hello, why is my subscription of New Faith Network cencelled?”.

26

Master thesis BA Vrije Universiteit Amsterdam

Figure 12: Preprocessing pipeline of text

First, all the texts will be broken down into components. In this research, this is done by
separating the words on white space or punctuation. Then a spell checker is used to check

27

Master thesis BA Vrije Universiteit Amsterdam

and corrected misspelled words. The Hunspell 2 spell checker is used in this research. This is
a widely adopted spell checker used by LibreOffice, OpenOffice.org, Mozilla Firefox 3 Thun-
derbird, Google Chrome. After spelling, the tokens are concatenated and sent to a translator
if it is not English. The translator used in the research is the Microsoft Translator. All the
capital letters and punctuation is preserved because the Translator has a better performance
with these present in the text. After the translator step or check, the text is lowercased and
punctuation is removed. Then, the text is tokenized again. Hereafter all the stopwords are
removed from the text. This is done because stopwords, by definition, are meaningless words
that have low discrimination power [33]. At last, the leftover words are lemmatized.

4.3 Cross validation procedure

First, the dataset is split into a train and a test set. Table 10 gives the sizes of these two sets.
This is done in a stratified manner. This means that the distribution (of the target variable) is
kept the same in both the training and test set as in the original dataset.

Dataset Size (n) Size (%)
Train 12,685 75%
Test 4,229 25%

Table 10: Splitting procedure for dataset

After splitting the test set, a cross-validation scheme was used to evaluate the models and
hyperparameters. The splitting of the training and validation sets was stratified to ensure that
all classes are present in the train and validation set. Furthermore, a 3-fold cross-validation
scheme is used. Because of the highly imbalanced nature of the dataset oversampling is used
to balance this. In the cross-validation scheme, only the training set is oversampled, and the
validation set is not. This is done because we want the performance of the validation set to
imitate the test set’s performance. Hence, the distribution of the validation set should not be
altered (so it is as close as possible to the distribution of the test set). The final model will be
trained on the whole train set where all classes are oversampled to the exact size of the biggest
class. A drawback of this is that the model could overfit the examples that are sampled many
times.

4.4 Performance metric

The fact that two different kinds of models will be compared gives an exciting dynamic to the
problem. Because of this, both kinds of models will be evaluated with metrics usually used in
both fields. However, some of these metrics have a lot in common (even share the same name).

4.4.1 Classification metrics

Four of the most used classification metrics will be used. The formulas of these metrics are
given below. In these formulas, TP stands for true positive, TN for true negative, FN for false
negative, and FP for false positive.

Accuracy proportion of rightly classified predicitions over all predictions.

Accuracy =
TP + TN

TP + FN + TN + FP
(7)

2http://hunspell.github.io/

28

Master thesis BA Vrije Universiteit Amsterdam

Recall proportion of real relevant instances that where rightly classified as relevant.

Recall =
TP

TP + FN
(8)

Precision proportion of classified relevant instances that where really relevant.

Precision =
TP

TP + FP
(9)

F1-score the harmonic mean of precision and recall.

F1 =
2 ∗ Precision ∗Recall

Precision +Recall
(10)

4.4.2 Ranking metrics

Because this problem has one ground truth (instead of multiple ground truths), some standard
metrics like Precision@k and mean average precision (MAP) are not used.

Recall@k: The proportion of true labels (ground truths) present in top-k recommendations.

Recall@k =
of true labels captured in top k

of true labels
(11)

MRR (mean reciprocal rank): The average reciprocal of the ranks of the first accurate
label for all contexts.

MRR =
1

∣C ∣

∣C∣
∑
i=1

1

ranki
(12)

Here ∣C ∣ are the number of contexts, and ranki is the rank of the first found true label for
context ith.

29

Master thesis BA Vrije Universiteit Amsterdam

5 Models

In this section, the models that are researched are discussed. Also, the implementation and the
tuning of the models will be given.

5.1 Baseline models

Three different baseline models are used in this research. A random model, max class model,
and a bag of words model. In this section, the three models will be described.

5.2 Random model

This model, together with the most occurring model, will not use any information of the textual
question. This model gives a random response back from the candidate responses. Hence, the
chance that this model gives the correct responses to a question is

1

length(candidate responses)

5.3 Max class model

This model always predicts the most occurring class. The ranking version of this model will
consistently rank the most occurring class as one, then invariably the second most occurring
class as two, and so on.

5.4 Bag of words model

This model is more enhanced as the random model and is a frequently used baseline in NLP
[10] [35] [25] [19]. In section 2.2.1 this model is described in further detail.

5.5 Classification models

Here the different classification models are discussed. Besides a description and implementation
also some results of the hyperparameter search will be given.

5.5.1 Features

Features should be made for the multiclass classification models. In this research, two kinds of
features are made (and concatenated):

• TF-IDF features

• LDA features (topic modeling)

For all the uni- and bigrams, scores are calculated. However, not all these scores are input
to our models. Because the dimension of our input vector would be too large, we conducted
a chi-square test to reduce the dimension of the input vector. With this test, we test the
independence of the target variable with the feature (one for one). When the p-value of this
test is below our α we reject the null hypothesis and say that there is a dependence between the
target variable and the feature. One drawback of this method is that it tests the dependence
on a single feature. However, a combination of features could have valuable predicting power.
In our research, we chose an α of 0.025. This resulted in 678 TF-IDF features.

30

Master thesis BA Vrije Universiteit Amsterdam

To this TF-IDF vector, we will add 20 topic features. These topic features are created with
Latent Dirichlet Allocation (LDA) [7]. LDA is a probabilistic model used to discover ”topics”
that describe the entire corpus. It models each document as a mixture of K topics. Where K
is a predefined number of topics, each of these K topics is a mixture of terms present in the
corpus.

The idea behind adding these 20 topics is that with these topics, filtered words (by the
chi-square test) will still influence the prediction. Adding these 20 topic features to the 678
TF-IDF features results in a final feature vector of 698 features.

5.5.2 Hyperparameter search

For all models, a random search as proposed in [6] is done over a predefined grid. Random
search is chosen because it is easy to carry out (and hence implement) and is more efficient
than grid search. Also did a random search found better models in most cases than grid search
comparing the experiments of [31] and [6]. Suggesting that random search has sufficient power
to find the ”best” model or one of the best models when doing enough searches.

The sci-kit learn implementation of the random search was used to perform the hyperpa-
rameter search. For all models, 50 random searches are conducted.

5.5.3 K nearest neighbours

Description K nearest neighbours [54] is a type of instance-based learning or non-generalizing
learning. This algorithm does not attempt to ”learn” the underlying probability distribution
with a general internal model. However, it stores the training data. Then classification is
computed from a simple majority vote of the k closest (training) data points.

Implementation The sci-kit learn implementation in Python was used to obtain model results
for k nearest neighbors.

Hyperparameter selection K nearest neighbors is a straightforward model with a small
number of hyperparameters. The number of closest neighbors that are considered (k) is an
essential hyperparameter and is highly dependent on the problem. Besides k, two other hy-
perparameters were investigated. The weight each neighbor gets in the ”voting” and how the
distance of the neighbors to the point of interest is calculated. In table 11 the hyperparameter
grid of the random search is given.

Hyperparameter range
Number of neighbours [1, 3, 5, ... , 49]

Weights [uniform, distance]
Metric [euclidean, manhattan, minkowski]

Table 11: Hyperparameter grid for k nearest neighbour

The best model found in the random search had an f1-score of 0.503 and the following
hyperparameters:

• Number of neighbours: 9

• Weights: Distance

• Metric: Euclidean

31

Master thesis BA Vrije Universiteit Amsterdam

5.5.4 Logistic regression

Description Logistic regression [41] is a classification model, although his name suggests oth-
erwise. The probabilities describing the outcome of a single point are modeled using a logistic
function. Typically, it performs a binary classification. However, it can also perform multi-class
classification. This can be done by minimizing the multinominal loss across the entire probabil-
ity distribution or fitting a binary problem for each label and then using the one-vs-rest (OvR)
scheme.

ImplementationThe sci-kit learn implementation in Python was used to obtain model results
for linear regression.

Hyperparameter selection Three different hyperparameters are investigated for the logistic
regression. Different ways of penalizing a wrong matched are tried. Also, the regularization
parameter C and algorithm used to optimize (solver) are tested. C is the inverse regularization
strength. Thus a higher value specifies less regularization. The solvers and other hyperparame-
ters that are tried are given in table 12. Using the solvers newton-cg and lbfgs and minimizing
the multinominal loss (instead of using one-vs-rest), the model learns a true multinomial lo-
gistic model [3]. This indicates that the probability estimates should be calibrated then the
one-vs-rest scheme.

Hyperparameter range
Penalty [none, L1, L2]

C np.logspace(-4, 4, 20)
Solver [newton-cg, lbfgs, liblinear]

Table 12: Hyperparameter grid for logistic regression

The best model found in the random search had an f1-score of 0.451 and the following
hyperparameters:

• Penalty: L2

• C: 29.764

• Solver: Newton-cg

5.5.5 Random forest

Description Because random forest [11] uses decision trees, the decision tree will be highlighted
first. A decision tree uses the entire dataset to make a prediction. Decision trees consist out of
root, decision, and leaf nodes. In the root and decision nodes, the splits in the tree are done.
The root node creates the first split in the tree, the splits that follow are made in the decision
nodes. What split is done in the nodes is determined with the greedy algorithm. When no
more splits made can be achieved, the decision tree has come to an end. The last nodes of a
decision tree are called leaf nodes, and here the prediction is generated. When the problem is
a classification problem, the prediction will be the majority vote of the data points present in
the leaf node as shown in 13. Random forest will create several random subsets (of the data
and the features), after which different decision trees can be fitted to the different subsets. The
predictions of the several decision trees will be combined, after which this combination will
produce the prediction of the random forest.

