
Isfandyar Khan Mian

Combining Vehicle Routing Optimization and Container

Loading Optimization

Master’s Thesis in Information Technology

March 25, 2020

University of Jyväskylä

Department of Mathematical Information Technology



Author: Isfandyar Khan Mian

Contact information: isfando@yahoo.com

Supervisors: Prof. Olli Bräysy, and Prof. Michael Cochez

Title: Combining Vehicle Routing Optimization and Container Loading Optimization

Työn nimi: Ajoneuvojen reitityksen optimoinnin ja konttien lastausoptimoinnin yhdistämi-

nen

Project: Master’s Thesis

Study line: Web Intelligence ans Service Engineering

Page count: 100+0

Abstract: Vehicle routing optimization and container loading combined would produce mil-

lions of queries for the remaining capacity of the vehicles. In this situation these approximate

methods for finding the remaining capacity of vehicle’s container are investigated. These

methods reduce the time needed to approximate the remaining capacity in vehicles and will

hence accelerate the overall optimization process. In this thesis we consider a solution to im-

prove the accuracy of real world vehicle routing optimization problems. Simple Capacitated

vehicle routing optimization does not capture any information about the packing of objects

except by deducting the volume of the packed objects from the container’s volume. Bin

Packing during the routing optimization is usually slow. We combine a very fast approxima-

tion algorithm for 3D bin packing with Vehicle routing optimization to speed up the whole

process. The combination of a Vehicle Routing and a 3D Container Loading problem creates

new kinds of challenges. The problem was introduced in Gendreau et al. 2006a where the

scalar capacity of the vehicles is replaced by 3D rectangular loading space. The container

loading problem attempts to obtain the best possible utilization of space, while the vehicle

routing problem is concerned with finding the minimum-cost or minimum-distance route in

transportation. The combined problem is about loading boxes with different symmetry into

identical rectangular containers of the vehicles used in delivery. This problem is extremely

hard because it is a combination of the two problems mentioned above, which are both NP
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hard[Gendreau et al. 2006a , Pisinger 2002]. Finding an exact solution for this problem is

infeasible since even solving a small instance of bin packing problem alone would require

more computing resources Martello, Pisinger, and Vigo 2000 as feasible. In order to handle

this situation approximation algorithms are used as it is often not necessary to find the opti-

mal solution for the bin packing problem. An approximate solution which is close to optimal

and computed with the help of reasonable resources and time is considered a good solution.

When vehicle routing optimization and container loading are combined a high number of

queries for the remaining capacity of the vehicles are performed. In this thesis we exploit this

fact and perform experiments with approximate methods for finding the remaining capacity

of vehicle’s container in a fast but approximate way. In our experiments we use a a slight

modification of the 3D bin packing algorithm called Largest Area First Fit(LAFF)Gürbüz

et al. 2009 as a rough but fast means to determine the remaining capacity in the containers

during the vehicle routing optimization process. A box is used for objects which are not

rectangular in shape, such as cylindrical shapes. The LAFF algorithm places the boxes with

largest surface area first by minimizing height from the bottom of the container. The box

which covers the largest ground area of the container is placed first followed by subsequent

boxes which are stacked in the remaining space at the same level, the boxes with the greatest

volume first. Then the level is increased and the process repeated. Boxes are rotated such

that they have the largest possible footprint. This algorithm works exceptionally fast when

the number and variety of the objects to packed is small. During the LAFF stage, all real

world bin packing constraints such as the weight of the boxes, the distribution of weight in

the container, loading priorities, orientation, stacking, stability, etc. are ignored to gain as

much speed as possible. After the LAFF stage, a more advanced algorithm will be used for

the final packing of the orders, taking into account all constraints.

Keywords: Vehicle Routing Optimization, Vehicle Loading Optimization, Container Load-

ing Optimization, Logistics Optimization

Suomenkielinen tiivistelmä: Ajoneuvojen reitityksen optimointi ja konttien lastauksen op-

timointi yhdessä tuottaisivat miljoonia kyselyjä ajoneuvojen jäljellä olevasta kapasiteetista.

Tässä tilanteessa tutkitaan likimääräisiä menetelmiä ajoneuvon kontin jäljellä olevan kapa-

siteetin löytämiseksi. Nämä menetelmät vähentävät aikaa, joka tarvitaan ajoneuvojen jäljellä
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olevan kapasiteetin arviointiin, ja nopeuttavat siten yleistä optimointiprosessia. Tässä opin-

näytetyössä käsittelemme ratkaisua reaalimaailman ajoneuvojen reitityksen optimointion-

gelmien tarkkuuden parantamiseksi. Yksinkertainen kapasitiivisen ajoneuvoreitityksen opti-

mointi ei käytä mitään muuta tietoa esineiden muodosta kuin vähentää pakattujen esineiden

tilavuuden kontin tilavuudesta. Konttien lastaus reitityksen optimoinnin aikana on yleensä

hidasta. Prosessin nopeuttamiseksi, yhdistämme ajoneuvojen reitityksen optimointiin erit-

täin nopean 3D-Konttien lastaukseen likimääräisen algoritmin. Ajoneuvojen reitityksen ja

3D-konttien lastausongelman yhdistäminen luo uudenlaisia haasteita. Näiden yhdistelmä

esiteltiin artikkelissa Gendreau et al. 2006a , jossa ajoneuvojen skalaarikapasiteetti kor-

vattiin kolmiulotteisen suorakaiteen muotoisella lastaustilalla. Konttien lastausongelmalla

yritetään saada aikaan paras mahdollinen tilankäyttö, kun taas ajoneuvojen reititysongel-

man tarkoitus on löytää pienimmän kustannuksen tai pienimmän kuljetun etäisyyden reitti.

Yhdistetyssä ongelmassa on kyse eri tavoin symmetristen laatikoiden lastaamisesta toimi-

tuksessa käytettyjen ajoneuvojen identtisiin, suorakaiteen muotoisiin kontteihin. Tämä on-

gelma on erittäin vaikea, koska se on yhdistelmä kahdesta edellä mainitusta ongelmasta,

jotka molemmat ovat NP-vaikeita [Gendreau et al. 2006a , Pisinger 2002]. Eksaktin ratkaisun

löytäminen tälle ongelmalle ei ole käytännöllistä, koska edes pelkän pienen konttien lastau-

songelman ratkaiseminen edellyttäisi enemmän laskentaresursseja Martello, Pisinger, and

Vigo 2000 kuin mahdollista. Tämän tilanteen käsittelemiseksi käytetään likimääräisiä al-

goritmeja, koska usein ei tarvitse löytää optimaalista ratkaisua konttien lastausongelmaan.

Hyväksi ratkaisuksi luetaan likimääräinen ratkaisu, joka on lähellä optimaalista ja jonka

laskemiseen on käytetty kohtuullinen määrä resursseja ja aikaa. Kun ajoneuvojen reitityk-

sen ja konttien lastauksen optimointi yhdistetään, tarvitaan suuri määrä kyselyjä ajoneu-

vojen jäljellä olevasta kapasiteetista. Tässä opinnäytetyössä hyödynnetään tätä tosiasiaa ja

suoritetaan kokeita likimääräisillä menetelmillä ajoneuvon kontin jäljellä olevan kapasiteetin

löytämiseksi nopeasti, mutta likimääräisesti. Kokeissamme käytämme pientä modifioin-

tia 3D-konttien latausalgoritmiin. Tämän algoritmin nimi on “suurin alue ensimmäisenä”

(LAFF) Gürbüz et al. 2009. Tämä algoritmi on karkea mutta nopea keino konttien jäl-

jellä oleva kapasiteetin määrittämiseen ajoneuvon reitityksen optimointiprosessin aikana.

Esineiden jotka eivät ole suorakaiteen muotoisia, vaan esimerkiksi lieriömäisiä, arviointiin

käytetään laatikkoa. LAFF-algoritmi sijoittaa ensin laatikot, joilla on suurin pinta-ala, ja
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minimoi korkeuden säiliön pohjasta. Laatikko joka peittää suurimman maa-alueen asetetaan

ensin, ja tämän jälkeen seuraavat laatikot pinotaan jäljellä olevaan tilaan samalla tasolla,

edeten aina laatikolla jolla on suurin tilavuus. Sitten tasoa nostetaan ja prosessi toiste-

taan. Laatikot käännetään siten, että niillä on suurin mahdollinen jalanjälki. Tämä algo-

ritmi toimii poikkeuksellisen nopeasti, kun pakattavien kohteiden lukumäärä ja monimuo-

toisuus on pieni. LAFF-vaiheen aikana kaikki reaalimaailman pakkausrajoitukset, kuten

laatikoiden paino, painon jakautuminen säiliössä, lastausprioriteetit, suuntaus, pinoaminen,

vakaus jne. jätetään huomioimatta, mahdollisimman nopean pakkaamisen saavuttamiseksi.

LAFF-vaiheen jälkeen lopullinen pakkaaminen suoritetaan käyttämällä edistyneempää algo-

ritmia, joka ottaa huomioon kaikki rajoitukset.

Avainsanat: Ajoneuvojen reitityksen optimointi, ajoneuvojen lastauksen optimointi, kont-

tien lastauksen optimointi, logistiikan optimointi
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1 Introduction

This introductory chapter provides the motivation, scope and research goals of the thesis. of

this thesis.

1.1 Motivation

Vehicle Routing Optimization is an important but computationally complex task. Nowadays,

it is difficult to handle large amounts of customers in the delivery and logistics business in a

cost effective way without Vehicle Routing Optimization. A major problem in vehicle rout-

ing optimization is the loading of vehicles used in the delivery of the goods. It is not possible

to use the full capacity of vehicles because of different loading constraints for different pack-

ages of goods. We can approximate the remaining capacity of container heuristically within

a reasonable time. However, the overall process remains time consuming. Vehicle Rout-

ing and container loading (packing) are highly interdependent. For example, if the loading

space of a truck has been efficiently utilized but the routing and transport process is weak,

there will be no value-added or vice versa. That is why solving both problems at once has

huge practical applications in logistics and transportation, especially in those cases where

the shippers need to deal with large or fragile items like home appliances and furniture like

sofas etc.

Some of the benefits of integrating the routing and loading are given below:

• Quality of packaging and transport process increases greatly

• On time delivery of goods to the customer

• Undamaged and in-order arrival of the goods

• Better loading of high-cost, high-risk and different-shaped goods like furniture

1.2 Scope

The combination of Vehicle Routing Problem and Container Loading creates a new kind

of problem. This problem is about loading boxes with different symmetry that are to be
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packed into identical rectangular containers of the vehicles used in delivery. This problem

is extremely hard because it is a combination of two problems, vehicle routing problem and

packing problem, specifically a 3D- Bin Packing Problem (3D-BPP) or 3D Strip Packing

Problem (3D-SPP), which are both NP hard problems. This problem can be solved by finding

a loading plan that can contain all the boxes which need to be delivered to specific customers

in a given route. It should be kept in mind that there are constraints such as the total weight of

goods must not exceed the vehicles total weight capacity. If there are fragile items, the non-

fragile items must not be placed over the fragile ones. The items might need to be supported

totally or partially while being placed in the container. The containers need to be loaded in a

way that facilitates unloading without shifting other customer’s demands.

The general container loading is too hard to solve. Hence, only solutions to a constrained

version of the problem are presented.The constraints in this case means that only rectangular,

square or cylindrical shaped objects can be loaded in to the container . The capacity checker

would be fast which will introduce certain error in the process due to approximation of the

current space in the container. Weight limitations of the container cannot cross threshold

even if the cumulative volume of given objects can be placed inside the container.

