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Management summary
Recently, Machine Learning techniques have become very popular in the field of business
innovation. One of these innovations is the automation of the analysis of creditor invoices.
This analysis entails checking whether the PDF of the invoice and the logged information
in the datamodel are one-to-one. Currently, only a random sample of the invoices is
analysed by hand, while a Machine Learning model could also perform this task without
needing to pick a random sample. However, recent studies that have tried to solve this
problem required fully annotated data, which is not always readily available.

One field that is researched with less to no annotated data is Object Detection, which is
the problem of localising and classifying objects on inputs like images. Many researchers
have tried to solve the invoice information extraction problem by using common Object
detection models like (Faster-)(R)CNN, as the analysis of creditor invoices can be re-
formulated as an Object Detection problem, where the important information has to be
localised and classified. Therefore, this research will answer the question:

Is a (Faster-)(R)CNN model still applicable in invoice information extraction when the
data is not fully supervised, or is a Rule-Based or a decision tree model more effective?

To answer the research question many (Faster-)(R)CNN architectures, a Rule-Based model,
and a decision tree approach are implemented. Additionally, the unlabelled data must be
annotated, which was done using the logged information, which, at times, was incom-
plete or incorrect. The final model is a (Faster-)(R)CNN that tries to locate the important
regions on an invoice by using the images of the invoices as its input, which is followed
by a Rule-Based model that identifies the specific information.

The results show that the level of annotation does have a great effect on the performance
of an Object Detection model. Especially when regions are mislabelled. As a result, the
final model was not able to find appropriate regions.

An ablation study was conducted to compare the potential performance of the model with
a Rule-Based model and a decision tree model. The results show that the models that
are dependent on the level of annotation, i.e., Object Detection and decision tree models,
have lower performance than the Rule-Based model, which is not dependent on the level
of annotation.

Future research is recommended to investigate whether adding textual features, such as
a type map, to the input could lead to better results. A type map is a grid realisation of
the types of the words on the invoice, e.g., the text “$10.-” will be entered into the grid as
“price” on the position of “$10.-”. Several researchers have concluded that using textual
and visual (the image) features leads to much better localisation results than solely using
the image as input. Furthermore, as the level of annotation has such a great effect on the
performance, it is advised to fully annotate the data by hand if optimal performance is
preferred.
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1 Introduction
Recently there has been a wide interest in improving business processes by automating
repetitive and time-consuming tasks. One of these tasks is extracting important infor-
mation from invoices. Previously, each document had to be logged in by hand, which
had to be followed up by an accountant checking whether the recorded information was
correct. Recent studies have tried to tackle this problem by using Artificial Intelligence
(AI), where most models classify as Deep Learning models; this problem falls in the field
of Information Extraction (IE). It even led to the start of a competition called “Scanned
Receipts OCR and Key Information Extraction" (SROIE), by [Huang et al., 2019], where
many researchers have tried various modelling techniques to find the best IE model.

Many companies have embraced the use of such models to automate their reading pro-
cess, where most of them have a subscription to a program that reads and classifies the
information from the documents for them. This program usually consists of a trained AI
model that is inspired by one or multiple of the entries of the SROIE competition. How-
ever, even though these algorithms are quite precise, an accountant still has to manually
check whether the acquired data and the document fields match.

Moreover, most of these models are not open source, which entails that the model can
be seen as a black box that just produces what it is asked, without explaining how it is
done. Consequently, a company either has to get a subscription or it must make its own
model. While many of the SROIE models are successful in extracting the information,
they do have to be fine-tuned to make them work for a specific task. Fine-tuning such a
model requires a lot of fully annotated data. A key problem here is that most companies
do not have a fully annotated dataset. One field that does successfully work with unsuper-
vised (not annotated) data is Object Detection [Nguyen et al., 2019]. Object Detection is
the task of locating and classifying objects on inputs like images, e.g., finding each zebra
on a picture, where one of the most used and best-performing object detection models
is the Faster-RCNN model by [Ren et al., 2015]. As a part of IE is to localise and clas-
sify the fields on documents, many researchers have solved IE by using object detection
models. [Zhao et al., 2019, Shi et al., 2015]. However, they have not done so in an un-
supervised or semi-supervised manner. Therefore, it is desirable to know whether partly
annotated data could also produce accurate IE results when using an unsupervised ob-
ject detection approach, or whether other approaches that do not depend on annotation or
deep learning, might be more beneficial. Thus, the main research question of this thesis is:

Is a (Faster-)(R)CNN model still applicable in invoice information extraction when the
data is not fully supervised, or is a Rule-Based or a decision tree model more effective?

This thesis is structured as follows: First, a more extensive description is given about the
problem and the host company in Section 2. Next, Section 3 will describe the background
information from the available literature. Thereafter Section 4 portrays the related work.
This is followed by Section 5, where the data and its preparation are explained. Next, in
Section 6, an extensive description is given about the methodology and experiments of
this research. This is followed by the results in Section 7. The next section, Section 9,
describes the conclusion and the recommendations of the research. Lastly, Section 8 will
discuss the main findings and the limitations of the research.
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2 Problem Description
This section gives a more extensive description of the host company, the problem, and the
potential value to the company. First, a background about the company and the context
of the problem will be described. Next, the problem itself will be further elaborated on.
Lastly, the potential impact on the company will be described.

2.1 Company Background and Context

For the past few years, SoliTrust has been one of the fastest-growing companies in the
Netherlands. SoliTrust is a company that provides IT auditing and data-analysis services,
with its main focus being data related to the financial statement audit. Their clients are
mainly audit firms, where they work with the auditors themselves, as well as the CFOs
of these companies. SoliTrust helps these audit firms with improving the efficiency and
effectiveness of the audits. One of the offerings is the automation of substantive audit
procedures by applying data analysis.

Having many clients leads to having a lot of different databases to work with (e.g., SAP,
Oracle, Dynamics NAV, etc). Hence, SoliTrust developed a datamodel to be able to uni-
form data analysis within the audit. Here, the collected data from the clients is trans-
formed from their own ERP system to the SoliTrust datamodel.

2.2 The problem

Every year a company must provide their financial statement, which consists of the bal-
ance sheet, the income statement, and their elucidation. Such an audit is intended to
inform clients and others who are interested in the financial status of that firm. This in-
formation is then used to decide whether other companies, such as banks or suppliers,
would want to work with that firm. Furthermore, a company is obligated to make such
a statement every year for the government, as a firm needs to pay taxes over its profits.
[Boerse et al., 2017]

The more profit a firm makes, the more taxes they have to pay, hence some firms feel
inclined to tamper with their books. While some tamper with the books, others unknow-
ingly make mistakes, for example by making a typo. Therefore, a part of the financial
statement audit is to validate the reliability of the data.

An inefficiency in the current audit process is the validation of creditor invoices. Creditor
invoices are documents that describe what a firm bought and how much it paid for it. The
only way to validate these is to get the invoice and check whether all fields match the
fields in the database. This validation is currently executed by the auditors themselves.
However, due to the many creditor invoices that a firm receives, an auditor cannot check
them all. Hence, the auditor validates the invoices based on a sub-sample of the source
documentation (PDF documents) with the data in the SoliTrust datamodel. This not only
takes a lot of time, but it could potentially be automated. And with automation, the sample
size could also be enlarged.

SoliTrust always tries to improve the efficiency and effectiveness of the audits. In order
to further improve this problem, they would like to have a machine learning algorithm

2



that could indicate whether an invoice (in PDF format) is one-to-one with the data that
they stored in their datamodel. Hence, they asked for an extra control algorithm that can
classify whether an invoice is correctly stored in the database and whether there are dis-
crepancies. This can take a lot of load from an auditor’s shoulders and could also further
improve the service level of SoliTrust itself.

The goal is to make a model that can accurately identify whether the invoice and the
SoliTrust datamodel counterpart match. This classification should then be added to the
SoliTrust database as an extra column, which indicates whether the invoice has been ver-
ified or not. Therefore, it can also be seen as a reliability checker of the datamodel.

Moreover, if they do not match, the model should return the parts in the PDF that do
not match, preferably by highlighting those fields in the PDF in red, and if they do match,
then the fields should be highlighted in green. Furthermore, the model should be able to
learn the structures of the PDFs, but it should also be applicable for invoices it has never
seen before.

This problem can be seen as two subproblems: reading the text and classifying and lo-
calising the fields. Reading the text from an image is normally solved by an Optical
Character Recognition (OCR) engine while localising and classifying specific fields is
solved by an Information Extraction (IE) algorithm. Both are part of the Document Anal-
ysis and Recognition (DAR) field. OCR is the problem of reading text from Visually Rich
Documents (VRD), which are images (of PDFs or websites, etc) that contain text. IE is
the problem of returning the important information of such a document. This can be quite
difficult, e.g., an invoice could have multiple dates on it, but there is only one invoice date.
As a large part of IE is to localise and classify fields on an image, it can be reformulated
as an Object Detection problem as well. One of the better performing object detection
models is a Faster-RCNN model, which is explained in Section 3.3.3, and it is also used
in IE tasks, which is described in Section 4.

Unlike other researchers who studied similar problems, the provided data in this research
is not complete. Not complete in the context of this research entails that the invoices are
not annotated and the information that should be used to annotate the data could be miss-
ing or incorrect. Hence, this research problem is an unsupervised problem, as the real
information on an invoice is not known. However, by using the information that is logged
into the datamodel, the data could be partly annotated. This led to a semi-supervised
problem. Therefore, the research question is:

Is a (Faster-)(R)CNN model still applicable in invoice information extraction when the
data is not fully supervised, or is a Rule-Based or a decision tree model more effective?

Many researchers that have made models to solve the IE problem combine textual features
and visual image features to find the information, which is further explained in Section
4. These textual entities could be a text type or a text embedding. Hence, a follow-up
question to the main research question is:

Does adding textual features, which are produced by heuristics and an OCR engine, to
the input of the aforementioned model increase the IE performance?
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Furthermore, some researchers have also concluded that using Spatial Pyramid pooling or
atrous convolutional layers could increase the performance of IE models as well. [Chen
et al., 2018, Zhao et al., 2019]. According to them, atrous layers focus on the context
of the input as well as the regions themselves, which leads to better results. Hence, the
second follow-up question is:

Does replacing the normal convolutional layers in the (Faster-)(R)CNN architecture to
atrous convolutional layers lead to better IE results?

2.3 Potential value

This reliability checker tool could not only enhance the reliability of an audit, but it could
also decrease some of the workload of an accountant. As mentioned before, currently an
accountant has to check whether an invoice is legitimately put into the database by hand.
Previously they would take a small sample and check those, with this system, they could
only check those invoices that are marked as less reliable by the system. This is much
more efficient and due to the highlighting of the different fields; it also requires less time.
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3 Background
This section describes the background of the algorithms that are used to localise and
extract information from text documents. First, the types of learning will be explained
(Section 3.1), to give a more general understanding of the approaches. After that, the
machine learning approaches are explained. First, a non-Deep learning approach is de-
scribed, which is a decision tree (Section 3.2). Next, the deep learning approaches are
described (Section 3.3). This section describes several Artificial Neural Network struc-
tures that form the basis of many IE and Object detection tasks. The last three sections
are a more in-depth description of Object Detection (Section 3.4), Document Analysis
and Recognition (Section 3.5), and Knowledge Acquisition (Section 3.6).

3.1 Types of learning

There are several types of learning in machine learning. The four most commonly known
areas are supervised, unsupervised, reinforcement, and transfer learning. As was men-
tioned before, this project deals with unlabelled image data, which means that this project
is unsupervised. This also means that the data, and therefore also the model, does not
have a target. Hence, why an unsupervised model cannot predict a target (e.g., the posi-
tion of the invoice date). However, it can find properties of the structure of the training
set. This structure could indicate that there are multiple groups within the data, which is
a task called clustering. [Goodfellow et al., 2016, Bishop, 2007]

Although the data is unlabelled, the model does have to find the correct fields. As is shown
in the literature, most labelling tasks are trained with supervised datasets. This is because
they know what they are looking for and consequently they achieve much higher accuracy
scores [Nguyen et al., 2019]. Unlike an unsupervised model, a supervised learning model
does have a training set that consists of training data (X) along with its corresponding
target values (Y ). A supervised model tries to map X to the corresponding Y . Hence,
a supervised model tries to predict Y from X [Goodfellow et al., 2016] An example of
a supervised model is a classification model that tries to identify cats. Such a dataset is
filled with labelled pictures of cats and non-cats. After training, the model should be able
to predict whether a new image is a cat or not.

An additional type of learning is called reinforcement learning. This kind of learning
does not have an explicit dataset, instead, it interacts with the environment to maximise
its reward function. This kind of model is called an agent. When the agent executes an
action, it gets feedback, which is either a positive or a negative reward. The current action
of the agent affects the current reward, but it also influences the reward in the future, e.g.,
getting over the finish line. [Goodfellow et al., 2016, Bishop, 2007] An example of this
would be an agent that tries to find its home. Here making a step towards the home will
increase the reward, while stepping further away from the home will decrease the reward.
This type of learning is relevant to this research as it could be used to add an interactive
user interface to the trained model. It could return a processed invoice to the user to re-
ceive feedback on the detection performance.

The last type of learning that will be discussed here is transfer learning. Transfer learning
entails the problem of how to transfer information between partially related problems.
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Generally, a trained model performs better than a non-trained model. Hence, a trained
model environment could speed up the training process of similar new environments.
[Quiñonero-Candela et al., 2008] Therefore, a model that is previously trained on iden-
tifying text could be used to fine-tune a model that wants to find specific text within a
document. One common way to transfer the information of a trained model is to initialise
the new model with the optimised weights of the trained model. For this to work, the
two models must have the same model structure. This type of learning coincides with the
notion of pre-trained models that can be fine-tuned. A lot of research has been done on
this topic in the machine learning community. Therefore, there are a lot of pre-trained
models, like BERT (described in Section 3.3.1), which is pre-trained on the 800 million
text corpus by BooksCorpus, by [Zhu et al., 2015], and the English Wikipedia, which has
2500 million words. The long continuous sentences are used to better understand the rela-
tionship between words and sentences. As a result, a model like BERT can be fine-tuned
for a wide variety of tasks, such as question and answering, and language inference.

3.2 Decision trees

The classification and localisation of objects can be done in many ways. One way could
be to first generate the bounding boxes and the text with an OCR tool and then classifying
the discovered boxes with a classification model. There are many classification models;
the ones that are used in this research are decision trees and Artificial Neural Networks.
The deep learning models are explained in later sections, while this section describes a
non-Deep Learning approach.

One common classification model is a decision tree. A decision tree categorises the input
based on its features. All samples start in one beginning node, which is split many times,
the final node indicates the class. A decision tree algorithm tries to find the correct places
and splitting criteria to split the data to find an accurate classification algorithm. The split
of a node is usually based on a measure called the information gain. information gain
calculates the gain in homogeneity after a new split, if this homogeneity is higher after
the split, then the split will be made; an example is shown in Figure 1. Here, the left split
shows a higher increase in homogeneity than the right split and it also shows a positive
information gain concerning the node before the split.

Figure 1: Example of two splits, the left figure will have a higher information gain than
the right figure, as the homogeneity is higher. Furthermore, the information gain of the
left split will be higher than leaving the node as is. Hence, that split will be made. As
opposed to the right split, which will likely not have a higher information gain.
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The information gain of one node is calculated by:

Information gain = 1− Entropy

= 1 +
C∑
i=1

pi log2(pi)
(1)

Here pi indicates the probability of randomly picking a sample from class i. The entropy
calculates the variance within a sample, a high variance (close to 1) means a high entropy.
Hence, the goal of a split is to have a lower entropy (close to 0). A split creates 2 new
nodes; hence the information gain of a split is calculated by 1−weighted Entropy. Where
the weighted Entropy is the sum of the entropies times the fraction of samples within a
node. The example in Figure 1 has two classes: circle and triangle and 11 samples, with 6
circles and 5 triangles. Therefore pcircle = 6/11 and ptriangle = 5/11 before the split. As
the variance between the samples is lower within the nodes after the left split than after
the right split, the information gain of the left split will be higher. Hence, a decision tree
model will choose the split instead of the right split.

A further improved decision tree is a model called LightGBM. This model trains a mod-
ified Gradient Boosting Decision Tree (GBDT), which is an ensemble/combination of a
series of decision trees. GBDTs are useful for processing various datasets. Addition-
ally, they have a solid theoretical presentation, they are simple to implement, and they
have a high prediction accuracy. [Khoshrou and Pauwels, 2019] Many researchers have
compared the performances between decision tree models, most of them concluded that
LightGBM gave the best results. [Al Daoud, 2019, Al-Shari et al., 2021, Yang and Zhang,
2018]

The ensemble is optimised by gradient boosting, which is the technique of training all
the models within the ensemble sequentially and adding the loss functions to get one
main loss. Moreover, instead of having one weight update function for the whole model,
it has a separate update function for each model, where the highest weights are assigned
to the models with the highest error rates. The steps of the GBDT model can be found in
[Rao et al., 2019]. [Rao et al., 2019, Khoshrou and Pauwels, 2019].

Unlike a normal GBDT, LightGBM has some modifications. Its modifications are the use
of Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB).
The modifications of Light-GBM are made to speed up the training and to improve the
model even further. [Ke et al., 2017]

The first modification, GOSS, is made to put more focus on the undertrained models
within the ensemble. As was said before, all models have their own loss function and gra-
dient, and their own update function. A model with a small gradient has a small training
error, while an instance with a large gradient has a large training error. The models with
high gradients are the ones that must be further trained. Hence, the models with a smaller
gradient have a lower impact on the training procedure. Therefore, GOSS proposes to
randomly drop the models with low gradients instead of solely assigning more weight to
the models with the higher gradients.

The second modification, EFB, was made to significantly speed up the training with-
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out changing the accuracy. EFB works with the sparsity of the feature space, which can
be large, but rarely takes nonzero values. Hence, the bundling of the features can be done
more efficiently. Instead of representing the features as a table, they are seen as graphs,
which significantly diminishes the size of the feature space and thus the training time.
Here the features are seen as vertices, and they connect to an edge if they are both not
mutually exclusive.

3.3 Artificial Neural Networks

An Artificial Neural Network (ANN), also known as a multi-layer perceptron, is one of
the best-known deep learning algorithms. They are used for many different problems,
such as classification, object detection, and regression. The goal of an ANN is to approx-
imate some function f that maps the input variables x = (x0, ..., xD)T to the target values
y = (y0, ..., yD)T . An example of input (xi) could be a business document with label (yi)
“invoice”.

There are several different types of ANN architectures, some of them will be discussed
in this section. First, the general ANN structure is described in Section 3.3.1. After that,
some of the specific types are explained, namely, Auto-encoders (Section 3.3.2), Convo-
lutional Neural Networks (Section 3.3.3), and Recurrent Neural Networks (Section 3.3.4,
as these models are common solutions to IE and object detection problems. The last two
sections will describe the training process (Section 3.3.5) and the evaluation process (Sec-
tion 3.3.6) of an ANN.

The references that are used throughout this section are [Goodfellow et al., 2016] Chapters
6, 9, 10, and 14, [Bishop, 2007] Chapters 1 and 5, [Aghdam and Heravi, 2017] Chapter
3, and [Maggipinto et al., 2018].

3.3.1 General Architecture of a Neural Network

Neural Networks typically consist of many different functions, meaning that the main
function f is of the form f(x) = f (L)(f (L−1)(...f (1)(x)...)), where a function f (i) corre-
sponds to its respective hidden layer i. There are three types of layers, namely the input,
hidden, and output layers. The input layer consists of the input variables x and the output
layer consists of the output variables y. Unlike the input and output layer, there can be
multiple hidden layers. A depiction of a Neural Network is shown in Figure 2.