32

Master thesis BA Vrije Universiteit Amsterdam

Figure 13: Random forest classifier, from [27]

Implementation: The sci-kit learn implementation in Python was used to obtain model
results for the random forest.

Hyperparameter selection Up to six different hyperparameters are investigated for the ran-
dom forest. The hyperparameters mentioned in [43] that can be tuned with the sklearn im-
plementation are tested. We also added the maximum depth of the trees and the number of
samples required to split an internal node. In table 12 the grid of the random search is given.

The best model found in the random search had an f1-score of 0.551 and the following
hyperparameters:

• Number of estimators: 800

• Max features: Auto

• Max depth: 60

• Min samples split: 10

• Min samples leaf depth: 2

• Bootstrap: False

33

Master thesis BA Vrije Universiteit Amsterdam

Hyperparameter range
Number of estimators [200, 400, 600, ..., 2000]

Max features [auto, sqrt]
Max depth [10, 20, 30, ..., 110, None]

Min samples split [2, 5, 10]
Min samples leaf [1, 2, 4]

Bootstrap [True, False]

Table 13: Hyperparameter grid for random forest

5.5.6 Support vector machine

Description Support vector machine [9] performs classification by finding the hyperplane that
differentiates the two classes ”well.” To find the ”best” hyperplane support vector machine will
”look” for the hyperplane whose distance to the nearest observation (maximum margin) is the
largest.

The abovementioned hyperplane is linear. However, not all problems can be solved by
linear decision boundaries. To be able to ”predict” nonlinear decision boundaries, SVMs use
the kernel trick. Via the kernel trick (a mathematical transformation), the data is projected in
a higher dimension. In this dimension, the ”best” hyperplane is searched (as described above
and hence linear). When projecting the final decision boundaries back on the original space
(lower dimension), it becomes nonlinear [16].

Implementation The sci-kit learn implementation in Python was used to obtain model results
for the support vector machine.

Hyperparameter selection The three hyperparameters that are tested are C, Gamma, and
Kernel. The kernel stands for the transformation of the ”original” data to a higher dimension.
In which one hopes the data is better predictable. Gamma is the coefficient used in the three
kernels that are tested. The larger gamma is, the more closely the model will try to fit the
training data. C is a regularization parameter of the model. The strength of the regularization
is inversely proportional to C. In table 14 the hyperparameter grid is given.

Hyperparameter range
C [0.01, 0.1, 1, 10, 100]

Gamma [1, 0.1, 0.01, 0.001, scale]
Kernel [rbf, poly, sigmoid]

Table 14: Hyperparameter grid for support vector machine

The best model found in the random search had an f1-score of 0.511 and the following
hyperparameters:

• C: 10

• Gamma: 1

• Kernel: rbf

34

Master thesis BA Vrije Universiteit Amsterdam

5.5.7 XGBoost

Description The way XGBoost (Extreme Gradient Boosting) [13] is a gradient boosting al-
gorithm designed to be highly scalable with also good performance 3. Boosting (in machine
learning) stands for the family of models that uses ”weak” learners to produce a final ”strong”
learner. These learners are built sequentially such that each subsequent learner aims to reduce
the errors of the previous learner. Hence, the learner that grows next in the sequence will learn
from an updated version of the residuals. XGBoost enhances the gradient boosting algorithm
in six different ways. It has the option to penalize through both L1 and L2 regularization. They
are smartly handling sparse data. The use of the weighted quantile sketch algorithm, because
this can effectively handle weighted data. It uses cache awareness, out-of-core computing, and
block structure of parallel learning from the computing side.

Implementation The xgboost4 implementation in Python was used to obtain model results for
the support vector machine. This implementation is easy to use with the sci-kit learn package.

Hyperparameter selection In table 15 the hyperparameters that are tuned for the xgboost
algorithm in this research are given. The number of estimators is the number of weak learners
that are built. Learning rate stands for the shrinkage size used after each boosting step. This
makes the boosting process more conservative. The subsample is the proportion of the training
data that is sampled for growing a new learner. Max depth is the maximum depth of a learner
(tree). Colsample by tree is the proportion of features (columns) to be sampled for growing a
new learner. Min child weight stands for the minimum instances needed in a child. When a
partition step results in a child with fewer instances than min child weight, the building process
will give up further partitioning.

Hyperparameter range
Number of estimators int(150, 1000)

Learning rate uniform(0.01, 0.6)
Subsample uniform(0.3, 0.9)
Max depth [3, 4, 5, 6, 7, 8, 9]

Colsample by tree uniform(0.5, 0.9)
Min child weight [1, 2, 3, 4]

Table 15: Hyperparameter grid for XGBoost

The best model found in the random search had an f1-score of 0.539 and the following
hyperparameters:

• Number of estimators: 165

• Learning rate: 0.079

• Subsample: 0.708

• Max depth: 4

• Colsample by tree: 0.753

• Min child weight: 1
3List with XGBoost winning solutions on Kaggle: https://github.com/dmlc/xgboost/tree/master/demo#machine-

learning-challenge-winning-solutions
4https://xgboost.readthedocs.io/en/latest/index.html

35

Master thesis BA Vrije Universiteit Amsterdam

5.6 Binary classification models

In this section, the models that are tested are discussed. Also, the hyperparameters that are
used are described. For these models, no hyperparameter tuning is done. We choose to use the
same hyperparameters of the corresponding papers.

5.6.1 Data transformation

Before the models can be trained, the data should be transformed. This is because the models
expect binary labels. In figure 14, the flow of this transformation is shown. First, we add the
column label to the original dataset (16,000 rows). This column will be filled with 1’s because
we assume that the matching (between questions and answers) is good. Then we will upsample
all the classes that are below 500 to 500. This is done to let the model see a significant number
of examples for all classes. We did not just copy-paste the data but matched the question
randomly with an answer of the same class. Hence, creating ”new” examples instead of just
adding the same examples. As last negative sampling is performed to create negative samples
(samples with label 0). Negative sampling has, in general, a positive impact on the models’
performance [38]. For negative sampling, we randomly sampled an answer from the dataset.
However, we concluded all the ”right” answers from the set we sample from. Because of this,
all the negative sampled matchings are 100% negative. We negative sampled the whole data
set 3 times. Creating a ratio of positive-negative samples of 1:3. In table 16 the distribution
and the absolute number of positive and negative samples are given.

Figure 14: Flow of the transformation of the dataset

5.6.2 Global parameters

All the matching systems are implemented with Keras backed by Tensorflow [1]. Furthermore,
the models were trained on a single NVIDIA GeForce GTX 1650 Ti GPU. Also, for all models,

36

Master thesis BA Vrije Universiteit Amsterdam

size (n) size (%)
Positive samples 29,842 25%
Negative samples 89,526 75%

Total 119,368 100%

Table 16: Distribution final train data for binary classification models

the embedding layer is initialized with the Glove embeddings (of dimension 300) [42]. In
training, all the models will finetune this embedding layer. We limited the size of both the
context and the response to 160 words.

Further learning hyperparameters used by all models are:

• number of epochs: 50

• learning rate: 0.001

• Optimize: Adam

• Recurrent layer: 1

5.6.3 Dual Encoder LSTM

Description The dual encoder of [34] is already partly discussed in section 2.2.2. Here a
more precise description of the system will be given. In figure 15 a global representation of
the network is given. First, the embeddings of the context (question) and response (one of the
candidate responses) are fed in the network. This embedding layer is part of the network and
is learned in the training process. Both inputs will then be encoded in a vector of size d. In the
figure, it seems that two different recurrent networks perform the encodings. However, this is
a siamese neural network that shares the weights between them. Hence, both the context and
response are encoded by the same recurrent network as in [34] [35]. Also, this approach got
better results than using two different networks in experiments conducted by [55]. In equations
13, 14, and 15 the dual encoder in (simplified) mathematical expressions are given. Here f
stands for the neural network that will encode the input. In our experiment, we choose to
use an LSTM architecture instead of an RNN architecture. This is done because LSTMs are
designed to solve the vanishing gradient problem of vanilla RNN [24]. Therefore LSTMs are
more suited for working with long texts than vanilla RNNs [22]. Also, in the experiments of
[35] LSTM outperformed RNN.

[24]
c = f(Context) (13)

r = f(Response) (14)

p(y = 1∣c, r) = σ(cTMr + b) (15)

37

Master thesis BA Vrije Universiteit Amsterdam

Figure 15: Diagram of the dual encoder, from [35]

Hyperparameters The number of hidden (LSTM) units were set to 300 as in [10]. In training
this model, a batch size of 256 is used. These hyperparameters result in architecture given in
equation 16. Here the output dimension of the layer is given between brackets.

Input(160,300)Ð→ LSTMlayer(300) (16)

5.6.4 Dual Encoder Bidirectional LSTM

Description Normal direction LSTM suffers from not utilizing the information from future
input (tokens/text). Bidirectional LSTM [46] counters this problem by processing a sequence on
two directions (forward direction, backward direction). For these two different directions, it also
outputs two independent sequences of LSTM output vectors. The output of the Bidirectional
LSTM is the concatenation of the two output vectors of both directions (as is shown in equation
17).

ht = h
Ð→
t ∣∣h

←Ð
t (17)

Hyperparameters To keep the weights (LSTM units) the same between the LSTM and BiL-
STM models, we set the hidden units to 150 for both directions. Resulting in 300 units (the
same as the LSTM). In training this model, a batch size of 64 is used. This is done because
of the limitations of the GPU used. These hyperparameters result in architecture given in
equation 18. Here the output dimension of the layer is given between brackets.