1.3 Research Goals Of The Thesis

We are trying to find a solution to combination of vehicle routing and packing problem.The

problem we are trying to solve is extremely hard because it is a combination of two types of

NP-hard problems . That is why, exact solution approach for realistic scenarios is not quite

efficient for this problem yet. In order to solve 3 dimensional-Capacitated Vehicle Rout-

ing, the so-called Single Vehicle Loading Problem, needs to be solved in multiple times. In

Kellerer, Pferschy, and Pisinger 2004 , it is discussed that the attempts to compute optimal

solutions for the bin packing problem is not completely satisfying, especially if the avail-

able time and space is very limited. In the context of algorithmic performance time and

and space are running time on computer and space is the amount of computer memory to

solve a given problem respectively. It is clear that all algorithms which compute an opti-

mal solution are not equivalent in their performance. It seems intuitive that an algorithm

which computes approximate but not necessarily optimal solutions can reduce the drawback

2



of large computational time. It should also be noted that the difficulty level of algorithm

also play an important role. An easy algorithm is less costly to implement as compared to a

complex algorithm. In practice this is not very easy to measure that which algorithm is easy

and which is difficult because the implementation cost is also dependent on programming

experience and computational environment. Still it is worth judging from the description of

the algorithm whether they are straightforward or rather exhausting to implement.

So far, the best obtained solutions 3 dimensional-Capacitated Vehicle Routing Problem are

based on heuristic solutions. There are some meta-heuristics approaches also available which

are mainly based on Tabu-search. There are other solutions based on Ant colony, Bee mating

and hybrid solutions available in the literature. However, the overall process remains time

consuming. The reason is that in a large Vehicle Routing Optimization problem there would

be millions of queries for finding the remaining capacity of the vehicles. In this thesis ap-

proximate methods for finding the remaining capacity of vehicle’s container are investigated.

These methods reduce the time needed to approximate the remaining capacity in vehicles and

will hence accelerate the overall optimization process. Another advantage is the presence of

human checking after the optimization results are obtained. There are practices in place in

the industry that use manual human checking on top of the optimization process. In case of

a small error in the bin packing optimization result, things can still be handled by making

small changes to the packing process or delivery process. One example of this is usage of

temporary rented vehicles to deliver goods on all the routes. These temporary vehicles are

not part of the fleet when the optimization is being run.
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2 Optimization

2.1 Introduction

The process of optimization is used to achieve the best possible results in a given situation

(Astolfi 2006). In different fields such as design, construction and maintenance crucial de-

cisions need to be made on day to day basis. The goal is to minimize effort and maximize

benefit.

The effort or the benefit can be usually expressed as a function of certain design variables.

Hence, opitimization is the process of finding the condition that gives the maximum or the

minimum value of a function.

It is obvious that if a point x∗ corresponds to the minimum value of a function f (x), the

same point corresponds to the maximum value of the function - f (x). Thus, optimization

can be taken to be minimization since every maximization problem can be reduced to a

minimization problem.

2.1.1 Statement of an optimization problem

An optimization, or a mathematical programming problem can be stated as follows.

Find

x = (x1,x2, . . . ,xn) ∈ Rn (2.1)

which minimizes

f (x) (2.2)

subject to the constraints

g j(x)≤ 0, for j = 1, . . . ,m. (2.3)

and

l j(x) = 0, for j = 1, . . . , p. (2.4)
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The variable x is called the design vector, any system contains a set of quantities some of

which are used as a variable in the design of optimization model. All the quantities that

can be treated as variables are called design or decision variables, and are part of the design

vector x.The variable f (x) is the objective function, g j(x) are the inequality constraints and

l j(x) are the equality constraints. The number of variables n and the number of constraints

p+m need not be related. If p+m = 0, the problem is called an unconstrained optimization

problem.There are other types of design constraints related to the vehicle routing and bin

packing which will be discussed later on in the thesis.

2.1.2 Design constraints

The design variables cannot be selected arbitrarily in the construction of optimization model.

They need to satisfy certain restrictions called design constraints.A feasible point is any point

that fulfills all the constraints in an optimization problem. An optimal point is one that locally

optimizes the value function given the constraints. Design constraints might be performance

limitation or behavior of the system or physical limitations of the system. Some of the types

of design constraints are given below.

Equality and inequality constraints The limitations of the form fi(x) = ci , fi(x) ≤ ci or

fi(x) ≥ ci for certain functions fi on Rn and constants ci in R. For example a budget

constraint of 20 dollar while shopping in a store will allow us to buy 5kg oranges and

2kg apples if price of one kg orange is 2 dollar and price of one kg apple is 5 dollar.

Range constraints The limitations which restricts the values of some decision variables to

lie within specific closed intervals of R. Range constraints are used to keep a variable

between certain upper and lower bounds. An important example of this is the non

negativity constraint in which some variable x j may only be allowed to take values

≥ 0; with [0,∞) as interval. For example the speed of the car should be between the

range of 80km/h to 100km/h.

Linear constraints The limitations which cover range constraints and condition of the form

fi(x) = ci , fi(x) ≤ ci or fi(x) ≥ ci, in which the function is linear. Here linear means

that the function can be expressed as sum of constant coefficient times the variables

x1, . . . ,xn.
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Data parameters In addition to decision variables problem statement use symbols desig-

nating "given" constants and coefficients. They represent some other perspective of

the optimization problem aside from constraints.

2.1.3 Objective function

The classical design procedure aims at finding an acceptable design, i.e. a design which

satisfies all the constraints.

Figure 1: Design space, objective functions surfaces, and optimum point.

Generally there can be several designs that satisfy the constraints, and the purpose of con-

structing the optimization model is to find the best possible design. We need a criterion

for comparing different designs. This criterion, when expressed as a function of the design

variables, is known as objective function. The objective function is in general influenced

by physical or economical considerations. However, objective function selection is not triv-

ial, because what is the optimal design with respect to one criterion might be unacceptable

with respect to another criterion. Typically, there is a trade off performance–cost, or perfor-
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mance–reliability, hence the selection of the objective function is one of the most important

decisions in the whole design process. In multiobjective optimization problem, the different

criterion may be approximately solved considering a cost function which is a weighted sum

of several objective functions.

Optimization problem can be classified in several ways:

• An optimization problem can be classified as a constrained or an unconstrained one,

depending upon the presence or absence of constraints.

• Optimization problems can be classified as linear, quadratic, polynomial, non-linear

depending upon the nature of the objective functions and the constraints. This classi-

fication is important, because computational methods are usually selected on the basis

of such a classification, i.e. the nature of the involved functions dictates the type of

solution procedure.

• Depending upon the values permitted for the design variables, optimization problems

can be classified as integer or real valued, and deterministic or stochastic.

2.2 Asymptotic analysis

Asymptotic analysis of an algorithm, refers to defining the mathematical boundation/framing

of its run-time performance. Using asymptotic analysis, we can very well conclude the best

case, average case and worst case scenario of an algorithm.

Following are commonly used asymptotic notations used in calculating running time com-

plexity of an algorithm:

Big Oh Notation, O The O(n) is the formal way to express the upper bound of an algo-

rithm’s running time. It measures the worst case time complexity or longest amount

of time an algorithm can possibly take to complete.

O( f (n)) = g(n) : thereexists c≥ 0 and nθ suchthat g(n)≤ c. f (n) f or all n > nθ .

Omega Notation, ω The ω(n) is the formal way to express the lower bound of an algo-

rithm’s running time. It measures the best case time complexity or best amount of

time an algorithm can possibly take to complete.
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ω( f (n))≥ {g(n) : thereexists c > 0 and nθ suchthat g(n)≤ c. f (n) f or all n > nθ .}

Theta Notation, θ The θ(n) is the formal way to express both the lower bound and upper

bound of an algorithm’s running time.

θ( f (n)) = {g(n) i f and only i f g(n) = O( f (n)) and g(n) = ω( f (n)) f or all n > nθ .}

2.2.1 Computation Complexity

P Set of decision problems or class of problems for which some algorithm can solve

the problem in polynomial time. This means that the running time of the algorithm is

bounded by a polynomial of input size. Let T(n) be the running time of the algorithm

for input size n.

∃ a constant k such that the running time T (n) is O(nk).

Example: sorting, minimum spanning tree.

NP In formal terms class NP can be defined as the set of decision problems where the "yes"

instances can be decided in polynomial time by a non-deterministic Turing machine.

NP is the class of decision problems, for which the ”yes" answers have proofs verifi-

able in polynomial time by a deterministic Turing machine. The notation NP stands

for ”nondeterministic polynomial time", since originally NP was defined in terms of

nondeterministic Turing machines, that is machines having more than one possible

move from a given configuration.

Example: Subset sum problem, bin packing problem.

Class P and Class NP can be represented as P and NP respectively. So, P is the class of

”easy to solve" problems, and NP is the class of ”easy to check" problems. The class

P is contained in class NP i.e. P⊆ NP. Does P = NP?

It is an open problem of major importance.

Is P = NP?

This is called the P vs NP problem. It is a major unsolved problem in the field of
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computer science.

If P = NP, then it basically denotes the set of problems that can be verified in polyno-

mial time (class NP) and can also be solved in polynomial time (Class P).

If P 6= NP , it means that there are problems in NP (quickly verifiable) that are hard to

solve than to verify. This gives rise to the concept of Class NP-Complete and NP-hard

problems.

NP-Hard The set of problems is said to be in NP-hard if it contains the following property

- If there exists a polynomial time algorithm to solve one of these problems then there

exists one for every problem in NP.

Note: NP-hard problems need not be in NP and need not be a decision problem. A

decision problem X is NP-complete if

- X ∈ NP

- X is NP-hard (or) if every problem in NP can be reduced to X in polynomial time.

X can be shown to be in NP by showing that a candidate solution to X can be verified

in polynomial time.

NP-complete problems are the hardest problems in NP. The importance of solving a

NP-complete problem is that if we are able to find an algorithm to solve NP complete

problem in polynomial time then we can solve every other NP problem in polynomial

time.

No efficient algorithm for an NP-complete problem has ever been found; but nobody

has been able to prove that such as algorithm does not exist. For many NP optimization

problems, serious attempts are made to find the optimal solution in polynomial time

but since it appears to be intractable we limit ourselves to approximate solutions using

r-approximate algorithms. They will discussed later on in this chapter.
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2.3 Exact Methods

Exact algorithms are used to solve an optimization problem to optimality. Unless P = NP,

such algorithm can’t run in worst case polynomial time but researchers have been trying to

find exact algorithms whose running time is exponential with a low base. As an example we

would look into exact methods to solve the Vehicle Routing Problem with Time Windows

(VRPTW).Vehicle Routing Problems are basically concerned with finding a way to visit a

given set of customer locations using a given set of vehicles in such a way that a cost function

such as total distance or total time, is minimized. Vehicle Routing Optimization belong

to a class of problems called NP-hard. Solving NP-hard optimization problem is quite a

challenging task for researchers since the beginning of computer history (long before the

concept of NP-hardness was discovered) (Ropke 2005). Researchers have made significant

progress recently in this field but for most of the problem only fairly small instance can

be solved. Only moderately sized problems can be solved to optimality consistently. The

exact methods for the VRPTW can be generally classified into three categories: Lagrange

relaxation-based methods, column generation and dynamic programming. Also variants of

integer programming can be used to solve optimization problems. Exact methods often

perform very poorly (in some cases taking days or more to find moderately decent, let alone

optimal, solutions even to fairly small instances) (El-Sherbeny 2010).