As is shown in the figure, each hidden layer has hidden nodes (also called neurons).
Hidden nodes (z(l)i ) are variables in the hidden layer that are composed of the outputs of
the previous layer, and together they form the input of the next layer. Each hidden layer (l)
has its own amount of hidden nodes m(l). A hidden node is not only a linear combination
of its inputs, which is called an activation, but it is also transformed by a differentiable,
nonlinear activation function h(·). Hence z(l)j is of the form:

z
(l)
k = h(a

(l)
k ) = h

m(l)∑
j=1

ω
(l)
kj z

(l−1)
j + b

(l)
kj

 (2)
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Figure 2: Network graph of a (L + 1)-layer perceptron with D input units and C output
units. The lth hidden layer contains m(l) hidden units.

Where z(0)j = x0 is the input, z(L+1)
j = yj is the output, ω(l)

kj is the weight that corresponds
to the kth hidden node of layer l and the j th hidden node of the previous layer, b(l)kj is the
bias that corresponds to the kth hidden node of layer l and the j th hidden node of the pre-
vious layer and a(l)j are the activations.

Activation functions are chosen based on the nature of the data and the assumed dis-
tribution of the target variables. There are two types of activation functions, probabilistic
and linear functions. While the probabilistic functions are used in the last layer of a neural
network, the linear functions can be used throughout the whole network.

The activation functions that are used in this research are sigmoid, SoftMax, and ReLU.

The sigmoid (or logistic) activation function is a probabilistic function, which entails
that it produces an output between zero and one. The sigmoid (σ) function is given by:

σ(ak) =
1

1 + exp(−ak)
(3)

The next function is the SoftMax function, which is a generalised logistic activation func-
tion. This function is used for multi-class classification, and it is also called the normalised
exponential function. The function is a ’soft’ maximisation function that gives the most
weight to the class that it thinks that the input belongs to. The SoftMax function is given
by:

SoftMax(ak) =
exp(ak)∑
j exp(aj)

(4)

While the previously mentioned functions are used for classification, the Rectified Linear
Unit (ReLU) is used for faster convergence, and it can also make a model sparser. Sparsity
entails that some weights will become close to or equal to zero. This is a helpful quality as
not all neurons have to be activated to find the best result. Hence, sparsity results in faster
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and more concise models, and they often have better performance and less overfitting than
their counterparts. The ReLU function is given by:

ReLU(ak) = max{0, ak} (5)

There are a few generalisations of the ReLU function. They are all given by:

gen_ReLU(ak, αk) = max{0, ak}+ αk min{0, ak} (6)

Here αk represents a nonzero slope. There are multiple generalisations of the ReLU
function. The first generalisation is the Absolute value rectification (|ak|), which fixes
αk = −1, ending up with just the absolute value of ak. The second function is called
the leaky ReLU, which fixes αk to a small value, e.g., 0.01. The last generalisation is the
parametric ReLU, or PReLU, which treats αk as a learnable parameter. The parameter is
then optimised alongside the weights of the layers.

The generalised ReLU functions were developed to avoid the dying ReLU problem. The
dying ReLU problem happens when a neuron is stuck in the negative range. These neu-
rons tend to not recover, which results in many neurons not being used. The unused
neurons are ignored and will not be learned from. By using either of the generalised ver-
sions, the neurons cannot get stuck, which also ensures that the model can still learn from
them.

Instead of using activation functions, some models use attention heads. These models are
called Transformers. Attention head functions are described as the mapping of a query
and a set of key-value pairs to an output value. Similar to an activation function, the out-
put is the weighted sum of the values. However, instead of using all hidden neurons in a
layer to form the output, an attention head first calculates a compatibility score between
the nodes, which is used to decide which nodes are important enough to include in the
output. The rest of the nodes are ignored. Moreover, the compatibility scores are used as
the weights as well.

One of the most used attention head is called the Dot-Product Attention, which is given
by:

Attention(Q,K, V ) = SoftMax
(
QKT

)
V (7)

Here Q is a matrix that holds all queries, K holds all the keys and V holds the values.
The queries represent the vector embeddings of the input words, whileK and V represent
the previously generated words and embedding values, respectively. Moreover, in this
instance, the SoftMax function calculates the compatibility score between the words.

In addition, an attention head its input is the output of all previous layers in the network,
instead of just the layer previous to the attention head. Consequently, the network has a
global dependency amongst all layers, which in turn improves the computational perfor-
mance of the model. A further explanation on Transformers can be found in [Vaswani
et al., 2017].

One commonly known Transformer is the Bidirectional Encoder Representations from
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Transformers (BERT) model, by [Devlin et al., 2018]. BERT is a language representation
model that was designed to pre-train deep bidirectional representations from unlabelled
text. This is done by both conditioning on the left and the right context in all layers of the
network. To ensure that the model can only look at the context, the model is pre-trained
to perform two tasks: Masked Language Model (MLM) and Next Sentence Prediction
(NSP). MLM randomly masks some of the tokens in a sentence, which then have to be
predicted based on their context. While NSP is the task of predicting whether two input
sentences are consecutive sentences or not. The framework of the model is divided into
two steps: pre-training and fine-tuning. The pre-training is used to learn the low-level
features of the model. This is done by training the model on a large amount of unlabelled
data. The weights of the pre-trained model are then used as the initial weights in the fine-
tuning step, where the model is trained again. Unlike the data in the pre-training step, the
data in the fine-tuning step is labelled. The pre-trained model is trained on 1.28 million
images, and it is added to the transformer library in Python. Many NLP tasks can be
solved by fine-tuning the BERT model, e.g., sensitivity analysis, question answering, and
IE.

3.3.2 Autoencoder

An autoencoder (AE) is an unsupervised neural network, which tries to learn the struc-
ture of its input. Its characteristic is that it is trained to attempt to recreate its input to its
output, i.e., y = x. Consequently, an autoencoder has two parts, an encoder (h = f(x))
and a decoder (r = g(h)). Usually, an autoencoder has a symmetric structure, i.e., the
encoder and decoder have the same number of layers. An example is shown in Figure 3.
The encoder encodes the input to a lower dimension, while the decoder decodes the lower
dimension back into the input. The decoder is trained to make an approximate mapping,
instead of an exact one. This ensures that the model learns the structure and important
parts of the input, instead of the details. Hence, autoencoders are a popular pre-trained
model structure for transfer learning in unsupervised situations. A pre-trained autoen-
coder can be very beneficial for classification and other modelling tasks, as it already
knows the structure of the input.

Figure 3: Example of symmetric autoencoder structure, this image is taken from The
Keras Blog [Chollet, 2016].

An autoencoder is trained by minimising the difference between the input and its recon-
structed output. The training process of a general ANN is described in Section 3.3.5.
After training the autoencoder, the encoded representation is usually used as a feature. As
this feature holds the information about the structure of the input, it can be used as the
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backbone of other models, like classification, anomaly, or object detection. This transfer
learning approach takes the trained encoder and uses the encoded feature as the input of
the next model.

Autoencoders are also used for information retrieval, this approach is called semantic
hashing. This method stores database entries as binary code vectors, which are matched
to the queries in the input data. It has been applied to both textual input and images.
[Salakhutdinov and Hinton, 2009]

A variation of the autoencoder is the sparse autoencoder. This autoencoder minimises
the loss function with an additional penalty (Ω(h)). The model then tries to minimise
the difference between the input and the reconstructed output plus the penalty. Such a
model is typically used to learn features for another task, such as classification. A sparse
autoencoder is taught to only respond to unique statistical features of the dataset, hence it
can be a strong backbone.

Another variation is the denoising autoencoder. This autoencoder tries to find the original
data from noisy corrupted data. Hence, this model learns the structure of the original data
and matches that to the noisy input to denoise it. These kinds of autoencoders are usually
used to unblur images or to crop and rotate them into the right position.

A popular variation of the autoencoder is a Convolutional Auto Encoder (CAE). This
type of AE uses convolutional and pooling layers to encode and decode images, which
are explained in Section 3.3.3. The trained encoder could then be used for problems like
information extraction or classification of the images.

3.3.3 Convolutional Neural Networks

The main model of this research, the (Faster-)RCNN, is a further improved Convolutional
Neural Network. A Convolutional Neural Network (CNN) is a specialised neural network
that works best with grid-like topologies (e.g., images). A CNN can be used for object
detection, reading text, or classification (e.g., of a document type). This section will de-
scribe the convolutional layers and some improved versions of the CNN.

Convolutional layers

What differentiates a CNN from a typical NN is the convolutional layers. A convolutional
layer uses a so-called convolutional function, which is a weighted average of several mea-
surements. It obtains less noisy data and creates features from the input. In a CNN, this
function is represented as a filter (also called a kernel), this filter is a f × f matrix (or
tensor) which convolves the input to a lower dimension. One example of CNN input is
the RGB representation of an image. Here the convolutional layer can be used to detect
the edges in the image and hence it can find the shapes of, for example, faces and letters.

The convolutional layer has 4 parameters: filter size (f ), padding (p), stride (s) and num-
ber of filters (k). A filter size of (3× 3) in a one-channel input tensor entails that the filter
is a cube of 3 by 3 pixels. The stride of such a layer describes the step size of the filter.

12



When the step size is one, the filter jumps from pixel to pixel, while a larger stride means
that some pixels are excluded; the operation is shown in Figure 5a.

The next parameter is padding; padding is an operation that adds a border of white pixels
around the image, which is illustrated in Figure 5b. While this parameter can be set to any
number, some common choices are valid or same. Valid indicates that there will be no
padding, while same indicates that there is enough padding to ensure that the input size
stays the same if the stride is equal to 1. The last parameter, the number of filters, indi-
cates the number of filters that will convolve the input, and therefore it also determines
the final dimension of the output size.

The convolutional operation itself calculates the dot product between the filter and the
same sized region in the input space. An example is shown in Figure 4.

Figure 4: Example of convolutional operation on a one channel input matrix. Here the
filter has a size of (2 × 2), a stride of 1, and zero-padding. The convolutional operation
finds the dot-product of the filter and the regions within the input. These regions have the
same size as the filter; one of the regions is given within the blue lines. This region moves
one step to the right after it calculated the dot-product within a region. Here it can do two
steps to the right and then it must go down and start from the left again. As it can step
down two times as well, the output is a 3× 3 matrix.

The four parameters all contribute to the output size of the layer. As was mentioned
before, an input image is a n × n × 3 tensor, which means that the first filter of size
(f × f ) is actually of size (f × f × 3), because it must visit each layer of the tensor.
A filter reduces the size of an image, as it convolves the pixels within a region into one
value. The larger the filter, the smaller the output of the convolution will be. Similarly,
this also coincides with the step size, while padding enlarges the output size, the stride
causes a smaller output size. If the input of a convolutional layer is given by (27×27×3),
i.e., one image of 27 by 27 pixels, with f = 3, s = 2, p = 0 (valid) and k = 5; then the
output size is given by:

output_size =

(⌈
n+ 2p− f

s
+ 1

⌉
×
⌈
n+ 2p− f

s
+ 1

⌉
× k
)

=

(⌈
27 + 2 · 0− 3

2
+ 1

⌉
×
⌈

27 + 2 · 0− 3

2
+ 1

⌉
× 5

)
= (13× 13× 5)

(8)
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(a) Stride of 1 and stride of 2 with filter size (3,3) (b) Padding of 1

Figure 5: Example convolutional parameters

As mentioned before, to get the same dimensions of the image (n) after convolution, then
the padding should be set to same. The actual padding size will then be determined by
the function:

p =
f − 1

2
(9)

An example of 2 consecutive convolutional operations is shown in Figure 6, where the
first convolutional layer has 6 filters of size (7x7), and the second layer has one filter of
size (5x5). This figure shows the feature engineering of a CNN model. All filters in a
convolutional layer produce a new image, which holds different information about the
input. Some try to find the edges, texture, or shapes of the object, while other focus on
the background or contrast. The following convolutional layers combine the information
of the previously generated images, which in this example, intensifies the edges. While
other filters in the second layer could intensify the shape or texture of the object. These
features are then used to find a pattern within a class, which are used to ultimately classify
whether an image belongs to a class or not.

Figure 6: Example of convolutional operations with the RGB (red, green, and blue) chan-
nels image, which is a three-channel input. The image is taken from [Aghdam and Heravi,
2017]

Another characteristic of a CNN is that it uses a concept called parameter sharing. Pa-
rameter sharing refers to using the same weight parameters for more than one function or
layer of the model. Instead of having a different weight for every element in every layer, a
CNN uses the same values in the filter for every position in one convolutional operation.
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As can be seen in Figure 4, this filter is used on the whole input, instead of just that one
region.

Similar to the traditional NN, a CNN can also use activation functions. Usually, the
ReLU function is used after the convolutional layer to make the CNN a sparse CNN. The
other layers that are normally in a CNN are the pooling and the fully connected layers. A
pooling layer statistically summarises the output of a convolutional layer. Like the convo-
lutional operation, a pooling function operation also uses a filter, but instead of calculating
the weighted average of the position, it calculates the max (MaxPooling), average, min,
etc. The most commonly used pooling layer is the MaxPooling layer with a filter size of
2 and a stride of 2, an example is depicted in Figure 7. A pairing of one convolutional
layer and one consecutive pooling layer is typically seen as one layer in the model.

A drawback of the basic pooling and convolutional layers is that they do not focus on
the context of a pixel. This led to the introduction of the Spatial Pyramid Pooling layer
and the Atrous Convolutional layer. [Chen et al., 2018] To ensure that the context is
considered during training, a dilation parameter is added to the filter. The dilation rate
determines the space between the pixels in a filter. A normal convolutional layer has no
space between the pixels, a filter with size 3×3 is spanned over a region of 3×3, whereas
a filter of size 3× 3 with a dilation of 1 is spanned over a region of 5× 5 pixels. A repre-
sentation of this can be seen in Figure 8. The figure also depicts the formation of a spatial
pyramid. This pyramid is created by using multiple atrous pooling layers with increasing
dilation rates.

Figure 7: Example of MaxPooling with f = 2 and s = 2. It shows that the maximum of
each filter position is returned.

Atrous convolution is shown to have a better performance than normal convolution in
some object classification tasks. One of these tasks is when objects within the same class
have different font sizes. An example of this is the article table on an invoice. Some
invoices hold many lines with purchased goods, while others do not, which results in
many different shapes and sizes. Furthermore, atrous convolution also tends to have a
better performance than normal convolution if an input image has a context-dependent
structure. Consequently, they perform well on invoice classification and information ex-
traction tasks. Additionally, they are also known to reduce scale imbalance problems
within object detection tasks. [Oksuz et al., 2020]

Another type of convolutional layer is a Graph Convolutional layer, where multiple graph
convolutional layers form a Graph Convolutional Network (GCN). A GCN takes a graph
as input, this graph contains a feature description for each node, a description of the struc-
ture of the graph, which is usually an adjacency matrix that identifies the edges, and the
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Figure 8: Example of dilation rate in a filter. It shows the Spatial pyramid of the input
feature map, where each layer increases its dilation. Here the first atrous layer has a
dilation of 6, which means that there are six pixels between the pixels that are shown in
blue that are skipped. The image is taken from [Chen et al., 2018]

labels of the nodes. The GCN layers are then used to find a general structure within a
graph. This general structure can then be used to find fields, such as invoice dates, on an
invoice.

Instead of using a fixed filter size to convolve features, a GCN layer takes a node, finds all
its neighbours, and convolves those features. So, instead of taking the weighted sum of a
fixed filter, it finds the weighted sum of the features in the neighbourhood. An example of
the input of a GCN is shown in Figure 9. This figure shows the input graph, its adjacency
matrix, which shows which nodes are connected, and the degree matrix, which shows the
number of connections a node has. These inputs are then put into the graph convolutional
layer, along with a feature matrix, which is given by:

Z = h
(

(D + IN)−1/2 (A+ IN) (D + IN)−1/2XW
)

(10)

WhereD is the degree matrix,A is the adjacency matrix,X is the feature matrix, IN is the
identity matrix, and W , the weights, and h is the activation function. A more extensive
explanation about graph convolution can be found in [Kipf and Welling, 2016].

The last type of layer is a fully connected layer. This layer connects all neurons in the
previous layer to the current layer, which linearises the output. This output is then used
to classify the images.

One of the more commonly known CNN models is the 2012 winner of the yearly im-
age classification competition called ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). This model is called AlexNet and was introduced by [Krizhevsky et al., 2012].
The architecture of AlexNet is shown in Figure 10. The architecture shows that the model
first finds the feature space of an input image by using five consecutive convolutional lay-
ers. These features are then linearised by the fully connected layers. As the competition
dataset has 1000 different classes, the output layer is a vector of size 1000, containing one
1, which indicates the class that the image belongs to, and 999 zeros.
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Figure 9: Example of an input graph of a GCN and graph convolution. A is the adjacency
matrix, which entails that it shows which nodes are connected by an edge. As can be seen
in the graph, node A is only connected to E, hence, the fields AAE = AEA = 1, and the
other values in the A column and A row are 0. D is the degree matrix, which shows the
number of connections of a node. As can be seen, node D has three connections, hence
DDD = 3. This example is taken from [Pham, 2020].

Figure 10: This is the architecture of AlexNet; it has 5 convolutional layers and 3 fully
connected layers. Where a convolutional layer followed by a pooling layer counts as one
layer in the model. Image is taken from [Nayak, 2018].

Improved versions

An extended CNN is the Region Based Convolutional Neural Network (RCNN), intro-
duced by [Girshick et al., 2013], which is a model that is used for Object Detection. This
model is a Convolutional Neural Network that generates a lot of category-independent
region proposals in an input image and extracts features from them. After the proposed
regions are found, they are classified by a CNN based on their features. The regions that
are classified as an earlier defined label are bounded with a box, while the regions that
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are not probable to be labelled with one of the classes are ignored. An example of such a
network is shown in Figure 11.

Figure 11: General RCNN architecture. The image is taken from [Ren et al., 2015]

The figure shows that the model is divided into 3 main blocks: the convolutional layers,
the Region Proposal Network, and the classifier. In RCNN, these three separate models
are trained successively.

The first part creates a feature space of the image based on the convolutional layers of
a pre-trained image classification model. In the paper written by [Girshick et al., 2013]
they propose using image classification networks like AlexNet [Krizhevsky et al., 2012].
The backbone is used to create a valuable encoded feature space that is passed to the
next modelling stages. This feature space is formed by passing an input image through
the pre-trained model layers. However, not all layers are used, namely, only the convo-
lutional and pooling layers are needed to create the feature space. The other layers (the
fully connected and output layers) are not used in further stages.

This feature space is then passed to the next stage: the Region Proposal Network (RPN).
An RPN normally consists of one convolutional layer, which is followed up by two out-
put layers. The first output layer determines whether a region contains an object or not,
and the second output layer holds the coordinates of the region. The convolutional layer
is used to create anchors in the image, which are predefined regions around a pixel. A
convolutional layer with a filter of size 3 × 3 corresponds to 9 anchor boxes per pixel,
as there are three groups of three anchors. Having 9 anchors per pixel would lead to
6 × 6 × 9 = 324 possible regions with a feature space output generated by AlexNet, as
its feature space is of the size (6× 6× 256). The correct anchors are based on the ground
truth, which is defined before training.

The RPN model is then trained to successfully classify whether an anchor holds an object
or not. This output is then used to find a fixed number of regions, which are called the
proposals. These proposals are then passed to the next model, which does the final object
classification. The first layer of this model is an ROI (Region of Interest) Pooling layer.
This layer takes the proposed region coordinates and finds the values that correspond to
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that region in the feature space. This subsection in the feature space is then pooled to
a fixed output size. An example of ROI pooling is depicted in Figure 12. ROI pooling
is necessary as a normal layer in a network expects that the input regions have the same
size. The pooled features are then passed to the last part of the model, which classifies the
object and finds the coordinates.

To ensure that both output layers of the RPN model and the classifier models are corre-
lated, the classification and regression losses are either added or multiplied. [Jiang et al.,
2020] This ensures that the model tries to minimise the loss of both output layers, instead
of mainly focussing on optimising one of them.

Figure 12: An example of ROI pooling. It has a 7 × 7 feature space, a 5 × 5 region
proposal (framed in red)., and a 2× 2 fixed output size. As can be seen the maximum of
each region is returned.

