
Prototypes on IPFS: A Realization of globally
distributed reusable Knowledge

Prototypen im Interplanetary File System -
Wiederverwendbares Wissen global verteilt

Dominik Hüser

RWTH Aachen University

dominik.hueser@rwth-aachen.de

Abstract. This bachelor thesis combines the Prototype Knowledge
Representation with the InterPlanetary File System (IPFS). After intro-
ducing both systems, we give an overview of existing Prototype systems
and comparable distributed knowledge representation approaches. Then,
the thesis will focus on a mapping from the formal Prototype definition
by Cochez, Decker and Prud’hommeaux to the specifications of IPFS.
The main part of the thesis deals with the implementation of this map-
ping, including important design decisions and several benchmarks in a
controlled system as well as in a real world environment. As a result,
we created a system allowing the deployment of immutable and muta-
ble prototype expressions on a globally distributed, peer-to-peer system.
Prototype knowledge base’s consistency can be checked and its fixpoint
can be computed, right after. Strong reuse of prototype expressions is en-
abled due to IPFS’ content based addressing as well as the way of how the
presented implementation allows to reuse expressions from other users.
Nevertheless, we will observe that the used peer-to-peer system is not
suiting the created mapping for prototype knowledge representation on
a large scale. Therefore, the thesis is rounded up with an outlook into
possible improvements of the underlying peer-to-peer system, as well as
alternative mappings.

Keywords: Prototypes, InterPlanetary File System, Peer-to-Peer, Dis-
tributed Knowledge Representation

c© Dominik Hüser. This work is licensed under Creative Com-
mons Attribution-ShareAlike 4.0 International:
https://creativecommons.org/licenses/by-sa/4.0/

Table of Contents

1 Introduction . 4
2 Two Systems matching well . 5

2.1 Prototypes . 6
2.2 InterPlanetary File System . 9
2.3 Task of the Thesis . 16

3 From Distributed Knowledge to Prototypes - The State of the Art . . . 16
3.1 Related Work . 16
3.2 Justification . 19

4 Mapping Prototypes to IPFS . 20
4.1 Immutable Prototype Expressions . 20
4.2 Knowledge Bases . 22
4.3 Mutable Prototype Expressions and Knowledge Base Addressing 23

5 Realization of the Concept . 25
5.1 Functionality . 26
5.2 General Architecture . 27
5.3 Program Structure . 29
5.4 API adaption . 31
5.5 Adding Prototype Expressions . 32
5.6 Consistency Check . 35
5.7 Fixpoint computation . 36
5.8 Local Storage Management . 38
5.9 Handling IRIs as IPFS Link’s Name . 40

6 Evaluation and Benchmarks . 40
6.1 Testing Composition . 40
6.2 Data Sets . 41
6.3 Add Prototype Expressions to ProtoIPFS . 42
6.4 Expensive Mutable Links . 43
6.5 Publish Directory . 44
6.6 Knowledge Base Benchmarks . 45
6.7 Real World Application Benchmarks . 46
6.8 Reachability of Prototype Expressions . 48
6.9 Summary. 48

7 Future Work . 49
7.1 Limited Object Size . 49
7.2 Locking IPFS Daemon Access . 50
7.3 Querying in ProtoIPFS . 50
7.4 Optimal Situation . 51
7.5 Alternative Construction . 52

8 Conclusion . 54
A Class Diagrams . 57

4 Dominik Hüser

1 Introduction

The World Wide Web is a well-known system to publish, find and access data
from all over the world. Especially in the last decade the amount of data on
the web increased heavily. With more and more growing amount of information,
the need for a mechanized way of dealing with this data became bigger. At a
peak in 2001, Berners-Lees publishes his vision of the Semantic Web [5], which
describes the idea of a computer readable system right on top of the WWW,
and next to the human readable web pages. The vision of structured data should
allow software to interpret the data automatically, for example in an automatic
rescheduling calendar. Mainly, this should be realized by the Resource Descrip-
tion Framework (RDF), which gives structure and meaning to the data. RDF is a
graph containing a set of nodes connected by labeled links. Every node is identi-
fied by an IRI, and links are defined as triples (Subject, Predicate,Object) [10].
Using this structure various kind of information can be expressed: For example
that the Mars has a satellite Phobos.

(http://dbpedia.org/resource/Mars,
http://dbpedia.org/property/satelliteOf,
http://dbpedia.org/resource/Phobos (moon)).

This knowledge then can be queried from a SPARQL endpoint. The vision
was extended by the Linked Data [6] movement, which is a set of best practices
for publishing and connecting structured data. These best practices basically
proposed to use URI to name every kind of things. In detail one should use
HTTP URI such that other people can look up those names. Recommended are
the standards RDF and SPARQL, to link to other things as well. Community
driven and supported by the W3C the Linking Open Data Project started, which
is a first realization of the linked data principles. The idea of the project is to
republish open licensed datasets in RDF, and interlink them with each other
such that one can crawl and query all data via SPARQL endpoints.

Later, Cochez, Decker and Prud’hommeaux aim to optimize the reuse of
structured data, by receding from SPARQL endpoints and downloading whole
central authority’s RDF graphs. Instead they introduced the prototype knowl-
edge representation [13]: The previous form of vertical top-down sharing is re-
placed by a horizontal sharing, which means that instances of data should be
shared directly between two peers without any central authority. Basically, the
idea behind prototypes are expressions which derive from already existing ex-
pressions. The expression copies all properties from the base and is able to add
or remove properties, as well. This kind of deriving from existing expressions
generates strong reuse of data. An example of a prototype expression can be
found in fig. 1. There is a prototype expression defining the planet Mars and
now planet Earth is derived from Mars by removing its satellites and adding the
Moon as a satellite and humans as habitants.

Prototypes on IPFS 5

Fig. 1. An example of a prototype expression deriving from another one. ∗ removes
all same-named properties from the base when we compute the fixpoint. On the right
hand, side there is the fixpoint representation of the prototype expression earth.

Recently, saving knowledge in a distributed manner, readily peer-to-peer net-
works, has been put into the spotlight [6, 8, 22]. This comes along with the se-
mantic web’s vision of a decentralized system. But instead of working on top of
the WWW infrastructure, this thesis will put the global graph of knowledge on a
different infrastructure: A peer-to-peer network which combines several aspects
of already existing projects like GitHub and BitTorrent is the InterPlanetary
File System. A vision how IPFS and prototypes could be combined has already
been presented by Cochez, Decker and me [12]. As you will see later, these two
systems fit together pretty well, which is the reason why the realization and
implementation is topic of this thesis.

The thesis is structured as follows: In the next section, there is a formal
definition of prototypes, followed by a description of the InterPlanetary File
System. The section is rounded of with the actual definition of the thesis’ task.
The third section deals with the initial situation, including related work, fol-
lowed by a justification why it is important to combine prototypes and IPFS.
In the fourth section, we present a formal way of how immutable and mutable
prototype expressions and prototype knowledge bases can be mapped to IPFS.
The fifth section describes the kernel point of the thesis, the implementation of
the mapping which was mentioned before: ProtoIPFS. This section includes the
functionalities and architecture of the program, as well as important design de-
cisions which were made during the implementation process. An evaluation and
several benchmarks under different conditions can be found, right after. The
whole thesis ends with a conclusion including a critical view of the constructed
system.

2 Two Systems matching well

This section includes definitions and explanations of the two systems which
are combined in this thesis: First a formal definition of prototypes and then
a description of the InterPlanetary File System. In the end of this section, the
reader finds a description of the thesis’ task.

6 Dominik Hüser

2.1 Prototypes

We have already defined prototypes briefly, let us now introduce prototypes in a
formal way. The following definitions are adopted form the prototype knowledge
representation by Cochez, Decker and Prud’hommeaux [13] . First, we define the
syntax of prototype including simple change expressions, prototype expressions
and prototype knowledge bases. After that, we are going to give each of these
constructions a meaning by introducing their semantics.

Syntax

Definition 1 (Prototype Expressions and Language). Let ID be the set
of absolute IRIs (according to RFC 3987 [18]) with proto:P 0 6∈ ID. Then we
define the prototype language as follows:

1. proto:P 0 (P∅) describes the empty prototype.
2. Let p ∈ ID and r1, ..., rm ∈ ID, with m ≥ 1. (p, {r1, ..., rm}) or (p, ∗) are

called simple change expressions. p is the simple change expression’s ID and
{r1, ..., rm} is the set of values of a of a Simple Change Expression.

3. Let id ∈ ID and base ∈ ID∪{proto:P 0}. add and remove are sets of sim-
ple change expressions such that each simple change expression’s ID occurs
at most once in each add or remove set and ∗ does not occur in the add set.
Then, (id, (base, add, remove)) is a Prototype Expression with prototype ex-
pression ID id. We call the ID of a simple change expression a property of
its prototype expression.

Let PROTO be the set of all prototype expressions and PL = (P∅, ID, PROTO) be
the Prototype Language.

An example of prototype expressions can be found from fig. 2. This is the formal
representation of the introducing prototype expression example in fig. 1.

(example:mars, (proto:P 0,

{(example:satellite, {example:phobos, example:deimos}),
(example:type, {example:terrestrial}),
(example:age, {example:4500000000})}, ∅))

(example:earth, (example:mars,

{(example:satellite, {example:moon}),
(example:habitant, {example:human})},
{(example:satellite, ∗)}))

Fig. 2. Formal representation of the introducing prototype expression example about
the solar system.

Prototypes on IPFS 7

Definition 2 (Prototype Knowledge Base). Let PL = (P∅, ID, PROTO) be
a Prototype Language and KB ⊆ PROTO be finite. KB is called consistent or a
Prototype Knowledge Base iff the following is satisfied:

1. P∅ 6∈ KB
2. There are no two prototype expressions in KB which have the same ID.
3. For every prototype expression (id1, (base, add, remove)) ∈ KB and for each

value id2 of the simple change expression’s values set in add, there is a
prototype expression (id2, (base, add, remove)) ∈ KB.

4. All prototype expressions derive recursively from P∅.

Since all prototype expressions derive recursively from P∅, there are no cycles in
the inheritance links.

Later in this work, we will be deploying prototype knowledge bases on IPFS.
This is a shared environment and hence consistency can usually not be guaran-
teed. Therefore, we will, in that context, call any set of prototype expressions a
prototype knolwedge base. We will call this set consistent in case it is consistent
according to definition 2.

Semantics After we have defined the syntax of prototype expressions and pro-
totype knowledge bases we look at their semantics, now. We begin with the
definition of Prototype Structures and Prototypes. Note that there is a differ-
ence between prototype expressions and prototypes. A prototype is the result
of the interpretation of a prototype expression. Right after that, we define how
we interpret prototype expressions and prototype knowledge bases, including
Herbrand interpretations, simple change expressions, sets of simple change ex-
pressions and properties.

Definition 3 (Prototype and Prototype Structure). Let SID be a set of
identifiers. A tuple pv = (p, {v1, ..., vn}), with p, vi ∈ SID and i ∈ {1, ..., n},
is called a Value-Space for the ID-Space SID. A tuple o = (id, {pv1, ..., pvm}),
with id ∈ SID, Value-Spaces pvj and j ∈ {1, ..., n} for the ID-Space SID,
is called a Prototype for the ID-Space SID. A Prototype-Space OB is defined
as the set of all Prototypes of an ID-Space SID. A Prototype Structure O =
(SID,OB, I) for a prototype language PL = (P∅, ID, PROTO) consists of an ID-
Space SID, a Prototype-Space OB for the ID-Space SID and an interpretation
mapping function I : ID → SID.

This mapping is defined now:

Definition 4 (Herbrand Interpretation). Let O = (SID,OB, Ih) be a pro-
totype structure for the prototype language PL = (P∅, ID, PROTO). Ih is called
a Herbrand-Interpretation if Ih maps every entry of ID to exactly one entry of
SID.

Definition 5 (Values of a Simple Change Expression Set Interpreta-
tion). Let KB be a prototype knowledge base and v the values of a simple change

8 Dominik Hüser

expression (p, v). Then, the interpretation function of v Is(KB, v) maps to a
subset of SID:

SID, if v = ∗
{Ih(r1), ..., Ih(rn)}, if v = {r1, ..., rn}.

Definition 6 (Simple Change Expression Interpretation). Let KB be a
prototype knowledge base and a function ce = {(p1, v1), (p2, v2), ...} be the set
of simple change expressions, with p1, p2, ... ∈ ID. Let W = ID \ {p1, p2, ...}.
Then, the interpretation of a simple change expression set Ic(KB, ce) is defined
as follows:

{(Ih(p1), Is(KB, v1)), (Ih(p2), Is(KB, v2), ...} ∪
⋃

w∈W

{(Ih(w), ∅)}

For a prototype knowledge base KB and a simple change expression set ce we use
this set of tuples as a function Ic(KB, ce)(s) : SID → {s1, ..., sn | si ∈ SID},
where the first entry of each tuple is mapped to its second entry.

Definition 7 (Value of a Prototype Expression’s Property). Let KB be a
prototype knowledge base and id, p ∈ ID. Let (id, (base, add, remove)) ∈ KB be
a prototype expression. Then, the value of a property p of a prototype expression
with ID id is J(KB, id, p):

Ic(KB, add)(Ih(p)), if base = P∅

(J(KB, base, p) \ Ic(KB, remove)(Ih(p))) ∪ Ic(KB, add)(Ih(p)), otherwise.

Informally, this interpretation calculates the values of one property by traversing
the inheritance chain from P∅ to the regarded prototype expression, recursively.
If we derive a prototype expression from P∅ then we just interpret the property
values which are defined in the add set of the prototype expression. In the case
that we derive from a different prototype expression, we take the property values
of the base and remove all property values which are defined in the remove set of
the prototype expression. Right after, we add every value of the property which
is defined in the prototype expression’s add set. An example of interpreting a
property value can be found in fig. 3.

After we defined how to interpret the values of one prototype expression’s
property, we will define the interpretation of a whole prototype expression, now.
Basically, this interpretation applies the previous interpretation for every proto-
type expression’s property.

Definition 8 (Interpretation of a Prototype Expression). Let KB be a
prototype knowledge base and pe = (id, (base, add, remove)) ∈ KB a prototype
expression. Then, the interpretation of a prototype expression is defined as

FP (KB, pe) = (Ih(id), {(Ih(p), J(KB, id, p)) | p ∈ ID, J(KB, id, p) 6= ∅}).

We call the interpretation a prototype expression’s fixpoint. The result is a Pro-
totype.