2.3.1 Lagrange relaxation-based methods

Different research papers have used different approaches to apply Lagrange relaxation-based

methods e.g variable splitting followed by lagrange relaxation, K-tree approach followed by

lagrange relaxation etc. A K-tree for a graph having n+ 1 nodes is a set of n+K edges

spanning the graph. In this context spanning the graph means traversing through all nodes of

the graph with minimum possible number of edges. In Kohl and O. Madsen 1997 ,objective

function states that costs should be minimized.
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min ∑
k∈V

∑
i∈N

∑
j∈N

ci jxi jk (2.1)

subject to following constraints,

∑
k∈V

∑
j∈N

xi jk = 1, ∀ i ∈C (2.2)

∑
i∈C

di ∑
j∈N

xi jk ≤ q, ∀ k ∈V (2.3)

∑
j∈N

x0 jk = 1, ∀ k ∈V (2.4)

∑
i∈N

xihk− ∑
j∈N

xh jk = 0, ∀h ∈C, ∀ k ∈V (2.5)

∑
i∈N

xi,n+1,k = 1, ∀ k ∈V (2.6)

sik + ti j−K(1− xi jk)≤ s jk, ∀ i, j ∈ N, ∀ k ∈V (2.7)

ai ≤ sik ≤ bi, ∀ i ∈ N, ∀ k ∈V (2.8)

xi jk ∈ {0,1}, ∀ i,∈ N, ∀ k ∈V (2.9)

If constraint 2.2 is Lagrangian relaxed i.e. relaxing the constraint ensuring that each customer

is served exactly once and the objective function can be written as

min ∑
k∈V

∑
i∈N

∑
j∈N

(ci j−λ j)xi jk + ∑
j∈V

λ j

subject to 2.3 till 2.9

Here the lagrange multiplier λ j which is associated with the constraint makes sure that the

customer j is served

In Fisher, Jörnsten, and Madsen 1997 , two optimization methods are given for solving the

Vehicle Routing Problem in an optimal fashion. The problem is formulated as a K-tree with

degree 2K on the depot. The two methods are a K-tree relaxation with time windows added

as a side constraint and a Lagrangian decomposition in which variable splitting is used to

divide the problem into two subproblems. One will be a semi-assignment problem and the

other a series of shortest path problems with time windows and capacity constraints.
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2.3.2 Column generation

Column generation is an efficient algorithm for solving larger linear programs.The problem

under consideration is split into two problems: the master problem and the subproblem. In

the event that a linear program contains excessively numerous variables to be tackled explic-

itly, then we can introduce the linear program as master problem with a small subset of the

variables and calculate a solution of this reduced linear program. Afterward, we check if the

addition of one or more variables as subproblem, as of now not in the linear program, may

enhance the linear program solution. This check should be possible by the calculation of the

lessened costs of the variables. For this situation, a variable of negative lessened cost can

enhance the arrangement.

In practical implementation a master problem is solved and the obtained solution is used

to get dual prices for each of the constraints. This information is put to use in objective

function of subproblem. Then the subproblem is solved. If objective value of the subproblem

is negative, a variable with negative reduced cost is identified. This prompts the addition of

variable to the master problem, and the master problem is re-solved. Re-solving the master

problem repeats the intial cycle again until we obtain non-negative reduced cost. At this

point we conclude that the solution to the master problem is optimal.

For the first time column generation to solve the VRP problem is used in Agarwal, Mathur,

and Salkin 1989 , while Desrosiers, Soumis, and Desrochers 1984 used the column genera-

tion approach to solve the multiple traveling sales person (m-TSP) with time windows. This

article used the column generation approach for the first time for solving the VRPTW.

2.3.3 Dynamic programming

Dynamic programming is a technique to solve complex optimization problems. The problem

is broken down in to many small problems. Each small problem is solved once and the

solution is stored in a memory based data structure. Next time if we again face the same

sub problem that was solved earlier we use the result from memory instead of recomputing

the whole solution to the big problem from scratch. This technique of storing solutions

to subproblems is also called "memoization". Memoization is similar to recursion with a
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modification that it will check the lookup table for precomputed solution before computing

a solution.

The dynamic programming approach for VRPTW was presented for the first time in Kolen,

Kan, and Trienekens 1987 . Christofides and Beasley 1984 used the dynamic programming

paradigm to solve the VRP.

The algorithm of Kohl and O. B. G. Madsen 1997 use branch-and-bound to achieve optimal-

ity. A branch and bound algorithm consists of different candidate solutions in state space

search. The algorithm traverse branches of the tree, which represents subset of the solution.

The branch is checked with upper and lower estimated bounds on the optimal solution be-

fore enumerating its candidate solutions. The branch is discarded if it can not produce a

better solution than the one that is already our best selection. In Rothlauf 2011 the process

of adding additional constraints to the original problems is called branching. This can be

modeled using hierarchical tree structures. The process of removing generated sub problems

from further consideration is called bounding. Once a sub problem is removed from the

tree in the bounding process, it will not be considered anymore and is not decomposed into

further sub problems .

2.3.4 Integer Programming

In integer programming a mathematical optimization problem restricts all the variables to be

integers. In most of the cases it can refer to Integer Linear Programs (ILP). MILP is a variant

of integer programming problem and stand for Mixed integer linear programming (MILP).

MILP involves problems in which only some of the variables are constrained to be integers,

while other are allowed to be non-integers. In general there are discrete optimization prob-

lems, and many of them can be formulated and solved using MILP solvers such as Gurobi.

Gurobi is commercial optimization solver for linear programming, quadratic programming

and mixed integer linear programming etc. Other alternatives to Gurobi are CPLEX, Math-

ematica and LINDO etc.

In Bula et al. 2016 , a two stage approach is formulated to transport hazardous material using

Heterogeneous Vehicle Routing Problem(HVRP). In the transport of of hazardous material,
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estimation and analysis of risks is an important aspect. One of the main focus is the selection

of safest routes. In the first stage a linear approximation of the total routing risk is used as

objective function. The routing risk measure is assumed as a non linear function of the truck

load, which is approximated by means of two different piecewise linear functions (PLF). In

the second stage to solve the overall risk optimization problem, mixed integer linear pro-

gramming (MILP) is used integrate the best piecewise linear approximations of the routing

risk. The MILP model can optimize risk for instances with 20 nodes in practical time limit.

Above 20 the CPU running time can exceed 15 hours e.g. in cases with 50 nodes.

Dondo and Cerdá 2007 developed three stage heuristics for multi-depot routing problem with

time windows and vehicles. When applied to VRPTW, their clustering algorithm could solve

instances with a maximum of 25 nodes by restructuring MILP. In Çetinkaya, Karaoglan, and

Gökçen 2013 , a combination of mixed linear programming(MIP) and memetic algorithm

(MA) is used for solving two-stage vehicle routing problem with time windows. In Sim-

bolon and Mawengkang 2014 , a mixed integer approach(MIP) is presented for a variant of

vehicle routing problem with time windows. In this variant some routes can be avoided. This

is designed by checking edge traversing frequency. If the frequency is high the the sub-route

is avoided to eliminate heavy traffic. The experimental results show that MIP formulation

works well for instances having up to 50 nodes. In Aggarwal and Kumar 2019 , a mixed in-

teger programming (MIP) is utilised to solve the vehicle routing problem with time windows

(VRPTW). The time window is considered a hard constraint. A new mathematical model

of MIP is formulated and implemented in CPLEX. CPLEX is mathematical optimization

solver by IBM which is used to solve integer programming problems and very large linear

programming problems amongst a variety of other problems.

2.4 Approximation Algorithm

Approximation algorithms are used to find approximate solution to optimization problems

and they are mostly used to solve NP-hard problems.Thus unless P = NP, there are no efficient

algorithms to find optimal solution to NP-hard problems. This discussion is inspired by

the books Randomized Algorithms Motwani and Raghavan 2010 and Knapsack Problem

Kellerer, Pferschy, and Pisinger 2004.
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In principle , any algorithm that produce a good enough solution is an approximate algorithm.

A feasible approximate algorithm would produce an approximate solution which is not too

far from the optimal solution. In addition, we are interested to get some information about

the size of this deviation from the optimal solution.

Let us take the example of bin packing which is NP-hard problem and the exact solution to

bin packing problem takes exponential time. This increases the difficulty in finding exact

solution. It would need more resources and time even for a small instance of bin packing

problem. In order to handle this situation in a better way, approximation algorithms are

used. In many instances, it is not necessary to find the optimal solution for the bin packing

problem. An approximate solution which is close to optimal solution and computed with the

help of reasonable resources and time is considered a good solution .

In general, it may happen that an approximation algorithm sometimes produce solutions

with an almost optimum value on specific data sets, but in other cases it will produce inferior

solutions. In such situation, the worst case behavior of an approximation algorithm is studied.

One way to measure the distance is absolution performance guarantee. It can be determined

by the maximum difference between the optimal solution value and the approximate solution

value over all problem instances. Suppose the optimal solution value of a problem instance

I as z∗(I) and the solution value computed by an approximation algorithm A as zA(I) . when

we are dealing with the approximation of problems where the goal is maximized the objective

(knapsack) we have zA(I)≤ z∗(I).

Definition: An algorithm A is an approximation algorithm with absolute performance guar-

antee k, k > 0, if

z∗(I)− zA(I)≤ k

holds for all problem instances I.

Another reasonable way to measure the distance between an approximate solution and an op-

timal one is the relative performance guarantee which basically bounds the maximum ratio

between the approximate and an optimal solution. This expression of the distance as percent-

age of the optimal solution value seems to be more plausible than the absolute performance
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guarantee since it is not dependent on the order of magnitude of the objective function value.

For a given optimization problem P , there exists an algorithm A such that for any instance I

it computes solution zA(I) , we say that this A provides a r-approximation solution for prob-

lem when for any instance I

1
r
≤ z∗(I)

zA(I)
≤ r

Where z∗(I) is the optimal solution for instance I of problem P. Here A is said to be a r-

approximate algorithm.

2.4.1 Approximation Algorithm classes

NPO Class NPO can be defined as a set of problems that allows polynomial time r-approximate

algorithm. The existence of r-approximate algorithm for NP-hard problems helps in

finding the approximate or the closest possible solution to the optimal.

APX APX belongs the class of all NPO problems where for some r≥ 1 exista a r-approximate

polynomial time algorithm.

So any problem which has r-approximate algorithm is said to be in class APX. Some of

the problems which belong to the class APX are maximum satisfiability, maximum cut,

minimum graph coloring restricted to planar graphs, minimum vertex cover, minimum

bin packing and many more.

There are situations where for some NPO problems we cannot find r-approximate poly-

nomial time algorithm unless P=NP, which can be interpreted as finding approximation

algorithm is as hard as to determine optimal solution. This means that under the hy-

pothesis P 6= NP, class APX is strictly contained in class NPO i.e. APX ⊆ NPO. Here

in the given expression APX denotes class APX and NPO denotes class NPO.

Now as mentioned earlier in the above paragraph, we have situations where there are

problems belonging to class NPO but does not belong to class APX. For example,

minimum travelling salesperson problem is an optimization problem which does not

have an r-approximate polynomial time algorithm. So it does not belong to class APX.
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Some other problems which do not belong to class APX are maximum clique and

maximum independent set problem. Unfortunately, for most of the problems in APX

the performance ratio can only be approximated to a certain point, which means that a

threshold exists t such that r < t becomes computationally difficult.

PTAS Polynomial time Approximation Scheme

Let Q be an NP-hard optimization problem. An algorithm A is an approximation

scheme for Q if for every r > 0, ‘A’returns a solution Qsol such that

Qsol ≤ (1+ r)Qopt . . . if Q is a minimization problem

Qsol ≥ (1+ r)Qopt . . . if Q is a maxmization problem

Qopt means the optimal solution for the problem Q.

‘A’ will be called PTAS, if it runs in polynomial time of n and as we decrease r, the

running time increases drastically. The dependency on r is exponential, so for example

the running time can be of form O(n
1
r ) , O(2

1
r n3) and many more.

Now for any NPO problem, let us suppose there exists a constant k and if its NP-hard

to describe that for a given instance I, mOPT (I) ≤ k, then there is no PTAS for that

problem and a polynomial time algorithm with r < k+1
k exists only if P=NP.

Class PTAS Class PTAS can be defined as the set of problems that allow PTAS or has a PTAS. So

any algorithm which contains PTAS is said to belong in class PTAS.

By definition class PTAS belongs to class PAX. So the problem which does not belong

to class APX does not have PTAS too. Example: minimum travelling salesperson

problem. So if P 6= NP, then PTAS ⊂ APX where PTAS represents class PTAS and

APX denotes class APX respectively.