A further development of the RCNN model is the Faster-RCNN model, which was first
proposed by [Ren et al., 2015]. Instead of only training the three parts successively, they
are also trained as one model. So, instead of training each part separately and having
the input of the previous stages fixed, the Faster-RCNN model trains all previous layers
alongside the layers in the next part. This not only speeds up the prediction process, but
it also leads to more accurate object detection.

3.3.4 Recurrent Neural Networks

Another specialised type of NN is the Recurrent Neural Network (RNN). Like the CNN,
RNNs also work with two-dimensional image data. However, unlike CNNs, RNNs are
specialised in sequential data instead of one still image, i.e., a video. Examples of se-
quences of data are sequences of text (a sentence), images (a video), and prices (stock
market tracker).

The task of an RNN is to accurately predict the next word, image, or price of the sequence
or within a sequence. There are two main design ideas, namely, that the output depends on
the entire prefix of the sequence up until that point (its history or memory) and the model
only uses one set of parameters across all positions in the sequence. Unlike a traditional
NN, the RNN receives input at every layer, excluding the output layer, instead of just the
first layer. Hence, the hidden node at time t is given by:

19



zt = g (Uxt + Wzt−1 + b) (11)

Where U is the weight matrix of the input transformation, W represents the hidden
weights, b is the bias vector, and g is a nonlinear activation function, e.g., sigmoid or
tanh. The hidden states can be transformed by a parameter matrix V, an activation func-
tion h, and another bias vector c to the output (the next part of the sequence) at time t, the
equation is given by:

ŷt = h(Vzt + c) (12)

An example of an RNN architecture is shown in Figure 13. The figure on the left shows
the basic structure of an RNN, while the network on the right shows the unrolled network,
which shows every layer.

Figure 13: Basic and unrolled RNN architecture. It shows the continuous steam of input
and output throughout the model. The image is taken from [Leskovec et al., 2014].

A refinement of the RNN is the Long Short Term Memory neural network (LSTM), which
is another popular model that is used to train an object detection model. An LSTM is a
Neural Network that replaces the hidden vectors with memory blocks, which are equipped
with special gates, namely, an input, forget, and output gate. A gate can be seen as an
opening of the memory block, which does not let all information pass through it. The dif-
ferent gates decide which information can pass, namely, which new information should
be added to the memory (input gate), which of the current memory is not relevant in the
current stage of the model (forget), and which part of the newly made memory should go
to the next layer (output). These gates ensure that only the important information of the
previous learning epochs is remembered, instead of all learned information. This struc-
ture ensures that long-range dependencies are easier to find and preserve. Hence, it is a
strong character and word classifier. [Naseer and Zafar, 2019, Goyal et al., 2018]

Another advancement is the bidirectional RNN (BRNN), which was introduced by [Schus-
ter and Paliwal, 1997]. This model splits the neurons in a part that is responsible for the
next state and a part that is responsible for the previous state. The general architecture of a
BRNN model is shown in Figure 14. The advantage of using a bidirectional model is that
unlike the other two models, it does not assume that the input size is equal to the output
size, as it trains the model in both directions. A further development of the BRNN and
the LSTM led to the Bidirectional Long Short Term Memory neural network (BiLSTM)
model, by [Schuster and Paliwal, 1997], which is now one of the more popular AI models.
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Figure 14: General structure of the bidirectional Recurrent Neural Network, which is
shown unfolded in time for three time steps. The image is taken from [Schuster and
Paliwal, 1997].

3.3.5 Training a Neural Network

The goal of a Neural Network is to find the weights that minimise the error (E(w)) be-
tween the true targets and the mapping function f . There are three types of loss func-
tions: losses for regression problems, losses for single-class classification, and losses for
multi-class classification. Loss functions for regression are used in problems where the
predicted value should be a continuous value, like price or coordinate prediction. All cat-
egories have many different loss function options. The losses for regression problems that
are used in this research are: the Mean Squared Error (MSE) and Mean Absolute Error
(MAE), the loss function that is used for single class classification is binary cross-entropy,
and the loss function that is used for multi-class classification is categorical cross-entropy.

Loss functions measure the error between the target (ytrue), which is either the true value
of x or the label y, and the predicted values ypred.

The MSE is given by:

MSE(ytrue‖ypred) =
1

M

M∑
x=1

[
ytrue
x − ypred

x

]2 (13)

The MAE is given by:

MAE(ytrue‖ypred) =
1

M

M∑
x=1

|ytrue
x − ypred

x | (14)

The binary cross-entropy loss function can only be used in classification problems with
one class. Hence, the targets (y) are given by a 0 (does not belong to the class) or a 1
(belongs to the class). It is given by:

BCE(ytrue‖ypred) = − 1

M

∑
x

ytrue
x ln

{
ypred
x

}
+ (1− ytrue

x ) ln
{

1− ypred
x

}
(15)

The categorical cross-entropy loss function can be used for problems with multiple classes
as well as problems with one class. Here the classes are also represented as a 0 or a 1,
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but then there are C labels per input sample, one for each class. Other models prefer
giving each class a number from 1 to C. The categorical cross-entropy for the binary
representation is given by:

CCE(ytrue‖ypred) = −
∑
x

ytrue
x ln

{
ypred
x

}
(16)

Where x ∈ 1, ...,M , and M is the amount of input samples.

The weights of the layers are found by an optimisation strategy. Such a strategy starts
at the input nodes and makes one forward pass, i.e., it goes through the whole network
from the input to the output layer. After the pass is finished, the loss is measured, and the
weights are updated. This is called an epoch. These new weights are then passed back
into the model to start the next epoch.

There are many optimisation techniques. The optimisation techniques that are used in
this research are gradient descent, Stochastic Gradient Descent (SGD), and Adam. All
optimisers use a learning rate η. A small learning rate leads to a more reliable, but slow
training process. While a larger learning rate speeds up the training, it could lead to a
training process that does not converge.

Gradient Descent is given by:

w(τ+1) = w(τ) − η∇E(w(τ)) (17)

Unlike gradient descent, SGD makes updates based on one data point at a time, which
could be based on one sample or one batch of samples, instead of the whole loss function.
It uses the fact that the maximum likelihood for a set of independent observations of an
error function comprises a sum of terms, one for each data point. This sum of terms is
given by: E(w) =

∑N
n=1En(w). Therefore, the SGD update formula is given by:

w(τ+1) = w(τ) − η∇Enw(τ)) (18)

A further development of the Stochastic Gradient Descent method led to the Adam opti-
miser, which was first introduced by [Kingma and Ba, 2015]. This optimiser updates the
weights based on the first and the second moment of the gradients. Particularly, it calcu-
lates an exponential moving average of the gradient and the squared gradient. Moreover,
it also treats the learning rate as a per-parameter rate, this means that all weights have
their own learning rate instead of them all having the same one. Furthermore, there are
two additional rates (β1 and β2); they control the decay of the moving averages.

3.3.6 Evaluating a Neural Network

A model aims to minimise the loss function and to make accurate predictions. This is
achieved by minimising the loss function of the model. The model learns from the train-
ing dataset and tests its generalisability on the test set. A high performance on both the
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test and the train set indicates that the model performs well. While a high performance
on the train set and a low performance on the test set indicates a bad performance. This
problem is called overfitting. Overfitting means that a model fails to learn the general
structure of the input by modelling the specific features. This happens when a model has
significantly more parameters than training samples, i.e., it is too complex. In the context
of a deep learning model, a model can become too complex for the input data when it has
too many layers and hidden units.

The accuracy and the F1 score are commonly used in classification and object detection
tasks to compare and evaluate models. These scores are calculated based on whether the
predicted value is equal to the actual value. Hence, it is not used in regression problems,
as those allow unequal, but similar predictions as well.

These scores are thus based on these four numbers per class: true positives (tp), true
negatives (tn), false positives (fp), and false negatives (fn). Here the positives indicate the
samples that are predicted as part of a class, while the negatives are predicted to not be a
part of the class. Furthermore, true indicates that the prediction was correct, while false
indicates that the prediction was incorrect.

There are two types of classification problems: classifying between one class, e.g., posi-
tive, or negative, and multi-class classification, e.g., whether an image holds a cat, a dog,
or a hamster. Both types use accuracy and the F1 score to assess the model performance.
The accuracy of a one-class problem is calculated by dividing the number of correctly
classified (the true positives and the true negatives) samples by the total amount of sam-
ples. While the F1 score is calculated by:

F1 =
2tp

2tp + fp + fn
(19)

The accuracy of multiple classes (C) is given by:

Accuracy =

∑C
i=1 pii∑C

i=1

∑C
j=1 pij

(20)

Here, pij indicates the number of samples that belong to class i, but are classified as
class j. A downfall of the accuracy measure is its sensitivity to class imbalance, which
arises when the number of samples per class strongly deviates. For instance, if one of
the C classes holds 80% of the samples, the model is likely to classify each object as this
class. This would give a high accuracy score, while it is not an accurate model. There
are several methods to deal with class imbalance, like upsampling the minority classes
or downsampling the majority classes. However, instead of changing the balance within
the data, other accuracy metrics have been introduced to minimise the influence of the
class imbalance. These scores calculate the accuracy per class instead of over the whole
sample. The scores are called precision and recall, which are given per class by:

Precisionc =
pcc∑C
i=1 pic

(21)
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Recallc =
pcc∑C
j=1 pcj

(22)

As can be seen from equation 21 the precision score measures the fraction of correctly
classified samples of class c compared to all samples that were classified as class c. Ad-
ditionally, equation 22 shows that the recall score calculates how often samples of class c
are classified correctly compared to all samples in class c.

The F1 score can also be calculated based on the recall and precision scores, namely by:

F1c =
2× Precisionc × Recallc

Precisionc + Recallc
(23)

However, due to the lack of annotation in unsupervised or semi-supervised learning, the
accuracy scores are not a completely valid way of evaluating the model. While unsuper-
vised models are normally only evaluated based on their loss function, semi-supervised
models can also be evaluated based on an adjusted accuracy metric. This metric usually
gives a lower weight to the false negatives, as they could have been true positives.

3.4 Object detection

One specific task for a machine learning model is Object Detection. Object Detection
is the problem of classifying whether an object is present on an image and locating it.
Hence, finding an important part of information on an invoice can be generalised to the
Object Detection problem. An example of an object could be the invoice number or the
invoice date. One approach of object localisation is to use a multiscale sliding window,
like [Felzenszwalb et al., 2010]. This sliding window scans the whole image by visiting
every pixel. A drawback of this approach is that it is computationally expensive. Hence,
lately, Artificial Neural Networks have been used for Object Detection [Bhattacharjee
et al., 2020], for example by Convolutional Neural Networks (CNN, section 3.3.3) or
Bidirectional Long Short Term Memory (BiLSTM, section 3.3.4).

The evaluation of object detection models depends on the accuracy of the classification
and the localisation. While the accuracy of the classification can be calculated by the ac-
curacy, precision, recall, or F1 score, the coordinates cannot. Unlike classification, which
has a single output number, localisation requires 4 output values per object. These values
are the bounding box coordinates of the location of the object on the image. Regression
losses, which are explained in Section 3.3.5, are normally used to assess the prediction
quality of these coordinates. However, a more applicable measure to assess the quality
of the bounding box is the Intersection over Union (IoU) score. The IoU measures the
overlap-to-union ratio between two boxes; it is given by:

IoU =
area of Intersection

area of Union
(24)

Some examples of IoU scores are given in Figure 15. The left figure shows a poorly
predicted box, while the right figure shows a good fit. The middle figure shows a fit that
is neither bad nor good.

Object detection can be done with an unsupervised and supervised training set, however,
a supervised set leads to more accurate predictions. In this context, a fully supervised
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Figure 15: Examples of predicted bounding boxes (green) and the actual bounding box
(blue) of the object. The example shows a bad prediction (0.2), an indifferent prediction
(0.5), and a good prediction (0.8).

training set provides the label and location coordinates of an object. As was mentioned
before, the dataset of this research is unsupervised, but what many papers state is that
when a small portion of the data is labelled, it will lead to a much better performance. This
sample is mostly called the ground truth, and it is usually hand labelled before training.
The three kinds of partially labelled training types are called weakly-supervised, mix-
supervised, and semi-supervised. [Nguyen et al., 2019]

Weakly-supervised learning entails that the input dataset does have labels, but these la-
bels are only on image-level. This means that the label just specifies that there is a train
on the image, while not locating it. A mix-supervised training set is where both image
level-based targets and bounding boxes are used. Whereas semi-supervised sets consist
of labelled and unlabelled data; the labels can also be accompanied by bounded box co-
ordinates. [Nguyen et al., 2019]. A visualisation of the four types is shown in Figure
16.

To further improve the object detection in this research, the unlabelled dataset will be
labelled before the model training. These labels will be bounding boxes and classes.
However, as not all bounding boxes and class labels can be found, this set will never be
fully supervised. Therefore, this dataset will be semi-supervised.

3.5 Document Analysis and Recognition

After the object position has been found, the content must be read. This is a problem
called Document Analysis and Recognition (DAR), which tries to automatically extract
information from paper documents. There are several approaches to reading text from
documents, but the three main approaches are rule-based, conventional machine learning,
and deep learning. [Marinai, 2008, Xu et al., 2019]

There are two types of rule-based approaches, namely bottom-up and top-down. The
difference between these two methods is that in the top-down approach the broad physical
structure of the document is assumed to be known, while in bottom-up it is not. Hence,
bottom-up methods have to locate the characters as well. Unlike top-down approaches,
which already know where to split the documents to find the information. [Marinai, 2008,
Xu et al., 2019]

To find the structure, bottom-up methods try to detect the connected components of black
pixels on an image. These components are seen as the basic computational units in the
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Figure 16: Training settings for Object Detection. (a) Supervised learning (b) Weakly-
supervised (c) Mix-supervised learning (d) Semi-supervised learning. The image is taken
from [Nguyen et al., 2019]

document images, as their combinations form the characters. The characters are found
by combining the connected components into higher-level structures through heuristics.
After that, they are labelled according to their structural features. [Xu et al., 2019]

The other two approaches use models like ANN, Support Vector Machines (SVM) or
Gaussian Mixture Models (GMM), etc. These models are used to classify the pixels,
which are then used for prepossessing, layout analysis, detecting reading order, recognis-
ing text, character segmentation, and page and document classification. While conven-
tional machine learning approaches usually have one layer, deep learning uses multilayer
Neural Networks to solve these problems. [Xu et al., 2019]

A subclass of DAR is Optical Character Recognition (OCR). OCR is the problem of
automatically identifying text from for example images of documents, speech, radiofre-
quency, etc. In the case of images of a document, which are also called Visually Rich
Documents (VRD), an OCR system automatically reads all text on the VRD. In the early
stages of OCR, this was done by pattern and template matching. However, as there are a
lot of types of documents with many different templates, this became infeasible. Hence,
Artificial Intelligence models are used nowadays, especially Artificial Neural Networks.
[Eikvil, 1993, Marinai, 2008]

The character recognition process of VDRs is divided into three steps. The first step is
called segmentation and prepossessing, which identifies and locates the characters on the
image and increases the image quality. The second step, classification, classifies what
the characters are, e.g., which letter or number. This is normally done with a neural
network such as (Bi)LSTM or CNN. And the last step, contextual processing, is executed
to check the recognised results based on their contextual information. [Eikvil, 1993,
Marinai, 2008]

In this context, IE is the problem of returning the important information of such a docu-
ment. This can be quite difficult, as, for example, an invoice could have multiple dates on
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it, but there is only one correct invoice date.

3.6 Knowledge Acquisition

After extracting the text from a document, the meaning has to be found. This meaning
or relation can be found through the Knowledge Acquisition framework. Knowledge
acquisition, as described by [Urbani, 2020], is the process of acquiring knowledge from
unstructured text; the process is shown in Figure 17.

Figure 17: Example of the Knowledge acquisition diagram. This example shows the steps
that are taken to acquire knowledge.

The process starts with raw text, which is then fed into a Natural Language Processing
(NLP) framework to obtain refined text. After that, the refined text is used to find infor-
mation such as names or relationships. Lastly, the information is put into a Knowledge
Base (KB). A KB resembles a library; it translates the factual knowledge into associations
between entities and relations. Recently these Knowledge Bases have been expressed as
Knowledge Graphs (KG) [Janev et al., 2020], an example of a relationship between enti-
ties in a Knowledge Graph format is depicted in Figure 18.

Figure 18: Example of a Knowledge Graph. It shows the linking between the entities
through their relations.

The first step of the acquisition is the NLP framework. This framework consists of 5
steps. The first step is called tokenisation and it splits up a character sequence into tokens
(words, terms, or entities). The next step is either stemming or lemmatisation. Stemming
reduces a token to its root, i.e., it removes all unnecessary suffixes of a word. Whereas
lemmatisation reduces a token to its base form, i.e., its dictionary form. The difference
between these techniques is that the output of lemmatisation is always a word, while the
output of stemming might not be a word. An example of lemmatisation and stemming
is the token ’studies’; its suffix is ’es’, hence the stemming output is ’studi’, while the
lemmatisation output is ’study’. The next step is stopword removal, which removes all
tokens that are considered stopwords. Examples of stopwords are of, in, by, a, and an.
They are removed due to their lack of information gain when trying to find relationships
between words. After that, all left-over tokens are tagged with a POS tag (Part of Speech
tag). These tags indicate the type of a token, which can be a functional word or a content
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word. A functional word is a word that ensures that a sentence is grammatically correct,
while a content word carries the meaning of a sentence. The last step is the parsing
step, this step constructs a tree that represents the syntactical structure of the sequence of
tokens.

As NLP parses complete sentences, it is less applicable to VRDs if they are filled with in-
complete sentences. As invoices are such documents, which have sentences like “Invoice
number: 2343”, that does not have a verb, basic NLP packages like NLTK (by [Bird et al.,
2009]) and SpaCy ([Honnibal and Montani, 2017]) are less applicable.

The second step of the acquisition is called IE. There are two types of IE, namely Named
Entity Recognition (NER) and Relationship Extraction (RE). NER tries to find and clas-
sify names in the text, which could be names of persons, companies, dates, locations, etc.
Whereas RE tries to find semantic relationships between two or more entities, examples
of semantic relationships are married, employed by, or lives in.

The last step is to disambiguate or link the entities (or relations) to each other. This step
concatenates all previous information into one knowledge base.
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4 Related work
Several researchers have tried to solve the invoice IE problem, which led to many different
approaches. The first methods that were introduced were Rule-Based template matching
methods, like [Riloff, 1993, Kim and Moldovan, 1993]. These methods pre-defined the
templates of the invoices and used OCR to read the pre-classified fields.

The current most famous OCR engine is Tesseract, which was originally developed by
Hewlett-Packard, but it was taken over by Google in 2006. Tesseract [Google inc, 2019]
is an open-source OCR package that reads all characters and/or words from an image
and places a bounding box around them. The model that is used to read and classify
these characters is a Long Short Term Memory Neural Network (LSTM). Tesseract has
an open-source Python library called pytesseract, which is an easy and fast OCR tool.

A drawback of solely using OCR, templates, and rules is that they are not generalisable.
Moreover, they are not only highly dependent on the preassigned template, but they are
also highly dependent on the intrinsic dependency of the language of the model, such as
grammar, sentence direction and structure, dependency of words, etc. For instance, Euro-
pean countries use a ‘,’ to indicate a decimal point in a number, while English-speaking
countries use a ‘.’. Unlike these methods, machine learning methods do not depend on the
language or a template of an invoice to locate a specific field. Hence, recent approaches
adapted Deep Learning models. Although the Deep Learning approaches tend to perform
much better, as they base their classification on the whole input instead of solely look-
ing at the separate word boxes, some researchers have also used traditional classification
methods such as decision trees, K-Nearest-Neighbours, Naive Bayes, etc, to solve the
problem [Tarawneh et al., 2019].