Prototypes on IPFS 9

J(KB, ex:earth, ex:sat)

=(J(KB, ex:mars, ex:sat) \ Ic(KB, removeE)(ex:sat)) ∪ Ic(KB, addE)(ex:sat)

=(Ic(KB, addM)(ex:sat) \ Ic(KB, removeE)(ex:sat)) ∪ Ic(KB, addE)(ex:sat)

=({ex:phobos, ex:deimos} \ SID) ∪ {ex:moon}
={ex:moon}

Fig. 3. Examplary interpretation of the property satellite of the earth from the intro-
ducing example in fig. 1 and fig. 2. Le KB be the prototype knowledge base which
contains every prototype expression mentioned in the example. addM and removeM
are change sets of Mars and addM and removeM are change sets of Earth. For the
purpose of readability we write ex: instead of example: and sat instead of satellite.

The last definition describes how to interpret a prototype knowledge base.

Definition 9 (Interpretation of a Prototype Knowledge Base). Let KB
be a prototype knowledge base. Then the interpretation IKB(KB) of KB is
{FP (KB, pei) | pei ∈ KB}. We call this the fixpoint of a prototype knowledge
base.

2.2 InterPlanetary File System

The following explanation is based on Juan Benet’s paper about IPFS [4] as well
as on the vision paper of combining IPFS and Prototypes [12] by Cochez, Hüser
and Decker.

The InterPlanetary File System (IPFS) is a global, distributed peer-to-peer
system. Easily, anyone can create a peer node in this network and store data in
such a way that other peers can access it. When a user shares data then it is
stored on his own node locally, first. By pinning, other users can decide to make
your data available from their node, as well. Requesting means to find a node
which offers that data. Then, these two nodes connect and transfer the requested
information. To make this possible, IPFS combines several approaches, which are
already known in practice: Distributed hash tables to access peer’s objects on the
peer-to-peer network, BitTorrent’s exchange protocol to transmit data, version
control approaches from Git and self certifying file systems. IPFS itself has a
layer structure as shown below:

1. Naming

2. Files

3. Objects

4. Exchange

5. Routing

6. Network

7. Identities

10 Dominik Hüser

Entry point for a user of IPFS is the IPFS daemon, which handles the peer
node and serves as API. It is used to call IPFS functionalities via bash or its
HTTP interface. The HTTP interface is used to define program language specific
libraries, for example in C++, python, Haskell and Java1. A daemon has an IP,
Port pair for listening to these API calls as well as several IP, Port Pairs to listen
to other peers on the network.

First, this section deals with the object layer, then describes the file layer
and right after the naming layer. In the end of this section, we look at the
lower layers, which form the underlying peer-to-peer network. This should lead
a deeper understanding of IPFS’ behavior.

The Object DAG First of all, the whole IPFS system is based on IPLD, a
huge directed acyclic graph (DAG) which is set up on a peer-to-peer network.
Nodes of this graph are IPFS objects. The structure of an IPFS object can be
found in fig. 4: It contains a data part, where we can store arbitrary information
in form of a byte array, and a set of Object Links to other IPFS objects. These
links build the edges of the DAG. Every link got a name, which must be unique
in the object’s link set, and a reference to the target object, called Multihash.

There has been a discussion on how link names should be restricted2. In
order to keep an, later explained, IPFS link printable the developers decided
to use UTF-8 encoding according to RFC 3629 [36], with several additional
restrictions3. One restriction, for instance, is that ”/” is not allowed in the link
name, since it is a delimiter of IPFS links.

A multihash (or short Hash) is the identifier of an IPFS object. It is content
based which means that the ID depends on the IPFS object itself. We can request
an object via its IPFS Link /ipfs/<hash-of-object>. Transitive addressing
over object links is also possible: /ipfs/<hash-of-object>/<name-of-link>.
Let us now look into some examples how hashes identify objects: If we got two
objects with different data, then their hashes will differ, since the data part
influences the hash as well. If we got two objects with the same data and links
which are same-named but the target of at least one link differs from the other
one, then both hashes will still be different. Only when both objects are exactly
equal, meaning their data as well as their links (name and target of each link)
are equal, then they will have the same hash. The hash does not depend on the
ordering of the object’s link set neither on the peer node where we have stored
the IPFS object.

When we request this data via its hash then we can not be sure (depending
on the underlying layer of data exchange) from which peer we will get the object.
Nevertheless, we can be sure that it is the data that we have requested, since
it is content addressed. This kind of addressing also leads to immutability of
objects, since changing an object would also change the content based hash
again. That offers integrity of the object’s components. Additionally, content

1 https://github.com/ipfs/ipfs\#api-client-libraries
2 https://github.com/ipfs/go-ipfs/issues/1710
3 https://github.com/ipfs/go-ipfs/pull/1740

Prototypes on IPFS 11

based hashes create the acyclic nature of the directed graph of objects (compare
the left illustration of fig. 21). An other advantage is deduplication of objects
which means that there are no two same objects with different multihashes.

All these promises rely on the assumption that we don’t have any hash col-
lision. Currently, SHA256 is used to generate hashes but the multihash format
allows to change the hash function of the wohle IPFS system to a different one.
A hash collision in SHA256 is very unlikely to happen and even if one would have
been found it is easily possible to change the hash function of IPFS to SHA384,
SHA512 or different hash function4 with the consequence of dropping support
for objects which use older hash functions5. Further reading about the security
of the SHA versions can be found in [26]. Next to immutability, mutability might
be useful in the days of high-frequently changing data, too. We regard this in a
later section.

Formal IPFS Object Representation After we have defined IPFS object in
their context of a DAG we will now introduce a formal definition on which we
build up a graphical representation of IPFS objects:

Definition 10 (IPFS Object).

1. A valid link name is a not empty UTF-8 sequence (according to RFC
3629 [36]) with up to 255 Unicode codepoints not including ”U+000”
- ”U+001F”, ”U+007F”, ”U+002F”, and not equal to ”U+002E” and
”U+002E U+002E”. The set of all valid link names is called LinkNames.

2. A valid Multihash is a SHA256 value. The set of all valid Multihashes is
called MultihashSet.

3. Let L ⊆ LinkNames,M ⊆ MultihashSet. Then the function l : L → M is
a Link List.

4. Let l be a Link List, and d a byte sequence. Then (l, d) is an IPFS object.We
call l the IPFS object’s Links, d its Data.

5. The Multihash of an IPFS object is the SHA256 hash over the IPFS object6.

Let l : L1 → M1, L1 ⊆ LinkNames, M1 ⊆ MultihashSet, target be a
SHA256 hash and d a byte sequence. In this thesis we use the following notation
to represent an IPFS object (l, d):

A box which contains d has an outgoing arrow for each (name, target) ∈ l.
An arrow is labeled with name and is pointing to the IPFS object o where the
hash of the IPFS object equals target.

4 https://github.com/ipfs/faq/issues/24
5 https://www.reddit.com/r/ipfs/comments/61r38j/hash_collision_

resolution/dfktlan/, Whyrusleeping (Jeromy Johnson) is a kernel developer
of IPFS

6 A JSON or Protobuf encoded IPFS object is parsed and converted
to a DAG node (https://github.com/ipfs/js-ipfs/blob/master/src/core/
components/object.js) and then serialized and multihashed (https://github.
com/ipld/js-ipld-dag-pb/blob/master/src/dag-node/create.js)

12 Dominik Hüser

Create IPFS Objects Next to requesting IPFS objects, it is of course also
possible for every node to share own IPFS objects with other peer nodes. There
are two ways to do so: Put an IPFS object directly on IPFS or patch an already
existing IPFS object until it has the needed structure. When we put an IPFS
object directly, then we need to construct it outside of IPFS, first. For example,
this can be done by creating a JSON Object which is structured like the one in
fig. 4. If the syntax of the IPFS object is correct, then this object can be put
directly on IPFS. Patching on the other hand takes an already put IPFS object

{" Links ":[{ "Name ":" moon1",

"Hash ":" QmbdSD2gz8 ...",

"Size ":10} ,

{ "Name ":" moon2",

"Hash ":" QmZYZUbMTC ...",

"Size ":10}] ,

"Data ":" mars"}

Fig. 4. Example of a JSON encoded IPFS Object.

and changes its data, adds new links or removes existing ones. The patched
object is still available after patching. An example of patching can be found in
fig. 5. We create an empty object and derive the earth and the moon by setting
the empty object’s data. Then we add a link, named satellite, from the earth to
the moon.

Note, that IPFS objects have limited capacity. The maximum size of an IPFS
object is 2 MB. This does not mean that a user can not upload files which are
bigger than 2MB. The file layer above is responsible for combining several IPFS
objects to save a big file. More about that will be explained in ”IPFS Files”.

Protect Objects from Garbage Collection Especially, when we generate
IPFS objects via patching, the amount of objects in the local storage increases
fast, since every intermediate object is still in the storage even if it is not needed
permanently. Therefore, IPFS introduces a garbage collection which deletes not
needed objects. In the current version of IPFS (0.4.6) this garbage collection has
to be called manually per default but could be switched to automatic collection
as well. To know which objects can be deleted, IPFS includes a pin option.
Only not pinned objects will be deleted by a garbage collection call. There are
several ways how a user can pin objects: Direct pinning pins the object itself
and nothing else. Recursive pinning pins the object itself and all its transitive
linked objects. Indirect pinned objects, on the other hand, are pinned since they
are linked to by an object which has been pinned recursively. An example for
pinning can be found in fig. 5. We pin the earth recursively, therefore the moon is
also protected from a possibly following garbage collection call. The moon object
is pinned indirectly. Objects can of course be unpinned as soon as they are not

Prototypes on IPFS 13

$ ipfs object new

QmdfTbBqBP ...

{" Links ":[] ," Data ":""}

$ echo -n "earth" |

ipfs object patch QmdfTbBqBP ... set -data

QmZPu7jZzZ ...

{" Links ":[]," Data ":" earth "}

$ echo -n "moon" |

ipfs object patch QmZPu7jZzZ ... set -data

QmahjjNzGxD ...

{" Links ":[]," Data ":" moon"}

$ ipfs object patch QmZPu7jZzZ ... add -link

"satellite" QmahjjNzGxD ...

QmYKRJRhqT ...

{" Links ":[{ "Name ":" satellite",

"Hash ":" QmahjjNzGxD ...",

"Size ":6}] ,

"Data ":" earth"}

$ ipfs pin add -r QmYKRJRhqT ...

pinned QmYKRJRhqT ... recursively

Fig. 5. Example of IPFS patch and pin usage.

14 Dominik Hüser

needed anymore. When an object is pinned indirectly twice and one of these
recursive pinned objects will be unpinned, then the indirectly pinned object will
not be deleted by the next garbage collection call since it is still indirectly pinned
by the other object.

Reachability of Objects At this point, the constructed object is stored in
our own node, only. Currently, there is no self distributing service in IPFS,
but these could be built on top of the existing layer structure. There are already
projects realizing such a service (Filecoin7, IPFS cluster8). In the current version
of IPFS, an object becomes automatically available on your own node, when you
have requested it from another one. Note, that the object is only temporarily
available on your node since it is not pinned and therefore the next garbage
collection call deletes it right away. Actively, a node’s user can decide to pin other
node’s objects too, like it has been described in the previous section. When we
store an IPFS object in our node’s local storage every peer node of the node’s
swarm is able to reach this object via its hash or a link which points to this
IPFS object. A swarm is the set of peer nodes which we are connected to in
the network. When we request an IPFS object which is not available on the
swarm, IPFS tries to get it until it is found. This means that currently, there is
no timeout implemented here. Requesting IPFS object in general is done by the
routing layer of IPFS.

In context of reachability, ”The Permanent Web” as a nick name for IPFS
might be a little bit misleading. We have to differ permanency and persistency:
Permanency describes the ability that we got a link and every time we use that
link we receive the same object as long as the object is available on the network.
It does not include persistency, which, on the other hand means that objects are
available at any time9. As already mention, the realization of such a mechanism
has to be built on top of IPFS.

IPFS Files A higher layer of the IPFS stack structure is the file layer, which
allows to use IPFS as a file system. It offers functionalities to represent whole file
and folder structures on IPFS. Remember that the maximum size of an IPFS
object is 2MB. To handle bigger files, IPFS automatically chunks files in to
several object which are then called blocks. Several blocks are concatenated by
lists and trees, which are basically IPFS objects containing links to their entries.
Overall, this behavior is adapted from Git’s data blobs and tree structure [30].
More about IPFS files can be found in the IPFS paper [4].

Mutable Content - IPNS Already integrated in the InterPlanetary File Sys-
tem is the InterPlanetary Name Space (IPNS), a naming service allowing muta-
bility on top of the immutable, permanent IPFS DAG. It works by implementing

7 https://www.filecoin.io/
8 https://github.com/ipfs/ipfs-cluster
9 https://github.com/ipfs/faq/issues/93

Prototypes on IPFS 15

variable pointers to immutable IPFS objects. Every peer node in the network has
one pointer which can be set to an immutable IPFS object. This IPNS pointer
is addressed by the peer node’s ID, which is the hash of the peer node’s public
key. Setting this pointer is called publishing. We address the linked object via an
IPNS Link /ipns/<peer-id>. An IPNS link can be resolved to an IPFS link.
Note the different between IPFS and IPNS links: These two concepts are not
only different due to their first link segement (/ipfs and /ipns), they are also
separated in their place of action: IPNS links can not be used as a reference in-
side the IPFS object DAG. An example where the IPNS naming service is used,
can be found in fig. 6. At first, the IPNS pointer of our peer node with the hash
QmaXA8NViH... is set to the ”mars” object (QmQsuXWzNK...). After resolving
the IPNS pointer, we publish the ”earth” object (QmYKRJRhqT...). Resolving
again gives us the IPFS link to the eath, now, and not the link to the mars
object any longer.

$ ipfs name publish QmQsuXWzNK ...

Published to QmaXA8NViH ...: /ipfs/QmQsuXWzNK ...

$ ipfs name resolve

/ipfs/QmQsuXWzNK ... =⇒ mars

$ ipfs name publish QmYKRJRhqT ...

Published to QmaXA8NViH ...: /ipfs/QmYKRJRhqT ...

$ ipfs name resolve

/ipfs/QmYKRJRhqT ... =⇒ earth

Fig. 6. Example of IPNS usage.