Bin packing problem does not have PTAS. If P 6= NP and r is the approximation ratio

to bin packing, there is no r- approximate polynomial time algorithm for minimum bin

packing problem for which r ≤ 3
2 − ε,ε > 0 .

PTAS∞ Asymptotic Polynomial time Approximation Scheme is a weaker form of approxima-

tion when compared to PTAS. It is based on the idea that the performance ratio of
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the approximate solution (returned by the respective approximation algorithm) may

improve as optimal solution becomes bigger.

Just like class PTAS we also have class PTAS∞ which is the set of all NPO problems

that contain an asymptotic polynomial time approximation ratio (PTAS∞). So the re-

lation between PTAS, APX and polynomial time approximation ratio (PTAS∞) can be

given as PTAS⊆ PTAS∞ ⊆ APX .

Let P be an NPO problem and let there exist a constant k. An algorithm A is said to be

an asymptotic polynomial approximation scheme for any r ≥ 1, if the algorithm A for

the instance I returns a solution whose performance ratio is at most r+ k
mOPT (I)

where

mOPT (I) denotes the optimal solution and algorithm A runs in polynomial time.

2.5 Heuristic Methods

Heuristics is any approach to find the solution of a problem using a practical method not

guaranteed to be optimal or perfect, but sufficient for the immediate goals. Heuristics can

be any clever approach of solving a problem that gives us a close enough solution to the

optimal solution.They play an important role in finding a satisfactory solution to NP-hard

problems. They are deterministic algorithms that uses an educated guess or an intuitive

judgment to solve a problem. The problem is divided into small parts and then tried to

be solved in an iterative fashion. The advantage of using heuristics to solve a problem is

that they can be quite flexible and can easily be adapted for different variants of a problem.

Heuristics might work quickly and efficiently but their quality can not always be measured

accurately. The performance quality of heuristics can be assessed by comparing it with the

results of benchmark tests for other heuristics used for solving the same problem. This kind

of performance testing can’t give absolute results because the benchmark test represent a

small set of the input that our heuristic can face in a deployed scenario.

A heuristic might perform well in a similar class of problems but it might perform poorly

for another class of problem. A theorem named No Free Lunch proposed in Wolpert and

Macready 1997 , states that there is not one master model that works best for every problem.

So we can have a heuristic that performs better for a generic case, but it will perform poorly
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for specific cases. Likewise, a heuristic for a specific case will not be as good as some

heuristic for generic cases.

The speed of heuristic based algorithms is important in real world applications . In some

scenarios the time for constructing or reconstructing a part of solution is critical. It can

happen if an incident happens while following a certain plan or if a customer requirement for

the transportation task changes. This is the reason fast construction algorithms are preferred

for solving problems containing thousand of customers.

2.5.1 Neighbourhoods

The neighborhood of a solution S is a set N(S) of solutions that can be generated with a

single change to S. In general, a neighborhood is a (potentially infinite) set of points ’close’

to our current solution. The neighborhoods of the current solution is explored and a move to

a new solution is made if and only if an improvement is made. In Vehicle Routing, neigh-

borhoods problem can be divided into two major categories: Single-Route Improvements

and Multi-route Improvements as mentioned in Laporte and Semet 2001. They can also

be called Single-Route neighborhoods and Multi-Route neighborhoods respectively. Single-

Route neighborhoods will make a change to one route at a time i.e. they permute the cus-

tomers within a route. Multi-Route neighborhoods exchange and move customers between

two or multiple routes. This shows that Multi-Route neighborhoods can make more substan-

tial changes to a solution.

2.5.2 Local Search Heuristics

Local search algorithm tries to solve a problem by moving from solution to solution in the

space of candidate solutions. It applies local changes to the current solution until a solution

deemed optimal is found or a processing time bound is reached. The solution found to be

optimal may not be globally optimum. In local search heuristic we have always got a current

solution. The current solution is modified if the evaluation signals an improvement in the

solution. The term improvement heuristic as used in Laporte and Semet 2001 is used to

describe a local search heuristic that only performs such moves that improve the value of
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objective function of the solution. In some variants of local search heuristic the current

solution can be modified even if evaluation signals a negative result. This is done in the hope

for finding a much better solution after a few steps in the solution search space.

2.5.3 Metaheuristics

Metaheuristic is a higher level heuristic used to select another heuristic that may provide a

better solution to an optimization problem. It is mainly a sub field of stochastic optimization

and combines a factor of randomness with heuristics. A metaheuristic refers to an iterative

master strategy that guides and modifies the operations of subordinate heuristics by combin-

ing intelligently different concepts for exploring and exploiting the search space. It is useful

specially when we have very little or incomplete information or limited computational power

to know the global optimum solution to a problem in advance (Luke 2013). Metaheuristic

is about optimizing the solution of a problem towards a better state but it does not guaran-

tee to find the globally optimum solution. The advantage of metahueristic is the use of less

computational power as compared to other optimization solutions.

2.5.4 Construction Heuristics

A construction heuristic starts solving a problem from scratch and repeatedly extends the

current solution until a complete solution is obtained. It is different from local search in

that local search start from a solution and improves it while it starts solving a problem from

scratch. Construction heuristics can be used to solve problems like vehicle routing, flow

shop scheduling and open shop problem. In Vehicle Routing the route construction heuristic

work towards solution of the problem by inserting customers one at a time into partial routes

until a feasible solution is obtained. Construction algorithms are mainly distinguished by the

order in which customers are selected and by the method used to determine where a customer

should be inserted. The route construction process can be sequential or parallel. Construction

heuristics gradually builds a feasible solution while tracking the current cost of the solution

but they do not contain an improvement phase by itself (Laporte and Semet 2001). A lot

of construction heuristics have been proposed over the past 50 years but they are not as

popular as they used to be because of introduction of new techniques such as metaheuristics.
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Some examples are the PDPTW insertion heuristic by Lu and Dessouky 2005 , the VRPTW

insertion heuristic by Ioannou, Kritikos, and Prastacos 2001 and the savings algorithm for

the CVRP by İ. K. Altinel 2005 .

2.6 Evolutionary Algorithms

Evolutionary Algorithms consists of a collection of methods that have been originally devel-

oped to solve combinatorial optimization problems. They fall in the category of "generate

and test" algorithms. They are stochastic, population based algorithms and adapt Darwinian

principles to automate problem solving. The common idea behind all evolutionary algo-

rithms is same: given a population of individuals, the environmental pressure implements a

procedure of natural selection, which causes the fitness of population to increase (Eiben and

Smith 2003).

Figure 2: The general scheme of Evolutionary Algorithm as a chart.

Given a specific quality function which needs to be maximised, we randomly create a set of

candidate solutions. We check the fitness of each candidate solution and the better candidates
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are chosen to seed the next generation by applying recombination and/or mutation to them.

Recombination is applied to two or more parent candidate solutions and results in one or

more child solutions. Mutation is applied to one candidate solution and the result is one new

candidate solution. The process of recombination and mutation produces a new generation of

candidate solutions which competes with the generation of their parents solutions in fitness

and possibly age. The process is repeated until a candidate with required fitness is found or

the computational limit is reached.

Algorithm 1 General Scheme of Evolutionary Algorithm
BEGIN

INITIALIZE population with random candidate solutions;

EVALUATE each candidate;

REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO

1 SELECT parents;

2 RECOMBINE pairs of parents;

3 MUTATE the resulting offspring;

4 EVALUATE new candidates;

5 SELECT individuals for the next generation;

OD

END

The best strategy for evolutionary algorithm is to choose representation which suits our prob-

lem. In the next step we need to choose variation operators (recombination and mutation)

to suit representation. The selection operators only use fitness and so are independent of

representation.

2.6.1 Memetic Algorithm

The combination of evolutionary algorithms with local search heuristic that work with the

evolutionary algorithm life cycle is called memetic algorithms. Memetic Algorithms have

been shown to be orders of magnitude faster and more accurate than evolutionary algorithms

on some problems. It is a hybrid of evolutionary algorithms. There is a general perception

that while pure evolutionary algorithms are quite good at rapidly identifying good area of the
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search space but they are not quite efficient in fine tuning the end solution. The low tuning

efficiency is related to the stochastic nature of the variation operators (recombination and

mutation). It will be more efficient to incorporate a local search which further increases the

quality of solution gained from evolutionary algorithms only.

Figure 3: Flowchart of Memetic Algorithm.
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3 Bin Packing Problems

In this chapter, we introduce the bin packing problem. In order to do that the simple variants

such as general container loading and knapsack problem are introduced first. Different ap-

proaches for solving the bin packing problem are discussed later on in this chapter. Finally,

the two dimensional bin packing and three dimensional bin packing problem is introduced

and various techniques for solving the problem are discussed.

3.1 Loading Problem

The loading problem is about loading a set of items into a bin or container with the objective

of minimizing the non utilized space in the container. The loading problem is addressed by

Dyckhoff 1990 under many names in the literature such as cutting stock, bin or strip pack-

ing, trim loss, vector packing, assortment, depletion, dividing, layout, nesting, partitioning,

vehicle loading , container loading, pallet loading and knapsack problem etc. This paper

Dyckhoff 1990 elaborates the logical structure and characteristics that need to be considered

in the various kinds of packing problems.

The paper suggests a simple system of 96 (4 x 2 x 3 x 4) combined problems formed by

combining some main types of the four important characteristics named dimensionality, kind

of assignment, assortment of large objects (containers or vehicles) and assortment of small

items. The detailed break down of the four characteristics is given in the list below. Each

problem needs individual solution methods applicable to other types of problems only with

major revision. Some the the related problem types are discussed below. In classical 1-

dimensional knapsack there is one large object that has to be packed with a selection from the

set of small items. In classical bin packing items are loaded in large objects are of the same

figure. Pallet loading problem is about loading 2-dimensional congruent items into a large

object. Two dimensional bin packing is concerned with packing the items into one object of

given width and of minimal length (or height). The 1 dimensional vehicle loading problem

is about packing the items into objects of identical figure. Container loading problem is 3

dimensional packing of items having length, width and depth into object with same figure.

24



1. Dimensionality

• One-dimensional. (e.g cutting tubes)

• Two-dimensional. (e.g cutting glass, cutting wood, 2D container loading)

• Three-dimensional. (e.g 3D container loading)

• N-dimensional with N > 3. (fourth dimension can be time)

2. Kind of assignment

• All objects (containers) and a selection of items.

• A selection of objects (containers) and all items.

3. Assortment of large objects (containers or vehicles)

• One object.

• Identical figure.

• Different figures.

4. Assortment of small items (to be packed)

• Few items (of different figures).

• Many items of many different figures.

• Many items of relatively few different (non-congruent) figures.

• Congruent figures.

3.2 Knapsack Problem

In the knapsack problem items with a weight and value are given to put in the knapsack

or rucksack. The goal is to fill the knapsack with the most valuable items relative to the

items collection. The knapsack problem is important to consider because of its relation

to the bin packing problem 3.3 . It is a particular case of bin packing where the weight

and value of items are the dimensions taken into account. An interesting application of

knapsack is container packing or cargo packing. The logistics company has to decide about

transportation requests of the customers. Each request has a weight w j with a corresponding

profit p j at per unit weight. The capacity of the container is represented by c.

The discussion below is inspired by Kellerer, Pferschy, and Pisinger 2004 . Suppose we have
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n binary variables x j ∈ {0,1} corresponding to the selection in the jth binary decision and

profit values by p j indicating the difference of value attained by choosing between the two

alternative values. After a suitable assignments of the two options to the two cases x j = 1

and x j = 0, we will always have p j ≥ 0 . The total profit will be sum of n binary decisions. In

this model we have decision problems where the feasibility of a particular set of alternatives

selected can be evaluated by a linear combination of coefficients for each binary decision.