Many of the Deep Learning approaches are entries of the ICDAR 2019 Challenge on
"Scanned receipts OCR and key information extraction" (SROIE), by [Huang et al., 2019].
Although the competition ended in May 2019, many new invoice and receipt IE models
still use the SROIE dataset to test their improvements. The problem of this competition
is divided into three tasks: 1. Text localisation, 2. OCR, 3. Key information extraction,
where most approaches follow the structure shown in Figure 19.

Figure 19: Main structure of related modelling techniques.

The highest scoring entries in the SROIE competition are based on NLP and Deep Learn-
ing techniques, which are explained in Section 3.6 and 3.3, respectively. NLP techniques
specifically target text, while Deep Learning techniques target text and image features.

The Deep Learning approaches are divided into two groups: traditional Neural Networks
and Transformers, which are both described in Section 3.3. Many different Neural Net-
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works can solve the invoice IE problem. Some try to model the invoice as a graph [Liu
et al., 2019a, Rastogi et al., 2020, Yu et al., 2020]. For instance, the Graph Convolution
model by [Liu et al., 2019a], which had an F1 score of 87.3%. This model finds a graph
representation of the text segments in a document. Where the text segmentation is com-
posed of the text itself and the text position on the document, which are both generated
by an OCR engine. The text segments are then modelled as the nodes of the graph, while
the edges represent the visual dependencies, like relative shape or distance, between the
nodes. The model then uses graph convolution to learn the structure of the invoices. The
full model architecture is described in [Liu et al., 2019a].

Others try to solve the problem by using object detection models like (Faster-) RCNN
[Ghosh, 2021, Jun et al., 2019, Shi et al., 2015, Zhao et al., 2019] or BiLSTM [Jiang
et al., 2019, Patel and Bhatt, 2020, Schuster and Paliwal, 1997]. One of these models,
which is called Convolutional Universal Text Information Extractor (CUTIE), by [Zhao
et al., 2019], was introduced after the competition. This approach uses a CNN architecture
to perform object detection. However, instead of using the invoices as the direct input of
the model, they perform some preprocessing steps to form a gridded text, where a grid is
a matrix representation of the pixels of an image. Normally, the input consists of three
grids, one for each RGB channel. A gridded text is also a pixel representation of the
image. However, instead of numbers, the matrix holds the text or the text embeddings of
the image.

The input of the CUTIE model is made by first using an OCR engine to read and find the
position of the text on the receipts. The text is then positioned in a grid that resembles the
receipt or invoice. This ensures that the spatial and contextual information is preserved.
After that, the text is embedded by an embedding layer, which forms the final input. The
resulting input is a grid that contains scattered data points, where the words are closer
together in some grids and farther apart in others. As a result, Zhao et al. decided to
use Spatial Pyramid Pooling and atrous convolutional layers to preserve the multiscale
context. A complete description of the architecture can be found in [Zhao et al., 2019].
Zhao et al. concluded that their performance gain was mainly achieved by using the
atrous layers, text embeddings, and the grid positional mapping, instead of solely using
the visual features of the receipt itself. The model has an F1 score of 86.7%.

However, a drawback of the object detection approach is that most of the objects are small.
The small sizes lead to having multiple objects in one pixel, which causes inaccurate re-
sults. A solution to this could be to increase the dimension of the input images. However,
having large images leads to a large dataset and a lengthy training process. Hence, some
researchers proposed to first look for larger fields in the invoice that hold the information,
like an article table or a paragraph of information about the seller, instead of immediately
localising the specific fields [Ghosh, 2021, Hoque et al., 2020, Kazdar et al., 2019, Acuña
et al., 2019]. Here the regions are found by an object detection model like Faster-RCNN,
which classifies and localises the tables and the paragraph. The text in a region is then
processed by an OCR engine and classified by entity-relationship mapping using Natural
Language Processing techniques, or by using pre-defined heuristics [Brauer et al., 2011].

One of the most commonly known RCNN object detection models is You Only Look
Once (YOLO), which was introduced by [Redmon et al., 2015]. This model locates the
objects by reframing the problem as a regression problem instead of just a classification
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model. The regression problem tries to find the right class label by using the pixels and the
bounding box coordinates of the object. Here the bounding boxes are found by a single
CNN, which simultaneously predicts multiple bounding boxes and their class probabili-
ties.

The YOLO architecture, which is depicted in Figure 20, consists of 24 convolutional
layers and 2 fully connected layers. The convolutional layers extract the features from the
input, while the fully connected layers predict the class probabilities and the bounding box
coordinates. These bounding boxes are made on the pre-specified S by S grid space of the
image, where the model predicts B bounding boxes for each grid cell. Additionally, the
model predicts the confidence and C class probabilities for those boxes. The predictions
of the model are encoded in an (S × S × (B · 5 + C)) tensor.

Figure 20: YOLO CNN architecture, taken from [Redmon et al., 2015]. The paper its
input are images of size (448 × 448 × 3), and the output is an (7 × 7 × 30) tensor, whit
S = 7, B = 2, and the number of classes to predict C = 20.

As was stated in the Background section, (Faster-)RCNN models use a pre-trained model
to find the structure of its input. Many of these models were entries to a very commonly
known competition for image classification, namely, the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC). A lot of models that perform very well in this compe-
tition are CNN models. One of these winning models is called AlexNet, which was first
introduced by [Krizhevsky et al., 2012]; it is also described in Section 3.3.3. This model
is one of the more accurate models that use significantly fewer layers than other winning
models.

Unlike exclusively using image features, many researchers have concluded that using both
image features and text features in a Deep Learning architecture will lead to the most
accurate results: [Xu et al., 2019, Hong et al., 2021, Garncarek et al., 2020, Powalski
et al., 2021]. They particularly mention the importance of using spatial and contextual
information, as many other approaches tend to focus on just extracting the information
from the text.

Most of these models use a well-known language embedding tool, BERT, by [Devlin
et al., 2018], to create their text embedding features. BERT is a pre-trained language mod-
elling transformer, and it is used in a lot of IE approaches as a backbone; it is described in
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Section 3.3. Many NLP tasks can be solved by fine-tuning the BERT embedding model,
e.g., sensitivity analysis, question answering, and IE. Some models that use this embed-
ding combined with image features are [Xu et al., 2019, Garncarek et al., 2020, Shi et al.,
2015, Liu et al., 2019b]. They show that a strong text embedding significantly increases
the performance.

One of these models is the LayoutLM model, introduced by [Xu et al., 2019], which
has an F1 score of 96.04%. In addition to using the BERT embedding, LayoutLM in-
corporates two more features: Document Layout Information and Visual Information.
Document Layout Information concerns the relative position of words in the document,
while Visual Information concerns the visual features of the image, such as the whole
image. The Visual Information could indicate a layout, or word-level visual features such
as underlining or boldface, which could indicate importance. This results in three input
embeddings: the BERT word embedding, the positional embedding, and the image em-
bedding. The text and positional coordinates are acquired by an OCR tool, like Tesseract.

Like the BERT model, the LayoutLM model is first pre-trained and then fine-tuned for
a specific task. The model is pre-trained to perform two tasks: MLM and Multi-label
Document Classification. After pre-training the model, the model can be fine-tuned. The
more relevant fine-tuning tasks for this research are receipt template classification and
document classification. A complete explanation about the architecture can be found in
[Xu et al., 2019].

In contrast to the SROIE dataset, the dataset in this research is not perfectly annotated.
Hence, many models would have significantly worse performances if they would be fine-
tuned for this research. Therefore, the object detection to information extraction approach
was chosen for this research, instead of training a pre-trained language model. Further-
more, several heuristics, like in [Brauer et al., 2011, Riloff, 1993, Kim and Moldovan,
1993], have been implemented to ensure a better performance. Another approach, using
classification models like decision trees, is also experimented with as they could also en-
hance the performance as well. Some researchers, like [Ju et al., 2019, Zisou et al., 2020],
have successfully combined an (R)CNN and a LightGBM classifier to get better results
than using a single model. This leads to three different approaches, a Rule-Based model,
a decision tree-based algorithm, and an Object Detection model that could be accompa-
nied by a Rule-Based model or a decision tree. Instead of a Rule-Based approach, many
researchers opt for an NLP approach, however, as most of the text on an invoice is not
part of a consecutive sentence, this will not perform well. Hence, this approach is not
experimented with.

Similar to the contestants of the SROIE competition, this research also follows the struc-
ture in Figure 19, as it led to outstanding results. The model description can be found in
Section 6.
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5 Data description and preparation
As was mentioned before, SoliTrust has a lot of data at its disposal. All their clients upload
their data to the datamodel, which is then transformed into the fixed database format. The
provided invoices are recorded in this database as well. The invoices and the database
counterparts are used to prepare the create the input of the models. While some models
only require an image of the invoice, others require an annotated image or a text (type)
map. The data and its preparation are described in this section.

5.1 The provided data

The provided data is split into two parts: databases and PDF invoices. Both are described
in their respective sections.

5.1.1 The Databases

The SQL databases hold many different tables that describe some part of the business
process of a client. However, many of them are not relevant for this research, the tables
that will be used in this research are:

• Information about the invoices

• Information about the known creditors of a company

• A table that holds tax codes, which are linked to tax percentages

• A table that holds information about the PDF file that is licked to a certain invoice

• Information about sales invoices

In addition to the tables, the invoices themselves are needed to train a model. How-
ever, most invoices are either deleted or not saved after they are recorded into a database.
Hence, most of the databases do not apply to this research. Two clients that did provide
PDFs are Company A and Company B. Company A is a middle school and Company B
sells and catches fish. Hence, their databases are used in this research. Since Company
A is a school, they (normally) do not have to pay taxes (VAT, BTW in Dutch). As a re-
sult, the columns that describe the tax percentage and tax amount are mostly empty, even
when the invoice itself states a tax amount. A further explanation about the fields in the
database is given in Appendix A.

23809 invoices were made available for this research. 2312 of those were provided by
Company A, 18 were provided by SoliTrust and 21479 were provided by Company B,
where 11564 are creditor invoices and 9915 are sales invoices. Since all sales invoices
have the same layout, only 400 of them are used, otherwise, the model could lose gener-
alisability.

To use the invoices, they must have a database counterpart. However only the ones that

33



were provided by Company A have a PDF file field that links the file name to the tables
in the database. The invoice table and the file table are linked with the file ID key. The
others are not immediately linkable. As a result, the invoice number must be extracted
from the invoice before it could be linked to its database counterpart. The linking and
labelling left 10111 invoices to train on. However, 6406 of them are the sales invoices of
Company B. Hence, 4105 invoices were left to train on. The training set is split into a
train (80%) and a test set (20%), the train part is also split into a validation (20%) and a
train set (80%). A representation of the distribution of the data can be seen in Figure 21.

Figure 21: Distribution of the provided data in percentages. All data shows the initial dis-
tribution of the 23809 invoices, while Annotated data show the distribution of the leftover
10111 invoices.

Most of the information that is on an invoice is recorded in the invoice information table.
This table includes data such as invoice date, total amount, and external reference. How-
ever, most columns are either empty or partially filled in. One of these partially filled in
columns is the currency column. As most of the invoices are issued in euros, some com-
panies, including Companies A and B, do not register the currency of the invoice when it
is issued in euros. A further description of the tables is shown in Appendix A.

Some of the columns that are not filled in are columns that are fixed in another table.
For instance, the columns creditor name, creditor bank account number, and creditor ad-
dress. Instead of recording these fields, the field that holds a creditor ID is filled in. With
this filled-in field, an invoice can be linked to the information that is already known and
fixed in the creditor table. Similarly, some invoice entries hold a tax code instead of a
tax percentage or amount. The tax code can then be used to link to the tax codes table,
which includes the tax percentage that belongs to a certain tax code. However, in some
instances, neither the fields nor the linkable IDs were filled in.

5.1.2 The invoices

The provided data consists of unlabelled PDFs of invoices. Most of the invoices are dig-
itally made and send, while some have been printed and scanned. The send invoices are
usually of good quality, which makes it easier to read them. The scanned invoices are
more difficult to read, due to their additional noise. Some of the noise that has been en-
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countered is shown in Figure 22. Figure 22a shows an example of noise that is widespread
among invoices, the date stamp. A lot of companies record the date of receival (“ontvan-
gen”) instead of the date that is stated on the invoice itself. Figure 22b shows a digitally
made invoice with a colourful background. The colourful background causes less contrast
between the background and foreground. This could lead to less accurate predictions or
even no predictions at all. Figure 22c shows a rotated image that is taken with a phone, it
has a fold, a shadow, and some background noise. The last sub-figure, Figure 22d, shows
a slightly skewed and very pixelated invoice. All these types of noise make it harder to
read the information on the invoice and to match it to the database counterpart.

(a) Date stamps (b) Digitally made PDF

(c) Picture of a bill (d) Badly photographed invoice

Figure 22: Examples of noisy data

An invoice holds a lot of information, but not all information is relevant or recorded into
the database. The important fields (the classes) in this research are shown and described
in Table 2.

As most of the information on an invoice is unimportant, the dataset is a severely im-
balanced. The class distribution is shown in Figure 23. The left figure shows that class
30, which is the “background” or “not important” class, has significantly more samples
than the other classes. The figure on the right shows the number of samples of the classes
without class 30. As can be seen, the second most represented class (class 6, Inkoopfac-
tuur_aantal) has around 1500 samples, which is less than 1% of the samples of class 30.
In total, there are 178028 samples, where 167308 are part of class 30, which is 94%. The
balance within the test set is most likely similar to that of the train set.
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Table 2: Descriptions of fields in an invoice. All fields that start with _ have a database
table name in front of them.

Field name Description
_externereferentie This is the invoice number, which every invoice should have

_factuurdatum
This is the invoice date. All invoices have one invoice date
Although multiple dates could be on the invoice, only one of
them is the invoice date.

_Artikel_code This field represents the code of a purchased article.

_aantal
This field indicates how many items are purchased of one article.
This field can have multiple entries on one invoice.

_prijs
This field represents the price of one product per article.
This is always included.

_omschrijving
This field holds the description of a purchased product.
This field is normally included.

_brutobedrag
This field represents the total amount per article before discount
and taxes. This is always included.

_korting
This field represents the discount, which could be per article or a
total amount. This field is rarely filled in.

_nettobedrag This represents the total before taxes, which is always included.

_btwpercentage
This field shows the tax (BTW) percentage.
This field is normally on every invoice. However,
some products or organisations are exempt from taxes.

_btwbedrag This filed represents the tax amount, which is normally included.
_totaalbedrag This is the total payable amount, which is always included.

_valuta
This field shows the currency of the payable amount,
which is always included.

_contractperiode_van
This field shows whether there is an article that has a
subscription and when that subscription started.
This field is not on every invoice.

_contractperiode_tot
This field shows the end date of a subscription.
It is also not on every invoice.

_bankrekening
This is the bank account number of the creditor, which
is normally on every invoice.

Crediteurnaam
This is the name of the creditor, which is normally on every
invoice as well.

Woonplaats
This is the place of residence of the creditor, which is
normally on every invoice as well.

Crediteur_kvk
This is the registry number of the creditor, in the Netherlands
it is called KvK, but other registry numbers are also filled
into this field. this field is normally on every invoice as well.

e-mail adres
This is the e-mail address of the creditor, which is normally on
every invoice as well.

Website
This is the website of the creditor, which is normally on every
invoice as well.

Totaal_prijs This field specifies the total amount per purchased article.
BTW code This is the tax code of the selling company.
prijs This field specifies the price of a purchased product.
_btwpercentage_product This field specifies the tax percentage per purchased article.
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Figure 23: Class imbalance of full dataset

5.2 Preparing the data

The first step of the research is to prepare the data, which consists of preprocessing and
annotating the images. These steps are inspired by these previous image preparation
steps for Object Detection and Information Extraction: [Google inc, 2019, Google inc,
2021, Zelic and Sable, 2020].

5.2.1 Preprocessing

As was mentioned before, the data consists of PDF invoices and their database coun-
terparts. The PDFs cannot be fed into a model, they first have to be transformed into
a grid-like topology, like an image (JPEG format). This must be done since the JPEG
format holds the RGB representation of the images, which can be fed into the model as
a matrix of numbers. The module called fitz in the package PyMuPDF by [McKie and
Liu, 2016], is used to convert the PDFs to JPEG format. This is done by creating three
pixelmaps, one for each RGB channel, for each page in the PDF; with the function get-
Pixmap. All these pixel maps are then concatenated to create the pixel map of the whole
PDF.

The next step entails preprocessing the data. This step ensures that the OCR system
produces more accurate reading results. However, as most of the invoices in this research
are digitally made and sent, most of these preprocessing steps do not have to be executed
to get the right OCR results. Hence, the preprocessing steps are only executed when the
OCR engine is not able to read anything or only some parts. One crucial part is to ensure
that the invoices and their text lines are not skewed. Hence, the python library deskew, by
[et al., 2019], is used to rotate the images. First the function determine_skew is used to
find the angle of rotation, which is then passed to the function rotate, which rotates the
images.

Moreover, as the accuracy of an OCR tool relies on the resolution of an image, the con-
trast between background and foreground, and the amount of noise, they should satisfy
some constraints. According to the Tesseract sources, their module works best on images
with a DPI (dots per inch) of at least 300 [Google inc, 2021]. A resolution of 2480×3508
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pixels is needed to ensure a DPI of 300 for one sheet of paper with a standard A4 size
[Davies, 2021]. The fitz module is used to ensure that the DPI of the images is large
enough. This is done by adjusting the matrix parameter in the getPixmap function; this
parameter determines the zoom factor of the function. The standard zoom function en-
sures a DPI of 72, hence using a zoom matrix of (300/72, 300/72) on an 8.5× 11 image
leads to 300 times more pixels in both width and height, namely a size of (2550× 3300)
and a dpi of 300.

However, a DPI of 300 does not ensure that there is no noise on the image. A common
technique to remove noise from an image is called blurring. Blurring removes outlier
pixels from the image while leaving most of the image intact. Four of the most used
blurring techniques are average blurring, Gaussian blurring, median blurring, and bilat-
eral filtering; the techniques are shown in Figure 24. All methods work with an f × f
kernel and replace the central element of the kernel based on the criteria of the method.
This criterion is different for each method. While average and median blurring simply
replace the central element with the average or the median of the elements under the ker-
nel, Gaussian blurring and bilateral filtering are more complex. For instance, the kernel
size of the average and median blurring is fixed, while it is not fixed in Gaussian blurring
and bilateral filtering. Their kernel sizes can be changed during the blurring process. The
size of the kernel is determined by the desired standard deviation of the values within the
kernel. Additionally, while the other methods tend to smooth the edges; bilateral filtering
is known for removing the noise without smoothing the edges.

Figure 24: Zoomed in part of the image after blurring. The examples of the blurring
techniques are tested on a digitally made invoice. The first figure shows the original
image. The second figure shows the image after Average blurring. The second figure
shows the image after Average blurring. The third figure shows the image after Gaussian
blurring. The fourth figure shows the image after Median blurring. The fifth figure shows
the image after Bilateral filtering. All techniques are realised with the OpenCV library.

As can be seen from the zoomed-in images, they all seem similar. However, according
to the OCR package, they are not; the results are shown in Table 3. The table shows that
after blurring the image, only median blurring produced readable letters. Hence, when an
image does not provide good OCR results median blurring is used to improve the output.

Table 3: OCR results after blurring, where NULL indicated that no text was found.

Original Average Gaussian Median Bilateral

Text Prijs Totaal
C246,00

NULL NULL
Prijs Totaal
C 246,00

NULL

Another issue that could lead to less accurate reading results is a colourful background,
like in Figure 22b. A technique that is used to get rid of this is called thresholding.
Thresholding is a technique that binarises an image, i.e., it converts the image to black (1)
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and white (0). The threshold value decides whether a pixel is turned black or white. There
are many algorithms that determine the thresholding value, which are divided into global
and local techniques. The global thresholding techniques pick one threshold value for the
whole image, while local thresholding picks a different value for each specific region.