Input(160,300)Ð→ BiLSTMlayer(300) (18)

5.6.5 Dual Encoder Bidirectional LSTM and CNN

Description The QA-LSTM/CNN proposed in [55] inspires this model. In figure 16 the
architecture of the system in [55] is given. On top of the bidirectional LSTM layer, a CNN layer
is built. While CNN’s original use was for computer vision [32], have they also been successfully
applied to the field of NLP [30]. In this architecture also a 1-max pooling layer is applied to the
convolutions. This will result in an encoding vector with the same dimension as the number of
filters in the convolution layer. ”The intuition of this structure is, instead of evenly considering
the lexical information of each token as the previous subsection, we emphasize on certain parts
of the answer, such that QA-LSTM/CNN can more effectively differentiate the ground truths

38

Master thesis BA Vrije Universiteit Amsterdam

and incorrect answers.” [55]. The one change that is done in this research is that we changed
the cosine in figure 16 with the score function of the original dual encoder in [35] (equation 15).

Figure 16: QA-LSTM/CNN, from [55]

Hyperparameters For the BiLSTM again, 150 units in both directions are used. The filter
with of the CNN is set to 2 as [55] saw no improvement when increasing. The number of filters
is set to 1000 as they also saw no significant improvement in increasing this number to 2000
or 4000 in [55]. In training this model, a batch size of 64 is used. This is done because of the
limitations of the GPU used. These hyperparameters result in architecture given in equation
19. Here the output dimension of the layer is given between brackets.

Input(160,300)Ð→ BiLSTMlayer(160,300)Ð→

CNNlayer(160,300,1000)Ð→

Max − pooling Ð→ Output(1000)

(19)

5.6.6 Dual Encoder Bidirectional LSTM and Self-Attention

Description Self-attention [64], also known as intra-attention, is a mechanism to transform
word embeddings to contextualized embeddings. Where word embeddings only contain infor-
mation about the word, contextualized embeddings incoorporates also information about the
context (sequence) in which the word is used. In figure 17, a visual representation of self-
attention mechanism is given. In equations 20, 21, and 22 the equations of the self-attention
mechanism are given 5. Where xi is the word embedding of token i (in the sentence, Wk, Wq,

5These equations are tailored to figure 17, hence when equation 21 is done in different order (like w
′

ij = qTi kj)
softmax should be applied row wise and equation 22 should be yi = ∑j wijvj

39

Master thesis BA Vrije Universiteit Amsterdam

and Wv are matrices that are learned by the model. With these matrice the query (qi), key
(ki), and value (vi) vectors are made per token embedding. Multiplying the transposed query

matrix with the key matrix result in the attention score matrix (w
′

). Applying the softmax
column wise (so that the columns sum to 1) result in the attention weight matrix (wi). Via
equation 22 the final contextualized embeddings are obtained.

Self-attention has been successfully applied to multiple tasks in NLP. Examples are ab-
stractive summarization [40], machine reading [14], and learning task-independent sentence
representations and language understanding [49]. Also, is it the core idea of the multi-head
self-attention of the Transformer [57]. Because of these successful implementations, we also
opted to test self-attention in the dual encoder architecture. We used the same architecture as
the dual encoder Bidirectional LSTM and CNN (described in section 5.6.5). In this experiment,
the CNN layer is replaced with a self-attention layer. This layer outputs the same dimension
as it gets as input. A max-pooling layer is applied over the output of the self-attention layer
(in the time dimension).

ki =Wkxi

qi =Wqxi

vi =Wvxi

(20)

w
′

ij = k
T
i qj

wij = softmax(w
′

ij), softmax applied column wise
(21)

yi =∑
j

wjivj (22)

40

Master thesis BA Vrije Universiteit Amsterdam

Figure 17: Self-attention mechanism, from [20]

Input(160,300)Ð→ BiLSTMlayer(160,300)Ð→

Self − attentionlayer(160,300)Ð→

Max − pooling Ð→ Output(300)

(23)

Hyperparameters For the BiLSTM, again, 150 units in both directions are used. In training
this model, a batch size of 64 is used. This is done because of the limitations of the GPU used.
These hyperparameters result in architecture given in equation 23. Here the output dimension
of the layer is given between brackets.

41

Master thesis BA Vrije Universiteit Amsterdam

6 Results

In this section, the result of the models on the test set will be investigated. First, we will do this
via the performance metrics described in section 4.4. However, the certainty of the predictions
will also be discussed as this can be of important information on the workings of the models.
We want a model that gives good predictions but is ”certain” about the predictions when it
predicts right.

6.1 Performance of the models

The models are judged based on the classification and ranking metrics that are described in
section 4.4. In figures 18, 19, and 20 the classification metrics of the models on the held-out
test set are given. For precision and f1-score, the weighted average is given. The weighted
average recall is not shown because this is the same as the accuracy in the multi-class case.
In appendix C the results of the figures are given in table form and in appendix F the above
mentioned metrics are given per class. The figures show that random forest stands out with
the best performance on all metrics except precision. This implicates that the random forest
(on weighted average) predicts too many positives (for classes) where it should not be positive.
However, the accuracy of the random forest is by far the largest, which implies that the random
forest finds the largest proportion of the actual positives. Also, the f1-score (combination of
recall and precision) is the highest for the random forest. Furthermore, almost all models
outperform the baseline used in this research. The max class baseline outperforms only the
logistic regression. In appendix C the classification metrics are given per class for all models
except baseline models. What notices is that all models perform well on the classes that have
the most examples. This was also to be expected.

Figure 18: Classification results of the baseline models

42

Master thesis BA Vrije Universiteit Amsterdam

Figure 19: Classification results of the multi-class models

When only looking at the binary models in figure 20 we see the same pattern as by the
classification models. Also, here one model (BiLSTM + attention) is the best on all metrics
except precision, which means that compared to the other models, this model predicts more
times a class true when in reality it is false.

Figure 20: Classification results of the binary models

The scores on the ranking metrics are given in table 23. In appendix D the ranking results are
given in figures. Random forest and support vector machines are the two models that perform
the best on the ranking metrics. Of the matching models also again the BiLSTM + Attention
model performs the best (on all the metrics). However, the max class baseline performs well
on these metrics. Only random forest, support vector machine, and XGBoost performed better
than max class baseline on all metrics. Of the binary models, no model performs better than

43

Master thesis BA Vrije Universiteit Amsterdam

the max class baseline. The BiLSTM + Attention model is the only one that can ”compete”
with recall@5 and recall@10 almost as high and MRR significantly higher than the max class
baseline.

Model recall@5 recall@10 MRR
Random baseline 0.11 0.22 0.07

Max class baseline 0.72 0.84 0.50
TF-IDF baseline 0.35 0.49 0.21

KNN 0.58 0.60 0.49
LR 0.72 0.86 0.50
RF 0.82 0.90 0.67

SVM 0.82 0.91 0.66
XGBoost 0.78 0.88 0.61

LSTM 0.66 0.70 0.51
BiLSTM 0.64 0.78 0.50

BiLSTM + CNN 0.57 0.68 0.50
BILSTM + Attention 0.71 0.82 0.57

Table 17: Results of the models on the ranking metrics

6.2 Certainty of predictions

Here the ”certainty” of the random forest and BiLSTM + Attention are discussed. This is done
by comparing the probability/match score of the predicted class and the difference between the
predicted class and the second-highest class on good and bad classified instances. In figure
21 density plots of these scores are given for random forest and BiLSTM + Attention model.
Note that the probability (random forest) value and match score (BiLSTM + Attention) should
not be compared. One is a probability, and summing them all (for all classes) will result in
1. The match score, in theory, summing them all could result in 0 or 46. When looking at
the probability of the predicted class of random forest (upper left figure), one notices that the
probabilities are higher for the true label. The difference figure (upper right) is even more
visible between good and bad predictions. At the bottom of the figure, the same two figures are
given for the BiLSTM + attention model. This model, in general, predicts pretty high scores,
and there seems not to be a clear difference between the good and badly predicted groups.

The Mann-Whitney U rank test is performed to test if the two groups are different from
each other. All four hypothesis tests is a one-sided test and an α of 0.05 is used. In table 18
the p-value of these tests is given. All p-values are so low that it is almost zero. Hence all null
hypotheses are rejected, which means that the max probabilities/scores of the ”bad” prediction
group are significantly smaller than that of the good prediction group. This is also the same
for the difference between the highest and second-highest probability/score.

Model Max probability/score Difference highest and second highest
RF 0.00 0.00

BILSTM + Attention 0.00 0.00

Table 18: P-value Mann-Whitney U rank test

44

Master thesis BA Vrije Universiteit Amsterdam

Figure 21: Certainty of predictions

45

Master thesis BA Vrije Universiteit Amsterdam

7 Value of implementation for DutchChannels

In this section, the value of implementing two of the tested models is discussed. The overall best
model (random forest) and best binary model (BiLSTM + Attention) will be reviewed. The
value of the implementation will be measured in the percentage of questions it solves. Also,
a (rough) prediction of the absolute number of questions the model could have solved from
12-07-2021 until 08-08-2021 (covering four weeks) will be discussed. In table 33 in appendix G
the distribution of the tickets of period 12-07-2021 until 08-08-2021 is given.

The percentage of questions rightly answered is the same as the accuracy given in section 6.1,
which means that the random forest solves roughly around 55% of the question in the test set
and BiLSTM + Attention around 46%. However, not all questions are solved by the given
answer. For multiple answers, the input of an agent is needed. For example, resending an
activation mail or checking if a refund is possible. Of the 46 predefined answers, 12 need some
agent interaction on them. In this evaluation, the answered proportion of all answers (the 46)
and directly solving answers (46− 12 = 34) are reviewed. In table 19 the size and proportion of
the directly solving answers are given. Both models are close to each other in terms of absolute
number and percentage than for all answers.