The feasibility of a selection of alternatives is determined by a capacity restriction. Each

binary decision j requires a weight or resource w j if the first alternative (x j = 1) is chosen

whereas selecting the second alternative (x j = 0) does not require a weight or resource. A

selection of alternatives is feasible if the sum of weights of all the binary decisions does not

surpass a given threshold capacity value c. This condition can be expressed as ∑
n
j=1 w jx j c.

The goal of this problem is to maximize the profit or value.

In the formal definition of knapsack problem we are given an item set N, consisting of n

items. An item j with a profit p j and weight w j, and the capacity value c. The objective is to

select a subset of items from N such that the total profit of the selected items is maximized

and the total weight does not exceed capacity limit c.

The integer formulation of the knapsack is as following:

maximize
n

∑
j=1

p jx j (3.1)

subject to
n

∑
j=1

w jx j ≤ c (3.2)

xi j ∈ {0,1}, j = 1 . . .n. (3.3)

The knapsack problem has been studied for centuries and it is the simplest prototype of

maximization problem.

The knapsack problem can be interpreted in different contexts. One such instance is an

investment problem . An investor has specific amount of funds c available which he wants

to invest in a profitable business. She would invest the money w j and get expected return p j
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for every j decision taken. Each investment is a binary decision and the goal is to maximize

the overall return on investment. The knapsack can also be formulated as cutting problem.

Assume that the a wooden log needs to be cut by a saw into small pieces. The pieces should

have a predefined size represented by w j having a selling price p j. The length of the wooden

log defines the capacity c of the problem.

3.3 Bin Packing Problem

The Bin-Packing Problem (BPP) can be formulated in the context of knapsack problems. We

are given n items and n bins. An item j with a profit p j and weight w j. The capacity of each

bin is c. The objective is to assign each item to one bin so that total weight of items does not

exceed the bin capacity c and as few as possible bins are used. This can be formulated as

minimize
n

∑
i=1

yi (3.1)

subject to
n

∑
j=1

w jxi j ≤ cyi i ∈ N = {1 . . .n}, (3.2)

n

∑
i=1

xi j = 1, j ∈ N, (3.3)

yi = 0 or 1, i ∈ N, (3.4)

xi j = 0 or 1, i ∈ N, j ∈ N, (3.5)

where

yi =

 1 if bin i is used

0 otherwise

xi j =

 1 if item j is assigned to bin i

0 otherwise

The weights w j are assumed as positive integers. Hence, without losing the generality, we
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will also assume

c is a positive integer, (3.6)

w j ≤ c f or j ∈ N. (3.7)

In case of violation of 3.6, c can be replaced by bcc . If an item violates assumption 3.7 i.e.

the weight is more than the total capacity of bin, then the instance is trivially infeasible.

Offline algorithm works only with complete input data. All workload must be known before

the algorithm starts processing the data. In the context of bin packing an offline algorithm

has knowledge of the next item in the input sequence required for bin packing. This makes

it possible to arrange the items in a particular order before packing the items in the bins.

Online bin packing algorithms do not have knowledge of the next item in the input sequence

in contrast to offline algorithm which has knowledge of the next item in the input sequence.

Online algorithm packs items in the bin as per the input sequence of incoming items.

In Wäscher, Haußner, and Schumann 2007 , bin packing has been further classified into three

types: Single Bin Packing Problem (SBPP), Multiple Bin Packing Problem (MBPP), and

Residual Bin Packing Problem (RBPP). The name residual depicts the remaining capacity

of the bin or remain quantity after cutting a material. In SBPP, a set of different items must

be assigned to a set of identical bins. In MBPP, a set of different items must be assigned

to weakly heterogeneous bins in contrast to RBPP where the set of item must be assigned

to a set of strongly heterogeneous bins. In all three types of bin packing, the objective is to

minimize the number of bins.

3.4 Heuristics for Bin Packing

Heuristic methods have been developed to handle large problem instances of bin packing.

Some the popular heuristic for bin packing are discussed below. Every heuristic is accompa-

nied by an example. We consider set of items to be packed as S = {3,9,4,1,8,5,2} and the

capacity of bins is 10.
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• Next Fit (NF) Algorithm: In Next Fit the items are placed in the order of their arrival.

The next item is placed into the current bin if it fits. If it does not, that bin is closed

and a new bin is started. The result of using this algorithm is shown in 4 . The result

of the Next Fit algorithm according to our example is six bins and this result is clearly

wasteful; however, it is acceptable if the information about free space in previous bins

is not available.

Figure 4: Packing Under Next Fit Algorithm .

• First Fit (FF) Algorithm: In First Fit the items are placed in the order of their arrival.

The next item is placed into the lowest numbered bin in which it fits. If it does not

fit into any of the currently opened bin, a new bin is started. The result of using this

algorithm is shown in 5 . The result of the First Fit algorithm is five bins and this

algorithm is dependent on keeping the previous bins in memory.
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Figure 5: Packing Under First Fit Algorithm .

• Best Fit (BF) Algorithm: In Best Fit the items are placed in the order of their arrival.

The next item is placed into that bin which will leave the least room left over after the

item is placed in the bin. If the item does not fit in any bin, a new bin is started. The

result of using this algorithm is shown in 6 . The result of the Best Fit algorithm is five

bins as well and this algorithm is dependent on keeping a memory of previous bins.

The Best Fit algorithm generally obtains the best solution in online algorithms.

30



Figure 6: Packing Under Best Fit Algorithm .

• Worst Fit (WF) Algorithm: In Worst Fit the items are placed in the order of their

arrival. The next item is placed into that bin which will leave the most room left over

after the item is placed in the bin. If the item does not fit in any bin, a new bin is

started. The result of using this algorithm is shown in 7 and the result of the Worst Fit

algorithm is five bins. This algorithm is considered useful if all bins are desired to be

the same weight approximately. It may not be useful for the upcoming items.
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Figure 7: Packing Under Worst Fit Algorithm .

• First Fit Decreasing and Best Fit Decreasing (FFD-BFD) Algorithm: In First Fit De-

creasing and Best Fit Decreasing the items are first sorted in decreasing order. In this

case, the First Fit or Best Fit algorithm can be applied because they obtain the equiv-

alent results. The result of using these algorithms is shown in 8 and the result of the

(FFD-BFD) algorithm is four bins and the best result so far. These are offline algo-

rithms because the information about items are available altogether from the beginning

of the process.
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Figure 8: Packing Under First-Best Fit Decreasing Algorithm .

3.5 Exact Algorithms

A brief outline of exact algorithms is discussed based on Silvano Martello and Paolo Toth

1990. Bin packing is NP-hard problem and the exact solution to bin packing problem takes

exponential time. Eilon and Christofides 1971 developed a heuristic algorithm to solve the

problem with different objectives that is to minimize the number of bins; minimize the un-

accommodated number of items; and a combination of both. It is a depth-first enumerative

algorithm based on best fit decreasing branching. At any decision node, assuming that b

bins have been initialized, let (c̄i1 . . . c̄ib) denote their current residual capacities sorted by

increasing value, and c̄ib+1 ≡ cb+1 = c the capacity of the next bin which is still un initialized:

the branching phase assigns the free item j∗ of largest weight, in turn, to bins is, . . . , ib, ib+1,

where s = min{h : 1≤ h≤ b+1 , c̄ib +w j∗ ≤ c} This algorithm is applicable to small scale

instances only.

A branch and bound algorithm for a generalization of bin packing problem was presented in
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Hung and Brown 1978. In this algorithm bins with different capacities can be accomodated.

The branching strategy in this algorithm is based on characterization of equivilant assign-

ments which is used to develop a set of rules for generating non-redundant assignments.

This approach reduces the number of explored decision nodes.

Another algorithm named MTP has been proposed by S Martello and P Toth 1989. It is

based on a first fit decreasing branching strategy. The items are sorted according to their

decreasing weight from the start. The bins are indexed according to the order in which

they are initialized. At each decision node, the first largest free item is assigned, in turn, to

the feasible initialized bins (by increasing index) and to a new bin. In the upcoming steps

procedures are called on a node to fathom it and reduce the current problem. When it is

not possible to fathom the node then approximate algorithms such as First Fit Decreasing,

Best Fit Decreasing and Worst Fit Decreasing are applied for improvement of the current

problem. A backtracking step happens in the form of removing the current item j∗ from its

current bin i∗ and its assignment to the next feasible bin.

3.6 Approximate Algorithms

Bin packing is NP-hard problem and the exact solution to bin packing problem takes ex-

ponential time. This increases the difficulty in finding exact solution. It would need more

resources and time even for a small instance of bin packing problem. In order to handle

this situation in a better way approximation algorithms are used. In many instances it is not

necessary to find the optimal solution for the bin packing problem. An approximate solution

which is close to optimal solution and computed with the help of reasonable resources and

time is considered a good solution .

A brief outline of approximate algorithms is discussed based on Silvano Martello and Paolo

Toth 1990. A simpler approximate approach to bin packing is Next Fit (NF). In this algorithm

the items are placed in the order of their arrival. The next item is placed into the current bin

if it fits. If it does not, that bin is closed and a new bin is started. The complexity of Next Fit

is O(n). It can be proved for any instance I of the bin packing problem, the solution value

NF(I) provided by the algorithm satisfies the bound
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NF(I)≤ 2 z∗(I), (3.1)

here z∗(I) denotes the optimal value of solution. Additionally, there exist instances for which

the worst case performance ratio is NF(I)/z∗(I) is close to 2 i-e r(NF)=2. As discussed

earlier the worst case performance ratio is defined as the smallest real number r(A) such that

zA(I)
z∗(I)

≤ r(A) for all instances I,

Another algorithm called First Fit in which the items are placed in the order of their arrival.

The next item is placed into the lowest numbered bin in which it fits. If it does not fit into

any of the currently opened bin, a new bin is started. It has been proved in Johnson et al.

1974 that

FF(I)≤ 17
10

z∗(I)+2 (3.2)

for all the instances I of the bin packing problem, and also there exist instances I, with z∗(I)

arbitrarily large, for which

FF(I)≤ 17
10

z∗(I)−8 (3.3)

As we can see that a constant term is used in equation 3.2 so the worst-case performance

does not provide full information on the worst-case behaviour. The asymptotic worst case

performance ratio is commonly used in place of worst case performance for bin packing

algorithms. For an approximate algorithm A. This is defined as the minimum real number

r∞(A) such that, for some positive integer k,

zA(I)
z∗(I)

≤ r∞(A) for all instances I , z∗(I)≥ k;
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it can be clearly seen from 3.2 and 3.3 that r∞(FF) = 17
10 .

The next algorithm is Best Fit in which the items are placed in the order of their arrival. The

next item is placed into that bin which will leave the least room left over after the item is

placed in the bin. If the item does not fit in any bin, a new bin is started. It has been proved

in Johnson et al. 1974 that best fit has the same worst case bounds as first fit (as seen in 3.2

and 3.3 ), hence r∞(FF) = 17
10 . The time complexity of first fit and best fit is O(n logn).

The algorithms Next Fit Decreasing, First Fit Decreasing and Best Fit Decreasing are formed

if the weights of the items are sorted in decreasing order first and then Next Fit, First Fit and

Best Fit algorithm is applied. The worst-case analysis of Next Fit Decreasing has been

found by Baker and Coffman 1981. The worst-case analysis of first fit decreasing and best

fit decreasing are done in Johnson et al. 1974 proving the below equation for all instances I.

FFD(I)≤ 11
9

z∗(I)+4 (3.4)

The rest of results are summarized in Table (taken from Coffman Jr, Garey, and Johnson

1984). In this table the last three columns give the value r∞
α of the asymptotic worst case

performance ratio of the algorithms when applied to instances satisfying min1≤ j≤n{w j}≤αc

Algorithm Time Complexity r∞ r∞
1
2

r∞
1
3

r∞
1
4

NF O(n) 2.000 2.000 1.500 1.333 . . .

FF O(n logn) 1.700 1.500 1.333 . . . 1.250

BF O(n logn) 1.700 1.500 1.333 . . . 1.250

NFD O(n logn) 1.691. . . 1.424. . . 1.302 . . . 1.234 . . .