The underlying P2P network Layer 1 to 4 create a peer-to-peer network on
which the already explained IPFS objects can be stored in a DAG, combined to
files, which then might want to be address in a mutable way. The peer node got
a private and a public key. The ID of this node inside the network is the hash
over the public key. To find other peer nodes and especially to find IPFS objects
on the network, the peer-to-peer network uses a Distributed Hash Table (DHT).
The IPFS DHT is based on Coral [23] and S/Kademlia [3]. To gain performance,
objects which are smaller than 1 KB will be stored directly in the DHT. If the
object is bigger than 1 KB, the DHT refers to the block where it is stored.

Next to finding peers and objects, publishing nodes IPNS referred hashes
need to be handled by the routing system, too. The node’s pointer is published
on the routing system’s DHT and therefore is not only available from your own
node. So even if your node is offline, a resolution is possible for a certain time
(standard is 24 hours depending on an editable time to live property). More

16 Dominik Hüser

about the underlying peer-to-peer network and distributed hash tables can be
found in the IPFS paper, as well as the papers about Coral and S/Kademlia.

2.3 Task of the Thesis

The primary goal of this bachelor thesis is combining the prototype knowledge
representation with the distributed file system IPFS. That should lead to a
stronger reuse of resources inside the knowledge representation than previous
implementations. Center of the thesis will be the design and the implementation
of a tool which takes a given file of prototype expressions and put the file’s
expressions on IPFS. At first, in an immutable way and then allowing mutability
of prototype expressions, as well. A goal here are prototype expressions which
contain change expressions with more than one value, which is, due to IPFS’
unique link name per object assumption, not directly possible. Another task is
to find a proper representation of a prototype knowledge base. Two reasoning
functionalities on this system are desired: Computing the fixpoint representation
of a knowledge base is as necessary as checking its consistency. A last goal is
finding a method of pinning prototype expressions such that they are fairly
distributed on the network. That should imply some kind of persistency, at
least for frequently used prototype expressions. In the end, Benchmarks of the
constructed ProtoIPFS should be presented.

3 From Distributed Knowledge to Prototypes - The State
of the Art

In this section we look at several projects which relate to the task of combining
prototype knowledge representation and the peer-to-peer network IPFS. First,
we regard an early implementation of prototypes, which does not include saving
knowledge in a distributed way yet, but still allows to share your knowledge
by sending the whole data to someone else. Then, we look at two implemen-
tations of distributed knowledge: Semantic SwarmLINDA and SWAP set up
RDF represented knowledge in distributed systems. Next, we look at Cochez’s
implementation of prototypes which already includes an option for distributed
knowledge representation. Finally, we will see that there is no such combination
of prototypes and P2P networks, which directly leads to the section about the
justification of the thesis. But let us have a look at related work, first.

3.1 Related Work

SubClassOf The following overview over SubClassOf is based on Jonas
Almeida’s description of his implementation [1]. SubClassOf is an approach
which comes up with a Javascript implementation of Decker’s early idea of pro-
totypes, which has been presented at the ”Conference of Semantics in Healthcare
and Life Sciences” in 2013 [17]. Inspired by the RDF property rdf:subClassOf

it allows to derive from already defined data, encoded as JSON objects, and

Prototypes on IPFS 17

then makes it possible to add new properties, afterwards. The data is somehow
comparable to the current definition of a prototype like it has been visible in
definition 3. For example, we can derive the earth from the mars by adding all
additional properties of the earth to the mars:

mars={type:" terrestrial "}

earth ={ habitant :" human"}

earth.subClassOf(mars)

=⇒ earth ={type:" terrestrial", habitant :" human"}

It is also possible to use remote data as a base, by requesting an online stored
JSON objects via HTTP. By introducing frequent data update callbacks, it is
also possible to create self updating inheritances. This means that objects which
are a subclass of a remote object always derive from the latest version of the
the remote one, even if the author changes it. Note, that this approach had
been implemented before Decker, Cochez and Prud’hommeaux presented their
definition of prototypes, such that removing properties from the base, knowledge
bases and their definition of consistency is not included in subClassOf. But
still, in some sense fixpoint computation is. Since the JSON object dynamically
derives from its base, subClassOf computes a fixpoint of a prototype expression
on the fly.

Semantic SwarmLINDA The basis for Semantic SwarmLINDA is the dis-
tributed programming language LINDA [25], which offers a passive data value
storage in form of a so called tuple space. A tuple space contains functions, which
can be used to read and write into an external shared storage. Data inside the
tuple space are tuples having an identifying name and arbitrary many entries
of different types. Since tuples are still available in the space when the creat-
ing program has terminated, this approach is not only distributed in space but
also distributed in time. Distributed in time means that data can outlast their
program’s lifetime.

Graff realized that the shared system has problems when it is set up on a
huge network [28]: The centralized component of this system shrinks scalability
and availability, which in his opinion will not be fixed by any centralized solution.
Graff looked into models from nature, and designed a system which is comparable
to a swarm of ants, though, other experts stick to the centralized plan [37]. In his
system, each ant works locally, and only does small tasks. Some ants might even
misbehave, but still the whole ant colony works. These principles are used in his
SwarmLINDA approach. It is a set up of several, linked tuple space storages.
Then, there are two types of crawler-like individuals, which search requested
tuples on the cluster or which sort tuples into the right storage. The tuples are
sorted by the tuple’s type, which is defined by the amount of entries and their
entries’ type. Same typed tuples are stored in the same region of the network.

Afterwards, Augustin took this distributed tuple storage and saved RDF
triples instead of arbitrary tuples, which leads to a distributed knowledge rep-
resentation [2]. Sebastian Koske mentions that this kind of combination makes
SwarmLINDA’s cluster unstructured, since every RDF triple has the same tuple

18 Dominik Hüser

type. To handle that, he approached to use semantic neighborhoods to order the
cluster again [29]. His approach is called Semantic SwarmLINDA.

SWAP The Semantic Web and P2P (SWAP) project is a combination of con-
ventional knowledge representation and P2P networks: Knowledge can be im-
ported from local databases, emails and files to the local RDF repository of
a peer [22]. Now, a node can use SeRQL or a graphical interface to query for
information on the system. The peer tries to solve the query locally first, but
also forwards the query to several neighbored and from a peer-selector chosen,
peers. These chosen nodes evaluate the query against their local repository and
send an answer back to the requesting node. Additionally, these peers forward
the query to other neighbored, and from their peer-selector chosen, peers. Peer
selection depends on a query’s meta data and can also be learned from the
previously recognized answer behavior of a node [34]. Loops and ever lasting
queries are prevented by a time to live attribute of each query and a detection
at each node whether the query has already been answered. Further details about
query routing can be found in the SWAP deliverables D 3.5 [21]. The answer
of a query can be saved in the requesting node’s local storage, then. Complex
queries, where parts of the needed information lay in different repositories, can
be answered by splitting the query into sub-queries. An indexing structure is
used to decide which part of a query has to be directed to which information
source. More about complex querying can be found in the SWAP deliverables D
3.6 [20]. Since several stand alone RDF graphs are combined by such a query,
inconsistency is possible. To improve querying, a meta data model for better
requests has been developed [11]: For every published information several RDF
formatted data, like labels, addition date and visibility, will be assigned, which
allow more detailed queries. Also peer nodes themselves are assigned additional
information, like a label and information about trust.

Tools for Prototype Based Ontologies Cochez, who has already worked
on the definition paper of prototypes, implemented a tool for storing prototype
expressions locally, remotely and distributed [14]: His idea is to create several
stand alone knowledge bases of immutable prototype expressions, which then
can be shared via HTTP. In the case of multiple sources have defined differ-
ent prototype expressions with the same ID, the implementation offers several
joining mechanisms. In contrast to the already regarded prototype implementa-
tion subClassOf, this implementation allows consistency checking and creating
knowledge bases.

Additionally, the tool provides several generators for benchmarking data:
Baseline, where prototypes are derived in a tree structure and have no properties.
Then Blocks, where several prototype expressions are grouped into blocks and
derive from a previously defined block. And Incremental, where every prototype
expression derives from a random, previously defined prototype expression.

In general, Cochez used several design decisions: First, according to the def-
inition of prototype expression the remove all operator should add all possible

Prototypes on IPFS 19

IRIs to the remove set (cf. definition 5). Since this is not feasible in a real life ap-
plication, this is treated as a special case. Secondly, we can not be sure that the
user defines prototype expressions which use valid absolute IRIs. By introducing
an IRI type class the user is forced to define syntactically valid IRIs. Thirdly,
when a user defined a knowledge base, then it is possible to compute the fix-
point. The implementation introduces a method where not a single prototype is
computed twice, due to reusing already computed prototypes.

3.2 Justification

Saving knowledge in a distributed manner is recommended [7], since it is closer
to most applications structure and the distributed nature of knowledge itself.
Especially peer-to-peer networks seem to be a good underlying system for the
case of knowledge representation [8, 22]. A peer-to-peer network aims to set up
a network of equal nodes for a shared usage of distributed resources where the
organization should be decentralized [32]. Advantages of using P2P in the subject
of knowledge representation have been presented in ”Semnatic Web and Peer-to-
Peer” [33]: Since every node organizes itself, we gain less administrative overhead,
and due to equality of distributed peer nodes we avoid bottlenecks on the system.
Additionally, ”Peer-to-Peer Knowledge Management” [9] sees the ability to gain
robustness of the knowledge system by using P2P approaches. The system can
be designed in such a way, that nodes do not depend on the availability of other
nodes. Instead, available nodes just add new knowledge to the system which can
be used by other peers.

As we have seen in the previous chapter, there are already several implemen-
tations of distributed knowledge representation systems, even with an underlying
P2P network. Now, one could ask why it is necessary to construct a prototype
knowledge representation on top of IPFS, when we already have these imple-
mentations. The reason for that are disadvantages of these existing systems:
Except for subClassOf and Cochez’s prototype tools, all presented approaches
work with the conventional knowledge representation RDF. As mentioned in the
introduction, there are reasons to move away from this kind of representation
and look at the horizontally sharing prototype representation. Unfortunately, the
SubClassOf implementation does not offer a desired distributed representation
and also Cochez prototype implementation has struggles with combining sev-
eral sources of prototype expressions, for example if there are expressions with
the same ID one have to merge these expressions. Furthermore, it is difficult to
resolve prototype expressions and it is not possible to know which host might
offer information about a resource. Therefore, it is necessary to look into other
possible ways of distributing prototype expressions. Since peer-to-peer networks
are recommended, putting prototypes on top of them seems to be a good idea.

A currently rising global P2P network, which combines several already es-
tablished systems, is IPFS (cf. section 2.2). Its linkable object structure seems
to fit naturally to prototype expressions: When we regard prototype expressions
as objects and their base or add and remove properties as links, then we already
establish the basic aspects of a mapping. Mutable prototype expression then

20 Dominik Hüser

can be realized, by using IPNS links. An advantage of using IPFS is its content
based addressing which solves the problem of inconsistency triggered by different
expressions which were assigned the same ID. This is a problem for SWAP and
had been for the first prototype implementations, which was then fixed by intro-
ducing several merging strategies. Furthermore, content based addresses make
it possible to resolve expressions on the whole swarm only by knowing its hash.
IPNS can additionally be used to advertise node’s prototype expressions. Also
interesting is the fact that all prototype expressions lay in one big DAG, which
means that it is technically easily possible to reuse already defined prototype
expressions, also from other peers’ user. Plus, the layer like structure of IPFS
allows to build a system on top, easily. Therefore, this thesis presents a mapping,
as well as, an implementation of the combination of prototypes and IPFS.

4 Mapping Prototypes to IPFS

In the following we construct the mapping from prototypes to IPFS. We start
with the representation of immtuable prototypes in IPFS. Then, we deal with
prototype knowledge bases. In the end, we extend these mappings to gain muta-
ble prototype expressions as well as accessibility of knowledge bases and proto-
type expressions. Therefor, we introduce the administrative directory which will
be published via IPNS.

4.1 Immutable Prototype Expressions

First of all, the set of absolute IRIs ID, which has been used to identify prototype
expressions, becomes obsolete since in IPFS objects are identified by content
based hashes. But still, for readability reasons we keep the IRIs as additional
information of prototype expressions in IPFS. This mapping is based on the
vision paper of Cochez, Decker and me [12].

A simple change expression (p, {r1, ..., rm}), where p ∈ ID and r1, ..., rm ∈ ID,
is mapped to a directory like object ”proto:SEVERAL”, which holds a link to
each IPFS prototype expression representation pei with ID ri, i ∈ {1, ...,m}.
Thereby, the link to pei is named i. The resulting IPFS objects are visible in
the left image of fig. 7. For the purpose of generalization, even if m = 1 we will
use the ”proto:SEVERAL” object, here (right of fig. 7). To this directory like
structure another object refers with a link named p.

Fig. 7. The simple change expression in IPFS.

Prototypes on IPFS 21

A special change expression is the remove all expression (p, ∗) which is used
in a remove set’s simple change expression to remove all properties with the ID
p. In IPFS this change expression is realized by an IPFS object with the data
”proto:ALL” which we use as the target of a link named p:

Fig. 8. The simple change expression with * in IPFS.

Let id ∈ ID, base ∈ ID ∪ {P∅} and add and remove be simple change ex-
pression sets. Now a prototype expression (id, (base, add, remove)) is mapped
to an IPFS object whose data is the id. This object has a link named ”base”
to its base prototype expression, as well as links named ”add” and ”remove”
to two directory like objects. These two objects with data ”proto:ADD” and
”proto:REMOVE” have links to all simple change expressions which should be
applied on the base. Links to these simple change expressions, which have been
introduced before, are indicated in gray:

Fig. 9. A prototype expression in IPFS.

A special prototype expression is the P∅ (proto:P 0). The IPFS construction
of P∅ has neither an add nor a remove change expression nor a base. Note,
that it still has links to the IPFS objects representing the set of add or remove
expressions, but for P∅ these objects do not contain any links:

22 Dominik Hüser

Fig. 10. P∅ in IPFS.

Now let us have a look at an example: The IPFS representation of the intro-
ducing example of mars and earth can be found in fig. 11.

Fig. 11. Visible is the realization of the introducing prototypes example on IPFS ac-
cording to the mapping in section 4. Note that, all properties of these two prototype
expressions (for instance ”example:phobos”) are prototype expressions themselves, as
well. For readability reasons their base add and remove objects have been left out.