Model size (n) size (%)
RF 1402 33.15%

BILSTM + Attention 1327 30.00%

Table 19: Directly solved questions

In table 20 the accuracy for all and directly solving answers are given for both models per general
type. It can be seen that the Film/series related typed questions almost always will not need
any agent interaction. However, the other classes need some agent interaction. Furthermore,
the BiLSTM + Attention network seems to have much trouble answering payment related
questions.

Random forest BiLSTM + Att
type All directly solved All directly solved

Account and subscription 0.60 0.44 0.50 0.41
Film/series related 0.55 0.54 0.55 0.55

Payments 0.40 0.1 0.16 0.12
Technical 0.46 0.08 0.39 0.1

Table 20: Percentage questions answered and solved (without needing agent) per general type.

46

Master thesis BA Vrije Universiteit Amsterdam

In table 21 a prediction of the absolute number of tickets solved by the models is given. Note
that in this prediction, it is the case that all customers that contact the CS will first try via
the chatbot. In reality, these values would be significantly lower. Random forest will directly
solve around 781 tickets in the period, and it will help speed up handling about 1200 tickets.
BiLSTM + Attention network will directly solve 756 tickets and will help speed up handling
around 1000 tickets. These are substantial numbers on a total of 2,188 incoming tickets. In
table 33 the distribution of the tickets in the researched period are given.

Random forest BiLSTM + Att
type All directly solved All directly solved

Account and subscription 795 583 662.5 543.25
Film/series related 150.15 147.42 150.15 150.15

Payments 80.4 20.1 32.16 24.12
Technical 70.1 30.8 150.15 38.5

Total 1202.65 781.32 999.96 756.02

Table 21: Questions answered and solved (without needing agent) per general type.

47

Master thesis BA Vrije Universiteit Amsterdam

8 Conclusion

This report shows the performance of different chatbot implementations on a specific domain.
Several models were tested to ”answer” a textual question. These models are to be divided into
two groups. A multiclass classification group that maps a textual question to a class and gives
the corresponding response of that class. Furthermore, the binary classification group ranks a
textual question with all the possible responses (and gives the response with the highest score).
The following research question fueled this research:

How do classification models perform when mapping a textual question to a predefined set of 46
answers from the subscription video on demand domain?

The models were evaluated on two different kinds of metrics (classification and ranking). On
the classification metrics, the random forest produced the best results for all the models tested.
It got the highest Accuracy (0.55) and F1-score (0.53). The precision was 0.52%. This is 0.04
percent point below the highest precision of the models (gotten by logistic regression). Also, all
models except logistic regression outperformed the baselines on all classification metrics used
in this research.

On the ranking metrics, support vector machine and random forest performed equally.
Support vector machine got a recall@10 of 0.91, the highest recall@10 of all models, where
random forest got the highest MRR (0.67). On recall@5, random forest and support vector
machine had the same score of 0.82, also the highest. Only the above-mentioned (two) models
performed better than the max class baseline on all ranking metrics.

The best binary model is the BiLSTM + attention model. However, this model was signif-
icantly worse than random forest. However, it performed reasonably well with an accuracy of
0.46, precision of 0.53, and F1-score 0.48. Also, on the ranking metrics, this model performed
well with a recall@5 of 0.71, recall@10 of 0.82, and MRR of 0.57.

When DutchChannels would decide to use the random forest as their chatbot, a substantial
number of tickets could be directly solved by the chatbot. Also, on several tickets, the chatbot
could help speed up the process (like asking for information). Of the 2,188 incoming tickets (of
the period 12-07-2021 until 08-08-2021), an estimated 782 tickets could be directly solved and
could help speed up the process of 421 tickets. However, note that these absolute values are
based on the assumption that every customer would use the chatbot before contacting customer
service. In reality, these values would be significantly lower.

Some future work could be researching the value of transfer learning. This can be done in
two different ways. Via tweaking a state-of-the-art model like BERT [17] and performing the
classification with this tweaked BERT model. However, with the pointwise ranking models, one
can also use an entirely different dataset. The models used in this research for pointwise ranking
(neural networks) need many data. Using a different (large) dataset, these models can learn
the semantics of matching questions with answers. We would expect that the performance of
these models would significantly improve because these models are notorious for needing many
data.

Another exciting area to enhance the performance is ensemble learning. In this research, en-
semble methods like random forest and XGBoost are used. However, one could also research
an ensemble of the models themselves. In [28] they showed that for the pointwise ranking, this
could be useful. Their best classifier was an ensemble of 11 LSTMs, 7 BiLSTMs, and 10 CNNs.

48

Master thesis BA Vrije Universiteit Amsterdam

What also could be interesting to enhance the models’ performance is inserting a follow-up
question to the model. This would implicate that when a model is wrong or not certain
enough, he would ask the customer a question. This could provide the model with the needed
information to make a ”good” classification and improve the performance. This question could
be a default question corresponding to a class/answer or an intelligent question that a model
learns to ask.

49

Master thesis BA Vrije Universiteit Amsterdam

9 Discussion

The report’s goal was to propose a model that gives the correct response to as many ques-
tions as possible on the subscription video-on-demand domain—using the data available of the
DutchChannels Customer service. Given the results on the test set, the proposed model in
the report could be useful in answering textual questions. However, since the data is gathered
from the mail, a customer service portal, and Facebook and not from chats, the results are not
expected to be accurate. This is because we expect the customer to interact differently on chat
than on the gathered resources.

Also, the distribution of the question (types) could differ from the ”real” world. In the matching
step (data preparation), this distribution is altered from the original distribution of gathered
questions. Besides this alteration, one could also argue that the distribution differs from the
year or event happening. An example will be if DutchChannels adds a feature or a ”popular”
movie to its collection. We then can expect that a lot more questions about this feature or
movie would be asked. Also, altering the distribution of the tickets and so influencing the final
performance of the chatbot.

In the mentioned matching step responses of agents are matched with one of the predefined
responses. However, this matching is not perfect, which means there is some implicit error rate
in our model. This will influence the performance of our model and the accuracy of the results
on the test set.

In this research, two different kinds of classification models are investigated. When implement-
ing one of the models, one should also consider the models’ speed and ”freedom.” Random forest
(best model) is a multiclass classification model. This model has the best results and also an-
swers a question almost directly. However, this model pays in ”freedom” when DutchChannels
wants to remove or add a predefined answer to the set. This model should be entirely retrained.
This retraining could result in a drop-off (or enhancement) of its performance. A binary model
will be a bit slower and would pay a price in performance. Nonetheless, this model is more
flexible in adding new predefined answers. In this case, one could still use the original network
and give matching scores to all the predefined answers (plus the newly added one).

Also, adding a feedback loop will be different for the different kinds of models. With feedback
loop meaning that the chatbot will check if the answer was helpful. Only positive (correctly)
classified responses can be added to the data for the multiclass classification models. Hence,
the model cannot learn from its mistakes. A binary classification model, however, can learn
from its mistakes. Here all predictions (good or bad) can be used for (re-)training the model.
This could mean that in time and hence collecting enough data; the binary classification models
could outperform the multiclass classification models.

This research is focused on answering as many textual questions as possible. Hence, it is
tailored to keeping as many questions away from the agents (customer service). However, there
is also a client-side perspective one should consider before deploying a chatbot. The negative
influence of a ”bad” response (false positives) on the customer experience instead of sending
them directly to an agent. One could influence this by setting a certainty threshold. In section
6.2 the certainty of the models is discussed. The results obtained in this section suggest that it
should be possible (reduce false positives without reducing true positives too much). With this
threshold, we could also tackle the questions we do not have an answer for. The assumption is
then made that all predefined responses get a low probability/score and fall below the threshold.
These unable to answer questions would then be sent to an agent.

50

Master thesis BA Vrije Universiteit Amsterdam

References

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,
A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467 (2016)

[2] Adamopoulou, E., Moussiades, L.: Chatbots: History, technology, and applications. Ma-
chine Learning with Applications 2, 100006 (2020)

[3] Anzai, Y.: Pattern recognition and machine learning. Elsevier (2012)

[4] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473 (2014)

[5] Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient de-
scent is difficult. IEEE transactions on neural networks 5(2), 157–166 (1994)

[6] Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal of
machine learning research 13(2) (2012)

[7] Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. the Journal of machine
Learning research 3, 993–1022 (2003)

[8] Bordes, A., Weston, J., Usunier, N.: Open question answering with weakly supervised
embedding models. In: Joint European conference on machine learning and knowledge
discovery in databases. pp. 165–180. Springer (2014)

[9] Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classi-
fiers. In: Proceedings of the fifth annual workshop on Computational learning theory. pp.
144–152 (1992)

[10] Boussaha, B.E.A.: Response selection for end-to-end retrieval-based dialogue systems.
Ph.D. thesis, Nantes (2019)

[11] Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)

[12] Chen, H., Liu, X., Yin, D., Tang, J.: A survey on dialogue systems: Recent advances and
new frontiers. Acm Sigkdd Explorations Newsletter 19(2), 25–35 (2017)

[13] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining. pp.
785–794 (2016)

[14] Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for machine reading.
arXiv preprint arXiv:1601.06733 (2016)

[15] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
Bengio, Y.: Learning phrase representations using rnn encoder-decoder for statistical ma-
chine translation. arXiv preprint arXiv:1406.1078 (2014)

[16] Cristianini, N., Shawe-Taylor, J., et al.: An introduction to support vector machines and
other kernel-based learning methods. Cambridge university press (2000)

[17] Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

51

Master thesis BA Vrije Universiteit Amsterdam

[18] Echihabi, A., Marcu, D.: A noisy-channel approach to question answering. Tech. rep.,
UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFORMATION
SCIENCES INST (2003)