FFD O(n logn) 1.222. . . 1.183. . . 1.183 . . . 1.150

BFD O(n logn) 1.222. . . 1.183. . . 1.183 . . . 1.150

3.7 Two Dimensional Bin Packing Problem (2DBPP)

Two dimensional bin packing is concerned with packing a set of distinct rectangular items

into rectangular bin without overlapping. The number of rectangular bins is assumed to be
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unlimited. An item is specified by height and width (or length).

Gilmore and Gomory 1963 extended their 1BPP approach to model 2BPP for the first time.

In this paper, an earlier method for stock cutting is extended and adapted to the specific

full-scale paper trim problem. Sandor P Fekete and Schepers 2000 presents a new approach

for modeling packings, using a graph-theoretical characterization of feasible packings. The

characterization allows it to deal with classes of packings that share a specific combinatorial

structure, instead of considering one packing at a time. Pisinger and Sigurd 2007 gives an

exact algorithm based on the Dantzig-Wolfe decomposition where the master problem deals

with the production constraints on the rectangles while the subproblem deals with the pack-

ing of rectangles into a single bin. Martello and Vigo 1998 introduced an exact algorithm

for two Dimensional finite bin packing problem. Caprara and Monaci 2009 provided an ex-

act algorithm for geometric problems in which rectangles have to be packed into (identical)

squares. Most of the exact approaches use a branch and bound method.

Coffman et al. 1980 provides various greedy algorithms for 2DBPP. A greedy algorithm

takes the locally optimal choice at each node in a search space with the hope of finding the

global optimum. They commonly employ the concept of different layers. The layers start at

the bottom of the bin or container. The next layer is a horizontal line drawn parallel to the

top of the highest item located on the previous layer. This way the bin is filled layer by layer.

In most of the greedy algorithms for 2DBPP, items are sorted with respect to their height in

non increasing order and then iteratively packed according to the following schemes:

• Next fit Decreasing Height (NFDH): Each new item is packed in the current layer

starting from the bottom left. If the item cannot be packed on the current layer then

the layer is closed and a new current layer is created on top of the closed layer.

• First fit Decreasing Height (FFDH): Each new item is packed in the first existing layer

starting from the bottom left. If the item cannot be packed in any of the existing layer

new layer is created on top of the existing layer.

• Best fit Decreasing Height (BFDH): Each new item is packed on the fitting layer with

the minimum horizontal space remaining. If there is no fitting layer available, a new

one is created.

• Floor ceiling: Items are packed from left to right with their bottom edges on the level
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floor (with respect to ceiling), and also from right to left with their top edges touching

the level ceiling (with respect to floor), i.e., the horizontal line drawn on the top of the

tallest item packed on the floor (Lodi, Martello, and Vigo 1999).

Lodi, Martello, and Vigo 1999 provides a good survey of the mathematical models, lower

bounds, and greedy methods relevant to 2BPP and discusses heuristic and metaheuristic

methods and exact approaches.

3.8 Three Dimensional Bin Packing Problem (3DBPP)

Two dimensional bin packing is concerned with packing a set of distinct rectangular items

(having length, width and height) orthogonally in to rectangular bin (having length,width

and height) without overlapping.

This discussion of various algorithms for 3DBPP is based on Mahvash-Mohammadi 2014.

Chen, Lee, and Shen 1995 describes loading containers with cartons of non-uniform size

and presents an analytical model to capture the mathematical essence of the problem. The

3DBPP problem is formulated as a zero-one mixed integer programming model with weight

distribution and orientation constraints. To validate the above model and to explore its

computational time, an example problem of three unequal-sized containers and six non-

uniform cartons was solved with a LINGO (a commercial mathematical programming pack-

age) solver.

The first exact algorithm for 3DBPP was designed by Martello, Pisinger, and Vigo 2000. It

was a two level Branch and Bound algorithm. A first level search assigns boxes to bins. At

each node of the first level search tree a second level branch and bound method is employed

to verify the feasibility of packing items using concepts of corner points. Corner points

are the point where a new item can accommodated within remaining empty space of the

container in a given partial packing. Corner points reduce the number of partial solution

explored. Two heuristic algorithms named as H1 and H2 are executed at each root node of

the search tree. H1 builds a number of layers based on the depth of the bins and combines

the layers into bins by solving a one dimensional bin packing problem defined on the depths

of the layers . H2 minimizes the bins empty space by heuristically filling each one as full as
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possible. The exact algorithm can solve instances with up to 90 boxes to optimality within a

reasonable time limit.

Den Boef et al. 2005 argued that since Martello, Pisinger, and Vigo 2000 cannot generate

all feasible orthogonal patterns which might make it fail to get an optimal solution. In re-

sponse, Martello et al. 2007 has improved its approach from Martello, Pisinger, and Vigo

2000 by combining the original enumerative method with a new constraint-based program-

ming approach. The new algorithms can solve moderate sized instances to get an optimal

solution.

Faroe, Pisinger, and Zachariasen 2003 developed a guided local search (GLS) heuristic

method for three dimensional bin packing. The algorithm starts with an upper bound ob-

tained on the number of bins through a greedy heuristic method. It iteratively tries to de-

crease this upper number by searching for a feasible packing of the boxes. The process stops

when a given time limit is reached or the current solution is equal to precomputed lower

bound. It has been tested on instances of up 200 boxes and results imply that produced

solutions is equal to or better than other heuristics or exact algorithms proposed before it.

Lodi, Martello, and Vigo 2002 introduced a Tabu Search framework exploiting a new con-

structive heuristic for the evaluation of the neighborhood. The heuristic method is based on

layers, called height first area second (HA). The base of a bin is defined as the first layer.

The floor of the first layer coincides with the base of a bin. The height of the tallest item

available in the first layer is the floor of the second layer, and so on. HA selects the best

solutions through the following two methods:

1. The items are partitioned into clusters characterized by non-increasing height, and a

layered strip packing solution is determined. The obtained layers are then combined

into finite bins through a 1DBPP algorithm.

2. The items are re-sorted by non-increasing area of their base and re-allocated to the

current layers, possibly modifying the layer heights. The layers are then packed into

bins using 1DBPP.

Satisfactory solutions are produced by combining Tabu Search with Height first area second

heuristic as compared to exact and heuristic methods suggested by Martello, Pisinger, and
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Vigo 2000. The average solution of Tabu Search is exactly the same as Faroe, Pisinger, and

Zachariasen 2003 in one third of the instances. In some cases, Tabu Search is better that

guides local search, and vice versa.

Crainic, Perboli, and Tadei 2008 introduced a new concept about extreme points (EPs). To

better utilize the bin’s volume, the concept of extreme points (EPs) is introduced. EPs are

extension of CPs. Using EPs, a new heuristic algorithm is developed based on the first fit

decreasing and the best fit decreasing. Crainic, Perboli, and Tadei 2009 also proposed a

two-level Tabu Search called TS2PACK for 3DBPP. In TS2PACK, the first-level aims to

reduce the number of bins and the second optimizes the packing of the bins. This second

procedure is based on the Interval Graph representation of the packing, proposed by Sándor

P Fekete and Schepers 1997, which reduces the size of the search space. The k-chain-moves

procedure is also applied to maximize the neighborhood and to improve the quality of the

solutions. Extensive Computational results on benchmark problem instances show that the

proposed approach gives better results than existing ones.

A greedy randomized adaptive search procedure (GRASP) for 3DBPP is proposed by Par-

reño et al. 2010. The GRASP algorithm iteratively combines a constructive procedure and

an improvement phase in order to obtain an efficient solution. The constructive phase is

based on a maximal-space heuristic developed for the container loading problem. In the im-

provement phase, several new moves are designed and combined in a Variable Neighborhood

Descent(VND) structure. In the improvement phase, various moves in a Variable Neighbor-

hood Descent (VND) structure are used to improve the solution obtained by the constructive

procedure. GRASP/VND algorithm gives solutions equal to or better than Crainic, Perboli,

and Tadei 2009
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4 Vehicle Routing Problems

A generic verbal definition Toth et al. 2014 of the family of Vehicle Routing Problems can

be the following:

Given: A set of transportation requests and a fleet of vehicles.

The problem is then to find a plan for the following:

Task: Determine a set of routes to perform the transportation requests with the given

fleet of vehicles at minimum expenditure; in particular, decide which vehicle handles

which customer requests in which sequence so that service to all routes can be feasibly

provided.

The original Vehicle Routing Problem has been stated in Dantzig and Ramser 1959. The

problem was about distributing gasoline to different service stations around the city. The

authors of that paper want to find out the optimum routes for the oil delivery trucks. Each

truck contains a fuel tanker. The goal is to use least possible trucks that are driving least

possible distance to deliver oil to all service stations. Another constraint is that the truck

should not run out of fuel while covering its route. Even after all those years of research,

large-scale instances based on real life scenarios or complicated variants of the problem still

constitute a challenge for the researchers. This chapter provides the background, description

and various methods to solve the Vehicle Routing Problem.

4.1 The traveling salesman problem

The traveling salesman problem is a touring problem in which each city must be exactly

visited once. Different unvisited cities are shown in figure 9a while the figure 9b shows

a single tour visiting all the cities once. The goal is to find the shortest possible tour while

satisfying the constraint mentioned earlier Russell and Norvig 2003. The problem is NP-hard

but researchers have given it a lot of emphasis due to its application in real life problem like

automatic circuit board drill, stocking machines on shop floor and vehicle routing problems.
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(a) Cities Nonvisited

(b) Cities Visted

Figure 9: TSP illustration.

There are different variants of traveling salesman problem (Ropke 2005). In symmetric

variant for all cities, x and y the distance from city x and y is the same as the distance from

city y and x. In asymmetric variant for all cities, x and y the distance from city x and y is not

the same as the distance from city y and x. In Euclidean variant the cities must be located in

Rdand the distance between the cities is euclidean distance.

The traveling sales man problem is defined on a directed graph G = (V,A) representing the

arc network. The set of vertexes V = {1, . . . ,n} represents the different locations and the set

of arcs A is the set of directed edges. The figure 10 show an example of traveling sales man

problem with a directed graph.

For each (i, j) ∈ A is assigned a distance or cost ci j. A binary decision variable xi j is set to

one if and only if arc (i, j) is used in the solution. The problem can be formulated as
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Figure 10: Travelling sales man directed graph

∑
i∈V

∑
j∈V\{i}

ci jxi j (4.1)

minimizing the above subject to

∑
j∈V\{i}

xi j = 1 ∀ i ∈V (4.2)

∑
i∈V\{ j}

xi j = 1 ∀ j ∈V (4.3)

∑
i∈S

∑
j∈V\S

xi j ≥ 1 ∀S⊂V (4.4)

xi j ∈ {0,1} ∀ (i, j) ∈ A (4.5)

The objective 4.1 minimizes the arc costs, equations 4.2 and 4.3 ensures that one arc leaves

each node and one arc enters each node, equation 4.4 eliminates sub-tours. Sub tours are

multiple tour than one big tour through all the points.

There is a vast amount of literature present on the traveling salesperson problem. For a
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start, Lawler 1985 is a good resource. This historic origin of the traveling salesman problem

is discussed in Schrijver 2005 . The traveling salesman problem is the parent problem of

vehicle routing problem. It is analogous to a vehicle routing problem with a fleet of one

vehicle.

4.2 m-Traveling salesman problem

The m-Traveling Salesman Problem (m-TSP) is a generalization of the traveling salesman

problem that consists of more than a salesman. In m-TSP we are given x cities, m salesman

and a depot. Every city should be visited only once on any of the m tours. Every m tour

starts and ends at the depot. No tour is allowed to be empty. The objective of the m-TSP is

to determine a tour for each salesman such that the total tour cost is minimized. If distances

satisfy the triangle inequality, i.e. if d(i,k) ≤ d(i, j)+ d( j,k) for all i, j and k then we can

easily confirm that the distance of the shortest TSP tour on the x cities plus the depot is

always less than or equal to the distance of the shortest m-TSP solution for any m. The total

distance of the m-TSP solution is the distance of all selected tours.