Three of the most commonly used thresholding techniques are Global Thresholding,
Adaptive Mean Thresholding and Adaptive Gaussian Thresholding. Where adaptive tech-
niques use the standard deviation to determine the kernel size, instead of a fixed number.
The three methods are shown in Figure 25, they are realised by the python library OpenCV,
introduced by [Bradski and et al., 2021]. Seven more techniques are shown in Figure
47 in B, these are generated with the function skimage.filters.try_all_threshold
from the library scikit-image, by [Van der Walt et al., 2014]. The methods that seem to
have the best results are Global Tresholding, Isodata, Minimum, and Yen. However,
according to [Sezgin and Sankur, 2004, Trier and Jain, 1995], who compared several
thresholding techniques, local adaptive thresholding techniques are the best threshold-
ing techniques for document images. They concluded that the thresholding algorithms
Niblack by [Niblack, 1986], and Sauvola by [Sauvola et al., 1997] performed best, which
are local adaptive methods; full explanations can be found in their respective articles. The
results that are produced by the Niblack and Sauvola algorithms are shown in Figure 26.

Figure 25: Thresholding techniques in OpenCV module. GT: global thresholding by
cv2.threshold(). AMT: adaptive mean thresholding by cv2.adaptiveThreshold(
cv2.ADAPTIVE_THRESH_MEAN_C, (...)). AGT: adaptive gaussian thresholding by
cv2.adaptiveThreshold( cv2.ADAPTIVE_THRESH_GAUSSIAN_C, (...))

Figure 26: Thresholding results by Niblack and Sauvola, by the functions skim-
age.filters.threshold_niblack and skimage.filters.threshold_sauvola from
the python library skimage.
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The thresholding methods are also compared based on their OCR results, which are shown
in 4. The table shows that the techniques that keep the border of the background perform
worse, as the border is considered as an additional character. Even though the OCR
system was able to read the text from the image, it also created extra characters. Hence,
due to the accurate OCR results and the prior research conclusions by Sezgin and Sunkur,
and Trier and Jain, the Sauvola thresholding method is used in this research when the
original image is not readable.

Table 4: OCR results after thresholding the image, where NULL indicates that no text is
found.

GT AMT AGT Isodata Li Mean

Text Prijs Totaal
C 246,00

Prijs Totaal: 7
C 246, 00 J

F\q i |
C 246,00 |

Prijs Totaal
C 246,00

Prijs Totaal
C 246,00

Prijs Totaal
C 246,0

Minimum Otsu Triangle Yen Niblack Sauvola

Text NULL
Prijs Totaal
C 246,00 |

NULL
Prijs Totaal
C 246,00

mm Prijs Totaal
mmm C 246,00

Prijs Totaal
C 246,00

5.3 Annotating the data

The next step is to prepare the target values of the model. As these are not provided,
the images must be labelled. First, the specific fields are labelled, e.g., the invoice date,
invoice number, etc. These fields are needed to test and train the models. As the RCNN
model works with regions, after the annotation of the fields the regions also have to be
located and labelled. The annotation is executed by a rule-based algorithm and the python
OCR package pytesseract. This is the Python version of tesseract, by [Google inc, 2019].

5.3.1 Annotating the specific fields

As was shown in the previous section, there are 25 classes (Table 2 and a background
class). These classes are annotated by reading the text from an invoice and labelling the
produced boxes. First, the invoice is processed by the OCR engine to find the words and
their bounding boxes; a representation is shown in Figure 27. After that, some additional
steps are taken to merge the bounding boxes. There are several merge types. The first
merge function merges boxes that are close to each other in a line, as they could be one
entity, e.g., the address “Koolweg 20". The second type of merge is called the ’description
merge’, this function checks whether the descriptions are split over multiple lines. For
instance, if ‘Demo Product nummer 1’ had an additional line under it like ‘purchased on
the 13th of May 2020’. The third function merges all boxes that are in the same line; these
are used to find the article lines.

After that, all boxes (merged and not merged) are compared to the fields in the database.
If a text field is equal to a field in the database, then it is immediately labelled, e.g., the
invoice number of this invoice is 202063, so the box which holds “202063" is labelled as
Inkoopfactuur_externereferentie.

The Rule-Based algorithm is based on the database counterpart of the invoices and a
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Figure 27: Image of an invoice after being processed by the function pytesser-
act.image_to_data. This method reads all the text as separate words and returns the
text and its location (bounding box coordinates).

get_type method that gives a type to a word or sentence. The method reads the text in
the box and assigns a type; the possible types are shown in Table5.

As the database does not hold all information on the invoice, some additional rules,
which are based on the aforementioned types, are used to find all the important fields.
Some fields that are not in the database are website, e-mail address, BTW-number, IBAN,
and registration number (KvK). Unlike the websites, e-mail addresses, BTW-numbers,
and IBANs, which are found by using their assigned types, the registration number could
not be annotated like this. Instead, a Google search query was used to retrieve some of
the registration numbers from the web. The recovered registration numbers, which were
around 1000, are then used to find the counterpart in the invoice.

Furthermore, most databases do not record the specific prices and quantities of the pur-
chased articles. Instead, they record the total amount. Hence, these fields had to be found
by creating a rule that found the article lines. This rule specifies that when a line holds a
quantity, description (or a combination of words and numbers) and at least one price then
it could be an article line. The line is then split into numbers, prices, and a description.
The description is immediately labelled as Inkoopfactuur_omschrijving; the annotation of
the other fields follows some additional rules. Normally there is one number in an article
line, hence the first or only number is labelled as Inkoopfactuur_aantal. The first price
in the line is labelled as Inkoopfactuur_prijs and the last price in the line is labelled as
totaal_prijs. The other prices, which could be a discount or tax, are ignored, as invoices
can hold neither, both or either of them, it is impossible to hardcode this label. Similarly,
percentages are also ignored. As all invoices have their own article line template, the
method is not robust. However, most invoices in the given dataset adhere to these rules.
The process of finding the article lines is depicted in Figure 28.
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Figure 28: Depiction of the merging to find the article lines and the specific fields. The
first image shows the boxes that are generated by tesseract. The second image shows the
first merge step, where words are very close (one space apart). The third image shows the
merging of close lines, as they could be part of one description. The last image shows the
article lines.

5.3.2 Annotation important regions

After all these steps all specific objects are annotated, a representation is shown in Figure
29. However, as the feature space of the model is fairly small, which is shown in the right
image in Figure 29, some objects end up in the same pixel. Classifying an object within
such a pixel is difficult, as it belongs to multiple classes.

Figure 29: The left figure shows the annotated image, the annotated boxes are shown in
green. The right figure shows the annotated image and a representation of the size of the
pixels in the encoded feature space (the red lines).

Therefore, to get rid of this problem, it was decided to first locate some specific regions.
These regions are explained in Table 6. The regions are found by using the earlier found
fields and merging the fields into one big bounding box, an example can be seen in Fig-
ure 30. The figure also shows the pixel size of the feature space, which shows that the
likelihood of having multiple objects in one pixel decreased significantly.
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Figure 30: The left figure shows the annotated image after labelling the regions. The
right figure shows the annotated image and a representation of the size of the pixels in the
encoded feature space. As with most of the invoices, this invoice has one box per class.
From top to bottom: Info_koper, Info_factuur, Artikel_tabel, Totaal_tabel, Info_verkoper
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Table 5: Description of the different types in this research.

Type Description

empty
Many boxes that are generated by tesseract are empty and span over a
large space on the image. These boxes are not important, and they are
classified as empty.

number
Numbers could be prices, percentages, etc. As there are two types of
decimal delimiters in numbers, namely, a “," and a “.", both have
to be checked.

date The dates are found through multiple regex statements.
percentage Is assigned when a % symbol is in the entity.

BTW-code

As all Dutch BTW codes follow the same structure, and most invoices are
from a Dutch seller, a regex statement is used to assign this type. The
statement ensures that an entity that looks like “xxxxxxxBxx", where x
can be any number between 0 and 9, is considered a BTW-code.

IBAN

Like the BTW-codes, an IBAN usually also follows the
same structure. Hence, a regex statement ensures that entities that look
like “yyxxyyyyxxxxxxxxxx", where y can be any letter and x can be
any number, are considered as an IBAN.

quantity This type is only assigned when a “#" is the first character in the entity.
currency symbol Symbols like “C", “$", “£", etc.

e-mail address
Since e-mail addresses always follow the same structure, a regex
statement is used to identify them. This statement ensures that entities
that look like “(...)@(...).(...)", are considered as an e-mail address.

website
Like the e-mail addresses, websites also follow the same structure,
namely, “www.(...).(...)". Hence, a regex statement is used to assign
this type as well.

price
An entity gets this type when it has a currency symbol as its first or last
character and the rest is a number, or when it has 2 decimal numbers.

name
An entity is considered a name when its lowercase representation is not
equal to its current state, e.g., “Smith" 6= “smith".

word An entity is treated as a word when its characters are strictly letters.
words Is assigned when an entity holds multiple words.

description
This type is only assigned after the description merge step. These newly
merged fields are considered descriptions.

do not know
Is assigned when an entity does not adhere to the constraints of the other
types.

Table 6: Description about the 5 different regions in this research.

Type Description

Info_verkoper
This region contains information about the seller, the company who
sent the invoice. It holds fields like bank account number, website,
creditor name, BTW–code, etc.

Info_koper
This region contains information about the buyer, the company who
receives the invoice. It holds fields like company name, address, etc.

Info_factuur
This region contains information about the invoice. It holds fields like
invoice number, invoice date, etc.

Totaal_tabel
This region contains information about the total amount. It holds fields
like total amount, tax percentage, tax amount, etc.

Artikel_tabel
This region contains information about the purchased articles. It holds
fields like price, quantity, description, etc.
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6 Methodology and Experimental setup
This section gives a detailed description of the methods and the experimental setup. The
description of a method entails an explanation of the general structure and reasoning,
while the experimental setup details the conducted experiments and hyper-parameter op-
timisation strategies, which lead to the final model choices.

In order to solve the problem, it had to be divided into multiple subproblems. After the
preprocessing of the data, an Object Detection model has to find the correct fields. These
are then compared to their respective fields in the database. The last step consists of
adding the acquired information to the database. Before filling the database, the important
classes had to be identified. This led to 13 classes that had to be logged into the database,
and 17 classes that could be found additionally, but should not be added into the database.
The 13 important classes are:

Inkoopfactuur_externereferentie Inkoopfactuur_btwpercentage Crediteurnaam
Inkoopfactuur_factuurdatum Inkoopfactuur_btwbedrag Crediteur_kvk
Inkoopfactuur_brutobedrag Inkoopfactuur_totaalbedrag BTW_code.
Inkoopfactuur_korting Inkoopfactuur_valuta
Inkoopfactuur_nettobedrag IBAN-nummer

As stated by Section 4, three models are implemented to solve the research problem, a
Rule-Based NLP model, a non-Deep Learning, and a Deep Learning model. This is done
to compare different techniques in finding a solution for which techniques can be used to
check the reliability of the database counterparts of PDF invoices. Additionally, like [?],
who integrated a LightGBM classifier into a CNN model, these methods could also be
combined to form an even better model.

This section is divided into 4 parts. First, the Rule-based algorithm is explained (Section
6.1, then the decision tree model and its experimental setup will be explained (Section 6.2.
Thereafter the RCNN (Deep Learning) model and its experimental setup will be described
(Section 6.3). After that, the process of checking the database counterparts and creating
the desired output are described (Section 6.4).

6.1 Rule-Based

The first approach to solving the research question is to use a classic knowledge acquisi-
tion technique. This technique is called Rule-based knowledge acquisition. Here the raw
text is classified by predefined rules. Before classifying the fields, they must be found.
The proposed regions are found by using pytesseract and the merge functions that are
described in Section 5.3. Additionally, all the proposed text is cleaned and provided with
a type; the types are described in Table 5.

The classification is done by first finding the aforementioned regions: buyer information,
seller information, invoice information, article table and total table. The text within the
regions is then classified as one of the many classes. The division of which fields are
present in which region are shown in Table 7. The classification of the fields is described
per region.
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Table 7: The 5 regions and the information that can be found in those regions. As can
be seen there are 5 regions: Info_koper, which holds information about the buyer, Info_-
Verkoper, which holds information about the seller, Info_Factuur, which holds informa-
tion about the invoice, Artikel_tabel, which holds information about the purchased goods,
and Totaal_tabel, which holds the information about the total amount.

Info_Koper Info_Verkoper Info_Factuur Artikel_tabel Totaal_tabel
Name Name Number Article codes Gross amount
Address Address Date # Articles Net amount

E-mail address Prices Total discount
Website Discount Tax percentage
Tax number Currency Tax amount
IBAN Contract period Total amount
Registration ID Descriptions Currency

Total per article
Tax percentage
Tax amount

Information about the invoice
The first region is Info_factuur. This region is found by assuming that it contains a date.
There can be multiple dates on an invoice, although the first one is usually the invoice
date. However, when companies use a datestamp, like in Figure 22a, the first date will be
that one. Hence, when the first date is found in the upper corner of the invoice and there
are more dates on the invoice, then the second date will be labelled as the invoice date.
Otherwise, the first date will be labelled as the invoice date.

The next step is to find the neighbours of the invoice date (factuur datum). As the invoice
number is usually next to, directly above or directly under the invoice date, it was decided
that the region entails 2 lines above the invoice date and 3 lines beneath the invoice date.
The invoice number is then found by finding each text field that has either type: word,
name, number, or do not know, as they could all be an invoice number. The first one is
then labelled as the invoice number (externe referentie).

Additional fields like client number and expiration date are usually also in this region.
These could be found as they are normally the second entity with a number and the sec-
ond date in the region, respectively.

Information about the buyer
The next region is Info_koper. This region is found by assuming that it always contains
a postal code, which was added as an additional type in this stage. It is found by using
a regex statement which ensures that entities that match “xxxx_yy (...)", where x is any
number, y is any (capital) letter, and _ indicates that there could be a space, are marked
as a postal code. After finding the postal code, the region is made, which consists of the
line with the postal code and the two lines above and underneath it. If this region does
not hold an e-mail address or a website, then it is seen as the Info_koper region. As this
region normally only contains the name and the address of the buyer, the first box with
the type “name” is labelled as “Koper naam” (name of the buyer). Additionally, the box
with the postal code can be labelled as the buyer postal code.
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Information about the seller
The third region is Info_verkoper. Like the previous region, it is assumed that this region
also contains a postal code. However, unlike the previous region, this one should have at
least an email address or a website in it. Furthermore, this region is also larger, as contains
much more information. Hence, it was decided that this region consists of the line with
the postal code, the 5 lines above and the 4 lines underneath it.

Next, the box with the types “IBAN” and “BTW code” are immediately labelled as
Inkoopfactuur_bankrekening and BTW code respectively. While the KvK number is found
by assuring that a field is a number with exactly nine numbers (as each KvK number has
nine numbers). Furthermore, the creditor name is found by finding the first name in the
region.

Additionally, the e-mail address box can be labelled as creditor email, the website can be
labelled as creditor website, and the postal code can be labelled as creditor postal code.
After the postal code is labelled, the line above can be used to find the address of the
creditor.

Information about the articles
The next region is Artikel_tabel, as can be seen, none of the fields are deemed as im-
portant. Hence, this region does not have to be found or labelled. However, they could
be labelled. This is done by first finding the article lines, which is described in Section
5.3. Like the labelling in the aforementioned section, the fields are labelled per line.
Where the first number is labelled as the article amount, the first description, name, word,
or words box is labelled as the article description, the first price is labelled as the price
of the article, and the last price is labelled as the total amount that was spent on the article.

Information about the total amounts
The last region is Totaal_tabel, which mainly consists of prices and currency symbols.
First, the boxes with the type “currency symbol” are labelled as _valuta. Next, all boxes
that hold a price are found and ordered by position. The last price is labelled as _to-
taalbedrag, while the _brutobedrag and _btwbedrag are not immediately labelled. Before
they are labelled, a check is done to ensure that the 2 prices above the total amount sum up
to the total amount. If they do, then the largest price is labelled as _brutobedrag and the
other price is labelled as _btwbedrag. After that, the tax percentage is calculated based on
the two previously labelled fields. The field that holds the exact calculated tax percentage
is then labelled as _btwpercentage.

6.2 LightGBM

The second model is tested to see whether a simple classification model could acquire
similar results. The machine learning model that is used here is a decision tree called
LightGBM, which is described in Section 3.2. This model classifies the specific fields
instead of the important regions, as it does not classify based on a grid or an image itself,
hence, it is much faster. The proposed regions are a combination of the bounding boxes
extracted by pytesseract and their merged fields; the types of merged fields are explained
in Section 5.3.

The model classifies the fields based on several features. These features are shown in
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Table 8. The features were chosen based on the related work section (Section 4). They
are specifically based on the features used in [Zhao et al., 2019, Xu et al., 2019, Tarawneh
et al., 2019]. These researchers concluded that using text as well as locational features
will lead to a more accurate model. The LightGBM model is implemented by using the
Python library lightgbm, by [Ke et al., 2017].

Table 8: Features of LightGBM

Type Description

The normalised
bounding box coordinates

As some invoices are spread over multiple pages, the
normalised bounding box coordinates would be more
insightful. The normalised bounding box coordinates
are also used in the LayoutLM model by [Xu et al., 2019],
they concluded that scaling the bounding boxes between 0
and 1000 would lead to better generalisability.

The centre point of
the bounding box

The researchers in \cite{cutie} used this feature to avoid the
effects of having overlapping bounding boxes. Furthermore,
it is also useful when objects in the same class vary in size
but have a similar centre point.

The confidence of
the reading

This confidence score is assigned by pytesseract and indicates
the confidence of the reading. Hence, it can be insightful.

The type of the text
in the box

This is assigned by the get_type method described in
Section 5.3.

The length of the text
in a box

The number of characters in the text.

As was mentioned before, the annotation is not complete. which leads to not all classes
being represented on an invoice. Moreover, many words that are on an invoice are not
considered as part of a class at all. This all leads to a significant class imbalance between
the aforementioned classes and the “not important” class. According to [Oksuz et al.,
2020], the positive samples are more important during training than the negative samples.
Hence, it would not be beneficial to downsample them. Therefore, the positive classes are
upsampled and the negative classes are downsampled to create a balanced dataset.

The resampling methods that are used are resampling with replacement, without replace-
ment and SMOTE (Synthetic Minority Over-sampling Technique). Resampling with re-
placement is used to upsample a minority class, while resampling without replacement is
used to downsample a majority class. Both of these methods randomly pick a sample from
the data. However, the method with replacement allows picking the same sample multiple
times, while the method without replacement does not. These methods are implemented
by using the Python library scikit-learn, by [Pedregosa et al., 2011].

The other method, SMOTE, which was introduced by [Bowyer et al., 2011], is a well-
known solution method for class imbalance. This method randomly oversamples the mi-
nority classes and downsamples the majority class. However, instead of oversampling the
dataset by randomly adding one of the samples in the dataset, SMOTE randomly picks k
samples (neighbours) and uses them to make one synthetic sample. A synthetic sample
is a combination of the features of the feature spaces of its neighbours, e.g., the average
of the coordinates, or the most frequent text type. SMOTE is implemented by using the
Python library imbalanced-learn, by [Lemaître et al., 2017].
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The experimental setup can be found in Table 9.

Table 9: Experiments of the model

Experiment Input Model Comparison metrics
1 Pytesserect+merge LightGBM Accuracy and F1
2 Pytesserect+merge LightGBM+upsampling positives Accuracy and F1

3 Pytesserect+merge
LightGBM+upsampling positives

+ downsampling negatives
Accuracy and F1

4 Pytesserect+merge LightGBM+SMOTE Accuracy and F1

6.3 RCNN

The third and main model is a Region-based Convolutional Neural Network (RCNN),
which will detect the objects. As was stated in the Background section, an RCNN model
is divided into three modelling steps: the pre-trained backbone, the Region Proposal Net-
work and the object classification and localisation stage. The model architecture can be
seen in Figure 31. Traditional RCNN models use a pre-trained classification model as
their backbone. However, these models require a fully supervised dataset, instead of a
semi-supervised one. Hence, the pre-trained feature extractor had to be adjusted. Instead
of using a pre-trained model from the Keras Python library, a new feature extractor was
made, namely a convolutional autoencoder (CAE), as these are applicable in unsupervised
problems.