[19] Eck, M., Vogel, S., Waibel, A.: Low cost portability for statistical machine translation
based on n-gram frequency and tf-idf. In: International Workshop on Spoken Language
Translation (IWSLT) 2005 (2005)

[20] Futrzynski, R.: Getting meaning from text: self-attention step-by-step video (2020),
https://peltarion.com/blog/data-science/self-attention-video, visited on 2021-
08-09

[21] Gao, J., Galley, M., Li, L.: Neural approaches to conversational ai. In: The 41st Interna-
tional ACM SIGIR Conference on Research & Development in Information Retrieval. pp.
1371–1374 (2018)

[22] Gers, F.A., Schraudolph, N.N., Schmidhuber, J.: Learning precise timing with lstm recur-
rent networks. Journal of machine learning research 3(Aug), 115–143 (2002)

[23] Hill, C.: Enterprise chatbots: What we know, and how we’ll act

[24] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–
1780 (1997)

[25] Hofmann, K., Tsagkias, M., Meij, E., Rijke, M., Hofmann, K., Tsagkias, E.: A comparative
study of features for keyphrase extraction in scientific literature (2009)

[26] Hofmann, K., Tsagkias, M., Meij, E., Rijke, M.: A comparative study of features for
keyphrase extraction in scientific literature. In: Proceedings of the 18th ACM conference
on information and knowledge management, Hong Kong, China (2009)

[27] Jagannath, V.: Random forest template for tibco spotfire (2020), https://community.
tibco.com/wiki/random-forest-template-tibco-spotfire, visited on 2021-08-09

[28] Kadlec, R., Schmid, M., Kleindienst, J.: Improved deep learning baselines for ubuntu
corpus dialogs. arXiv preprint arXiv:1510.03753 (2015)

[29] Kannan, S., Gurusamy, V., Vijayarani, S., Ilamathi, J., Nithya, M., Kannan, S., Gurusamy,
V.: Preprocessing techniques for text mining. International Journal of Computer Science
& Communication Networks 5(1), 7–16 (2014)

[30] Kim, Y.: Convolutional neural networks for sentence classification. Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (08 2014).
https://doi.org/10.3115/v1/D14-1181

[31] Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical evaluation
of deep architectures on problems with many factors of variation. In: Proceedings of the
24th international conference on Machine learning. pp. 473–480 (2007)

[32] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

[33] Lo, R.T.W., He, B., Ounis, I.: Automatically building a stopword list for an information
retrieval system. In: Journal on Digital Information Management: Special Issue on the 5th
Dutch-Belgian Information Retrieval Workshop (DIR). vol. 5, pp. 17–24 (2005)

52

https://peltarion.com/blog/data-science/self-attention-video
https://community.tibco.com/wiki/random-forest-template-tibco-spotfire
https://community.tibco.com/wiki/random-forest-template-tibco-spotfire

Master thesis BA Vrije Universiteit Amsterdam

[34] Lowe, R., Pow, N., Serban, I., Charlin, L., Pineau, J.: Incorporating unstructured textual
knowledge sources into neural dialogue systems. In: Neural information processing systems
workshop on machine learning for spoken language understanding (2015)

[35] Lowe, R., Pow, N., Serban, I., Pineau, J.: The ubuntu dialogue corpus: A large dataset
for research in unstructured multi-turn dialogue systems. arXiv preprint arXiv:1506.08909
(2015)

[36] Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural
machine translation. arXiv preprint arXiv:1508.04025 (2015)

[37] Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781 (2013)

[38] Nugmanova, A., Smirnov, A., Lavrentyeva, G., Chernykh, I.: Strategy of the negative
sampling for training retrieval-based dialogue systems. In: 2019 IEEE International Con-
ference on Pervasive Computing and Communications Workshops (PerCom Workshops).
pp. 844–848. IEEE (2019)

[39] Pandey, G., Contractor, D., Kumar, V., Joshi, S.: Exemplar encoder-decoder for neural
conversation generation. In: Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). pp. 1329–1338 (2018)

[40] Paulus, R., Xiong, C., Socher, R.: A deep reinforced model for abstractive summarization.
arXiv preprint arXiv:1705.04304 (2017)

[41] Peng, C.Y.J., Lee, K.L., Ingersoll, G.M.: An introduction to logistic regression analysis
and reporting. The journal of educational research 96(1), 3–14 (2002)

[42] Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation.
In: Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP). pp. 1532–1543 (2014)

[43] Probst, P., Wright, M.N., Boulesteix, A.L.: Hyperparameters and tuning strategies for
random forest. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
9(3), e1301 (2019)

[44] Rennie, S.J., Marcheret, E., Mroueh, Y., Ross, J., Goel, V.: Self-critical sequence training
for image captioning. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 7008–7024 (2017)

[45] Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commu-
nications of the ACM 18(11), 613–620 (1975)

[46] Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE transactions
on Signal Processing 45(11), 2673–2681 (1997)

[47] Schütze, H., Manning, C.D., Raghavan, P.: Introduction to information retrieval, vol. 39.
Cambridge University Press Cambridge (2008)

[48] Shang, L., Lu, Z., Li, H.: Neural responding machine for short-text conversation. arXiv
preprint arXiv:1503.02364 (2015)

53

Master thesis BA Vrije Universiteit Amsterdam

[49] Shen, T., Zhou, T., Long, G., Jiang, J., Pan, S., Zhang, C.: Disan: Directional self-
attention network for rnn/cnn-free language understanding. In: Proceedings of the AAAI
conference on artificial intelligence. vol. 32 (2018)

[50] Sidorov, G., Gelbukh, A., Gómez-Adorno, H., Pinto, D.: Soft similarity and soft cosine
measure: Similarity of features in vector space model. Computación y Sistemas 18(3),
491–504 (2014)

[51] Song, Y., Yan, R., Li, C.T., Nie, J.Y., Zhang, M., Zhao, D.: An ensemble of retrieval-based
and generation-based human-computer conversation systems. (2018)

[52] Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell, M., Nie, J.Y., Gao, J.,
Dolan, B.: A neural network approach to context-sensitive generation of conversational
responses. arXiv preprint arXiv:1506.06714 (2015)

[53] Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks.
In: Advances in neural information processing systems. pp. 3104–3112 (2014)

[54] Tam, V., Santoso, A., Setiono, R.: A comparative study of centroid-based, neighborhood-
based and statistical approaches for effective document categorization. In: Object recog-
nition supported by user interaction for service robots. vol. 4, pp. 235–238. IEEE (2002)

[55] Tan, M., Santos, C.d., Xiang, B., Zhou, B.: Lstm-based deep learning models for non-
factoid answer selection. arXiv preprint arXiv:1511.04108 (2015)

[56] Tiancheng, Z.: Learning to converse with latent actions. Ph.D. thesis, PhD dissertation,
Carnegie Mellon University. 25, 27, 35 (2019)

[57] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, I.: Attention is all you need. In: Advances in neural information processing
systems. pp. 5998–6008 (2017)

[58] Vijayarani, S., Ilamathi, M.J., Nithya, M., et al.: Preprocessing techniques for text mining-
an overview. International Journal of Computer Science & Communication Networks 5(1),
7–16 (2015)

[59] Vinyals, O., Le, Q.: A neural conversational model. arXiv preprint arXiv:1506.05869 (2015)

[60] Wan, S., Lan, Y., Guo, J., Xu, J., Pang, L., Cheng, X.: A deep architecture for semantic
matching with multiple positional sentence representations. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 30 (2016)

[61] Wang, B., Cao, H.: A summary of research on intelligent dialogue systems. In: Journal of
Physics: Conference Series. vol. 1651, p. 012020. IOP Publishing (2020)

[62] Wang, M., Lu, Z., Li, H., Liu, Q.: Syntax-based deep matching of short texts. arXiv
preprint arXiv:1503.02427 (2015)

[63] Wu, Y., Wu, W., Xing, C., Zhou, M., Li, Z.: Sequential matching network: A new ar-
chitecture for multi-turn response selection in retrieval-based chatbots. arXiv preprint
arXiv:1612.01627 (2016)

[64] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., Bengio,
Y.: Show, attend and tell: Neural image caption generation with visual attention. In:
International conference on machine learning. pp. 2048–2057. PMLR (2015)

54

Master thesis BA Vrije Universiteit Amsterdam

[65] Zhang, X., Su, J., Qin, Y., Liu, Y., Ji, R., Wang, H.: Asynchronous bidirectional decoding
for neural machine translation. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 32 (2018)

[66] Zhao, T., Eskenazi, M.: Towards end-to-end learning for dialog state tracking and man-
agement using deep reinforcement learning. arXiv preprint arXiv:1606.02560 (2016)

[67] Zhou, X., Dong, D., Wu, H., Zhao, S., Yu, D., Tian, H., Liu, X., Yan, R.: Multi-view re-
sponse selection for human-computer conversation. In: Proceedings of the 2016 conference
on empirical methods in natural language processing. pp. 372–381 (2016)

[68] Zhou, X., Li, L., Dong, D., Liu, Y., Chen, Y., Zhao, W.X., Yu, D., Wu, H.: Multi-turn
response selection for chatbots with deep attention matching network. In: Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). pp. 1118–1127 (2018)

55

Master thesis BA Vrije Universiteit Amsterdam

Appendices

A The 46 predefined classes/responses

Table 22 in appendix A shows all the question 46 different question types. Furthermore, it also
gives the absolute size and proportion of these question types before the train test split.