A number of variants of m-TSP are briefly defined below.

Multiple depots In multiple depot m-tsp a salesman can return to his initial starting depot or

another depot which is different that his initial depot. The initial number of salesman

on each depot must remain the same after all the trips are finished.

Number of salesmen The number of salesman in the problem may be a fixed number m, or

it might be determined by the solution with an upper bound m.

Cost In non fixed salesman scenario a cost is attached to usage of each salesman. This

motivates the minimization of total salesman cost in addition to minimizing the total

tour cost.

Time Frame Each customer can be only visited within an allowed time window. This vari-

ant is quite useful in vehicle routing with time windows.

Constraints Constraints can be on the number of nodes visited by each salesman, maximum

or minimum distance a salesman can travel or any other constraints.
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4.3 Problem Notions For Vehicle Routing

Vehicle Routing Problems are basically concerned with finding a way to visit a given set

of customer locations using a given set of vehicles in such a way that a cost function is

minimized. The cost function is generally taken as total distance covered by all the vehicle

to interact with all customers and return to its initial position.Vehicle routing also includes

delivery or pick up of goods from customers using the given set of vehicles. The chosen

solution at the end of solving this problem should give minimal cost and satisfy all customers

while complying with additional side constraints. Additional constraints can be limiting the

number of customers that each vehicle can visit, the time window in which each customer

should be visited, the order in which a customer should be visited and so on. Some of the

elements encountered in vehicle routing problems is described below.

Customers Customers are the location that are visited for the purpose of picking up or

delivering goods. They represent real geographical locations on the map.

Vehicles Vehicles are the objects that are used to transfer the good to or from customers.

There can be different attributes for the vehicle in various real life scenario. Vehicle

can have one or more compartments. In case of more than one compartment, they can

be homogeneous or heterogeneous in terms of capacity

Depot Depot is real geographical locations that is used to store goods. Generally in vehicle

routing problems, depot represents the home for vehicles. Vehicle start delivery on a

route from the depot and finishes its route on the depot. There can also be multi depots

in a vehicle routing problem.

Road network Road network is used by vehicles to travel for the purpose of delivering or

picking up goods from the customers. In theory the road network is represented by a

graph where customers and depots are represented by vertices. The edges in the graph

represent the road segment between different customers and depots. We give a weight

to edges between vertices and depots. This weight is proportionate to real life length

of the road segment connecting the respective entities. It could also be driving time,

expected fuel consumption and other costs as well.

Routes Routes comprises of sequential locations that are visited by one vehicle in a single

trip. A trip can be thought of as starting from the depot and returning back to the depot.
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Fleet Fleet comprises of a set of vehicles used to transfer goods between customers depot.

There are two types of fleets i.e. homogeneous fleet and heterogeneous fleet. In ho-

mogeneous fleet, all the vehicles have the same capacity and performance while in

heterogeneous fleet, the performance and capacity in a set of the vehicles can differ.

Objective Objective of the vehicle routing problems is minimization or maximization of

some quantity. Generally the cost function of this operation is minimized. The cost

function is generally taken as total distance covered by all the vehicles to interact with

all customers and return to their initial position.

Solution Solution is a plan that gives minimal cost and satisfies all customers while comply-

ing with additional side constraints. It is a set of routes in which each route is traveled

by one vehicle from the given vehicle set.

Constraints Constraints are additional conditions that need to be satisfied while giving ser-

vice to all the customers in a vehicle routing problem. Contraints can be related to

visiting a group of customers in a sequence or time windows in which it is possible to

load and unload from customers and so on.

4.4 The Capacitated VRP

The Capacitated Vehicle Routing Problem is the most basic category among different vari-

ants of the vehicle routing problems. In this section we describe the problem and give the

relevant notations. The idea for the structure of notation is taken from Massen 2013.

4.4.1 Problem Description

The Capacitated Vehicle Routing Problem is about delivering service to a set of customers

with associated demands using a given set of vehicles. Each vehicle is considered to have a

limited capacity. All vehicles start and end their journey at the depot. The goal is to divide

the customers into as less routes as possible hence minimizing the distance. It should be kept

in focus that the truck capacity for a route does not exceed the threshold limit of the truck.

The problem is defined on a simple, complete and weighted graph G = (V,A) representing

the road network. The set of vertexes V = {0, . . . ,n} represents the different locations and
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the set of arcs A a sequence of roads to get from one location to another in the network.

The set of outgoing (incoming) arcs from vertex i ∈ V is denoted by δ
−
i (δ+

i ). Vertexes

i = 1, . . . ,n are called customers, while vertex 0 is called depot. The weight ci j of an arc

(i, j) ∈ A equals the distance on the road network between the locations matching vertexes

i and j and thus represents the cost of including this arc in a solution. The distances are

considered to be symmetric (ci j = c ji ∀ i, j ∈ V ) and to respect the triangle inequality

(ci j ≤ cip+cp j ∀ i, j, p∈V ). With each customer i∈V \{0} is associated a demand qi. A set

of homogeneous vehicles K, each of limited capacity Q, is available to perform the visits to

the customers. Each vehicle may execute at most one route. Each route starts from the depot

to visit a number of customers and then returns back to the depot. Since by definition the first

and last vertexes in a route are the depot vertex, a route r can be seen as a tuple (S,σ) where

r.σ = 〈e1, . . . ,em〉 (∩m
i=1{ei} = ∅) is a sequence of customers ({e1, . . . ,em} ⊆ V \{0}) and

r.S = (e1, . . . ,em). The customer visited in the sth (1≤ s≤ |r.S|) position of route r is given

by r[s]. For any route r , r[0]and r[|r.S|+ 1]represent the depot. Note that if for any route r

we have r[s] = i and r[s+1] = j(0≤ s≤ |r.S|), this means that arc (i, j) is used in this route.

Figure 11: Vehicle Routing Problem

The intention is to make a solution Sol = {r1 . . .rm} containing a set of routes such that:

1. |Sol| ≤ |K|
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the solution does not use more vehicles than available

2. (∩ri∈Sol ri.S =∅) and
⋃

ri∈Sol ri.S =V\{0}

to make sure that each customer is visited exactly once for delivering goods

3. ∑ j∈r.S q j ≤ Q ∀ r ∈ Sol

the total volume for a route should not exceed vehicle capacity Q

4. min Dist(Sol) = ∑r∈Sol (∑
|e.S|
S=0 cr[S]r[S+1]) minimized total distance

A solution complying with constraints 1-3 is called feasible. A solution partially or totally

not complying with the constraints is called infeasible. The quality of a solution Sol is

evaluated using Dist(Sol). A solution that gives the least distance while satisfying constraints

is considered to be a higher quality solution. A solution is optimal if there is no solution

which has a higher quality than the solution under consideration. Deciding whether a feasible

solution for a given CVRP instance exists is NP-complete, while the problem of finding the

optimal solution is NP-hard (Toth et al. 2014).

4.4.2 Capacitated VRP Variants

There are a number of variants of CVRP discussed in Golden, Raghavan, and Wasil 2008

and Toth et al. 2014. The types of modifications that give birth to a new CVRP variant along

with examples is given below.

1. Changes to routes structure

• Multi-depot Vehicle Routing Problem

Instead of a single depot vehicles start and end their routes at different depots,

the resulting problem is known as the Multi(ple) Depot VRP in Renaud, Laporte,

and Boctor 1996.

• Capacitated Vehicle Routing Problem With Split Delivery

In some scenarios if a customer demand exceeds the vehicle capacity then service

can’t be provided in one visit. On the other hand, splitting services into several

smaller service requests can be beneficial in overall cost savings. The Split De-

livery VRP (Dror and Trudeau 1990) allows, in principle, that each demand be

split into arbitrarily many smaller demands served by different vehicles.

48



• Capacitated Vehicle Routing Problem With Multiple Trips

Generally for many VRP variants each vehicle performs only one route. In the

VRP with multiple trips (Taillard, Laporte, and Gendreau 1996) , vehicles may

perform several routes.

2. Changes to objective function

• Vehicle Routing Problem with Profits

Each customer has an associated profit for the provision of service. With limited

fleet size it may be impossible to handle a lot of customers. In above situation

it is better to provide service to a subset of customers. The goal is to maximize

profit, defined as difference between the profit collected at visited customers and

the total distance covered by fleet (Archetti, Speranza, and Vigo 2014).

• MinMax Vehicle Routing Problem

Instead of minimizing the total distance we may apply a min-max objective, e.g.,

in order to minimize the length (or duration, or workload) of the longest route

(Corberán and Laporte 2015).

• Vehicle Routing Problem with Minimization of the vehicle fleet

The primary objective is to minimize the number of vehicles in the fleet. This is

due to the fact that vehicles and drivers form a bigger portion of the service cost

for the route trips. A common hierarchical way of optimizing is to minimize the

number of vehicles first and then, with this fixed a secondary objective such as

the total distance of the trips is minimized (Bräysy and Gendreau 2005).

3. Putting additional constraints while providing service to customer

• Capacitated Vehicle Routing Problem with Time Windows

Each customer and the depot have a specific time window associated with it.

This is CVRP with scheduling contraint i.e. requiring the consideration of travel,

service and waiting times together with time-window constraints. The service to

each customer should be provided within the customer’s time window. It is possi-

ble for vehicle to wait if they arrive before the start of customer’s time windows.

The service time at each customer is predefined. The return of vehicle to depot

must also be before the end of the depot’s time window (Cordeau et al. 2001).
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• Capacitated Vehicle Routing with Pick-up and Delivery

Pickup-and-delivery problems are vehicle routing problems in which the trans-

portation requests consist of point-to-point transports. Each customer request is

of the movement of goods or people between two particular locations, one where

someone or something is picked up, and a corresponding location for the de-

livery. This problem also introduces precedence constraint between the pick-up

and delivery location. The pick up location should be visited before the deliv-

ery location for a respective customer request. The loading space of vehicle will

not steadily decrease or increase during the execution of route (Desaulniers et al.

2001).

• Capacitated Vehicle Routing Problem with Loading Constraints

Complex loading constraints can occur when both the pellet and the cargo com-

partments are described either by 2-dimensional or 3-dimensional quantities. In

the CVRP with 2-dimensional Loading constraints (Iori, Salazar-González, and

Vigo 2007), shipments are rectangular items that have to be feasibly assigned to

a rectangular compartment. Delivery of items to the same customer should be

done by the same vehicle (item clustering constraint). The orientation of items

during delivery may or may not be changed (item orientation constraint). When

delivering an item to a customer, no items of other customers served later along

the route may lay, not even partially, in the rectangular area between that item and

the door of the vehicle (sequential loading constraint). As in the CVRP, a capac-

ity constraint with respect to the weight (kg) has to be taken into account as well.

The problem with 3-dimensional Loading constraints as described in Gendreau

et al. 2006a is to ensure the stability of stacked boxes, the secure transportation

of fragile boxes, and the easy unloading of boxes at the customer locations.

4.5 Notations and Operations on routes

As mentioned in 4.4.1 a route r can be seen as a tuple (S,σ) where r.S represents the set of

customer visited by r and (r,σ) the sequence in which they are visited.

• Position of customers in a route
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For each route r , r.σ = 〈e1, . . . ,em〉 represents the sequence in which customers in

{e1, . . . ,em}(r.S) are visited. The vertex visited in the sth position (i.e. es , 1≤ s≤ |r.S|)

can be obtained by r[s], i-e r[s] = es. Also r[0] and r[|r.S|+ 1] default to 0, the depot

vertex. We can also state that the postion of a customer v in r s.t. v ∈ r.S (the posi-

tion corresponds to index s s.t. es = v) is obtained via pos(v,r). Thus r[pos(v,r)] =

v Λ epos(v,r) = v ∀ v ∈ r.S. Finally, the first and last customers visited in r are retrieved

using f irst(r) and last(r). If |r.S| ≥ 1 , f irst(r) = r[1] and last(r) = r[|r.S|], else if

|r.S|= 0 the route is "empty" and f irst(r) = last(r) = 0.