4.2 Knowledge Bases

Let PL = (P∅, ID, PROTO) be a prototype language and KB ⊆ PROTO a finite set
of prototype expressions. Now, we use properties of Named RDF Graphs [35] to

Prototypes on IPFS 23

realize knowledge bases. In IPFS we store KB as an IPFS object containing a
name KBname as its data. Similar to Named Graphs, the knowledge bases name
is an IRI. This name is unique per peer node and should describe the content
of the knowledge base. The links of this object refer to all prototype expressions
pei ∈ KB, i ∈ {1, ..., n}. The name of these links have no function therefore
they are just numbered. Note, that mutable prototype expressions are possible
to use in the links set, as well. When we use mutable links inside a knowledge
base’s prototype expression it is recommended to add this mutable link to the
knowledge base instead of the immutable one. That would automatically update
the entries of a knowledge base as soon as a mutable link changes. How exactly
mutable prototype expressions are realized on IPFS is presented in section 4.3.
In the end fig. 12 describes the KB.

Fig. 12. Knowledge base in IPFS.

4.3 Mutable Prototype Expressions and Knowledge Base
Addressing

When we talk about mutable prototype expressions one needs to be clear that
it does not mean that prototype expressions become mutable. In IPFS every
object is content base addressed, therefore it is not possible to change an ob-
ject without changing the link referring to it. But alternatively it is possible to
introduce mutable links, which simulate mutable objects in IPFS. The system
which provides these mutable links is IPNS. So there are neither for prototype
expression nor for knowledge bases essential changes in their definition except
the following introduction of mutable links.

To offer mutable prototype expressions and knowledge base addressing we
generate an administrative directory. This structure holds A) links to all proto-
type expressions which the node offers and B) links to all knowledge bases which
that node has published. Then the administrative directory has to be made pub-
lic, such that other peers can use these information about offered prototype ex-
pressions and knowledge bases. For that, we publish the whole administrative
directory on the peer node via IPNS. For a peer node which has published knowl-
edge bases KBName1 to KBNamen and additionally offers prototype expressions
pe1 to pem the administrative directory is defined in fig. 13.

24 Dominik Hüser

Fig. 13. The structure of an administrative directory.

The administrative directory allows every peer node from the swarm to
browse the published knowledge bases via /ipns/<peer-id>/knowledgebases.
Additionally, it is possible to refer to the peer node’s prototype expressions via
/ipns/<peer-id>/prototypes/i, i ∈ {1, ...,m}. Whenever there is a change in-
side a knowledge base or a prototype expression, the administrative object and
the IPNS pointer have to be updated. A result of this construction are mutable
prototype expressions:

Let pei be a prototype expression which should be changed to a prototype
expression pei*. A different prototype expression pej should always refer to the
latest version of pei. To gain that, pej refers to /ipns/prototypes/i. When we
update pei we change the administrative object such that prototypes/i refers
to pei* and publish the new administrative object on IPFS. The result is that
via /ipns/prototypes/i, pej now addresses the new pei*.

One point to be mentioned here is the strict separation between IPFS and
IPNS links. Therefore, it is not possible to use IPNS links in the link list of
an object. The result is that we need to store IPNS links differently: For each
mutable link we need to generate an IPNS tunnel object, which is an IPFS object
containing the IPNS link inside the data part. The naming service resolves this
link and refers to the current version of the prototype expression. A mutable
link named linkName, pointing to the current version of a prototype expression
pei, controlled and distributed by a peer node peer-node, is setup in fig. 14.

Fig. 14. An IPNS tunnel object in IPFS.

Prototypes on IPFS 25

In fig. 15 we see a prototype expression on the left hand side which represents
the interplanetary traveler Rick. Rick’s current position changes often which is
the reason why this property is mutable. Via the IPNS tunnel object we refer to
the administrative directory of peer 1 which holds the current location of Rick.
By creating a new administrative directory where we replace mars by planet
earth and publishing this new directory, we change Rick’s current location to
earth.

Fig. 15. An exemplary usage of an IPNS tunnel object to create mutable links inside
the immutable IPFS DAG. Note, that example:mars is an own prototype expression.
Its change sets and base are hinted. peer1 is the peer ID of peer 1.

5 Realization of the Concept

This section deals with the implementation of the previously defined mapping
from prototypes to IPFS: ProtoIPFS. In the beginning, we regard functionali-
ties which ProtoIPFS provides. Then, we look into the system’s architecture and
ProtoIPFS’ program structure. After that, we regard several programming deci-
sions which have been made. These include inter alia: Made IPFS API adaptions,
how ProtoIPFS handels adding prototype expressions, checking consistency and
computing fixpoints. We also describe ProtoIPFS’ local storage management,
such as how it handles a problem of mapping IRIs to IPFS object’s link names.

26 Dominik Hüser

5.1 Functionality

Before the user can work with the implementation, he has to start an IPFS
daemon first, which must be bound to ProtoIPFS, then. Several ProtoIPFS
instances can run at the same time on one device, as long as there is an own
IPFS daemon, with its own port configuration, for each ProtoIPFS instance.
After that, the system offers following core services:

– create new prototype expressions from a file
– create new prototype expressions derived from already existing ones
– build prototype knowledge bases
– check consistency of a prototype knowledge base
– compute the fixpoint of a prototype knowledge base

ProtoIPFS allows to import a file of prototype expressions and put as well as
publish them on your own node with the IPFS hashes as their new ID. By default
every defined link is immutable. As it has already been mentioned, mutability
is often wanted. Therefore, it is possible to define mutable links in this file
via a flag, as well. Note, that in such an input file, it is only possible to refer
to other prototype expressions which are defined in that file, too. Prototype
expressions which refer to already existing prototype expressions have to be
defined differently:

The user can construct a prototype expression by handing over IPFS or IPNS
links. These links can be used to refer to an already been published base or a
property value. The newly constructed prototype expression can be published on
ProtoIPFS, such that it can be reused by other users. Note the difference between
putting and publishing: Putting generates the IPFS object representation of a
prototype expression. It allows us to address the prototype expression via its
IPFS link. Publishing a prototype expression after that is necessary to allow
mutable links and to allow other nodes to see which prototype expressions you
are providing. Since IPNS links are allowed here, mutable links in bases or as
property values are possible. More about adding prototype expressions can be
found in section 5.5.

After prototype expressions have been published, they can be used to define
a prototype knowledge base. A user can build a knowledge base out of his own
prototype expressions, as well as, expressions which have been published by
other users and which are reachable from the user’s node. A discussion about
reachability can be found in section 6.8. Then, the user is able to check whether
a knowledge base is consistent. If it is so, ProtoIPFS can compute the fixpoint
of the knowledge base. Note, that the result of both services depends on the
reachability of every prototype expression inside the knowledge base, as well as,
the state of mutable links. A detailed description how consistency checking and
fixpoint computation work, can be found in the section 5.6 and section 5.7.

Of course, it is also possible to depublish prototype expressions and prototype
knowledge bases from your local node. But still, other users can decide to pin
your own prototype expressions, such that, even if you remove one from your
local node, it still might be available in ProtoIPFS. We conclude the functionality

Prototypes on IPFS 27

section with an examplary workflow of ProtoIPFS, which can be found in fig. 16.

Fig. 16. An exemplary work flow with ProtoIPFS. After opening and binding a new
IPFS peer node, a user can request published prototype expressions (PE) or define
new PE. Then the user publishes the PEs to allow mutable links. These PE can be
combined in a prototype knowledge base (KB), which needs to be published afterwards.
ProtoIPFS can check whether a KB is consistent and is able to compute its fixpoint.

5.2 General Architecture

The architecture of the whole system is a layer structure. A visualization can
be found in fig. 17. The lower layers are the InterPlanetry File System’s layers,
which have already been presented in section 2.2. The IPFS daemon is respon-
sible for these layers and interacts directly with our local storage. For accessing

28 Dominik Hüser

the functionalities of IPFS, ProtoIPFS uses the IPFS Java API, which interacts
with the daemon via HTTP requests. Unfortunately, this API does not offer
all functionalities which are needed in the layer above, which is the reason why
there is an API extension for exactly these functionalities. A description of the
API extension can be found in section 5.4. ProtoIPFS is placed on top of the
extended API layer. It is responsible to construct prototype expressions and
knowledge bases, to manage the node’s IPNS link and to generate the adminis-
trative directory. These structures have already been presented in the section 4.
Then, ProtoIPFS uses the lower layers to make these constructions available to
the network. The ProtoIPFS layer itself can be used in third party code, therefor
it serves as a lower layer for a new project.

Fig. 17. Visible is the layer structure of ProtoIPFS with its underlying system, contain-
ing the extended Java API and the layer structure of the InterPlanetary File System.
IPNS refers to the administrative directory holding links to all published prototype
expressions and knowledge bases of the peer.

One aspect, which has not been regarded yet is the case of several peers
interacting with each other. This happens, when the user requests prototype
expressions or knowledge bases from other peers, as well as if there are pro-
totype expressions which refer to objects laying in other peer’s local storage.
Basically, there is no change for the user here, since communication, exchange
and dereferencing of IPFS objects (including prototype expressions) is done by
the IPFS layer. The only difference here is, that the user might need to know
how to address the objects from other peers. For objects which were referred by
immutable IPFS links, there is no need to know where the object is stored as
long as it is inside your swarm. On the other hand, there are two cases were we

Prototypes on IPFS 29

need to know the peer’s ID: A) if a user wants to request a knowledge base from
that peer or B) if a user wants to create a mutable link which is controlled by
the peer. Since the peer node’s ID is the hash of the peer node’s public key, the
public key alone is enough to determine the peer node. A visualization of inter
peer communication can be found in fig. 18.

Fig. 18. Two Prototype participants sharing knowledge, inside one swarm of nodes.
Links between objects which lay on different nodes are handled by the InterPlanetary
File System.

5.3 Program Structure

After dealing with the architecture of the ProtoIPFS system, this section de-
scribes the implementation’s structure and important design decisions. In the fol-
lowing sections, we always refer to the ProtoIPFS class diagrams in appendix A.
But before we look in to classes of ProtoIPFS, let us regard the overall structure.
First of all, ProtoIPFS is split into several packages:

– domhues.prototypes.peer for core functions.
– domhues.prototypes.expressions for data structures representing proto-

type expressions and prototypes.
– domhues.prototypes.knowledgebase for knowledge base representation.
– domhues.prototypes.links for IPFS and IPNS link representation.
– domhues.prototypes.examples for example usage and benchmark tests of

the whole ProtoIPFS system.

Core Classes The most important class for the user is PeerNode. This class
describes the interface of ProtoIPFS. It is bound to exactly one IPFS daemon,
which is accessed by an IP and a port during construction. Via this class get,
put and publish operations of prototype expressions and knowledge bases can be
executed. To do that, this class uses the IpfsApi class, which will be described

30 Dominik Hüser

in section 5.4 in detail. For prototype expression file imports, the Parser helper
class is used. Since this class becomes quite large when everything is imple-
mented right in PeerNode, we use the delegation pattern [24] and therefor shift
PeerNode’s put-implementations to the PeerNodePut and get-implementations
to the PeerNodeGet class, which both are attributes of PeerNode and each is
handed over a PeerNode reference. Publishing prototype expressions and know-
eldge bases is handled by the Directory class, the representation of the admin-
istrative directory.

Prototype Expressions Before something can be put and published, it must
have been constructed, first. Therefor, there are several representations of
prototype expressions defined in ProtoIPFS: IncomingPrototypeExpression,
PrototypeExpression and PublishedPrototypeExpression. Each of them
contains a base, an add and a remove set. Depending on the phase where
we are looking at a prototype expression, one of these classes must be used.
IncomingPrototypeExpression is needed as a data structure to represent ex-
pressions which were imported from a file. This class does only operate in
the background and is not directly needed by the user. PrototypeExpression
must be used when the user wants to define a new prototype expression de-
riving from an already put and published one. How exactly this works can
be found in section 5.5. The difference to a incoming prototype expression,
is the fact that IPFS or IPNS links to already defined expressions are used
here, whereby an incoming prototype expression only contains IRIs as links.
PublishedPrototypeExpression is the type which is returned whenever the
user requests a prototype expression from the system. As it is visible in the class
diagram, this class extends PrototypeExpression, such that it could easily be
casted to that type. The only difference between these two classes is that a pub-
lished prototype expression additionally has an IPFS hash, which a not yet put
one does not have.

All three classes do not have any set methods such that all attributes have to
be set via the expression’s builder class. This design decision was made, since the
idea of prototypes is the reuse of objects. If the user wants to change an existing
prototype expressions, then he can derive from this prototype expression (use it
as a base) instead of changing an existing expression’s change sets. After that
he can add or remove links to the derived one. This does especially hold with
the immutable definition of IPFS objects.

For every prototype expression there are two ChangeLists which represent
an expression’s add and remove set. Depending on the prototype expression
type, the change list’s change expression is a IncomingChangeExpression or a
PublishedChangeExpression. PrototypeProperty represents a property of a
prototype including its value. These three classes extend the Property class.

Prototype Knowledge Base Another class which is important for the user
is PrototypeKB. It is the representation of a prototype knowledge base and
contains, next to an IRI as its name, links to all of the knowledge base’s prototype

Prototypes on IPFS 31

expressions. The class is used to construct a new knowledge base. An extending
class is FixedPrototypeKB, which is constructed out of a PrototypeKB and
represents a knowledge base where every mutable link is fixed at the time the
object is constructed. That is necessary, to avoid a change of mutable links
during computations on the knowledge base, which might influence their result.
FixedPrototypeKB then offers methods for consistency checking and fixpoint
computation, which will be presented in section 5.6 and section 5.7. The result of
a fixpoint computation is a set of prototypes, represented by Prototype objects.
These objects contain a name and a list of PrototypeProperty objects.

Links Important components of ProtoIPFS are links, since they address objects
in the underlying IPFS. We differentiate between links and Multihashes: A
link represents a path of the form /ipfs/<hash>/... or /ipns/<hash>/...,
whereby a Multihash represents the <hash>, only. A Link is an abstract class
from which is extended by three type of links: IpfsLink, IpnsLink and AllLink.
The first two links represent the two possible link types in IPFS. AllLink, on
the other hand, describes the ∗ operator in a remove change expression (p, ∗).
A PrototypeReference is a tuple which contains an IPFS and an IPNS link.
It is used to hold a mutable and an immutable link of a published prototype
expression, which a user can use in following ProtoIPFS operations.