56

Master thesis BA Vrije Universiteit Amsterdam

ID (label) type questiontype size (n) size(%)
0 Account and subscription Account - no subscription 140 0.828
1 Account and subscription Account details 2726 16.117
2 Technical App available 15 0.089
3 Technical App malfunction - refer to website 216 1.277
4 Technical App update 231 1.366
5 Film/series related Availability countries 45 0.266
6 Technical Browser 157 0.928
7 Account and subscription Cancel subscription 5675 33.552
8 Account and subscription Cancelled subscription - confirmation 311 1.839
9 Account and subscription Cannot log in - username already in use 118 0.698
10 Payments Change payment details 107 0.633
11 Technical Change size of subtitles 24 0.142
12 Technical Chromecast - icon missing 69 0.408
13 Technical Chromecast - issue is being worked on 214 1.265
14 Technical Chromecast - subtitles 131 0.775
15 Technical Continue watching - how to 29 0.171
16 Technical Continue watching - titles do not disappear 20 0.118
17 Technical Devices compatible 15 0.089
18 Technical Devices simultaneously 33 0.195
19 Account and subscription Double subscription on one account 100 0.591
20 Film/series related Heartland 481 2.844
21 Account and subscription How do I become a member 77 0.455
22 Account and subscription Login details 515 3.045
23 Account and subscription Only trailers 505 2.986
24 Account and subscription Password lost 75 0.443
25 Account and subscription Pause subscription 40 0.236
26 Payments Payment Methods 20 0.118
27 Payments Payment failed 138 0.816
28 Payments Payment of selected subscription 94 0.556
29 Account and subscription Price increase - informing why 42 0.248
30 Payments Refund - email reminder not received 43 0.254
31 Payments Refund after trial period 16 0.095
32 Payments Refund global 354 2.093
33 Account and subscription Resend password reset email 88 0.520
34 Account and subscription Send activation email 43 0.254
35 Technical Smart TV app - issues 20 0.118
36 Account and subscription Subscription costs 82 0.485
37 Technical Technical issues 2727 16.123
38 Technical Use google chromecast 82 0.485
39 Technical Use subtitles 72 0.426
40 Account and subscription Voucher code 113 0.668
41 Technical Watch tv 597 3.530
42 Film/series related What is 15 0.089
43 Account and subscription Why subscription cancelled 17 0.101
44 Technical Working on a solution 117 0.692
45 Film/series related content statement 165 0.976

Table 22: Distribution of all question types

57

Master thesis BA Vrije Universiteit Amsterdam

B Most frequent bigrams

The appendix consists out of figure 22 that shows the most common bigrams present in the
questions.

Figure 22: Most commen bigrams present in questions

58

Master thesis BA Vrije Universiteit Amsterdam

C Classification results

The tables in this section give the classification results per type for the multiclass and binary
classification models.

Model Accuracy Precision F1-score
Random baseline 0.02 0.19 0.03

Max class baseline 0.34 0.11 0.17
TF-IDF baseline 0.12 0.21 0.09

KNN 0.38 0.49 0.42
LR 0.32 0.56 0.38
RF 0.55 0.52 0.53

SVM 0.51 0.52 0.51
XGBoost 0.47 0.55 0.50

LSTM 0.39 0.55 0.43
BiLSTM 0.37 0.52 0.40

BiLSTM + CNN 0.41 0.55 0.44
BILSTM + Attention 0.46 0.53 0.48

Table 23: Results of the models on the classification metrics

59

Master thesis BA Vrije Universiteit Amsterdam

D Ranking results

Figure 23: Ranking results baseline models

Figure 24: Ranking results multi-class classification models

60

Master thesis BA Vrije Universiteit Amsterdam

Figure 25: Ranking results binary classification models

61

Master thesis BA Vrije Universiteit Amsterdam

E Character and sentence counts of the questions

Figures 26 and 27 in this appendix give insight in the number of characters and the number of
sentences that are presented in the questions.

Figure 26: Histogram and boxplot of character counts

Figure 27: Histogram and boxplot of sentence counts

62

Master thesis BA Vrije Universiteit Amsterdam

F Classification results per class

In this appendix the accuracy, precision, recall, and f1-scores of the models are given. These
metrics are given per class.

63

Master thesis BA Vrije Universiteit Amsterdam

Class precision recall f1-score support
Account - no subscription 0.03 0.06 0.04 35

Account details 0.43 0.28 0.34 682
App available 0.33 0.25 0.29 4

App malfunction - refer to website 0.12 0.19 0.15 54
App update 0.06 0.10 0.07 58

Availability countries 0.00 0.00 0.00 11
Browser 0.02 0.05 0.03 39

Cancel subscription 0.84 0.60 0.70 1419
Cancelled subscription - confirmation 0.15 0.33 0.21 78

Cannot log in - username already in use 0.03 0.07 0.05 30
Change payment details 0.47 0.67 0.55 27
Change size of subtitles 0.00 0.00 0.00 6

Chromecast - icon missing 0.00 0.00 0.00 17
Chromecast - issue is being worked on 0.01 0.02 0.01 54

Chromecast - subtitles 0.16 0.24 0.19 33
Continue watching - how to 0.00 0.00 0.00 7

Continue watching - titles do not disappear 0.33 0.20 0.25 5
Devices compatible 0.00 0.00 0.00 4

Devices simultaneously 0.33 0.12 0.18 8
Double subscription on one account 0.00 0.00 0.00 25

Heartland 0.55 0.70 0.62 120
How do I become a member 0.03 0.11 0.05 19

Login details 0.11 0.19 0.14 129
Only trailers 0.19 0.32 0.23 126
Password lost 0.00 0.00 0.00 19

Pause subscription 0.23 0.30 0.26 10
Payment Methods 0.67 0.40 0.50 5

Payment failed 0.01 0.03 0.02 35
Payment of selected subscription 0.00 0.00 0.00 23
Price increase - informing why 0.20 0.10 0.13 10

Refund - email reminder not received 0.00 0.00 0.00 11
Refund after trial period 0.00 0.00 0.00 4

Refund global 0.30 0.47 0.37 89
Resend password reset email 0.00 0.00 0.00 22

Send activation email 0.06 0.09 0.07 11
Smart TV app - issues 0.00 0.00 0.00 5

Subscription costs 0.03 0.05 0.03 20
Technical issues 0.51 0.30 0.38 682

Use google chromecast 0.06 0.15 0.09 20
Use subtitles 0.09 0.11 0.10 18
Voucher code 0.36 0.46 0.41 28

Watch tv 0.35 0.46 0.39 149
What is 0.00 0.00 0.00 4

Why subscription cancelled 0.00 0.00 0.00 4
Working on a solution 0.01 0.03 0.02 29

content statement 0.02 0.02 0.02 41

Table 24: Classification result KNN

64

Master thesis BA Vrije Universiteit Amsterdam

Class precision recall f1-score support
Account - no subscription 0.04 0.14 0.07 35

Account details 0.53 0.18 0.26 682
App available 0.25 0.25 0.25 4

App malfunction - refer to website 0.17 0.30 0.22 54
App update 0.07 0.21 0.10 58

Availability countries 0.06 0.09 0.07 11
Browser 0.05 0.15 0.08 39

Cancel subscription 0.90 0.49 0.63 1419
Cancelled subscription - confirmation 0.18 0.38 0.25 78

Cannot log in - username already in use 0.04 0.10 0.05 30
Change payment details 0.40 0.74 0.52 27
Change size of subtitles 0.50 0.17 0.25 6

Chromecast - icon missing 0.10 0.29 0.15 17
Chromecast - issue is being worked on 0.11 0.19 0.14 54

Chromecast - subtitles 0.13 0.30 0.19 33
Continue watching - how to 0.09 0.29 0.14 7

Continue watching - titles do not disappear 0.00 0.00 0.00 5
Devices compatible 0.00 0.00 0.00 4

Devices simultaneously 0.29 0.25 0.27 8
Double subscription on one account 0.02 0.08 0.03 25

Heartland 0.60 0.72 0.65 120
How do I become a member 0.01 0.05 0.01 19

Login details 0.23 0.22 0.22 129
Only trailers 0.22 0.21 0.22 126
Password lost 0.02 0.11 0.04 19

Pause subscription 0.20 0.40 0.27 10
Payment Methods 0.00 0.00 0.00 5

Payment failed 0.05 0.14 0.07 35
Payment of selected subscription 0.00 0.00 0.00 23
Price increase - informing why 0.13 0.40 0.20 10

Refund - email reminder not received 0.00 0.00 0.00 11
Refund after trial period 0.00 0.00 0.00 4

Refund global 0.44 0.51 0.47 89
Resend password reset email 0.05 0.14 0.07 22

Send activation email 0.13 0.36 0.20 11
Smart TV app - issues 0.20 0.20 0.20 5

Subscription costs 0.03 0.20 0.06 20
Technical issues 0.62 0.16 0.25 682

Use google chromecast 0.06 0.25 0.09 20
Use subtitles 0.05 0.17 0.08 18
Voucher code 0.37 0.61 0.46 28

Watch tv 0.49 0.41 0.45 149
What is 0.00 0.00 0.00 4

Why subscription cancelled 0.00 0.00 0.00 4
Working on a solution 0.03 0.21 0.06 29

content statement 0.09 0.17 0.12 41

Table 25: Classification result logistic regression

65

Master thesis BA Vrije Universiteit Amsterdam

Class precision recall f1-score support
Account - no subscription 0.14 0.03 0.05 35

Account details 0.45 0.54 0.49 682
App available 0.45 0.54 0.49 4

App malfunction - refer to website 0.21 0.09 0.13 54
App update 0.11 0.07 0.09 58

Availability countries 0.00 0.00 0.00 11
Browser 0.00 0.00 0.00 39

Cancel subscription 0.80 0.79 0.80 1419
Cancelled subscription - confirmation 0.67 0.28 0.40 78

Cannot log in - username already in use 0.00 0.00 0.00 30
Change payment details 0.56 0.70 0.62 27
Change size of subtitles 1.00 0.33 0.50 6