Figure 31: Architecture of the final model with its input. Stage 1 (blue): pre-training
a CAE to learn the general structure of the invoices. Stage 2 (orange): Region proposal
network to classify whether an area is foreground or background. Stage 3 (green): classify
and localise the objects.

Unlike the backbone model, the RPN and Object Detection stages require at least some
annotation. Therefore, the data had to be annotated by hand before training, which is
described in Section 5.3.

The final output of the RCNN model will be the text and bounding box coordinates of
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the desired classes, which are: seller_information, buyer_information, invoice_informa-
tion, total_table and article_table. Afterwards, these have to be further processed by a
knowledge acquisition framework to find the specific fields.

It was decided to implement an RCNN model instead of a Faster-RCNN model due to a
lack of time and resources. As the training of the three separate models took quite some
time, there was not enough time and memory to run the three parts simultaneously.

As multiple researchers concluded that text features would make the localisation more
accurate, some testing was done with an additional channel. This channel is added as the
fourth channel of the input, alongside the RGB channels. The channel is a grid represen-
tation of the text types. For instance, ‘C’ is located in grid point (300,260), so that space
in the grid will hold the type: ‘currency symbol’.

6.3.1 The backbone

As was mentioned before, the backbone of this model is a Convolutional autoencoder
(CAE), which is described in Section 3.3.2. As this model learns to reconstruct an image,
it holds a lot of information about the general structure of the input. Hence, the feature
space of a trained autoencoder ensures better Object Detection results.

Many of the previously mentioned RCNN or Faster-RCNN models use large pre-trained
models like ResNet50 by [He et al., 2015], or VGG19 by [Simonyan and Zisserman,
2015]. These models have 50 and 19 layers respectively and they are pre-trained on
around a million images. As this research does not have as many images, it was decided
to use fewer layers to reduce the chance of overfitting. Two models inspired the several
architectures of the CAE in this research. The first model is the invoice classification
model by [Kang et al., 2014]; its architecture is shown in Figure 36. The second model is
AlexNet by [Krizhevsky et al., 2012], which is shown in Figure 10. These models have
significantly fewer layers, but they do perform well on their classification tasks.

Figure 32: Structure of CNN for invoice classification based on their layout, taken from
[Kang et al., 2014]

Since these models are classification models, they are used as the encoder part of the CAE.
The decoders are the transposed versions of the encoders. Instead of convolutional lay-
ers, they have deconvolutional layers and instead of pooling layers they have upsampling
layers. The layers are implemented using the Python libraries Tensorflow, by [Abadi
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et al., 2016], and Keras, by [Chollet et al., 2015]. Although an encoder separates the
convolutional and pooling operations, a deconvolutional layer, and an upsampling layer
can be combined into one operation: the transposed convolutional layer.

Furthermore, as atrous convolutional layers are shown to be beneficial for object detection
tasks, there is also a model with atrous convolutional layers instead of normal convolu-
tional layers. Moreover, most object detection and image classification models use square
input images. However, invoices are normally the size of one sheet of paper. A sheet of
paper has a size ratio of 1:1.41 (width:height). Hence, some of the architectures are also
executed with that ratio.

The different architectures can be found in Appendix C and their results can be found
in Section 7.3.1. As can be seen, there are many different architectures. However, as
the size of the feature space directly influences the performance of the RPN model, the
performance of the CAEs will not be the sole decision factor. Before deciding between
atrous convolution or not, the feature spaces and their anchor options are compared. The
final CAE is then chosen based on the overall performance of the model.

To get the best performance of the autoencoder, several optimiser strategies, loss func-
tions, and learning rate combinations are executed to find the lowest reconstruction loss.
The learning rate in the experiments ranges from 0.1 to 1e-6. Moreover, as reconstructing
an image can be seen as a regression problem, the (multi) classification losses are not
applicable. The experiments are shown in Table 10. Instead of trying many different opti-
miser strategies, it was decided to stick with Adam, as SGD was a lot slower and required
a much lower learning rate before it produced reasonable results. Furthermore, Adam is
one of the more popular methods in Object Detection tasks, where most of the state-of-
the-art Object Detection researchers use Adam, some of them include: [Girshick et al.,
2013, Ren et al., 2015, Zhao et al., 2019, Kang et al., 2014, Xu et al., 2019, Devlin et al.,
2018]. They prefer using Adam as it takes advantage of feature sharing during training,
which decreases the number of computations per batch, and hence the amount of memory
needed to train the model.

Table 10: Experiments of CAE

Experiment Input size optimiser Loss function Atrous Decoder layer
1 (150x150x3) Adam MSE No Upsample+Deconv
2 (150x150x3) Adam MAE No Upsample+Deconv
3 (150x150x3) Adam KLD No Upsample+Deconv
4 (150x150x3) SGD MSE No Upsample+Deconv
5 (150x150x3) Adam MSE No Upsample+Deconv
6 (227x227x3) Adam MSE No Upsample+Deconv
7 (227x227x3) Adam MSE No TransposeConv
8 (320x227x3) Adam MSE No TransposeConv
9 (454x454x3) Adam MSE No TransposeConv

10 (640x454x3) Adam MSE No TransposeConv
11 (640x454x3) Adam MSE Yes TransposeConv

According to many researchers, as described in Section 4, using textual features alongside
image features leads to better performance, than solely letting a model train on the image
features. Hence, it was decided to add a type map to the input. This type map is inspired
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by [Zhao et al., 2019], which made a grid representation of the embeddings of the text.
However, instead of using text embeddings, the type of the text is put into the grid. Each
type is represented by a number, where similar types have distant numbers, as the model
could give meaning to the preassigned number instead of focusing on what the number
could mean. The new input, which now consists of 4 channels, is given to the same RCNN
model, however, now the input and the output size of the CAE becomes (640× 454× 4).

6.3.2 RPN

A Region Proposal Network (RPN) takes the encoded feature space of an image and
tries to classify whether a box could be foreground or background. As was mentioned in
Section 3.3.3 an RPN model consists of one convolutional layer and two output layers.
As [Girshick et al., 2013, Ren et al., 2015] suggest using a (3× 3) kernel and 512 filters,
these are used in this RPN model as well. The output size is determined by the number of
anchors (a). Here the number of anchors is equal to 9, as 3× 3 = 9.

The first output layer is the classification output layer. This layer returns a 0 (background)
or a 1 (foreground). Hence, the output should be determined by the binary-cross entropy,
as it determines one class. Furthermore, the activation function should also be tailored
to the classification problem, which is the SoftMax function. The second output layer
specifies the coordinates of the boxes; hence the output size of this layer is equal to 4× a.
Moreover, as this output layer predicts the coordinates, this layer should be optimised
by a regression problem loss function and its activation function should be linear. The
architecture of the RPN model is shown in Table 11. The model is implemented by using
the Python libraries Tensorflow and Keras. As the feature space shape is not fixed yet,
it is notated as hf (height of feature space), wf (width of feature space) and ff (number of
filters of the feature space).

Table 11: RPN model

Model: "Region Proposal Network"
Layer (type) Name Output Shape Param # k f s p h

InputLayer Input (β, hf, wf, ff) 0
Conv2D conv_1 (β, hf, wf, 512) 1180160 512 (3,3) (1,1) same
Conv2D scores1 (β, hf, wf, 30) 4617 36 (1,1) (1,1) valid sigmoid
Conv2D deltas1 (β, hf, wf, 120) 18468 9 (1,1) (1,1) valid linear
Total params: 1,203,245
Trainable params: 1,203,245
Non-trainable params: 0

The anchors are formed based on two predefined parameters: scale and ratio. As the
convolutional filter size is 3× 3 there are three scales and three ratios. These parameters
define the size of the anchors. A representation of the anchors around one pixel is shown
in Figure 33a. Here the colours indicate the different ratios, while the size within the ratio
is determined by the scale parameter, giving each pixel in a feature space 9 anchors. This
leads to many region proposals. The ratios in this figure are (1 : 1) (a square), (1/

√
2 : 2/

√
2)

(a horizontal rectangle), (2/
√
2 : 1/

√
2) (a vertical rectangle), which are the recommended

ratios by [Ren et al., 2015].
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The feature space output of AlexNet would lead to 6 × 6 × 9 = 324 possible regions, as
its feature space has size (6 × 6 × 256). However, the anchors that exceed the borders
of the image are normally discarded. A representation of all the generated anchors on an
image is depicted in Figure 33b.

(a) Anchors around one pixel (pixel
(4, 4)) of grid with size 7 × 7. With
ratio 0.5 (red) 1 (blue) and 2 (green). (b) All anchors on an image

Figure 33: Example of anchors

Since the actual regions that hold an object, which are given in the ground truth, are
usually not perfectly aligned with the anchors, a ground truth cannot be provided as the
preferred outcome of the RPN model. Instead, the predefined anchors are labelled as
foreground or background. The labelling is based on the criteria called Intersection over
Union (IoU). The IoU measures the amount of overlap between two regions, here the
regions are a proposed region and a region in the ground truth. As was stated by [Ren
et al., 2015], when the IoU value is greater than 0.7, a proposed region can be labelled as
foreground, and when the IoU is below 0.3, it can be labelled as background. The other
regions are not used, as they are indifferent. The labels and the coordinates are then used
as the targets of the model.

Additionally, 11 proposed to discard regions whose overlapping with other proposed re-
gions are too high. This technique is called Non-maximum Suppression. For instance,
regions that have an IoU of 0.9 or higher are too similar, hence only one of them is kept.

The goal of the RPN model is to identify the correct regions as foreground and to give
their coordinates. This output will then be given to the next part of the RCNN model: the
classifier. The experimental setup of finding the preferred feature space is shown in Table
12.

6.3.3 Classification

The last part of the RCNN model is the classification model. This model consists of a
ROI pooling layer, a few fully connected layers, and two output layers. As was stated in
Section 3.3.3, the ROI pooling layer ensures that all input regions have the same feature
space size when they enter the fully connected block. The input of the ROI layer entails
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Table 12: Anchor experiments

Experiment Feature space Anchor ratios Anchor sizes
1 (6x6) (1 : 1, 1/

√
2 : 2/

√
2, 2/

√
2 : 1/

√
2) 1-500

2 (8x6) (1 : 1, 1/
√
2 : 2/

√
2, 2/

√
2 : 1/

√
2) 1-500

3 (13x13) (1 : 1, 1/
√
2 : 2/

√
2, 2/

√
2 : 1/

√
2) 1-500

4 (18x13) (1 : 1, 1/
√
2 : 2/

√
2, 2/

√
2 : 1/

√
2) 1-500

5 (27x27) (1 : 1, 1/
√
2 : 2/

√
2, 2/

√
2 : 1/

√
2) 1-500

6 (38x27) (1 : 1, 1/
√
2 : 2/

√
2, 2/

√
2 : 1/

√
2) 1-500

7 (38x27) (1 : 1, 1/
√
2 : 2/

√
2, 2/

√
2 : 0.1) 1-500

8 (38x27) (1 : 1, 1/
√
2 : 2/

√
2, 2/

√
2 : 0.15) 1-500

9 (38x27) (1 : 1, 1/
√
2 : 2/

√
2, 2/

√
2 : 0.25) 1-500

the regions that are proposed by the RPN model and the encoded feature space. The
regions are then pooled into the same feature size, which is normally an f × f square.
[Ren et al., 2015] proposed using a 7 × 7 kernel for object detection. As the size of the
objects in this research and in the research of Ren et al. do not differ significantly in size,
a pool size of 7× 7 is also used in this part of the research. Furthermore, the ROI pooling
layer also pools regions to 7 × 7 if they are smaller than the pooling region. Hence, the
smaller objects can still be pooled.

The pooled regions then form the input batch of the next block. The batch size is normally
hardcoded, where most (Faster-)RCNN models use a fixed number of proposals and a
fixed batch size. The number of proposals is usually around 2000 proposals per image,
while batch sizes range from 1 to 2000. [Ren et al., 2015] uses a batch size of 4, while
others do not use multiple batches per image. After the ROI pooling, the fully connected
block linearises the batch features into one dimension. Normally, the fully connected
layers in the block are the same fully connected layers that are not used in the backbone.
For instance, the feature space of AlexNet is created after the last convolutional layer
(layer 5, with 9216 units), then it has 2 fully connected layers (both have 4096 units),
which are followed by the output layer. As AlexNet is the inspiration of the CAE in this
research, its fully connected layers will be used in the fully connected block. The ratio
between the number of units in the feature space and units in the fully connected layers is
2.25. Hence, this ratio is also used in this model.

6.3.4 Hyper-parameter optimisation

The previously mentioned models all have hyper-parameters which influence the perfor-
mance of the models. Hyper-parameters are fixed parameters that are established before
running the model. As these parameters do not change during training, they should be
chosen wisely. A common way of finding “the best” hyper-parameters is grid search. This
method tries a lot of different hyper-parameter combinations and runs the model with all
combinations. All combinations are tested on the same dataset with the same number of
epochs. After testing all combinations, the losses are compared and the hyper-parameter
combination with the lowest test loss is chosen to train on. In some cases, when the losses
are similar, the fastest model can be chosen as the “best”.

The non-Deep learning model in this research only has one hyper-parameter, namely the
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Table 13: RCNN model

Model: "RCNN:classifier"
Layer (type) Name Output Shape Param # f h(·)
InputLayer input_11 (None, hf, wf, ff) 0
InputLayer input_12 [(None, 4)] 0
InputLayer input_13 [(None, 1)] 0
RoIPooling roi_pooling (None, 7, 7, ff) 0 (7,7)
Flatten flatten (None, 12544) 0
Dense fc1 (None, 4096) 51384320 relu
Dense fc2 (None, 4096) 16781312 relu
BatchNormalization batch_normalization (None, 4096) 16384
Dense scores2 (None, 5) 24582 softmax
Dense deltas2 (None, 20) 98328 linear
Total params: 1,257,110
Trainable params: 1,257,110
Non-trainable params: 0

maximal number of iterations it is allowed to do to find the best classification strategy.
This number is usually based on the number of classes of the model. For instance, a nor-
mal number is 100×C. When the maximal number of iterations increases, the accuracy of
the model normally also increases. However, too many iterations can lead to overfitting,
which results in a poor performance on the test set.

Unlike the non-Deep learning model, the Deep learning model has more hyper-parameters.
The hyper-parameters of the Neural Networks are the epochs, the number of layers, the
type of layers, the kernel sizes, the strides, the number of filters, the activation functions,
and the learning rate. Furthermore, the optimiser strategy and loss function also determine
the performance of the model.

The RPN model has more hyper-parameters, namely, the anchor sizes and ratios. The
ratios are inspired by the standard ratios of [Ren et al., 2015], they concluded that using
a square, a horizontal and a vertical rectangle would be best. The sizes, however, are
not inspired by the paper, as they are found by trial and error. Hence, this is done by
checking each possible anchor size and picking the three sizes with the highest IoU scores.
Additionally, the chosen sizes should also ensure that all classes have at least one region
with an IoU of at least 0.7. This ensures that the model will see it as foreground.

The different architectures are tested with different loss functions and learning rates. The
architecture and hyper-parameter combination with the lowest loss will be the final archi-
tecture. This model will then be trained longer to find an even better performance.

The performance of a model is determined by its loss, which is composed of the bias and
the variance of the model. Bias is caused by inaccurate assumptions of the model, which
assumptions arise during the training stage. Some examples of bias in this research could
be that each date will be classified as the invoice date, while this is not true.
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6.3.5 Knowledge acquisition

The next step is to extract the text from the regions and to find the specific fields. This
can be done in many ways; some include using 5 separate RCNN models that specialise
in localising the fields within a specific region. Others use a classification model like
LightGBM or Rule-Based models. As each region holds specific fields, it was decided to
use the better performing model between the Rule-Based and the LightGBM models as
the last classification step.

The Rule-Based algorithm is like the Rule-Based algorithm in Section 6.1. However,
unlike in the previous Rule-Based algorithm, the regions are already located.

6.4 Putting it in the Database

The output of the models will be a table that holds the coordinates, the label, and the text
of a field. This output will then be compared to the data in the SoliTrust Database, for each
(key, value) pair (output model, database entry). If the value and the key are equal, then
the box will be green and a probability of equality of 100% is entered into the database.
If they are not, then the box will be red, and a probability of equality must be calculated.
This score counts the characters that are similar and divides them by the length of the
key. The probability score is added to the database as well. The additional fields are not
checked with the database, but they are added to the image in blue. Moreover, to check
whether the classification was wrong due to labelling the wrong box or because the value
in the database was not filled in correctly, another check is done. This check goes through
all text on the invoice and checks whether the key is present. If it is present, then a red
box will be placed around it. This check is also added to the database as a 1 (present) or
a zero (not present).
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7 Results
This section describes the results of the models and experiments that are described in
Section 6. First, the results of the Rule-Based model are described. Next, the results of
the LightGBM model are described. Third, the results of the RCNN model are described
and the fourth subsection covers the overall results after matching with the outcomes with
the database. All results are based on training the train set and testing the test set. As
not all test images could be fully annotated, the results of the box plots are generated by
invoices in the test set that at least some regions pre-assigned.

7.1 Rule-Based

The results of the Rule-Based algorithm are depicted in Figure 34. The figure shows a
very high average accuracy, which is around 96%, accompanied by a much lower average
F1 score, which is around 42%. The results are based on the 30 predefined classes in
Table 2 and a background class. As not all classes are as important, a weighted F1 score
is calculated as well. This score gives a weight of 1 to all classes that are deemed as
important and a weight of 0 to the rest of the classes. The results show that the adjusted
F1 score is around 42% as well. These F1 scores are quite low, however, as many of
the important fields tend to not be logged into the database, those scores will always be
zero, which means that even if they were located correctly, they will be seen as a fail.
Interesting to note is that some outliers have a score of 1, while others have a score of 0.
The exact minimum, maximum and average scores can be found in Table 31 in Appendix
F.

Figure 34: Results of Rule-Based algorithm. The median is given by the green line, while
the mean is given by the green triangle.

7.2 LightGBM

The python package LightGBM is used for the implementation of the model. It has one
input parameter that can be altered to determine the ’best’ parameter. This parameter
determines the maximum depth of the tree and thus it can be used to decline overfitting, as
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a tree that is too deep will start to classify based on the details, instead of the generalisable
features. [Ke et al., 2017, Khoshrou and Pauwels, 2019]. It is optimised within the module
itself, so no parameters had to be assigned beforehand. The results are shown in Table 14.
The table shows many resampling techniques, which are only applied to the train set, not
the evaluation set. The resampling was not applied to the evaluation set, as experiments
should be comparable, which entails that they should be evaluated by the same set.

Table 14: Results of the experiments on LightGBM.

Model Accuracy F1
LightGBM 0.987 0.044
LightGBM+upsampling positives (5500) 0.988 0.040
LightGBM + upsampling positives (2000)
+ downsampling negatives (5500)

0.990 0.074

LightGBM + upsampling positives (2000)
+ downsampling negatives (10000)

0.992 0.176

LightGBM+upsampling positives (2000)
downsampling negatives (20000)

0.950 0.063

LightGBM+SMOTE (downsample majority to 10000) 0.170 0.041
LightGBM+SMOTE (downsample majority to 20000) 0.280 0.057
LightGBM+SMOTE (downsample majority to 50000) 0.500 0.112
LightGBM+SMOTE (downsample majority to 80000) 0.001 0.004

The first experiment shows a high accuracy but a low F1 score. This indicates that most
classes are not found. As was shown in Section ??, the data is severely imbalanced, which
explains the high accuracy, as all samples are probably classified as class 30. Therefore,
it was decided to upsample the minority classes. However, as some classes barely have
any samples, oversampling them leads to having the same few samples many times. This
results in bad generalisability, and it could also lead to overfitting. First, it was decided
to even out the positive classes and class 30. As there are 31 classes in total, each class
should be upsampled to 167308/30 ≈ 5500. As can be seen in Table 14, the upsampling
led to a higher F1 score, which indicates less overfitting. However, it is still very overfit.
Hence, it was decided to downsample the majority class to 5500 samples as well, to have
no class imbalance. This led to similar results.