5.4 API adaption

ProtoIPFS uses the officially recommended Java IPFS API to interact with
IPFS. This implementation uses requests to the HTTP interface of a local IPFS
daemon. For ProtoIPFS the most important features of this API are object, pin
and name commands. Even if there is no documentation of the Java API, it is
usable, since it is mostly analogues to the IPFS HTTP API10. But still, the Java
IPFS API does not suit for the ProtoIPFS implementation, completely. Therfore,
the IpfsApi class extends the IPFS Java APIs IPFS class due to adding several
functionalities:

Method Adaption First, there are some functionalities of the Java IPFS API
which are complicated to use in the main code of ProtoIPFS, such that it is
helpful to wrap them in newly defined methods. Especially for patching objects
this is the case. The Java IPFS API offers one method which is responsible for
all kinds of patching objects: Set data, add links and remove links. The method
has a long parameter list whose entries are not all necessary, depending on the
patch type. We now generate one wrapper method for each of the three patch
types. Their suiting method headers result to more structured ProtoIPFS code.
Same argumation holds for the methods putObjectAsJSON and newObject.

10 https://ipfs.io/docs/api/

32 Dominik Hüser

Direct HTTP Requests Secondly, the offered method to request an IPFS
object is not suiting for ProtoIPFS. IPFS.object.get returns the JSON repre-
sentation of an IPFS object as it is shown in fig. 4. With the difference that it
does not contain any link’s name, which are important for ProtoIPFS since they
contain important information according to the presented mapping from pro-
totypes to IPFS. Therefore, IpfsApi includes an alternative getObjectAsJSON

method whose returned JSON object includes the link’s name, additional. This
is done by requesting the daemon via HTTP directly.

The method selfResolve is used to get the hash of the object, which has
been published by your own node, without a need to know your own peer’s ID.
This functionality, and a function which lists all pinned objects of your node
(pinls), are implemented in the daemon but not in the Java API. Therefore,
we use an HTTP request to the daemon directly to implement these missing
functionalities.

Additional Functionalities A method which converts a link of the form
/ipfs/<hash>/<link name1>/.../<link nameN> or /ipns/<hash>/<link

name1>/.../<link nameM> to the multihash of the referred IPFS object is
useful. IpfsApi includes the method resolveLink to do that. If it is an IPNS
link, the method first resolves the peer ID. After that it treats the rest of the
link as an IPFS link. Via IPFS API’s resolve function, we then request the
multihash of the IPFS link’s target.

A method that searches an IPFS object’s link list for a special link name is
implmented as getLinkofObject. The method expects the link’s name and the
hash of the object which contains that link. It requests the JSON representation
of the object and then return the target hash of that link, which is determined
by traversing the link list.

5.5 Adding Prototype Expressions

ProtoIPFS offers two ways of adding prototype expressions to the system. File
Import for a big amount of prototype expressions and Separated Import for
deriving from already existing prototype expressions.

File Import The first way allows the user to import prototype expression by
handing over a file. This file contains several prototype expressions, with links
to other prototype expressions from that file. In other words, a correctly defined
file describes a closed system.

The file’s format can be found in fig. 19. The format defines that two con-
secutive prototype expressions are separated by an empty line. The expression
itself contains several lines describing the expression’s ID, base, and add and
remove sets. Each ID which is used here is an IRI. ID’s which are used as a base
or inside the add or remove set, have to be the ID of a prototype expression from
the same file. An exception is proto:P 0 which must not be defined in this file,

Prototypes on IPFS 33

ID:

<Prototype Expression ID id>

BASE:

<Prototype Expression ID base > [-mutable]

ADD:

<Link name > <Prototype Expression ID add 1> [-mutable]

...

<Link name > <Prototype Expression ID add n> [-mutable]

REMOVE:

<Link name > <Prototype Expression ID rem 1> [-mutable]

...

<Link name > <Prototype Expression ID rem m> [-mutable]

ID:

...

Fig. 19. The format of an input file which contains several prototype expressions.

but is still allowed to be used as a base. Base, add and remove links can also be
defined to be mutable by using the optional flag -mutable.

After ProtoIPFS read the file in, it is not necessarily possible to add the
prototype expressions in the given order. A prototype expression can only be
added to the IPFS DAG, when its dependencies (base, add and remove) have
already been put on the DAG, before. The reason for this is that ProtoIPFS
needs the context based hash of a change expression’s value, when it should
refer to it. This hash is created when we put the object on IPFS. Therefore, it
is necessary to find an ordering of putting prototype expressions. To make this
easier, we consider prototype expressions as a graph: Every prototype expression
itself is a node on this graph. Its base or add and remove change expression’s
values are directed edges from the prototype expression to the target expression.
The first item we can put on IPFS is that one which has neither a base nor an
add or remove expression, meaning no outgoing edges. This holds for proto:P 0.
So we put proto:P 0 on IPFS first and get its hash. After that, ProtoIPFS can
put all prototype expressions which contain links to already added prototype
expressions. Inductively we can add all prototype expressions from the file as
long as there is no inheritance cycle in the file. Since such cycles are not allowed
in prototype expression’s bases, in this case ProtoIPFS throws an error. Property
cycles, like prototype expression Mars is neighbor of Earth and Earth is neighbor
of Mars, have to be constructed by a separated import with IPNS links (cf.
fig. 21).

The required insertion order can be found by computing the so-called topo-
logical order of the DAG. In fig. 20 we see a directed acyclic graph and its
topological order below. Applied on our problem, ProtoIPFS would add all pro-
totypes expressions from the right to the left side.

34 Dominik Hüser

↓

Fig. 20. A topological sorting of a DAG. Applied on prototype expressions, D and G
would be Proto:P 0.

ProtoIPFS uses a variation of the Deep First search algorithm (DFS), which
is described in ”Introduction To Algorithms” [15], to compute the topological
ordering. When a vertex is marked black by the DFS, the algorithm inserts it
into the front of a linked list, which is in the end the lower representation of
fig. 20. For a graph G = (V,E), with V the vertices and E the edges, we can
calculate the topological ordering in Θ(|V |+ |E|).

After defining the order in the Parser class, ProtoIPFS uses the mapping
from section 4 and puts the expressions on IPFS, each treated as a single sepa-
rated import. How this works is mentioned in the next section. In the end, the
user gets a list of PrototypeReference objects back, which can be used to link
to these prototype expressions in an immutable or mutable way.

Separated Import As already mentioned, the file import does not allow
references to already put prototype expressions, since all used IDs (except of
proto:P 0) must be defined in the same file, too. One advantage of prototypes
as knowledge representation is the ability of reusing already existing prototype
expressions, though. To make this also possible in ProtoIPFS, a second kind of
putting expressions can be found: The user can define new prototype expressions
via PrototypeExpression’s builder class. The user needs the link of a prototype
expression to use it as a base or in a change expression. Depending on the case
whether it should be a mutable or an immutable link, the user has to hand an
IpnsLink or an IpfsLink over. The expressions, which are referred to, do not
have to be published by the same user who publishes the newly constructed pro-
totype expression. Instead, it is also possible to use a prototype expression from
another peer to derive a new prototype expression. After putting a prototype
expression, the users gets its PrototypeReference.

In the end, independent form whether we used the file import or the separated
import, the users have to publish the newly constructed prototype expression

Prototypes on IPFS 35

themselves by calling publishChanges. This does not need to happen directly
after constructing each prototype expression. Several constructed prototype ex-
pressions can be grouped and published together (cf. section 6.5). The publish
call has to be done at least right before you resolve a mutable link to a newly
constructed prototype expression.

Distinction between Seperated Import and File Import One could
argue that two kinds of adding prototype expressions is too confusing for the
user and therefore it might be beneficial to integrate the features of a separate
input into the file input. But still, ProtoIPFS offers these two ways of adding,
because only then a file always defines a closed system. It is independent from
other prototype expressions which are put (and published) on ProtoIPFS. Then,
exchanging prototype expressions with other implementations might be possible
if future implementations are able to handle the ProtoIPFS’ input format.

5.6 Consistency Check

As already defined, a consistent knowledge base has to satisfy several conditions.
As a recap these conditions are listed below:

– proto:P 0 is not allowed in the knowledge base
– every prototype expression’s ID inside the knowledge base must be unique

in the knowledge base’s prototype expression set.
– every prototype expression, which is a base or inside the add set of a knowl-

edge base’s expression, must be inside as well.
– no cycles in base links are allowed.

Now, ProtoIPFS checks exactly these four conditions when it runs a consistency
check. Whenever a condition is not satisfied, ProtoIPFS throws an error. Be-
fore these tests are possible, we have to keep in mind that we look at mutable
knowledge representation. Since changes of mutable links during a consistency
check could influence the result, ProtoIPFS has to create an immutable version
of this knowledge base, first. Therefore, when ProtoIPFS downloads the knowl-
edge base, all mutable links are converted to immutable ones. On this fixed set,
the consistency test and the fixpoint computation can be applied. This implies
that the user can be sure that a consistency checked knowledge base is still con-
sistent, when the user applies the fixpoint computation, afterwards. Let us have
a look at the conditions, which need to be checked:

The first condition can be checked by traversing the list of prototype expres-
sions inside the knowledge base in linear time. If an expression equals P∅, then
the first condition is not satisfied. The method uses the advantage of permanent,
content based hashes: Instead of checking whether the prototype expression does
really have all characteristics of P∅, ProtoIPFS only checks whether a prototype
expression’s hash equals the hash of P∅.

The second condition is not needed to be checked explicitly, since we define
the IPFS hash to be the ID of a prototype expression. Since this hash is content

36 Dominik Hüser

based, two different objects are always described by two different hashes, when
we assume that there are no hash collisions.

To check the third condition, ProtoIPFS uses the idea of M. Cochez’s pro-
totype implementation, which has already been presented as related work [14]:
For each knowledge base’s prototype expression, ProtoIPFS checks whether all
prototype expressions from the add set and the base expression are inside this
knowledge base, too. Note, that this is not done recursively. Since the algorithm
iterates over all prototype expression in the knowledge base, the expressions
from the add set and the base will be checked, anyway. Therefore, no prototype
expression’s add set and base is checked twice which is more efficient than a
recursive approach.

The last condition meant to be checked is the cycle check. This is done by
constructing a graph containing prototype expressions as nodes and base links
as directed edges. Via a slightly changed topological sorting, which has already
been used in section 5.5, cycles can be detected. Add and remove sets will not be
cycle-tested since, according to the definition, cycles are not forbidden, here. One
could argue that the whole cycle test is not necessary, since IPFS stores all its
objects in a DAG, where cycles can not appear. But remember that ProtoIPFS
uses the IPNS service for implementing mutable links. These mutable links can
be used to create cycles. An example, which illustrates why cycles are not possible
with immutable but are with mutable links, is shown in fig. 21.

5.7 Fixpoint computation

As already mentioned, it is possible to interpret a prototype expression with
respect to a prototype knowledge base. Before ProtoIPFS calculates a knowl-
edge base’s fixpoint, consistency should be checked, first. After that, ProtoIPFS
proceeds as follows:

For each knowledge base’s prototype expression, the algorithm calculates ex-
actly one prototype. First, ProtoIPFS needs to get the base’s fixpoint of the
prototype expression. If there is already a fixpoint representation of the base,
then the new prototype is built by deriving all properties from the base except
those which are also in the prototype expression’s remove set. Change expres-
sion ID as well as the value of the change expression have to match here. Change
expressions which should be removed but are not a property of the base’s fix-
point are ignored. After that, ProtoIPFS adds the properties from the prototype
expression’s add set, and is done with this prototype. In the case that there
has not been computed a fixpoint representation of the base yet, this will be
calculated, first. An exception is the base prototype expression proto:P 0. In
this case the fixpoint can be constructed directly, without deriving any base’s
properties. Otherwise, this is done by a recursive call of the same algorithm and
by saving the resulting fixpoint afterwards, such that it can be reused later and
does not have to be calculated, again.

The algorithm’s output is a set of Prototypes but can also be exported as
described in fig. 22. The output contains the ID of the prototype, its IRI as
description and its properties. Note, that the ID is defined as the IPFS hash of

Prototypes on IPFS 37

Fig. 21. h is the hash function which is used to generate the IPFS object’s hash. And
we assume that there are no hash collisions. Parameters of this function are components
of the IPFS object, which define the hash. On the left hand side there is a visualization
why cycles can not occur when immutable links are used only. The two prototype
expressions PE1 and PE2 have no links first, therefore only the content defines their
hash. Then PE1 adds a link to PE2, which changes the hash of PE1 to PE1*. The
hash of PE1* includes the hash of PE2. Now, we try to define a cycle by adding a link
from PE2 to PE1*. Then, PE2* ’s hash inlcudes the hash of PE1*, which is the reason
why h(PE2) 6= h(PE2*). Since PE1* continues to link to PE2, there is still no cycle.
On the right hand side, we see a mutable link via an IPNS tunnel. Since the resolution
of the IPNS link does not influence the hash of the IPNS tunnel, a cycle can be created
here. Therefore, for base links this has to be tested during a consistency check.

38 Dominik Hüser

the former prototype expression. But still, we use the IRI as a descriptor of the
output format, because it often helps to find out what a prototype represents.

HASH -ID:

<Prototype Expression IPFS hash >

DESCRIPTION:

<Prototype Expression ID>

PROPERTIES:

<Link name > <Prototype hash -ID 1>

...

<Link name > <Prototype hash -ID n>

HASH -ID:

...

Fig. 22. The output file format of a fixpoint computation.

5.8 Local Storage Management

As a recap, the local storage is managed by the garbage collection. In the current
state of IPFS the garbage collection has to be called manually. A mechanism,
which calls it automatically, has already been implemented11, but is disabled in
IPFS by default. In IPFS, objects are either pinned or not. Pinned objects stay
in the local storage, as long as they are pinned. Not pinned object are removed by
the next garbage collection call. The same holds for prototype expressions, since
they are realized through IPFS objects. Prototype expressions can be pinned in
several ways:

– direct: Only that prototype expression will be pinned on IPFS.
– recursive: A prototype expression and all its transitively linked prototype

expressions will be pinned on IPFS.
– indirect: A prototype expression is pinned indirectly if it has been pinned

transitively due to a recursive pin operation.

Manage pinned Objects ProtoIPFS pins every prototype expression, which
is published by the node’s user indirectly due to a recursive pin of the admin-
istrative directory. Therefore, also prototype expression which are a base or a
property value of a published expression will be pinned indirectly. Due to the
recursive pinning of the administrative directory, ProtoIPFS also pins every pro-
totype expression indirectly, which is part of a published knowledge base.