Chromecast - icon missing 0.04 0.06 0.05 17
Chromecast - issue is being worked on 0.17 0.04 0.06 54

Chromecast - subtitles 0.14 0.03 0.05 33
Continue watching - how to 0.00 0.00 0.00 7

Continue watching - titles do not disappear 0.00 0.00 0.00 5
Devices compatible 0.00 0.00 0.00 4

Devices simultaneously 0.40 0.25 0.31 8
Double subscription on one account 0.00 0.00 0.00 25

Heartland 0.61 0.78 0.69 120
How do I become a member 0.00 0.00 0.00 19

Login details 0.30 0.19 0.24 129
Only trailers 0.37 0.28 0.32 126
Password lost 0.00 0.00 0.00 19

Pause subscription 0.45 0.50 0.48 10
Payment Methods 0.40 0.40 0.40 5

Payment failed 0.00 0.00 0.00 35
Payment of selected subscription 0.00 0.00 0.00 23
Price increase - informing why 0.14 0.30 0.19 10

Refund - email reminder not received 0.00 0.00 0.00 11
Refund after trial period 0.00 0.00 0.00 4

Refund global 0.61 0.63 0.62 89
Resend password reset email 0.00 0.00 0.00 22

Send activation email 0.33 0.27 0.30 11
Smart TV app - issues 0.00 0.00 0.00 5

Subscription costs 0.19 0.15 0.17 20
Technical issues 0.51 0.67 0.58 682

Use google chromecast 0.11 0.20 0.14 20
Use subtitles 0.18 0.17 0.17 18
Voucher code 0.39 0.54 0.45 28

Watch tv 0.44 0.50 0.47 149
What is 0.00 0.00 0.00 4

Why subscription cancelled 0.00 0.00 0.00 4
Working on a solution 0.00 0.00 0.00 29

content statement 0.09 0.05 0.06 41

Table 26: Classification result random forest

66

Master thesis BA Vrije Universiteit Amsterdam

Class precision recall f1-score support
Account - no subscription 0.18 0.09 0.12 35

Account details 0.46 0.58 0.51 682
App available 1.00 0.25 0.40 4

App malfunction - refer to website 0.38 0.22 0.28 54
App update 0.10 0.10 0.10 58

Availability countries 0.00 0.00 0.00 11
Browser 0.00 0.00 0.00 39

Cancel subscription 0.79 0.77 0.78 1419
Cancelled subscription - confirmation 0.32 0.24 0.28 78

Cannot log in - username already in use 0.00 0.00 0.00 30
Change payment details 0.54 0.48 0.51 27
Change size of subtitles 1.00 0.17 0.29 6

Chromecast - icon missing 0.20 0.12 0.15 17
Chromecast - issue is being worked on 0.16 0.13 0.14 54

Chromecast - subtitles 0.50 0.15 0.23 33
Continue watching - how to 0.11 0.14 0.12 7

Continue watching - titles do not disappear 0.50 0.20 0.29 5
Devices compatible 0.00 0.00 0.00 4

Devices simultaneously 0.60 0.38 0.46 8
Double subscription on one account 0.10 0.04 0.06 25

Heartland 0.62 0.67 0.64 120
How do I become a member 0.00 0.00 0.00 19

Login details 0.25 0.26 0.26 129
Only trailers 0.32 0.35 0.34 126
Password lost 0.00 0.00 0.00 19

Pause subscription 0.50 0.30 0.37 10
Payment Methods 0.00 0.00 0.00 5

Payment failed 0.17 0.06 0.09 35
Payment of selected subscription 0.00 0.00 0.00 23
Price increase - informing why 0.05 0.10 0.07 10

Refund - email reminder not received 0.00 0.00 0.00 11
Refund after trial period 0.00 0.00 0.00 4

Refund global 0.53 0.47 0.50 89
Resend password reset email 0.00 0.00 0.00 22

Send activation email 0.50 0.09 0.15 11
Smart TV app - issues 0.00 0.00 0.00 5

Subscription costs 0.00 0.00 0.00 20
Technical issues 0.52 0.61 0.56 682

Use google chromecast 0.10 0.15 0.12 20
Use subtitles 0.30 0.17 0.21 18
Voucher code 0.38 0.36 0.37 28

Watch tv 0.55 0.47 0.51 149
What is 0.00 0.00 0.00 4

Why subscription cancelled 0.00 0.00 0.00 4
Working on a solution 0.03 0.03 0.03 29

content statement 0.07 0.05 0.06 41

Table 27: Classification result Support Vector Machine

67

Master thesis BA Vrije Universiteit Amsterdam

Class precision recall f1-score support
Account - no subscription 0.08 0.14 0.10 35

Account details 0.5 0.35 0.42 682
App available 0.33 0.25 0.29 4

App malfunction - refer to website 0.20 0.26 0.23 54
App update 0.09 0.17 0.12 58

Availability countries 0.07 0.09 0.08 11
Browser 0.04 0.08 0.05 39

Cancel subscription 0.86 0.73 0.79 1419
Cancelled subscription - confirmation 0.31 0.35 0.33 78

Cannot log in - username already in use 0.02 0.03 0.02 30
Change payment details 0.44 0.70 0.54 27
Change size of subtitles 0.67 0.33 0.44 6

Chromecast - icon missing 0.03 0.06 0.04 17
Chromecast - issue is being worked on 0.10 0.17 0.13 54

Chromecast - subtitles 0.22 0.42 0.29 33
Continue watching - how to 0.11 0.14 0.12 7

Continue watching - titles do not disappear 0.00 0.00 0.00 5
Devices compatible 0.00 0.00 0.00 4

Devices simultaneously 0.29 0.25 0.27 8
Double subscription on one account 0.17 0.16 0.17 25

Heartland 0.56 0.78 0.65 120
How do I become a member 0.04 0.11 0.05 19

Login details 0.25 0.31 0.28 129
Only trailers 0.30 0.37 0.33 126
Password lost 0.00 0.00 0.00 19

Pause subscription 0.21 0.40 0.28 10
Payment Methods 0.29 0.40 0.33 5

Payment failed 0.06 0.09 0.07 35
Payment of selected subscription 0.03 0.04 0.04 23
Price increase - informing why 0.11 0.30 0.16 10

Refund - email reminder not received 0.00 0.00 0.00 11
Refund after trial period 0.00 0.00 0.00 4

Refund global 0.51 0.62 0.56 89
Resend password reset email 0.00 0.00 0.00 22

Send activation email 0.15 0.27 0.19 11
Smart TV app - issues 0.00 0.00 0.00 5

Subscription costs 0.07 0.15 0.10 20
Technical issues 0.59 0.33 0.42 682

Use google chromecast 0.09 0.20 0.12 20
Use subtitles 0.08 0.17 0.11 18
Voucher code 0.37 0.57 0.45 28

Watch tv 0.40 0.57 0.47 149
What is 0.00 0.00 0.00 4

Why subscription cancelled 0.00 0.00 0.00 4
Working on a solution 0.02 0.03 0.02 29

content statement 0.10 0.17 0.13 41

Table 28: Classification result XGBoost

68

Master thesis BA Vrije Universiteit Amsterdam

Class precision recall f1-score support
Account - no subscription 0.00 0.00 0.00 35

Account details 0.53 0.18 0.27 682
App available 0.00 0.00 0.00 4

App malfunction - refer to website 0.12 0.33 0.18 54
App update 0.07 0.24 0.11 58

Availability countries 0.30 0.27 0.29 11
Browser 0.03 0.15 0.05 39

Cancel subscription 0.88 0.75 0.81 1419
Cancelled subscription - confirmation 0.04 0.06 0.05 78

Cannot log in - username already in use 0.04 0.20 0.07 30
Change payment details 0.45 0.52 0.48 27
Change size of subtitles 0.00 0.00 0.00 6

Chromecast - icon missing 0.18 0.18 0.18 17
Chromecast - issue is being worked on 0.06 0.07 0.06 54

Chromecast - subtitles 0.07 0.30 0.11 33
Continue watching - how to 0.00 0.00 0.00 7

Continue watching - titles do not disappear 1.00 0.20 0.33 5
Devices compatible 0.00 0.00 0.00 4

Devices simultaneously 0.40 0.50 0.44 8
Double subscription on one account 0.02 0.16 0.04 25

Heartland 0.62 0.60 0.61 120
How do I become a member 0.02 0.05 0.02 19

Login details 0.27 0.07 0.11 129
Only trailers 0.21 0.17 0.19 126
Password lost 0.04 0.05 0.04 19

Pause subscription 0.50 0.30 0.37 10
Payment Methods 0.00 0.00 0.00 5

Payment failed 0.06 0.06 0.06 35
Payment of selected subscription 0.03 0.17 0.05 23
Price increase - informing why 0.29 0.20 0.24 10

Refund - email reminder not received 0.07 0.36 0.12 11
Refund after trial period 0.00 0.00 0.00 4

Refund global 0.37 0.33 0.35 89
Resend password reset email 0.04 0.05 0.04 22

Send activation email 0.07 0.18 0.11 11
Smart TV app - issues 0.00 0.00 0.00 5

Subscription costs 0.00 0.00 0.00 20
Technical issues 0.58 0.23 0.33 682

Use google chromecast 0.00 0.00 0.00 20
Use subtitles 0.11 0.06 0.07 18
Voucher code 0.18 0.39 0.25 28

Watch tv 0.50 0.18 0.27 149
What is 0.00 0.00 0.00 4

Why subscription cancelled 0.00 0.00 0.00 4
Working on a solution 0.03 0.07 0.04 29

content statement 0.17 0.20 0.18 41

Table 29: Classification result LSTM

69

Master thesis BA Vrije Universiteit Amsterdam

Class precision recall f1-score support
Account - no subscription 0.07 0.06 0.06 35