To further test whether a larger majority set leads to more overfitting, the model was also
tested with a majority sample which was downsampled to 10000, and where the minority
samples were downsampled to 2000. This led to a better F1 score, but not a significant
difference. Hence, another test was done where the majority class was downsampled to
20000 and the minority classes were upsampled to 2000. However, this did not lead to a
better F1 score either.

The next experiment includes using SMOTE to upsample the minority classes to the same
amount of majority samples with the SMOTE algorithm. The first experiment, which
was to upsample all classes to 167308 samples failed, due to a memory error. Hence it
was decided to downsample the majority class as well. All four SMOTE experiments led
to a worse accuracy score, which indicates that unimportant text boxes are now deemed
important.

The results of the best performing LightGBM model can be seen in Figure 35. This figure
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shows an average accuracy score of 97% and an average F1 score of 29%. As can be seen,
the adjusted F1 score is around 18%. This is even lower than the scores of the Rule-Based
approach. This indicates that the LightGBM classifier tends to find unimportant classes
while mislabelling the important ones. The exact minimum, maximum and average scores
can be found in Table 31 in Appendix F.

Figure 35: Test results LightGBM

7.3 RCNN

The results of the RCNN model are divided into three parts, which correspond to the three
modelling stages. First, the different CAE architectures and their results are described,
which consists of the final loss and the reconstructed images. Next, the anchor and RPN
results are described, and the last subsection will describe the classification results.

Furthermore, as the input was too big to work with batches, all modelling stages were
implemented with a batch size of 1. Also, the learning rate that was used during these
experiments was 1e-6. This value was chosen as lower learning rates did not result in
converging models.

The training results were generated by the Lisa server by SURFsara on a 256GB patrician
of a shared GPU-node. The maximum memory per node was 256GB and the maximum
run time of a job was 120 hours. A summary of the type of GPU-node that is used is
shown in Table 15.

The computational time of the different RCNN stages depends on the input size and the
number of computations per epoch. A summary of the estimated run times is shown in
Table 16. Many trial and error runs were done to find the final models. Some were further
trained after the first 120 hours, others were not.
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Table 15: Summary of used GPU-node

Number 23
Processor Type bronze_3104
Clock 1.70 GHz
Scratch 1.5 TB NVME
Memory 256 GB UPI 10.4 GT/s
Sockets 2
Cache 8.25 MB
Cores 12
GPUs 4 x GeForce 1080Ti, 11GB GDDR5X
Interconnect 40 Gbit/s ethernet
SBU/node-hr * 42.1

Table 16: Summary of the estimated run times per model.

Runtime per 100 epochs Epochs after 120 hours
CAE A1 8 hours
CAE A2 12 hours
CAE A3 15 hours
CAE A4 40 hours 300
CAE A5 40 hours 300
RPN A4 70 hours 170
RPN A5 70 hours 170

7.3.1 Different CAE architectures

Many different CAE architectures and hyperparameter options are tested. As there are
around 4000 invoices, the RCNN structure should not have too many layers. However,
small models usually coincide with small input images, which leads to small feature
spaces as well. As was mentioned before, due to the small objects, a small feature space
is not preferred.

The first architecture (architecture 1) that is tested is based on the invoice classification
CNN made by [Kang et al., 2014], which can be seen in Figure 36. The autoencoder
used the convolutional and Maxpooling layers, which were followed by transpose convo-
lutional and upsampling layers instead of the fully connected layers. The full autoencoder
architecture can be seen in Figure 36.

This architecture was not used due to fact that the pixelmaps were too small. Conse-
quently, too much information was lost. Furthermore, it also led to overlapping regions,
which made it difficult for the model to learn which pixel belonged to which class. How-
ever, it was used to test different optimisers and loss functions, as this model took much
less time to train.

The second architecture (architecture 3) that was tested is based on AlexNet from [Krizhevsky
et al., 2012]. However, due to the square input and the small feature space, many regions
overlapped. Hence, it was decided to use this architecture, but with a double input size
and an A4 ratio. These architectures are also tested with atrous layers (architecture 4)
and without atrous layers (architecture 5). Architecture 4 is shown in Figure 37. All full
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Figure 36: Convolutional autoencoder inspired by [Kang et al., 2014]

summaries of the 4 different architectures can be found in the Appendix, in Tables 24, 25,
26, , 27, and 28 respectively.

Figure 37: Convolutional autoencoder inspired by [Krizhevsky et al., 2012]. It also shows
an example input and its output (the reconstructed image).

Before choosing the architecture, which is ultimately chosen by the grid comparisons in
Section 7.3.2, the architectures are tested with different optimisers, loss functions, and
decoder layers. The different decoder layers are convolution+upsampling, transposed
convolution + upsampling, and transposed convolution alone. As all loss functions rapidly
went to 0 it was decided to compare the experiments by their reconstructed images. The
reconstruction results of the eight different experiments are shown in Figure 38.

The figure shows that using the loss function MSE does lead to sufficient results, whereas
MAE does not. The MSE results do not significantly differ between using SGD and
Adam. However, according to many researchers, who are mentioned in Section 3.3, Adam
is used more often than SGD. Hence, these experiments, and previous literature conclu-
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Figure 38: Different CAE results. A (2 different experiments): model 1 and 2 with loss
MAE and optimiser Adam. B: architecture 1 MSE Adam 100 epochs. C: architecture 1
MSE Adam 200. D: architecture 1 MSE SGD 200. E: architecture 2 MSE Adam 200
(only transpose). F: architecture 2 (transpose+deconv) MSE Adam 50. G: architecture 2
(transpose+deconv) MSE Adam 200. H. architecture 2 (transpose+deconv) MSE Adam
200. All losses are very close 0, most of them are in the range of 0.500 to 0.000.

sions, led to the decision of using the optimisation strategy Adam and the loss function
MSE. Furthermore, it can also be seen that using the transpose+deconv option did not
lead to good results, hence it was decided to just use transposed convolution.

To further analyse whether atrous convolutional layers can be beneficial, which could
ultimately only be decided after the classification stage, a comparison of the loss functions
of architecture 4 and 5 is done. Here, both architectures are trained for 100 epochs. The
comparison is shown in Figure 39.

Figure 39: Loss realisations of architecture 4 (loss) and 5 (loss_atrous), which are also
shown on the left.

As can be seen in the figure, the loss values are in different ranges, but they are both
very close to zero. The lowest loss of the model without atrous layers is 0.0079 and the
lowest loss of the model with atrous layers is 0.0085, which are very close. Hence, the
model without atrous layers was tested for 5000 instead of 100 epochs, to see whether
there was a chance of an even lower loss. The loss distribution is shown in Figure 40. The
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lowest loss that was recorded in the 5000 epochs was 0.0077, which means that the model
improved by 0.0002. The figure also shows that the loss does not significantly decrease
after 100 epochs. An example of the reconstructed image of this model is shown in Figure
37.

In short, five architectures were tested, where three of them had too small feature spaces to
detect the objects. Hence, architectures 4 and 5, which are based on AlexNet, are trained
further. The difference between the models is the type of convolutional layers, where ar-
chitecture 4 uses normal convolutional layers and architecture 5 uses atrous convolutional
layers. As neither of them performed significantly better at this stage, no conclusion can
be made about which layer type would be better.

Figure 40: Loss distribution of architecture 4 with 5000 epochs

7.3.2 RPN

Anchors and grids
The next step is to determine the anchors, which in turn also determines the preferred
feature space and thus the architecture. In order to find the best regions, the anchors must
be similar to the ground truth boxes. As all boxes are of different frames and sizes, it
can be difficult to find appropriate anchors. However, by having the right sizes and ratios,
most of the ground truth will have at least some reasonable options. The anchors depend
on the size, ratio, and shape of the feature space. If the size of the feature space is small,
then the anchors are large, which leads to a less accurate representation of the ground
truth, where some will not be located at all. Moreover, a smaller feature space also leads
to fewer anchors.

As the goal of an RPN model is to find the potential locations of the objects, its pre-
defined anchors must have some overlapping with the ground truth, i.e., at least 70%. To
find the desired feature space, three feature space sizes are tested; a representation of the
grids is shown in Figure 41. The figure shows the feature space size of architecture 3
and two different feature spaces of architecture 4 and 5. They are compared with the IoU
scores of their anchors. The ratios of the testing procedure are the standard ratios of [Ren
et al., 2015]: (1 : 1) (a square), (1/

√
2 : 2/

√
2) (a horizontal rectangle), (2/

√
2 : 1/

√
2) (a

vertical rectangle), while the size of the anchors ranges from 1 to 500 pixels on the input
image. The results are shown in Table 17. As can be seen in the table, the testing is done
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Figure 41: Representation of the feature space grids. The left figure shows the feature
space of architecture 3 (8×6). The middle figure shows the feature space of architectures
4 and 5 (18 × 13). The right figure shows the feature space of architecture 4 and 5, but
without the last pooling layer (38× 27).

with 4 types of ground truth boxes. These boxes are a small square, a thick but smaller
horizontal box, a wide and thin horizontal box, and a vertical box. The boxes are similar
to the boxes in Figure 30.

Table 17: Results of different the IoU values of the anchors and the ground truth in dif-
ferent feature spaces

RPN type IoU<0.3 IoU>0.7 max IoU Anchor size
horizontal_thick 1-52 151-500 0.50 115

6x6 small_square 1-500 0.16 97
vertical 1-70 166-500 0.41 129
horizontal_thin 1-500 0.23 169
horizontal_thick 1-46, 114-500 0.69 78

8x6 small_square 1-21, 72-500 0.8 48
vertical 1-74, 166-500 0.4 129
horizontal_thin 1-500 0.26 131
horizontal_thick 1-52, 156-500 0.58 99

18x13 small_square 1-52, 156-500 0.58 99
vertical 1-49, 168-500 77-104 0.81 84
horizontal_thin 1-500 0.26 96
horizontal_thick 1-46 155-500 75-100 0.80 84

27x27 small_square 1-21 72-500 0.59 45
vertical 1-49 166-500 85-108 0.78 99
horizontal_thin 1-500 0.26 112
horizontal_thick 1-45, 156-500 76-100 0.8 84

38x27 small_square 1-45, 1-21 72-500 34-46 0.8 43
vertical 1-49, 168-500 82-108 0.82 95
horizontal_thin 1-500 0.26 112

The results show that the smaller feature spaces lead to inadequate anchors. As a result,
all anchors are seen as background, which leads to an RPN model that cannot find any
proposals. Hence, it was decided to use a larger feature space. However, instead of
training a new CAE with an even bigger input size, it was decided to drop the last pooling
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layer of architectures 4 and 5. This decision was made because training a model with an
even larger input size would lead to too long training times and memory errors, which
were caused by the large increase in computations after the input size was enlarged. The
new feature space has a dimension of (38 × 27 × 256). This feature space did lead to
appropriate anchors. However, not for all.

Hence, it was decided to test different ratios as well. As the thin and wide box, which is
usually an article table, did not have a sufficient IoU score, it was decided to first change
the ratio of the horizontal box. Three options were tested, all are a thinner version of the
original one. As some article tables are thicker, they should not be too thin either. The
results are shown in Table 18.

Table 18: Results of different anchor ratios.

RPN type IoU<0.3 IoU>0.7 max IoU Anchor size
article_thin 1-500 0.26 112

38x27 article_normal 1-129 431-500 198-281 0.78 235
(1/
√
2 : 2/

√
2) article_thick 1-500 0.26 112

article_thin 1-164 442-500 252-359 0.84 299
38x27 article_normal 1-129 431-500 198-281 0.78 235

2/
√
2:0.1 article_thick 1-164, 442-500 252-359 0.84 299

article_thin 1-134 442-500 210-293 0.81 245
38x27 article_normal 1-129 442-500 198-281 0.78 235

2/
√
2:0.15 article_thick 1-134 442-500 210-293 0.81 245

article_thin 1-104 348-500 210-293 0.81 189
38x27 article_normal 1-129 442-500 198-281 0.78 235

2/
√
2:0.25 article_thick 1-104 348-500 210-293 0.81 189

As can be seen in the table, all types of boxes are accounted for in a feature space of
(38 × 27) pixels and the ratios: (1 : 1) (a square), (2/

√
2 : 0.25) (a thin horizontal rectan-

gle), and (2/
√
2 : 1/

√
2) (a vertical rectangle). Hence, either architecture 4 or architecture 5

can be chosen as the final CAE model.

Region proposals
The next step is to classify which anchor regions are foreground and which are back-
ground. This is done by the RPN model, with the input of either CAE architecture 4 or
5. Hence, the final RPN architecture is given by Table 19, which can have two different
input CAE feature spaces.

Table 19: RPN model

Model: "Region Proposal Network"
Layer (type) Name Output Shape Param # k f s p h

InputLayer Input (β, 38, 27, 256) 0
Conv2D conv_1 (β, 38, 27, 512) 1180160 512 (3,3) (1,1) same
Conv2D scores1 (β, 38, 27, 30) 4617 36 (1,1) (1,1) valid sigmoid
Conv2D deltas1 (β, 38, 27, 120) 18468 9 (1,1) (1,1) valid linear
Total params: 1,203,245
Trainable params: 1,203,245
Non-trainable params: 0
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Hence, there are two RPN models, one with architecture 4 as input and the other with
architecture 5 as input. As an epoch of this model takes a long time, it was decided to
train both models for 5 days and see how far they would come. Both models successfully
finished 170 epochs. The training losses are depicted in Figure 42. The figures show a
rapid decline in loss and a possible stabilisation after 16 epochs. Figure 43 shows the loss
functions from epoch 50, which is shown to further investigate the loss functions. This
plot shows that the loss functions are slowly stabilising, where the loss function of the
model with CAE architecture 4 performs best.

(a) Loss Architecture 4 (b) Loss Architecture 5

Figure 42: Training loss of the two RPN models. The left figure shows the RPN model
with input architecture 4 (A4) and the right figure shown the RPN model with input ar-
chitecture 5 (A5).

Figure 43: Both RPN models training loss from 50 epochs.

The loss function shows a very small loss; however, a low loss does not always lead to
good region proposals. As the proposals must have an IoU of at least 70%, each proposal
set must be checked before it can be passed to the next model. This is done to ensure that
each class is represented at least once, otherwise, it cannot be located. After testing each
image in the train set, none of the images had enough relevant proposals to be passed to
the next stage. Hence, it was not possible to train the final stage of the RCNN model.

As the RPN did not lead to accurate region proposals it was decided to add a type map
to the input. However, the computational requirements and time were not feasible for the
time and memory that was left. Hence, the implementation is not tested.
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7.3.3 Classification

The next step is to classify the proposed foreground regions as one of the 5 region classes.
As mentioned before, like the RPN model, each class must have at least one proposed
region with an IoU score of at least 70%. However, after 5 days of training, neither model
resulted in any sufficient region proposals. Hence, this model was implemented, but could
not be trained. The final implementation is shown in Table 20 and a visualisation of the
full model can be seen n Figure 48 in Appendix E.

Table 20: RCNN model

Model: "RCNN:classifier"
Layer (type) Name Output Shape Param # f h(·)
InputLayer input_11 (None, 30, 27, 256) 0
InputLayer input_12 [(None, 4)] 0
InputLayer input_13 [(None, 1)] 0
RoIPooling roi_pooling (None, 7, 7, 256) 0 (7,7)
Flatten flatten (None, 12544) 0
Dense fc1 (None, 4096) 51384320 relu
Dense fc2 (None, 4096) 16781312 relu
BatchNormalization batch_normalization (None, 4096) 16384
Dense scores2 (None, 5) 24582 softmax
Dense deltas2 (None, 20) 98328 linear
Total params: 1,257,110
Trainable params: 1,257,110
Non-trainable params: 0

Therefore, it was decided to find the potential performance. This was done by performing
an ablation study. An ablation study is the study of a model, where some features or
modelling parts are excluded, to see how it affects the performance. Here, the RCNN
modelling stages are excluded and the ground truth regions are used instead. As was
mentioned in Section 6.3, the next step is to find the specific fields, which can be done in
many ways. It was decided to use the Rule-Based approach, as LightGBM previously did
not give good results. The results are shown in Figure 44. As can be seen from the figure,
the adjusted F1 and the F1 score have a large range of values, with an average of 14% and
36% respectively, while the average accuracy score is around 98%. This is lower than the
Rule-Based algorithm, as not all regions are annotated.

7.4 Final output

The final output consists of 2 new tables in the database and an image with coloured
regions. The two new tables are called Bijlage_details and Matching. Bijlage_details
holds the discovered information on the invoice, while Matching matches the discovered
information with the logged information in the database. An example of Bijlage_details
is shown in Table 21, an example of Matching is shown in Table 22, and an example of
the coloured image is shown in Figure 45.

These outputs are the results of one example invoice. This invoice is from Company
A and has the main characteristics that make this research more difficult. Namely, the
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Figure 44: Test results ablation study RCNN model

Table 21: Example output important columns in the Bijlage_details table of one invoice.

Bijlage_ID Label Tekst
304*** externereferentie 2520
304*** factuurdatum 3-1-2020
304*** brutobedrag 206.61
304*** korting
304*** nettobedrag
304*** btwpercentage 21
304*** btwbedrag 43.39
304*** totaalbedrag 250
304*** valuta EUR
304*** IBAN-nummer NL**RABO(...)
304*** Crediteurnaam
304*** Crediteur_kvk
304*** BTW_nummer NL(. . . )B01

date stamp, not properly logging taxes, and the many NULL values in the database. This
caused incomplete and inaccurate annotations and results. As can be seen from the figure,
the found fields are mostly correct. However, due to the database counterparts, they are
considered wrong proposals.
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Table 22: Example output Matching table of one invoice.

Tabel_A Kolom_A Kans Waarde_A Waarde_B In_Bron
Inkoopfactuur factuurdatum 90 7-1-2020 3-1-2020 1
Inkoopfactuur brutobedrag 38 250 206.61 1
Inkoopfactuur korting 100 NULL 0
Inkoopfactuur nettobedrag 0 250 1
Inkoopfactuur btwpercentage . . . 0 NULL 21 0
Inkoopfactuur btwbedrag 17 0 43.39 1
Inkoopfactuur totaalbedrag 100 250 250 1
Inkoopfactuur valuta 0 NULL EUR 0
Inkoopfactuur externereferentie 100 2520 2520 1
Crediteur omschrijving 0 **** BV 0
Crediteur bankrekening 100 NL**RABO(...) NL**RABO(...) 1

Figure 45: Example image output of one invoice, created by the Rule-Based algorithm.
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8 Discussion
This section describes several limitations that were encountered during this research, and
it will also suggest some further research opportunities. First, the limitations of the re-
search will be elaborated on. Thereafter, the results of the models will be further ex-
plained. The third subsection will describe the impact on the host company. Finally,
further research opportunities will be described.

8.1 Limitations

This research dealt with several limitations, which were mostly a direct cause of the lack
of pre-annotated data. Even though there were a lot of PDFs available, many of them did
not have a database counterpart that could be connected easily. Most of these invoices
were the invoices of Company B, which were around 6000 invoices, where none of them
had an existing link to the database. Hence, that link had to be established by using
OCR to find the external reference number. However, as this method did not work for all
invoices, almost 5000 of them were not linked.

Moreover, not all information in the database was one-to-one with the information on
the invoice. Where some fields were not filled in at all, others were filled in incorrectly.
Some of the more prominent fields that were not filled in properly were the tax amount,
tax percentage, and gross amount of the invoices of Company A. This not only led to
incomplete annotation of the specific fields, but it also led to incomplete region annotation.
As a result, most of the invoices missed at least one of the regions that had to be annotated.
This in turn also led to low F1 scores, as many of the correctly classified fields were not
accurately annotated.

Other than missing many labels, the data was also severely imbalanced. As an invoice
holds many words that are not considered important information, most of the proposed
fields were deemed unimportant. This not only led to high accuracy scores, but it also led
to bad F1 scores.