11 https://discuss.ipfs.io/t/performance-batch-requests-and-gc-control/

675/2

Prototypes on IPFS 39

If a user wants to delete a knowledge base or a prototype expression from
his node, then it is deleted from the administrative directory and then unpinned
recursively. All transitive linked objects will be unpinned, as long as they are not
pinned indirectly through an other recursively pinned object. Note, that indirect
pinning does not work for IPNS links: For example, a user deletes a prototype
expression from the administrative directory and there is still a prototype ex-
pression which refers to this via IPNS (and it is not indirectly pinned through an
IPFS link). Then this mutable link will point to the empty object, afterwards.

Choosing which objects can be unpinned and which need to be pinned ad-
ditionally is implemented in the following way: Every time we want to publish
changes to our IPFS system we pin the updated administrative directory, first.
After that, the old administrative directory will be unpinned recursively. Pro-
totype expressions which are not also in the new directory will be unpinned,
since there is no indirect pin for them, anymore. Prototype expressions which
are still in the new directory will not be unpinned, because there have been
two recursive prototype expressions by which they were pinned indirectly: The
indirect pin from the old directory and the indirect pin from the new one. Un-
pinning the old directory recursively does not affect those prototype expressions
since they are still pinned by the new directory. Therefore, the garbage collec-
tion can not delete needed prototype expressions, when it is called after this
process. The IPFS garbage collection should not run in the automatic mode.
Instead, ProtoIPFS can call the garbage collection after updating the directory
and reorganizing the pinned objects. Accordingly, ProtoIPFS can organize its
local storage on its own.

Advatages of Recursive Pinning in ProtoIPFS Due to recursive pinning
we also pin prototype expression’s bases and property values indirectly, too, even
if they are created by another peer’s user. The advantage is no dependency on
other peers during the fixpoint computation of the prototype expression. This
could otherwise fail, when we can’t find a prototype expression’s base on IPFS,
for example because nobody needed that expression anylonger. Additionally, it
is possible to access your own knowledge base’s prototype expressions faster,
since they are stored locally. Another positive side effect is that the problem of
persistence, which is not solved by IPFS, is settled for ProtoIPFS, now: Pop-
ular prototype expression, for instance, are often used as a reference in other
prototype expressions or are included in other user’s knowledge bases. Every
time someone uses this prototype expression he makes it available on their node
due to recursive pinning of the administrative directory. On the other hand, a
prototype expression, which is not repinned by other nodes, is only stored in
your own local storage. If you unpin it and the garbage collections cleans your
local storage, then it will no longer be available on ProtoIPFS. But still, since
no one has wanted to use this expression and even the creator himself has not
needed it anymore, it might be no loss if the prototype expression will no longer
be available.

40 Dominik Hüser

5.9 Handling IRIs as IPFS Link’s Name

Remind that a change expression’s ID has been defined as an absolute IRI. Ap-
plying the defined mapping of section 4, the ID becomes an IPFS object’s link
name. As we have already seen, IPFS link names have to satisfy a certain norm
(cf. section 2.2). Especially for guaranteeing transitive addressing of the form
/ipfs/<hash>/<link-name>/.../<link-name>, the link’s name is not allowed
to include the path delimiter, for instance. Nevertheless, the path delimiter might
be part of an IRI, which is why we need to encode the reserved link characters,
before we use the IRI as an object’s link name. By using an URL encoder when-
ever we put a link’s name on IPFS and a URL decoder whenever we request
one, we ensure that every IRI can be used as the ID of a change expression in
ProtoIPFS.

6 Evaluation and Benchmarks

In this section, we want to measure and evaluate how much time certain opera-
tions of ProtoIPFS take. Before we can do that, we need to define the testbed,
and the data sets which are used during the benchmark tests. Then, we start
with tests inside a controlled environment: We look into the construction of pro-
totype expressions and compare two approaches to generate IPFS objects which
represent prototype expressions. After that, we compare two ways of request-
ing a set of prototype expressions from the system. Another important part of
ProtoIPFS is publishing the administrative directory, where we also present two
different approaches. Of course, we also want to work with prototypes, so we
look into benchmarks of creating knowledge bases, investigating its consistency
and computing its fixpoint, right after.

After we have looked into the time consumption in a controlled environment
and have presented several methods to increase the performance of the system,
we regard the time consumption of ProtoIPFS tasks on the global IPFS network.

6.1 Testing Composition

The results are obtained by running several versions of ProtoIPFS’ Benchmark
class on an Intel Core i5 @ 2,6 GHz, having 8 GB 1600 MHz DDR3 and SSD hard
drive12. Except for the last test, ProtoIPFS runs in a controlled environment,
which only contains two connected IPFS nodes, each bound to one ProtoIPFS
instance. In a last test we connect this setting to the global IPFS network and
compare the resulting time consumption with the benchmarks of the controlled
environment. Note, that all IPFS nodes run on the same device as the ProtoIPFS
system. Each test runs 40 times and we report the median running time. For the
real world application we run the benchmark test a whole day long, such that
we include variating local traffic peaks. This is necessary because the amount
of traffic, for example at an IXP like the DE-CIX Frankfurt Internet Exchange

12 https://support.apple.com/kb/sp704

Prototypes on IPFS 41

Point [27], differs regionally according to the time we request data over a certain
route: Traffic peaks are visible around 10 p.m., whereby at 4 a.m. the lowest
amount of traffic can be recognized. For these tests we are going to introduce
four data set generators in the next section.

6.2 Data Sets

For the purpose of evaluation we need several prototype expression data sets,
encoded in prototype expression files like they have been defined in fig. 19. We
are going to introduce four synthetic data set generators, each having different
specifications: First Cochez’s baseline(n) and blocks(n) generators [14] and then
the propline(n), and random(m) generators. n and m are scaling parameters.
Note, that the last two generators are variations of Cochez’s data set generators.

First of all, each data set is shuffled after it has been constructed. That pre-
vents ProtoIPFS from taking advantages of the construction order, for example
during the process of finding a putting sequence. The Durstenfeld Shuffle (Al-
gorithm 235) [19] is used to achieve that. Secondly, we use a certain amount of
mutable links as the base or as property values of prototype expressions; 20%
of all links are mutable, the others are immutable. Furthermore, if we interpret
each of the constructed data sets as a prototype knowledge base, all four gener-
ators’ knowledge bases will be consistent. Now, let us have a look at where these
four sets differ in:

Cochez’s baseline(n) generates data sets which contain prototype expressions
without any properties. The Prototype expressions are arranged in a tree struc-
ture: The first prototype expression derives from P∅. In the second step (i = 2),
two other prototype expressions derive from the first one. Inductively, from every
prototype expression, which is defined in step i, derive two prototype expressions
in step i+1 until we reach the maximal step limit n. Then, our data set contains
2n+1 − 1 prototype expressions (P∅ not counted in).

The second data set generator is blocks(n): Here, we create n blocks of 1000
prototype expressions, each having one added property. Each prototype expres-
sion out of block i+ 1 derives from a randomly chosen prototype expression out
of block i. Only in the first block (i = 1) each prototype expression derives from
P∅.

Different to Cochez, we are going to use remove expressions in our test sets, as
well. The resulting data sets of propline(m) are built exactly like baseline(m), but
they have properties which are added or removed. A prototype expression will
have up to nine entries inside the remove and add expression set, each. Property
values are randomly chosen from a pool of twenty prototype expressions. These
twenty prototype expressions are additionally part of the data set.

The fourth type of generators is random(m) which is comparable to Cochez’s
incremental data set generator: Here, we create m prototype expressions, each
deriving from a random prototype expression which has already been created
before. Again, every prototype expression has up to nine add and up to nine
remove properties, which are randomly chosen from a pool of twenty prototype
expressions, used as property values. Again, these prototype expressions are

42 Dominik Hüser

additionally part of the data set. An overview of the data sets’ characteristics
can be found in table 1.

Data set Prototype Expressions Change Expression per PE

ba(10/12/13) 2047 8191 16383 0/0 0/0 0/0
pro(10/12/13) 2067 8211 16403 4.5*/4.5* 4.5*/4.5* 4.5*/4.5*
blo(1/5/10) 1000 5000 10000 1/0 1/0 1/0
rand(1/5/10) 1020 5020 10020 4.5*/4.5* 4.5*/4.5* 4.5*/4.5*

Table 1. Amount of prototype expressions and properties per prototype expression in
each data set. ∗ marked values are average values. The actual values are in [0, 9].

We introduced several data set generators each with its own use cases. Com-
paring baseline and propline data sets allows us to find out how strong the
presence of properties influence certain functionalities. Comparing random and
block data sets allows to test how the needed time is influenced by the data
set’s structure. Blocks and baseline allow to compare ProtoIPFS to Cochez’s
implementation since these set generators have been used there, too.

All in all, we use test data which is rather small for the use case of knowledge
representation. There are two reasons for this: First, during the development it
has become clear that IPFS calls are very time consuming, hence huge data will
generate infeasible runtime during the benchmark tests. Second, ProtoIPFS is
limited to a 2MB maximum IPFS object size. Huge data sets result in huge
IPFS administrative directory objects, which become bigger than 2MB when we
deal with prototype expression sets in the scale of baseline(14) (32767 prototype
expressions) or larger. But still, there is a possible workaround to allow bigger
data sets in the future work section 7.1.

6.3 Add Prototype Expressions to ProtoIPFS

A time consuming task during the construction of prototype expressions is
putting the huge amount of IPFS objects onto the network. A first approach
used the IPFS object.patch function, which iteratively allows us to create new
IPFS objects by changing alredy existing one. With each patch call we can add
or remove a link, or set the IPFS object’s data.

In a second approach the amount of API requests decreased by using the
IPFS function object.put. In this case whole IPFS objects have to be defined
as JSON objects first, which then are added to the local storage by calling
the IPFS put function once per object. Table 2 shows both approaches’ time
consumption in comparison.

At first sight, we see that using the put method decreases the needed time
by roughly 1

3 in comparison to the patch approach. The reason for that might
be less API calls to the IPFS daemon. Consequently, ProtoIPFS uses the put

Prototypes on IPFS 43

Data set patch (seconds) put JSON object (seconds)

ba(10/12/13) 17.61 76.57 153.19 5.345 21.810 44.722
pro(10/12/13) 53.45 210.64 420.72 19.607 77.453 152.094

blo(1/5/10) 10.17 62.83 127.83 3.061 21.680 47.070
rand(1/5/10) 26.94 130.26 258.1 9.537 46.644 93.019

Table 2. Add prototype expression file with the given data set schema, comparing the
patch and put approach.

approach whenever we create prototype expressions. Another pattern we see, is
that each baseline test needs less time than the according propline test and each
blocks test needs less time than the according random test. The reason for that
is the additional amount of change expressions in the propline and random sets.
For each change expression, proto:SEVERAL objects have to be constructed.
Additionally, the proto:ADD and proto:REMOVE objects have to be patched
more often in the patch approach when properties are present. A third pattern
which we can observe is the roughly linear dependency of the computation time
on the amount of prototype expressions in both approaches.

6.4 Expensive Mutable Links

In the following test, we are going to look at requesting prototype expressions,
putting prototype expressions and creating a knowledge base. Once with a data
set where one out five prototype expressions are addressed trough mutable links,
and where 20% of the property values and base references are specified using a
mutable link. And once with a data set which only contains immutable links.
The results can be found in table 3. We only regard random(n) data sets here.
The reason for this is that testing the overhead of mutable links is not that
much dependent on the structure of the data set, but rather on the amount of
prototype expressions dressed.

Data set request data set (in s) put data set (in s) create KB (in s)

rand(1) 9.241 21.81 8.56 9.537 0.085 0.335
rand(5) 46.234 141.872 41.948 46.644 0.449 1.777
rand(10) 92.583 367.106 83.709 93.019 0.897 3.593

Table 3. Comparison of consumed time of three functions without any mutable links
(left) and a data set with 20% mutable links and where 20% of the prototype expressions
are addressed via those mutable links (right).

First of all, we again see a trend towards a linear dependency of put’s and
create KB’s time consumption on the size of the used data set. In general, we

44 Dominik Hüser

see that time consumption is much higher when we deal with a data set which is
addressed via mutable links and also contains mutable links in its simple change
expressions. When requesting a data set the reason for this is that we need to
resolve IPNS links to reach 20% of the prototype expressions. It has been clear
early that the IPNS resolution takes a lot of time. In the other two cases, the
reason for the higher time consumption is that we need to generate additional
IPNS tunnel objects to store mutable links while constructing prototype expres-
sions or knowledge bases. These objects also need to be put which increases time
consumption. We can conclude from this test, that mutable links should only be
used when it is really necessary. This also leads to the assumption that IPFS is
not the most suitable environment for huge mutable data.

6.5 Publish Directory

As already mentioned, ProtoIPFS uses IPNS to realize mutable links and knowl-
edge bases. A peers’ IPNS pointer is set via calling IPFS’ name.publish. In a
first approach this method was called after every change which had been made to
the administrative directory. For ProtoIPFS this means that after every added
prototype expression and every change on a knowledge base the method has
to be called. We call this approach direct publishing. A problem here is that
publishing a new IPFS object on a peer node takes some time.

An approach, which may make adding or changing prototype expressions
and knowledge bases more efficient, groups several changes together. We call
this approach batch publishing : Instead of putting and publishing the latest ver-
sion of the administrative directory after every update, ProtoIPFS updates the
directory only locally and publishes the resulting directory not until all changes
in the batch have been made. For instance, when we add a file of one hundred
prototype expressions to ProtoIPFS, then there would still only be one call to
put and one to publish the new directory, instead of one hundred put and one
hundred publish calls in the first approach. An imaginable race condition, which
might happen because ProtoIPFS does not publish the changed directory im-
mediately, is prevented by the fact that only one ProtoIPFS client is allowed
for each IPFS peer node. Since the IPNS directory can not be changed by other
participants except the host of the node itself, race conditions are not possible.
To enable advantages of the approach on a larger scale too, ProtoIPFS includes a
functionality which allows the user to decide manually when the IPNS directory
should be updated. In ProtoIPFS, the directory is represented by the Directory
class, which manages the changes to the directory locally until publishChanges
gets called. After calling publishChanges the updated version of ProtoIPFS is
available for other nodes on the network, of course depending on the time which
is needed for the IPNS update to be propagated on the network. In table 4, one
can find a comparison of both presented approaches.

As expected, we see that the time consumption decreases enormously when
we use the batch publishing approach. Whereas using the direct publish, test-
ing with large sized sets is so time consuming that it became unreasonable to
continue measurements.