Account details 0.44 0.14 0.21 682
App available 0.00 0.00 0.00 4

App malfunction - refer to website 0.10 0.07 0.09 54
App update 0.05 0.45 0.10 58

Availability countries 0.11 0.36 0.17 11
Browser 0.05 0.08 0.06 39

Cancel subscription 0.87 0.73 0.80 1419
Cancelled subscription - confirmation 0.07 0.05 0.06 78

Cannot log in - username already in use 0.03 0.20 0.06 30
Change payment details 0.57 0.48 0.52 27
Change size of subtitles 0.00 0.00 0.00 6

Chromecast - icon missing 0.06 0.12 0.08 17
Chromecast - issue is being worked on 0.02 0.02 0.02 54

Chromecast - subtitles 0.16 0.27 0.20 33
Continue watching - how to 0.33 0.14 0.20 7

Continue watching - titles do not disappear 0.20 0.20 0.20 5
Devices compatible 0.00 0.00 0.00 4

Devices simultaneously 1.00 0.50 0.67 8
Double subscription on one account 0.02 0.20 0.04 25

Heartland 0.68 0.67 0.68 120
How do I become a member 0.00 0.00 0.00 19

Login details 0.09 0.02 0.03 129
Only trailers 0.19 0.13 0.15 126
Password lost 0.03 0.26 0.06 19

Pause subscription 0.15 0.40 0.22 10
Payment Methods 0.00 0.00 0.00 5

Payment failed 0.03 0.03 0.03 35
Payment of selected subscription 0.00 0.00 0.00 23
Price increase - informing why 0.25 0.10 0.14 10

Refund - email reminder not received 0.00 0.00 0.00 11
Refund after trial period 0.02 0.25 0.03 4

Refund global 0.23 0.11 0.15 89
Resend password reset email 0.03 0.09 0.04 22

Send activation email 0.05 0.27 0.08 11
Smart TV app - issues 0.00 0.00 0.00 5

Subscription costs 0.00 0.00 0.00 20
Technical issues 0.59 0.17 0.26 682

Use google chromecast 0.00 0.00 0.00 20
Use subtitles 0.03 0.06 0.04 18
Voucher code 0.17 0.39 0.24 28

Watch tv 0.35 0.50 0.41 149
What is 0.00 0.00 0.00 4

Why subscription cancelled 0.00 0.00 0.00 4
Working on a solution 0.05 0.10 0.07 29

content statement 0.08 0.02 0.04 41

Table 30: Classification result BiLSTM

70

Master thesis BA Vrije Universiteit Amsterdam

Class precision recall f1-score support
Account - no subscription 0.00 0.00 0.00 35

Account details 0.62 0.08 0.14 682
App available 0.02 0.25 0.04 4

App malfunction - refer to website 0.18 0.19 0.18 54
App update 0.06 0.07 0.06 58

Availability countries 0.11 0.18 0.13 11
Browser 0.17 0.13 0.14 39

Cancel subscription 0.87 0.74 0.80 1419
Cancelled subscription - confirmation 0.02 0.03 0.02 78

Cannot log in - username already in use 0.04 0.37 0.07 30
Change payment details 0.65 0.56 0.60 27
Change size of subtitles 0.67 0.33 0.44 6

Chromecast - icon missing 0.17 0.24 0.20 17
Chromecast - issue is being worked on 0.08 0.07 0.08 54

Chromecast - subtitles 0.21 0.33 0.26 33
Continue watching - how to 0.17 0.14 0.15 7

Continue watching - titles do not disappear 0.40 0.40 0.40 5
Devices compatible 0.00 0.00 0.00 4

Devices simultaneously 0.44 0.50 0.47 8
Double subscription on one account 0.03 0.20 0.05 25

Heartland 0.66 0.69 0.68 120
How do I become a member 0.00 0.00 0.00 19

Login details 0.05 0.02 0.02 129
Only trailers 0.26 0.29 0.28 126
Password lost 0.02 0.05 0.03 19

Pause subscription 0.10 0.30 0.15 10
Payment Methods 0.00 0.20 0.01 5

Payment failed 0.00 0.00 0.00 35
Payment of selected subscription 0.05 0.04 0.05 23
Price increase - informing why 0.36 0.40 0.38 10

Refund - email reminder not received 0.17 0.36 0.24 11
Refund after trial period 0.00 0.00 0.00 4

Refund global 0.70 0.43 0.53 89
Resend password reset email 0.06 0.05 0.05 22

Send activation email 0.29 0.18 0.22 11
Smart TV app - issues 0.00 0.00 0.00 5

Subscription costs 0.24 0.25 0.24 20
Technical issues 0.54 0.51 0.53 682

Use google chromecast 0.03 0.10 0.05 20
Use subtitles 0.33 0.17 0.22 18
Voucher code 0.64 0.32 0.43 28

Watch tv 0.05 0.01 0.02 149
What is 0.25 0.25 0.25 4

Why subscription cancelled 0.00 0.00 0.00 4
Working on a solution 0.00 0.00 0.00 29

content statement 0.09 0.12 0.10 41

Table 31: Classification result BiLSTM + CNN

71

Master thesis BA Vrije Universiteit Amsterdam

Class precision recall f1-score support
Account - no subscription 0.04 0.03 0.03 35

Account details 0.46 0.36 0.40 682
App available 0.00 0.00 0.00 4

App malfunction - refer to website 0.22 0.11 0.15 54
App update 0.08 0.09 0.08 58

Availability countries 0.29 0.18 0.22 11
Browser 0.08 0.21 0.12 39

Cancel subscription 0.91 0.72 0.80 1419
Cancelled subscription - confirmation 0.07 0.05 0.06 78

Cannot log in - username already in use 0.05 0.20 0.08 30
Change payment details 0.63 0.63 0.63 27
Change size of subtitles 0.33 0.17 0.22 6

Chromecast - icon missing 0.10 0.12 0.11 17
Chromecast - issue is being worked on 0.11 0.28 0.16 54

Chromecast - subtitles 0.15 0.15 0.15 33
Continue watching - how to 0.20 0.14 0.17 7

Continue watching - titles do not disappear 0.00 0.00 0.00 5
Devices compatible 0.00 0.00 0.00 4

Devices simultaneously 0.50 0.38 0.43 8
Double subscription on one account 0.02 0.04 0.02 25

Heartland 0.56 0.78 0.66 120
How do I become a member 0.00 0.00 0.00 19

Login details 0.06 0.02 0.02 129
Only trailers 0.24 0.30 0.27 126
Password lost 0.02 0.11 0.04 19

Pause subscription 0.17 0.40 0.24 10
Payment Methods 0.20 0.20 0.20 5

Payment failed 0.17 0.03 0.05 35
Payment of selected subscription 0.06 0.17 0.09 23
Price increase - informing why 0.40 0.20 0.27 10

Refund - email reminder not received 0.05 0.64 0.10 11
Refund after trial period 0.00 0.00 0.00 4

Refund global 0.29 0.02 0.04 89
Resend password reset email 0.07 0.23 0.10 22

Send activation email 0.10 0.27 0.15 11
Smart TV app - issues 0.00 0.00 0.00 5

Subscription costs 0.10 0.20 0.13 20
Technical issues 0.51 0.50 0.51 682

Use google chromecast 0.00 0.00 0.00 20
Use subtitles 0.12 0.39 0.18 18
Voucher code 0.36 0.36 0.36 28

Watch tv 0.42 0.50 0.45 149
What is 0.00 0.00 0.00 4

Why subscription cancelled 0.00 0.00 0.00 4
Working on a solution 0.03 0.03 0.03 29

content statement 0.14 0.02 0.04 41

Table 32: Classification result BiLSTM + Attention

72

Master thesis BA Vrije Universiteit Amsterdam

G Distribution tickets period (12-07-2021 until 08-08-2021)

In this appendix in table 33 the distribution of the tickets from 12-07-2021 until 08-08-2021 is
given.

General type size (n)
Account and subscription 1,325

Film/series related 273
Payments 201
Technical 385

Total 2,188

Table 33: Distribution incoming tickets period (12-07-2021 until 08-08-2021)

73

	Introduction
	Chatbots
	DutchChannels
	Research goals
	Report structure

	Literature study
	Chatbot types
	Retrieval-based methods
	Vector space model
	End-to-end matching methods

	Generative-based models
	Modular methods
	End-to-end generative methods

	Hybrid models

	Exploratory Data Analysis
	Raw data
	Ticket file
	Conversation file

	Data cleaning
	Cleaning ticket data
	Cleaning conversation data

	Data Analysis on final dataset

	Experimental Setup
	Implementation of the two kinds of classification models
	Multi-class classification models
	Binary classification models

	Preprocessing
	Cross validation procedure
	Performance metric
	Classification metrics
	Ranking metrics

	Models
	Baseline models
	Random model
	Max class model
	Bag of words model
	Classification models
	Features
	Hyperparameter search
	K nearest neighbours
	Logistic regression
	Random forest
	Support vector machine
	XGBoost

	Binary classification models
	Data transformation
	Global parameters
	Dual Encoder LSTM
	Dual Encoder Bidirectional LSTM
	Dual Encoder Bidirectional LSTM and CNN
	Dual Encoder Bidirectional LSTM and Self-Attention

	Results
	Performance of the models
	Certainty of predictions

	Value of implementation for DutchChannels
	Conclusion
	Discussion
	Appendices
	The 46 predefined classes/responses
	Most frequent bigrams
	Classification results
	Ranking results
	Character and sentence counts of the questions
	Classification results per class
	Distribution tickets period (12-07-2021 until 08-08-2021)