As all models would have performed better with a fully annotated dataset, neither model
performed to its full potential with this dataset. Hence, it is impossible to say which model
is better or which has the most potential. However, by ignoring the potential false nega-
tives and comparing the results based on the adjusted F1-score, the Rule-Based algorithm
performed best.

8.2 Results

This section will give a more extensive explanation of the results of the three separate
modelling techniques. As the results depend on the level of annotation, the averages
are quite low. However, as the classes related to taxes and currency are not properly
annotated, and many invoice dates were logged in incorrectly due to date stamps, 5 of
the 13 important classes only brought the average down. Furthermore, many of the other
classes were only partly annotated, which further explains the low scores.
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Rule-Based
The first tested model was the Rule-Based model, which is also the model with the highest
average adjusted F1 score, which was 44%. At first glance this seems quite low, however,
as around 40 to 60 percent of the annotation was done, this score is actually quite high.
Moreover, after visually inspecting the results, the discovered fields were quite good as
well; an example is shown in Figure 45. This can be explained by the fact that the Rule-
Based algorithm is not dependent on the level of annotation, as it is a static method that
does not learn from its mistakes.

LightGBM
Other than the Rule-based algorithm, the LightGBM model is highly dependent on having
a large variety of annotated samples per class. Hence, upsampling and downsampling
techniques were used. However, as some classes had less than 200 samples, where some
even had less than 20, upsampling them to 5000 samples led to the same samples being
represented more than 50 times. This overrepresentation led to severe overfitting. Where
some of the LightGBM models started to resemble template matching algorithms.

However, downsampling also led to bad results, as many of the samples that were dis-
carded are similar to the upsampled classes. As a result, many unimportant fields were
mistaken to be part of an important class, which also led to much lower accuracy scores.
Furthermore, all classes had less than 2000 samples. As there were around 4000 invoices,
many correctly annotated fields were flooded by the fields that were not annotated. This
in turn led to more fields being labelled as unimportant. This also explains the bad results
after using SMOTE, where a lot of the created samples seemed to resemble fields in the
unimportant class.

RCNN
The RCNN model had limitations due to the annotation as well as limitations due to
its computational time. As an Artificial Neural Network learns from its mistakes, it is
highly dependent on the annotation of its input data. So as many invoices did not have
all regions, the model was not able to distinguish when a textual area was foreground and
when it could be considered as background.

Moreover, the training of the RPN model was very computationally expensive, which
was largely due to the input size. As the model was trained on an external server, Lisa by
SURFsara, the training time had a maximum of five days, which was around 170 epochs
per model. After further inspecting the loss functions of the RPN models, it could be seen
that the losses dropped around 0.01 per epoch, which was reducing per epoch as well. This
indicates that further training both RPN models could easily take 2 more weeks, which
also had to be followed by at least a week of training the classification part. Hence, this did
not seem feasible for this research. As a result, tuning the hyper-parameters was beyond
the feasibility of this research. Moreover, by adding the type maps, the computational
time increased even more. Therefore, this model was not tested further either.

This computational time could have been decreased hugely by decreasing the size of
the input images. However, as Table 17 and Figure 41 showed, this not only led to the
possibility of overlapping boxes, but it also led to no boxes having an IoU higher than
70%. This in turn would never result in feasible foreground regions.
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The computational time also led to the decision to train the RCNN model instead of the
Faster-RCNN model. Not only would this model need a lot more time per epoch, but it
also required more memory to train it. As initialising and reading the data led to a memory
error, it was decided to train the stages separately.

8.3 Impact on the host company

The impact of this research on the host company is of great value. As the Rule-Based
method is already implemented to work with the SoliTrust datamodel and the invoices
directly, it is already classifying whether the invoices (in PDF format) are one-to-one
with the data in the datamodel. This not only saves time, but it is also more effective than
just looking at a small subsample.

As it is only implemented for Company A, the potential of using it for more clients is still
great as well. Furthermore, this strategy can also be adjusted to work with other VRD
documents, such as bank statements and pay checks. As a result, many tedious tasks can
be automated in the future.

8.4 Further research

There are several further research opportunities from this research. Not only can the
RCNN model be further improved by training it with the type maps, but if memory allows
it, the Faster-RCNN version could also be trained. This could lead to much better results.
Furthermore, acquiring more data (fully and partly annotated) could also enhance the
performance of the RCNN and the LightGBM model.

Furthermore, instead of trying to immediately find the five different regions, the model
could be trained to first distinguish tables from paragraphs. After that, another model
could be used to separate the paragraphs into the different regions.

Another potential research option would be to work with the pre-existing and pre-trained
models in the Transformers library (by [Wolf et al., 2020]), e.g., BERT and LayoutLM.
As these models had state-of-the-art results in supervised settings, they could have a good
performance in semi-supervised settings as well. Furthermore, as they are already ex-
tensively trained on the layout of VRDs they could be less sensitive to semi-supervised
data.

Further research could also focus on adding logical and probabilistic reasoning to the
model, like [Manhaeve et al., 2018]. Examples of logical rules could be that the addition
of the tax amount and the gross amount should be equal to the total amount. This could
not only make a model smarter, but it could also lead to much better results. Another
approach could be to make a model that aligns the invoices with the grid of the feature
space, as it could decrease the chance of overlapping regions.
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9 Conclusion
The main goal of this research was to answer the research question: Can a traditional
object detection model, such as (Faster-)(R)CNN, still be applicable in invoice informa-
tion extraction when the data is not fully supervised or is a Rule-Based or a decision
tree model more effective? The goal was to examine whether state-of-the-art models have
similar results when data annotation is scarce, as all the recent models assume perfect
annotation.

With the follow-up questions: Does adding textual features, which are produced by
heuristics and an OCR engine, to the input of the aforementioned model increase the
IE performance?, and Does replacing the normal convolutional layers in the (Faster-
)(R)CNN architecture to atrous convolutional layers lead to better IE results?

Before comparing the models, it is important to note that neither model could perform at
its best, since the data annotation was not complete. Moreover, as the RPN model was
not able to find appropriate regions, the RCNN results are based on an ablation study,
where the correct regions are assumed to be proposed. Hence, the current RCNN model,
excluding the ablation study, performed the worst, as it did not extract any information.

In order to decide which of the three models performed best, two performance measures
are used: the F1-score and an adjusted F1-score. As the dataset was severely imbalanced,
the accuracy was not applicable, whereas the F1 score gives less biased towards the major-
ity. The results of the Rule-Based, LightGBM, and RCNN models can be seen in Figure
34, 35 and 44 respectively. As was expected the F1 scores were much lower than the
accuracy scores, namely around 42%, 29%, and 36% for the Rule-Based, LightGBM, and
RCNN models, respectively. This indicates that the Rule-Based model performed best
overall.

To decide which model performed best in the eyes of the host company, an adjusted F1-
score is used. This score only gives weight to the F1 scores concerning the classes that
were classified as important. Here the models scored around 44%, 18%, and 14% for
the Rule-Based, LightGBM, and RCNN models, respectively. This indicates that the best
model here would be the Rule-Based model as well. This can be explained by the fact
that not all regions are annotated. Hence, the RCNN ablation study was expected to have
a lower score than the Rule-Based model.

The next question could not be answered yet. However, it does have potential, as multiple
researchers have stated that textual features increase the performance and because there
is no current performance. Hence, when there is enough capacity to train this model, it
would likely produce better results.

The last question could also not be answered yet, as both the architecture without atrous
convolutional layers and the architecture with atrous convolutional layers did not lead to
appropriate regions. Furthermore, as can be seen from Figure 39, the CAE losses are
too similar to decide which CAE architecture would be more applicable. However, from
Figure 42 it could be concluded that the RPN model with Architecture 4 as its input
performs better than the RPN model with Architecture 5 as input, as its loss is slightly
lower. However, as both RPN models failed to produce appropriate regions, neither is
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good.

In short, to answer the main research question, yes, the (Faster-)(R)CNN is still appli-
cable, however, Rule-Based methods are more likely to produce more promising results,
as they are not dependent on the annotation of the data. This was expected, as Neural
Networks learn from the mistakes they make when classifying a set of input data. Hence,
when a region is found to be foreground, but it is not correctly annotated, the model will
not learn that it is foreground.

Therefore, when using unsupervised data, it is recommended to use a Rule-Based model,
as it has higher scores, and it takes much less time to perform, as it does not have to be
trained. However, when a better performing model is preferred, then it is recommended
to first fully annotate the data, as that would lead to much better results.
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Appendix

A Database

The invoice table and the sales invoice tables have many empty fields. The invoice table
in the Company A database has 53 columns and 9285 rows and the table of Company B
database has 52 columns and 16132 rows. The number of columns that are not recorded
is 32 and 26, the number of partly filled in columns is 4 and 2, and there are 17 and
28 columns that are always recorded, for Company A and Company B respectively. A
representation of these numbers is depicted in Figure 46.

The sales invoices table includes similar fields to the invoice table, and it also has many
empty fields. This table has 58 columns and 31396 rows, where 26 of the columns are
empty, 2 are partly filled in and 28 are completely filled, which is also depicted in Figure
46.

Figure 46: Distribution of recorded and non-recorded data

An example of 1 database entry of an invoice is shown in Table 23. As can be seen, many
fields are empty.
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B Thresholding

Figure 47: All thresholding methods in the module skimage.
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C CAE architectures

Table 24: Architecture 1, inspired by [Kang et al., 2014]

Model: "cae_150"
Layer (type) Name Output Shape Param # k f s p

InputLayer Input (β, 150, 150, 3) 0
Conv2D conv_1 (β, 144, 144, 20) 2960 20 (7,7) (1,1) valid
MaxPooling2D pool_1 (β, 36, 36, 20) 0 (4,4) (1,1)
Conv2D conv_2 (β, 27, 27, 256) 25050 50 (5,5) (1,1) valid
MaxPooling2D pool_2 (β, 8, 8, 50) 0 (4,4) (1,1)
UpSampling2D up_1 (β, 27, 27, 256) 0 (4,4) (1,1)
Conv2D deconv_1 (β, 36, 36, 20) 25020 20 (5,5) (1,1) valid
UpSampling2D up_2 (β, 144, 144, 20) 0 (4,4) (1,1)
Conv2D deconv_2 (β, 150, 150, 3) 2943 3 (7,7) (1,1) valid
Total params: 55,973
Trainable params: 55,973
Non-trainable params: 0

Table 25: Architecture 2, inspired by AlexNet

Model: "AlexNet_1"
Layer (type) Name Output Shape Param # k f s p

InputLayer Input (β, 227, 227, 3) 0
Conv2D conv_1 (β, 55, 55, 96) 34944 96 (11,11) (4,4) valid
MaxPooling2D pool_1 (β, 27, 27, 96) 0 (3,3) (2,2)
Conv2D conv_2 (β, 27, 27, 256) 614656 256 (5,5) (1,1) same
MaxPooling2D pool_2 (β, 13, 13, 256) 0 (3,3) (2,2)
Conv2D conv_3 (β, 13, 13, 384) 885120 384 (3,3) (1,1) same
Conv2D conv_4 (β, 13, 13, 384) 1327488 384 (3,3) (1,1) same
Conv2D conv_5 (β, 13, 13, 256) 884992 256 (3,3) (1,1) same
MaxPooling2D pool_5 (β, 6, 6, 256) 0 (3,3) (2,2)
Conv2DTranspose Deconv_1 (β, 13, 13, 384) 885120 384 (4,3) (2,2) valid
Conv2D Deconv_2 (β, 13, 13, 384) 1327488 384 (3,3) (1,1) same
Conv2D Deconv_3 (β, 13, 13, 256) 884992 256 (3,3) (1,1) same
Conv2DTranspose Deconv_4 (β, 27, 27, 96) 221280 96 (4,3) (2,2) valid
Conv2DTranspose Deconv_5 (β, 640, 454, 3) 103971 3 (24,22) (8,8) valid
Total params: 7,170,051
Trainable params: 7,170,051
Non-trainable params: 0
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Table 26: Architecture 3, inspired by AlexNet, here the input size has A4 ratio

Model: "AlexNet_2"
Layer (type) Name Output Shape Param # k f s p

InputLayer Input (β, 320, 227, 3) 0
Conv2D conv_1 (β, 78, 55, 96) 34944 96 (11,11) (4,4) valid
MaxPooling2D pool_1 (β, 38, 27, 96) 0 (3,3) (2,2)
Conv2D conv_2 (β, 38, 27, 256) 614656 256 (5,5) (1,1) same
MaxPooling2D pool_2 (β, 18, 13, 256) 0 (3,3) (2,2)
Conv2D conv_3 (β, 18, 13, 384) 885120 384 (3,3) (1,1) same
Conv2D conv_4 (β, 18, 13, 384) 1327488 384 (3,3) (1,1) same
Conv2D conv_5 (β, 18, 13, 256) 884992 256 (3,3) (1,1) same
MaxPooling2D pool_5 (β, 8, 6, 256) 0 (3,3) (2,2)
Conv2DTranspose Deconv_1 (β, 18, 13, 384) 1180032 384 (4,3) (2,2) valid
Conv2D Deconv_2 (β, 18, 13, 384) 1327488 384 (3,3) (1,1) same
Conv2D Deconv_3 (β, 18, 13, 256) 884992 256 (3,3) (1,1) same
Conv2DTranspose Deconv_4 (β, 38, 27, 96) 295008 96 (4,3) (2,2) valid
Conv2DTranspose Deconv_5 (β, 320, 227, 3) 131331 3 (24,22) (8,8) valid
Total params: 7,566,051
Trainable params: 7,566,051
Non-trainable params: 0

Table 27: Architecture 4, inspired by AlexNet, here the input size has an A4 ratio, and the
input size is twice as big as the previous model.

Model: "AlexNet_3"
Layer (type) Name Output Shape Param # k f s p

InputLayer Input (β, 640, 454, 3) 0
Conv2D conv_1 (β, 158, 111, 96) 34944 96 (11,11) (4,4) valid
MaxPooling2D pool_1 (β, 78, 55, 96) 0 (3,3) (2,2)
Conv2D conv_2 (β, 78, 55, 256) 614656 256 (5,5) (1,1) same
MaxPooling2D pool_2 (β, 38, 27, 256) 0 (3,3) (2,2)
Conv2D conv_3 (β, 38, 27, 384) 885120 384 (3,3) (1,1) same
Conv2D conv_4 (β, 38, 27, 384) 1327488 384 (3,3) (1,1) same
Conv2D conv_5 (β, 38, 27, 256) 884992 256 (3,3) (1,1) same
MaxPooling2D pool_5 (β, 18, 13, 256) 0 (3,3) (2,2)
Conv2DTranspose Deconv_1 (β, 38, 27, 384) 1180032 384 (4,3) (2,2) valid
Conv2D Deconv_2 (β, 38, 27, 384) 1327488 384 (3,3) (1,1) same
Conv2D Deconv_3 (β, 38, 27, 256) 884992 256 (3,3) (1,1) same
Conv2DTranspose Deconv_4 (β, 78, 55, 96) 295008 96 (4,3) (2,2) valid
Conv2DTranspose Deconv_5 (β, 640, 454, 3) 152067 3 (24,22) (8,8) valid
Total params: 7,586,787
Trainable params: 7,586,787
Non-trainable params: 0
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Table 28: Architecture 5, inspired by AlexNet, here the input size has an A4 ratio, and the
input size is twice as big as the previous model. With atrous layers

Model: "AlexNet_4"
Layer (type) Name Output Shape Param # k f × f s p d

InputLayer Input (β, 640, 454, 3) 0
Conv2D conv_1 (β, 158, 111, 96) 34944 96 (11,11) (4,4) valid (1,1)
MaxPooling2D pool_1 (β, 78, 55, 96) 0 (3,3) (2,2)
Conv2D conv_2 (β, 78, 55, 256) 614656 256 (5,5) (1,1) same (1,1)
MaxPooling2D pool_2 (β, 38, 27, 256) 0 (3,3) (2,2)
Conv2D conv_3 (β, 38, 27, 384) 885120 384 (3,3) (1,1) same (2,2)
Conv2D conv_4 (β, 38, 27, 384) 1327488 384 (3,3) (1,1) same (4,4)
Conv2D conv_5 (β, 38, 27, 256) 884992 256 (3,3) (1,1) same (8,8)
MaxPooling2D pool_5 (β, 18, 13, 256) 0 (3,3) (2,2)
Conv2DTranspose Deconv_1 (β, 38, 27, 384) 1180032 384 (4,3) (2,2) valid (1,1)
Conv2D Deconv_2 (β, 38, 27, 384) 1327488 384 (3,3) (1,1) same (1,1)
Conv2D Deconv_3 (β, 38, 27, 256) 884992 256 (3,3) (1,1) same (1,1)
Conv2DTranspose Deconv_4 (β, 78, 55, 96) 295008 96 (4,3) (2,2) valid (1,1)
Conv2DTranspose Deconv_5 (β, 640, 454, 3) 152067 3 (24,22) (8,8) valid (1,1)
Total params: 7,586,787
Trainable params: 7,586,787
Non-trainable params: 0
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D Type maps

The type maps are made by making a (640 × 454) grid that represents the invoice in
types. Meaning when there is a black word in pixel (6,6), the RGB representation would
be (0,0,0), while the type map would hold the number of the type of the word. The
type numbers are given in Table 29. As was mentioned before, types that are close, like
price and currency symbol, which fall in the same category of describing a price, have
close numbers. While other types that are similar in text but different in meaning, e.g.,
percentage and number, have more distant numbers.

Table 29: Type map numbers

Type Number Type Number Type Number
Empty 0 Quantity 25 Word 35
Number 300 Currency symbol 200 Words 25
Date 100 E-mail address 170 Don’t know 40
Percentage 50 Website 175 Description 15
BTW code 150 Price 205
IBAN 155 Name 30

As was mentioned in Section 5.3, some types are found by regular expression statements,
Table 30 provides the exact regex statements that are used.

Table 30: Regular expression statements to find some of the types

Type Regular expression

Date
Found by trying every day, month, and year option,
alongside many different language and delimiter options

BTW code [a-zA-Z]{2} ?.?[0-9]{4} ?.?[0-9]{2} ?.?[0-9]{3} ?.?B[0-9]{2}$

IBAN
[a-zA-Z]{2}[0-9]{2} ?.?[a-zA-Z0-9]{4} ?.?[0-9]{4} ?.?[0-9]{0,4} ?.?
[0-9]{4} ?.?[0-9]{2}$

Currency symbol [$¢£\u20a0-\u20bd\ua838\ufdfc\ufe69\uff04\uffe0\uffe1\uffe5\uffe6]
E-mail address [a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+
Website www.+[a-zA-Z0-9_.+-]+\.[a-zA-Z0-9-.]+

Price (del= ‘.’)
C{1}[0-9.]+.?[0-9]{0,2}
[0-9,]+.?[0-9]{0,2}C{1}

Price (del= ‘,’)
C{1}[0-9,]+,?[0-9]{0,2}
[0-9.],?[0-9]{0,2}C{1}

Postal code
(extra)

[0-9]{4} ?[A-Za-z]{2} [A-Z]{1}[A-Za-z]+
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E Full RCNN model

Figure 48: Full RCNN model, with all separate modelling parts. This would also be
the Faster-RCNN adaptation and has also been implemented, but never tested. The input
invoice is the image without boxes on it, the annotated image has green boxes, and the
output of the model is shown with orange (proposed) regions.
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F Results per algorithm

Table 31: Specific results of the different classification techniques

Score Model Min Median Max Mean
Rule-Based 0.835 0.972 1.000 0.964

Accuracy LightGBM 0.821 0.978 1.000 0.970
Regions 0.919 0.982 1.000 0.981

Rule-Based 0.089 0.415 1.000 0.415
F1 LightGBM 0.068 0.221 1.000 0.288

Regions 0.088 0.120 1.000 0.357
Rule-Based 0.000 0.430 1.000 0.441

Adjusted F1 LightGBM 0.096 0.108 1.000 0.181
Regions 0.000 0.000 1.000 0.138
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