Prototypes on IPFS 45

Data set direct publish* (minutes) batch publish (ms)

ba(10/12/13) 2.34 33.00 - 121 476 953
pro(10/12/13) 2.39 34.11 - 133 484 958

blo(1/5/10) 0.64 12.50 - 59 294 585
rand(1/5/10) 0.69 12.99 - 61 296 585

Table 4. Publish a prototype expression file with the given data set schema. Visible
are the direct publish and batch publish method. * denotes that this is only the median
of twenty measurements. - denotes that measuring the value is not feasible.

We additionally see that the batch publishing time does not strongly depend
on the amount of properties, since baseline’s and propline’s time consumptions
are nearly equal. This also holds for comparing blocks and random data sets.
Their structural differences as well as random’s additional properties do not in-
fluence the batch publish time. On the other hand, the direct publish approach
experiences higher time consumption, due to its additional 20 prototype expres-
sions in the data set. In the batch approach we additionally recognize a trend
towards a linear dependency of the time consumption on the data set’s size.

6.6 Knowledge Base Benchmarks

Next, we will look into operations on prototype knowledge bases: First, into
the construction time of a prototype knowledge base, based on already put and
published prototype expressions. Then, into the consistency check of an already
requested knowledge base, and in the end, into the computation of the knowledge
bases’ fixpoint. Again, we choose 20% of all links of the knowledge base to be
mutable. The measured results can be found in table 5.

Data set create KB (in s) consistency (in ms) fixpoint (in ms)

ba(10/12/13) 0.707 2.861 5.816 170 677 1352 97 386 780
pro(10/12/13) 0.732 3.031 5.953 358 1423 2928 477 1952 3808

blo(1/5/10) 0.372 1.612 3.219 97 506 1013 64 335 678
rand(1/5/10) 0.335 1.777 3.593 172 845 1689 225 1122 2326

Table 5. Several knowledge base operations.

At first sight, we recognize that consistency and fixpoint computations are
way faster than creating a prototype knowledge base, and also scale on larger
sets well. The reason for this is that these computations are done locally and
mostly offline on an already downloaded prototype knowledge base. Still, when
we compare the ProtoIPFS’ consistency checking and fixpoint computation with

46 Dominik Hüser

Cochez’s implementation (cf. table 6), we see that Cochez’s implementation is
less time consuming. The reason for this is that the hashes of base references and
property values have to be resolved during these computations in ProtoIPFS.
Even though the prototype expressions are locally stored we still need to do
expensive API calls to get their interconnections. The resolution of property
value hashes also implies why in ProoIPFS the property-sparse baseline and
blocks sets have faster consistency and fixpoint computations than the propline
and random sets.

When we look at creating a knowledge base in ProtoIPFS, we have to in-
teract with the IPFS daemon, even more often. Especially mutable prototype
expressions inside the knowledge base increase the amount of API calls, since we
need to put a new IPNS tunnel object for each mutable reference. Additionally,
we need to put the actual knowledge base object, which holds links to all in-
cluded prototype expressions. Here, we see that the time consumption of block
and random, as well as baseline and propline data sets are quite similar. There-
fore, the amount of prototype expression’s properties is not influencing the time
consumption of creating a knowledge base. That was expected, since we do not
regard a prototype expression’s properties when we create a knowledge base. We
just need the prototype expression’s link.

Data set consistency (in ms) fixpoint (in ms)

ba(10/12/13) 170 / 4 677 / 10 1352 / 21 97 / 8 386 / 17 780 / 34
pro(10/12/13) 358 / 6 1423 / 25 2928 / 55 477 / 26 1952 / 96 3808 / 203

blo(1/5/10) 97 / 0 506 / 7 1013 / 18 64 / 1 335 / 14 678 / 40
rand(1/5/10) 172 / 2 845 / 15 1689 / 33 225 / 8 1122 / 57 2326 / 122

Table 6. Comparing time consuption of knowledge base operations in ProtoIPFS (first)
and in Cochez’s portotype implementation (second). The results of Cochez’s implemen-
tation are gained by importing the newly defined data set generators propline(n) and
random(m) to Cochez’s implementation. Note, that Cochez’s consistency check also
includes a part of the construction of a knowledge base. The results of Cochez’s im-
plementation are the average values of 40 tests, whereby the values of ProtoIPFS are
copied from table 5.

6.7 Real World Application Benchmarks

Now we look at how ProtoIPFS behaves in a real world setting. As already
mentioned this test ran 24 hours, to reduce the influence of varying throughput.
The results of the test can be found in fig. 23.

Prototypes on IPFS 47

9

10

11

12
tim

e
in

 se
co

nd
s

Put PE

0

20

40

60

80

tim
e

in
 se

co
nd

s

Publish PE

300

350

400

450

500

tim
e

in
 m

s

Create KB

0

20

40

60

80
tim

e
in

 m
in

ut
es

Request KB

170

180

190

200

210

220

tim
e

in
 m

s

consistency

240

260

280

tim
e

in
 m

s

fixpoint

Fig. 23. The time consumption of several ProtoIPFS operations during the real world
application test. A random(1) data set is used here. • denotes the median of the
time consumption which has been measured in the controlled environment test, before.
The median is represented by a green line. The box describes the upper quartile with
its upper edge and the lower quartile with its lower edge. The whiskers denote the
maximum (>) and the minimum values (⊥) of our samples, except for outliers, which
are denoted by ◦. More about boxplots can be found in [31].

48 Dominik Hüser

We see that put prototype expressions and create knowledge base operations
are nearly equally time consuming compared to their counterparts. Therefore,
the online setting does not influence the time to generate prototype structures.
Both operations face some outliers. It seems that the only explanations are either
variations in the speed of the network or variations in the speed of the IPFS P2P
system.

The publish administrative directory call on the other hand is way more time
consuming in an online setting than in the closed environment. The reason for
the increase from 61 ms to 1 minute might be the larger underlying DHT over
which IPNS distributes its data. The same holds for requesting a knowledge
base where we have to resolve a certain amount of IPNS links (20% of all links
due to the choice of our data set). With a larger DHT the crawl time for IPNS
information increases as well. Here, from 27 seconds to one hour on average and
up to nearly 80 minutes in our test’s worst case.

While testing consistency and computing the fixpoint, we can see a small
increase in the magnitude of several 10ms, in comparison to the offline test. The
reason for that might be the needed requests to resolve immutable links from one
prototype expression to another one. Except for these resolutions, every other
computation of these two functionalities is done offline, without interacting with
the IPFS daemon.

All in all, we gained 21 samples in these 24 hours, whereby we experienced
three resolution failures when we requested a knowledge base. Likely, the reason
for this is that the target’s peer ID had been resolved before its latest adminis-
trative directory publish reached the requesting peer. Therefore, the requested
knowledge base could not be addressed. Longer waiting before requesting the
knowledge base would likely have fixed this issue. More about the difficulties of
finding good timeouts for requesting IPNS links can be found in section 7.4.

6.8 Reachability of Prototype Expressions

Since prototype expression are realized as IPFS objects, reachability has been
discussed briefly in section 2.2. The reachability of protoype expressions and
knowledge bases depends on the the available nodes of your swarm. A prototype
expression is reachable via an immutable link as long as it is stored in at least
one available node of your swarm. On the other hand, a prototype expression is
reachable via a mutable link only if the peer which controls the mutable link is
available in your swarm. The same holds for knowledge bases, where we request
the knowledge base object from a certain peer.

6.9 Summary

From the benchmarks we can conclude that we gained much more efficiency
due to the introduction of batch publishing and the use of IPFS’ put service
instead of the patch approach. Additionally, we have seen that mutable links
are expensive and should only be used if they are really necessary. Nevertheless,
we have also seen that especially requesting prototype expressions does take

Prototypes on IPFS 49

infeasible time even on a small data set in a real world application. Unfortunately,
the time consumption of IPNS resolutions will always be present, as soon as we
need to address a mutable prototype expression. But still, we will look into
several improvements which may increase efficiency of the whole system, in the
next section. Reasonable are the time consumptions of consistency and fixpoint
computations in a real world and in the closed environment.

7 Future Work

In this section we look into several aspects which can be added to ProtoIPFS, to
gain more usability and more efficiency. First, we deal with the 2MB size limit
of IPFS objects, and how to handle prototype expressions or directories which
have a larger size. Then, we present an approach to achieve exclusive usage of
a ProtoIPFS’ bounded daemon. Because when we introduced ProtoIPFS, we
assumed exclusive usage to guarantee consistency of the ProtoIPFS system, but
these mechanisms have not been implemented, yet. After that, we look into
the topic of querying, as an important aspect of a knowledge representation
system. The next part deals with the overall problem of IPFS’ efficiency. In the
benchmark section (cf. section 6), we have seen that ProtoIPFS does not scale
well in a real world swarm. Therefore, we will describe A) needed improvements
of the underlying IPFS system and B) possibly more efficient mappings from
Prototypes to IPFS. We will further describe how these approaches affect the
current ProtoIPFS design.

7.1 Limited Object Size

According to Johnson, who is a core member of the IPFS development commu-
nity, the size limit of an IPFS object is 2MB13. We could easily confirm this by
trying to put an object which is larger than 2MB. The limitation is currently
also a restriction for ProtoIPFS: Not only for the size of a prototype expres-
sion, but also for a knowledge bases’ amount of included expressions. Remember
that a knowledge base is represented by an IPFS object which has links to all
included prototype expressions. Even worse, also the administrative directory
object, which holds links to all node’s prototype expressions, is an IPFS object.
The amount of prototype expressions which we can publish is therefore likewise
limited by the maximum size of the administrative prototype directory object.
Johnson already mentioned, that larger objects will be supported soon. Until
then, ProtoIPFS could split the directory object, every time when it reaches the
maximal size. A newly created root object links to these two objects, then. The
same approach is used on the IPFS File layer (cf. section 2.2), to allow files far
bigger than 2MB in the distributed file system. Since we work on the lower IPFS
Object layer, we can not simply use the functionality of the IPFS File layer to
solve the problem.

13 https://discuss.ipfs.io/t/file-systems-chunk-small-files-big-files/

343/3

50 Dominik Hüser

7.2 Locking IPFS Daemon Access

An assumption we have made right in the beginning allows only one ProtoIPFS
instance to run on each IPFS node, since otherwise multiple instances could
influence each others. Currently, there is no realization of restricting multiple
binding to one node, but one could imagine to handle the situation like this: To
mark whether an IPFS daemon is already bound to a ProtoIPFS instance, an
additional flag object in the administrative directory can be used. This object
is added to the directory as soon as a ProtoIPFS instance binds to the daemon
and which is removed when the instance unbinds. When a second instance of
ProtoIPFS tries to bind to an already bound daemon, then it would notice the
flag object and stops the binding process, immediately.

Next to other ProtoIPFS instances’ bindings, API calls from other programs
might cause inconsistencies, too. Imagine for instance a program which works
with the same IPFS daemon and uses its IPNS service to publish a different ob-
ject than ProtoIPFS. This would overwrite ProtoIPFS’ administrative directory,
and make knowledge bases and mutable links unavailable. Controlling these kind
of IPFS accesses is not possible with the previous approach, since these programs
can simply ignore the flag object. To solve this issue, access restriction has to be
done elsewhere, for example inside the IPFS daemon by restricting the resources
which are allowed to send HTTP API requests.

7.3 Querying in ProtoIPFS

The current version of ProtoIPFS allows us to reuse prototype expressions, as
soon as we know their hashes. But users also have to find these hashes first,
before they can use them as the base or as a property value of their new prototype
expression. Finding suiting prototype expressions (and their hashes) can be made
possible by introducing query mechanisms. Daswania [16] distinguishes several
types of querying for peer-to-peer systems. In [33] these categories are grouped
into schema-based, keyword-based and, through IPFS hashes already integrated,
key-based querying.

As we have already suggested in our paper about Prototypes and IPFS [12],
crawlers, well known from search engines and the related SWARMLinda ap-
proach, can be used to answer queries about knowledge bases or prototype
expressions: A crawler would look at each ProtoIPFS instance of the swarm
and resolves their IPNS link, which points to the node’s administrative direc-
tory. Remember that an administrative directory contains information about the
published knowledge bases and all stored prototype expressions. To use query
mechanisms we have to compute prototype expression’s fixpoints first. On these
prototypes we can then search for a query’s keywords or its structure. A structure
would be a description of a prototype whereby we can use wildcards as property,
as property values or as its prototype ID. To fine grain the query’s results we can
use additional meta data, like it has been done in SWAP (cf. section 3.1). Espe-
cially querying for knowledge bases can profit from meta data, since they offer
less options of schema- or keyword-based querying than prototype expressions.

Prototypes on IPFS 51

To reduce the overhead for a ProtoIPFS node to crawl a knowledge base or a
prototype expression we could introduce IPFS nodes whose single task is crawling
the network. ProtoIPFS nodes then can send queries to a nearby crawlers who
can answer these question faster, due to its already cached data.

7.4 Optimal Situation

The IPFS system is still under development, therefore it is clear that IPFS is
not fully sophisticated. There are several aspects which need to be improved in
the ongoing process of developing, to make ProtoIPFS real life applicable, and
IPFS easier to use.

First of all, a better documentation of the whole IPFS project is needed. The
current API is sufficient for basic IPFS calls but lacks in exact specifications,
for example the limitations of IPFS object’s link name can only be found in a
GitHub commit. Additionally, it is sometimes not clear what the current state of
the art is. Only a github change log14 or reading the source code gives information
about changes, here. Next, an optional object size bigger than 2MB is desirable
too, to get rid of the presented workaround.

Then, there are several aspects about the official recommended Java IPFS
API, which is used in ProtoIPFS: Next to a missing documentation, we have
already discussed misconducts and missing basic functionalities, for instance re-
questing complete IPFS objects as a JSON object (cf. section 5.4). Additionally,
there are aspects which could lower the amount of ProtoIPFS workarounds: To
reduce API calls a working implementation of IPFS batch puts would be a good
way to decrease the amount of IPFS API calls.

Next to the already mentioned improvements, the two main aspects of IPFS,
which have to be enhanced, are:

– Performance of object operations (put and get)
– Performance of IPNS calls (publish and look up)

Putting IPFS object, like we have seen in table 2, is already quite slow for 10000
prototype expressions. Now, if we imagine data sets of several million prototype
expressions, then putting will become infeasible.

More problematic is the time needed to publish and resolve IPNS objects,
which seems to depend on the swarm size and the connectivity to members of the
swarm. Next to the high time consumption, it is unpredictable when an IPNS
publish call is distributed on the DHT. It may happen that an IPFS publish
has not reached a second node, yet. The directory which this node then tries
to resolve might not be up to date or not even exist anymore. Working with a
no-cache option of IPFS name resolution fixes this problem in many cases, since
we do not cache old resolution entries on our node anymore. Still, due to the way
of distributing IPNS as meta data in the routing system, this problem occurs
from time to time.

14 https://github.com/ipfs/go-ipfs/blob/master/CHANGELOG.md

52 Dominik Hüser

A related, general problem of IPFS is choosing timeouts of HTTP API re-
quests. A small timeout is often reached when an object needs to be searched
on the DHT or a name resolution is done. A large timeout decreases the speed
of the system when an object does not exisit on the DAG, because IPFS will
try as long as possible to reach the object. This topic is discussed on the IPFS
forum15.

7.5 Alternative Construction

As we have seen during the benchmark tests, a high amount of API calls strongly
decreases the efficiency of ProtoIPFS. Currently, in the approach of the thesis
we need up to 2a+2r+4 IPFS objects for each prototype expression, where a is
the amount of added properties and r the amount of removed properties. This is
the case when we assume that all links are mutable, such that every link needs
a tunnel object, there are no change expressions with multiple values, so as for
every single property a proto:SEVERAL object is needed. Now, we will look into
several approaches of how we could map prototypes on IPFS differently, such
that less API calls are needed and time consumption may decrease.

Single Object Approach Now, this first approach saves for each prototype
expression every of these up to 2a+2r+4 IPFS objects, and all prototype expres-
sions it refers to, in a JSON Object. This JSON object is then stored in the data
part of a single IPFS object. Thereby, we would reduce the amount of put and
request calls form 2a+ 2r+ 4 to 1. Additionally, we can compute the fixpoint of
this prototype expressions without requesting additional prototype expressions
or property values, since all linked prototype expressions are already stored in
this IPFS object. But still, this way of construction has several disadvantages:
First, there is redundancy due to less reuse of IPFS objects inside the IPFS
system. For example, a prototype expression which is the base of two different
other prototype expressions would be saved three times: The base as an object
itself, and one time in each JSON object of the deriving prototype expression.
Additionally, we do not use advantages of IPFS, like the DAG structure which
ensures cycle free transitive IPFS link chains and content based hash address-
ing. Another problem is that the data part of an IPFS object becomes very big.
Therefore, the whole IPFS object could easily become bigger than 2MB, which
of course can be worked around (cf. section 7.1), but then would lead to several
IPFS objects again.

Light Single Object Approach This second approach does not save every
prototype expression that we refer to in the data part of an IPFS object. Instead,
it only saves links of the add and remove change expressions directly inside the
IPFS object of the prototype expression. Then the amount of put calls would
also drop from 2a+ 2r + 4 to 1, since we do neither need an own object for the

15 https://github.com/ipfs/js-ipfs-api/issues/71

Prototypes on IPFS 53

proto:ADD set, nor the proto:REMOVE set, nor the proto:SEVERAL, and nor
the mutable tunnel link objects. Also, the size of a single IPFS object which
represents a prototype expression is feasible, since we only store the links to
prototype expressions and not, like in the approach before, the whole expression.
But still, a disadvantage here is the abuse of the IPFS system due to storing
IPFS links in the data part instead of the link set of an IPFS object. Therefore,
advantages of indirect pinning and direct traversing disappear.

Prototypes instead of Prototype Expressions A last approach of com-
bining IPFS and Prototypes has already been presented in our vision paper
of ”Prototypes on a Global Distributed File System” [12]. Instead of saving
prototype expression in IPFS, we directly look at the result of a fixpoint com-
putation: We save prototypes in IPFS. Then an IPFS object would contain a
prototype ID and links to all its property values. For same named properties we
still would use a proto:SEVERAL object. Using that method allows us to get
prototypes from IPFS without checking consistency and computing a fixpoint,
first. Meaning that we do not need to request IPFS objects that often. Addi-
tionally, we can directly request property values via an IPFS link of the form
/ipfs/<Prototype-hash>/<Property>. The introducing example would then
look like fig. 24. Notice, that this approach is not in the spirit of Prototypes
since we do not reuse information anymore, which was once ensured by the use
of prototype expressions. It is more like a set of objects having properties which
is the core function of IPFS itself. Alternatively, I could also be set on any dis-
tributed file system directly, where every prototype is represented by a single
file.

Fig. 24. An alternative mapping of prototypes instead of prototype expressions on top
of IPFS.

54 Dominik Hüser

8 Conclusion

This thesis presented the prototype knowledge representation system, which al-
lows to derive new information from already existing information. Using proto-
types implies a better re-usage of knowledge than in conventional approaches
like RDF. After that, we looked into the InterPlanetary File System. IPFS uses
content based hashes to address objects in the network and profits from well
established systems like GitHub and BitTorrent, which have been adapted in its
implementation, as well. The task of the thesis was to combine these two sys-
tems to create a distributed prototype knowledge system, which then also allows
mutability. Therefore, we introduced a mapping from Prototypes to IPFS. We
used IPFS objects as representation of prototype expressions and gained muta-
biltiy via IPNS Links in combination with the construction of the administrative
directory. Then, we looked into the Java implementation of this mapping: Pro-
toIPFS. We presented its layer architecture and important design decisions like
the project’s structure and import/export formats, the usage of graphs to check
consistency and efficient fixpoint computation. We have seen that Prototype and
IPFS fit well, mostly. But still not every time: At some points (for example IRI as
link names) we had to introduce workarounds which allowed us to keep close to
the formal definition of Prototypes. After we had described the implementation,
we looked into the evaluation of the ProtoIPFS system: Generated data sets were
used to benchmark the system in a closed environment, as well as, on the whole
IPFS system. We saw that IPFS API calls are quite time consuming, hence we
had introduced several adaptations which decreased the amount of API calls and
the time consumption. As part of the future work section, we discussed several
aspects which can be improved upon increasing the usability of ProtoIPFS. For
example, how we could deal with the limited size of IPFS objects and mutual
exclusion of the IPFS daemon. But still, the benchmark tests also showed that
the mapping and implementation are not scalable to large data sets. This would
have been important, since prototype knowledge bases with several hundred-
thousands of prototype expressions are realistic, for example, when we look into
the magnitudes in which Cochez has tested his system [14]. In the end, we must
admit that IPFS is still under development. Changes are made quite often. It is
likely that the efficiency of IPFS becomes better with ongoing changes. Maybe
then, this implementation will be large scalable, as well. Until then, alternative
constructions were shown which do not use every feature of IPFS but could gain
more performance. A possible application for the current state of ProtoIPFS
migth be a company’s internal knowledge representation where we have a small
amount of nodes connected via high-throughput connections. For that we would
set up a private swarm of nodes on which we run the ProtoIPFS instances.

References

1. Jonas Almeidas. subClassOf. https://github.com/mathbiol/subClassOf,
November 2015. [Online; accessed 19-July-2017].

Prototypes on IPFS 55

2. Anne Augustin. RDF extensions of SwarmLinda. Technical report, Freie Univer-
sität Berlin, 2008.

3. Ingmar Baumgart and Sebastian Mies. S/kademlia: A practicable approach to-
wards secure key-based routing. In Parallel and Distributed Systems, 2007 Inter-
national Conference on, pages 1–8. IEEE, 2007.

4. Juan Benet. IPFS - content addressed, versioned, P2P file system. CoRR,
abs/1407.3561, 2014.

5. Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific
American, 2001.

6. Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story so far.
Semantic services, interoperability and web applications: emerging concepts, pages
205–227, 2009.

7. Matteo Bonifacio, Paolo Bouquet, and Paolo Traverso. Enabling distributed knowl-
edge management: Managerial and technological implications. Technical report,
University of Trento, 2002.

8. Matteo Bonifacio, Roberta Cuel, Gianluca Mameli, and Michele Nori. A peer-to-
peer architecture for distributed knowledge management. Technical report, Uni-
versity of Trento, 2002.

9. Matteo Bonifacio, Fausto Giunchiglia, and Ilya Zaihrayeu. Peer-to-peer knowledge
management. Technical report, University of Trento, 2005.

10. Dan Brickley and Ramanathan Guha. RDF schema 1.1. W3C recommendation,
W3C, February 2014. http://www.w3.org/TR/2014/REC-rdf-schema-20140225/.

11. Jeen Broekstra, Marc Ehrig, Peter Haase, Frank Van Harmelen, Arjohn Kampman,
Marta Sabou, Ronny Siebes, Steffen Staab, Heiner Stuckenschmidt, Christoph
Tempich, and Stuckenschmidt Christoph Tempich. A metadata model for
semantics-based peer-to-peer systems. In In: Proceedings of the WWW?03 Work-
shop on Semantics in Peer-to-Peer and Grid Computing, 2003.

12. M. Cochez, D. Hüser, and S. Decker. The future of the semantic web: Prototypes
on a global distributed filesystem. In 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), pages 1997–2006, June 2017.

13. Michael Cochez, Stefan Decker, and Eric Prud’hommeaux. Knowledge Represen-
tation on the Web Revisited: The Case for Prototypes, pages 151–166. Springer
International Publishing, Cham, 2016.

14. Michael Cochez, Stefan Decker, and Eric Prud’hommeaux. Knowledge repre-
sentation on the web revisited: Tools for prototype based ontologies. CoRR,
abs/1607.04809, 2016.

15. Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction To Algorithms -. MIT Press, Cambridge, 2001.

16. Neil Daswani, Hector Garcia-Molina, and Beverly Yang. Open problems in data-
sharing peer-to-peer systems. In International conference on database theory, pages
1–15. Springer, 2003.

17. Stefan Decker. From Linked Data to Networked Knowledge. Slides from CSHALS
Conference, available via https://www.slideshare.net/stefandecker1/

stefan-decker-keynote-at-cshals, 2013. [Online; accessed 21-July-2017].

18. M. Duerst and M. Suignard. RFC 3987: Internationalized Resource Identifiers
(IRIs). RFC 3987 (Proposed Standard), see http://www.ietf.org/rfc/rfc3987.

txt, January 2005.

19. Richard Durstenfeld. Algorithm 235: Random permutation. Commun. ACM,
7(7):420, July 1964.

56 Dominik Hüser

20. Marc Ehrig, Peter Haase, Björn Schnizler, Steffen Staab, Christoph Tem-
pich, Ronny Siebes, and Heiner Stuckenschmidt. SWAP deliverable D3.6 re-
fined methods. https://web.archive.org/web/20070723063933/http://swap.

semanticweb.org/public/Publications/swap-d3.6.pdf.
21. Marc Ehrig, Peter Haase, Steffen Staab, and Christoph Tempich. SWAP Deliver-

able D3.5 Method integration. https://web.archive.org/web/20081006174544/

http://swap.semanticweb.org/public/Publications/swap-d3.5.pdf, 2003.
22. Marc Ehrig, Christoph Tempich, Jeen Broekstra, Frank van Harmelen, Marta

Sabou, Ronny Siebes, Steffen Staab, and Heiner Stuckenschmidt. SWAP: Ontology-
based knowledge management with peer-to-peer technology, 2003.

23. Michael J Freedman, Eric Freudenthal, and David Mazieres. Democratizing content
publication with coral. In NSDI, volume 4, pages 18–18, 2004.

24. Erich Gamma. Design patterns: elements of reusable object-oriented software. Pear-
son Education India, 1995.

25. David Gelernter. Generative communication in Linda. ACM Trans. Program.
Lang. Syst., 7(1):80–112, January 1985.

26. Henri Gilbert and Helena Handschuh. Security Analysis of SHA-256 and Sisters,
pages 175–193. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

27. DE-CIX Management GmbH. DE-CIX Frankfurt statistics. https://www.de-cix.
net/de/locations/germany/frankfurt/statistics, 2017. [Online; accessed 29-
July-2017].

28. Daniel Graff. Implementation and evaluation of a SWARMLINDA system. Mas-
terarbeit. FU Berlin, page 4, 2008.

29. Sebastian Koske. Swarm approaches for semantic triple clustering and retrieval in
distributed RDF spaces. Technical report, Freie Universität Berlin, 2009.

30. Jon Loeliger. Version Control with Git. O’Reilly Media, Inc., 2009.
31. Kristin Potter. Methods for presenting statistical information: The box plot. Hans

Hagen, Andreas Kerren, and Peter Dannenmann (Eds.), Visualization of Large
and Unstructured Data Sets, GI-Edition Lecture Notes in Informatics (LNI), S-
4:97–106, 2006.

32. Ralf Steinmetz and Klaus Wehrle. 2. What Is This “Peer-to-Peer” About?, pages
9–16. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

33. Heiner Stuckenschmidt, Frank van Harmelen, Wolf Siberski, and Steffen Staab.
Peer-to-Peer and Semantic Web, pages 1–17. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006.

34. Christoph Tempich and Steffen Staab. Semantic Query Routing in Unstructured
Networks Using Social Metaphors, pages 107–123. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006.

35. David Wood, Markus Lanthaler, and Richard Cyganiak. RDF 1.1 Con-
cepts and Abstract Syntax. W3C recommendation, W3C, February 2014.
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.

36. F. Yergeau. RFC 3629: UTF-8, a transformation format of ISO 10646. Technical
report, Alis Technologies, 2003.

37. Liangzhao Zeng, Hui Lei, and Badrish Chandramouli. Semantic Tuplespace, pages
366–381. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

Prototypes on IPFS 57

A Class Diagrams

Fig. 25. ProtoIPFS knowledge base package. Some, for the user not visible object
properties are left out. We construct objects of both classes via Builder classes, which
are not visible in the class diagram.

Fig. 26. ProtoIPFS link package. Visible is the abstract Link class which is extended
by the IPFS and IPNS link classes. A pair of pbjects of these two classes form a
PrototypeReference. The AllLink is used to define ∗ in a remove expression. ID is a
wrapper class for an IRI which is used in incoming prototype expressions and names
for knowledge bases.

58 Dominik Hüser

Fig. 27. ProtoIPFS peer package. PeerNodeGet contains the implementations of
PeerNode’s get Methods. PeerNodePut contains the implementations of PeerNode’s put
Methods. PeerNode calls these methods inside the listed method. We use the delegation
design pattern, here.

Prototypes on IPFS 59

Fig. 28. ProtoIPFS prototype package. Visible is the abstract Property and its
extensions. Also included are three types of prototype expressions and the pro-
totype representation. Not visible are builder classes of PrototypeExpression,
IncomingPrototypeExpression and PublishedPrototypeExpression.

Eidesstattliche Versicherung

___________________________ ___________________________
Name, Vorname Matrikelnummer (freiwillige Angabe)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________
Ort, Datum Unterschrift