Example: Let route rxx where rxx.S = {va,vb,vc,vd} and rxx.σ = 〈va,vb,vc,vd〉. The

third customer in the route is vc,rxx[3] = vc and pos(vb,rex) = 2. Furthermore rxx = 0

and rex[4+1] = 0. Also f irst(r) = va and last(r) = vd .

• Total demand of a route

For a route r the accumulated demand on r is given by demand(r) = ∑ i∈r.S qi.

• Distance of a route

For a route r the distance of r is given by distance(r) = ∑
|r.S|
i=0 cr[i]r[i+1].

• Operations on routes

A lot of vehicle route optimization approaches modify the routes in one way or another.

The basic operations are given below

– Inserting a customer in a route

Consider a route r with r.σ = 〈e1, . . . ,e|r.S|〉. The insertion of customer i(i /∈

r.S Λ i 6= 0) in route r at position p(1≤ p≤ |r.S|+1) is denoted by insert(i,r, p).

Let r be the original route and r
′
= insert(i,r, p). Then r

′
.S = r.S

⋃
{i} and

r
′
[t] = r[t] ∀ 1 ≤ t < p and r

′
[p] = i and r

′
[h] = r[h− 1] ∀ p + 1 ≤ h ≤ |r′.S|.

Analogously r
′
.σ = 〈r.σ p−1

1 , i,r.σ |r.S|p 〉 where r.σ t
i denotes the possibly empty

sub-sequence 〈ri, . . . ,et〉 of r.σ .

Example: Let route rxx where rxx.S= {va,vb,vc,vd} and rxx.σ = 〈va,vb,vc,vd〉,the

insertion of i in the second position in rxx results in r
′
xx = insert(i,rxx,2) where

r
′
xx.S = {va,vb,vc,vd, i} and r

′
xx.σ = 〈va, i,vb,vc,vd〉.

– Removing a customer from a route
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The removal of a customer i (i ∈ r.S) from route r is denoted by remove(i,r).

Let r be the orignal route and r
′
= remove(i,r). Then r

′
.S = r.S\{i} and r

′
[t] =

r[t] ∀ 1≤ t < pos(i,r), and r
′
[h] = r[h+1] ∀ pos(i,r)≤ h≤ |r′.S|. Analogously

r.σ
′
= 〈r.σ pos(i,r)−1

1 ,r.σ |r.S|pos(i,r)+1〉.

Example: The removal of vb from route rxx results in r
′
xx = remove(vb,rxx) where

r
′
xx.S = {va,vc,vd} and r

′
xx.σ = 〈va,vc,vd〉.

– Merging two routes

Consider two routes r1 and r2 such that r1.S
⋂

r2.S = ∅ and where r1.σ =

〈e11, . . . ,e1|r1.S|〉 and r2.σ = 〈e21, . . . ,e2|r2.S|〉. Merging r1 with r2 is denoted by

r = r1 X r2 where r.S = r1.S
⋃

r2.S and r.σ = 〈e11, . . . ,e1|r1.S|,e21, . . . ,e2|r2.S|〉.

Analogously r[i] = r1[i] ∀ i∈ 1, . . . , |r1.S| and r[ j+r1.|S|] = r2[ j] ∀ j∈ 1, . . . , |r2.S|.

It should be noted that the merge operator X is not commutative, i.e. r1Xr2 6=

r2Xr1.

Example: Given two routes route rx and ry where rx.S = {va,vb,vc}, rx.σ =

〈va,vb,vc〉 and ry.S = {vg,vh,vi}, ry.σ = 〈vg,vh,vi〉 the merge rx and ry results in

r = rx X ry where r.S = {va,vb,vc,vg,vh,vi} and r.σ = 〈va,vb,vc,vg,vh,vi〉. The

merge of rx and ry results in route r
′
= ry and rx where r

′
.S = {va,vb,vc,vg,vh,vi}

and r
′
.σ = 〈vg,vh,vi,va,vb,vc〉.

4.6 Construction Heuristics

A constructive heuristic starts solving a problem from scratch. The goal is to build a good

quality solution to the problem. It constructs a set of routes for the VRP problem. Con-

struction heuristics gradually builds a feasible solution while tracking the current cost of the

solution but they do not contain an improvement phase by itself (Laporte and Semet 2001).

This is done by repeatedly extending the current solution (initially empty) until a complete

solution is obtained. The route construction process can be sequential or parallel. In the

process of constructing routes, the goal is to keep the distance of the solution as small as

possible in case we are minimizing the total distance. Route construction heuristic work

towards solution of the problem by inserting customers one at a time into partial routes until
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a feasible solution is obtained. Some of the commonly encountered construction heuristics

for CVRP are given below.

4.6.1 Savings Heuristic

The Clarke and Wright algorithm (Clarke and Wright 1964) is a widely known heuristic

based on the notion of saving. In the paper, a sequential and parallel version are proposed.

We will discuss the parallel version as it is appears to better performing (Laporte and Semet

2001), the feasible route merger yielding the largest saving is implemented at each iteration,

until no more merger is feasible as shown in the figure 12.. While being simple, this algo-

rithm has got the advantages of being intuitive, fast and easily implementable. It can also be

used to generate an initial solution for other algorithms to work on.

When two routes r1 = (0, . . . , i,0) and r2 = (0, j, . . . ,0) can be feasibly merged into a single

route (0, . . . , i, j, . . . ,0), a distance saving si j = ci0 + c0 j − ci j is generated. The heuristic

then puts every single customer in a route of its own, such that we have Sol = r1, . . . ,rn(n =

|V\{0}|) and ri.S = {i}(1 ≤ i ≤ n). As a next step the routes in Sol are being merged. At

each iteration the ordered pair (i, j) (where (i, j ∈ V\{0} , i 6= j) ) maximizing si j and such

that ∃ra,rb ∈ Sol with last(ra)= i and f irst(rb)= j and f irst(rb)= j and with demand(ra)+

demand(rb) ≤ Q is determined. Route ra is then merged with route rb. Hence a new route

r
′
= ra X rb is created and used to replace ra and rb in Sol. The new Sol with a reduced set of

routes Sol = (Sol\{ra,rb}) ∪ {r
′}.

This heuristic continues merging routes until no more merging is possible. The set of routes

remaining after execution of the heuristic is our final solution. We can use this solution if

we have freedom of using vehicles as per the final routes of our solution. If the amount of

our vehicles is fixed and it is less than the routes formed (i.e. |Sol| > |K|), the solution is

infeasible.

4.6.2 Insertion Heuristics

Insertion heuristics develops a solution by inserting one customer after another into open

routes. The term “open” route is used to denote route where customers can still be inserted.
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Figure 12: Execution of the savings heuristic on a CVRP.

The term “closed” route is used to denote route where customers can’t be inserted anymore.

Insertion heuristics is then divided into sequential insertion and parallel insertion. Sequential

insertion heuristics builds one route at a time while parallel insertion heuristics build many

or all routes in parallel. Sequential insertion discussed in R. H. Mole 1976 is shown in the

figure 13.

Insertion heuristic starts solving a problem from scratch. It constructs a set of routes by

deciding which customer to insert at which position in which route at each iteration. The

family of insertion heuristics is differentiated on the basis of location and sequence of cus-

tomer insertion in routes. One insertion heuristic could be to insert the customer that keeps

the overall cost as least as possible. Another heuristic could be to keep one route open at

a time and choose the nearest feasible customer to be inserted in the open route next to the

currently last visited customer in the open route. Some complex version can consider check-

ing the best possible position in the open route by going through the whole route from start

to end.
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Figure 13: Execution of the Mole and Jameson Heuristic on a CVRP.

In Toth and Vigo 2001 , the Mole and Jameson sequential insertion heuristic is discussed. It

starts with an empty route set Sol = ∅. The current open route is rcur.S = ∅. The profit of

inserting a non routed customer i in route rcur such that qi+demand(rcur)≤Q is calculated.

This is done in three steps. First, the minimal detour αip of the visiting the customer in

the currently open route is determined. The cost inserting i in every position p(1 ≤ p ≤

|rcur.S|+ 1) in rcur is computed as αip = c rcur[p−1]i + c ircur[p] − λc rcur[p−1]rcur[p] where λ is a

parameter. The λip value is minimal for some p, and this minimized value corresponds to the

smallest possible detour. Next, the distance that is saved by visiting i in rcur rather than in

a route of its own is evaluated. This is done along the formula βi = µc0i +αip where µ is a

parameter. Finally, the customer i maximizing βi is selected and inserted in the position p of

Rcur causing the minimal detour (rcur = insert(i,r, p)). In the third step, the resulting route

is then optimized using a 3-exchange(3-opt) optimization (see 4.7). Once the open route

rcur, rcur get saturated and can not accomodate more customers feasibly then it is closed and

added to Sol(Sol = Sol∪{rcur}). After this, a new empty route rcur is opened and the above

procedure is repeated until all customers have been included in a route and the routes have
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been added to Sol. The number of vehicles is not used as a decision variable in forming the

Sol so the routes can be more than the available vehicles. The execution of the Mole and

Jameson Heuristic is visualized in figure 13.

4.6.3 Sweep Heuristic

The Sweep Heuristic is an instance of a so-called Cluster first, route second heuristic. They

are also known as clustering algorithms. They are two phase algorithm. The first phase

consists of partitioning customers into sets (clusters). The second phase creates one route

per cluster, computing the visit to all the customers in that cluster. This latter step is typically

implemented by solving a Traveling Salesman Problem per cluster. A third phase may be

employed to repair the solution if the route formed in the second phase can not be serviced

by a single vehicle.

Figure 14: Intermediate steps in the execution of the Sweep Heuristic on a CVRP. Note that

the Sweep heuristic is designed for instances where the customers are distributed in clusters.

In Sweep Heuristic, we consider the vertexes in V to be distributed on a plane. With each
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customer i ∈ V\{0} are associated its polar coordinates w.r.t. the depot (θi,ρi), while for

some customer j ∈V\{0}θ j = 0. The heuristic starts with a empty current route rcur(rcur.S=

∅). A ray centered at the depot performs a full circle rotation, sweeping over the customer

vertexes, in such a way that a customer j ∈V\{0} such that θ j = 0 is encountered first by the

ray. The moment customer v is get in the focus of the ray, if demand(rcur)+qv≤Q it is added

to the set of customers visited in the currently open route rcur(rcur.S = rcur.S∪{v}). If the

customer v cannot be added to rcur.S then rcuris closed and added to Sol(Sol = Sol∪{rcur}),

a new empty route rcur is opened and v is added to this new route. Once a full ray rotation

has been performed the current route rcur is added to Sol and all customers are visited in

Sol. Then, for every route r in Sol is treated as a traveling salesman problem to decide the

optimal sequence for visiting the vertexes in the set r.S∪{0}. Once this sequence has been

determined r.σ is adapted accordingly. The Sol might contain more routes than available

vehicles because vehicles are not a decision variable while forming the Sol. An example of

the execution of the Sweep Heuristic on a CVRP instance is given in figure 14.

4.7 Local Search

Local search algorithm tries to solve a problem by moving from solution to solution in the

space of candidate solutions. The space contains all possible solutions either feasible or in-

feasible to the problem and it is also known as solution space. In local search heuristic, we

have always got a current solution. It applies local changes to the current solution by evaluat-

ing the effect of changing the solution in a systematic way. If one of the changes leads to an

improved solution, then the current solution is replaced by the new improved (neighboring)

solution. The process is repeated until a solution deemed optimal is found or a processing

time bound is reached. The solution found to be optimal may not be globally optimum. The

term improvement heuristic in (Laporte and Semet 2001) is used to describe a local search

heuristic that only performs moves that improve the value of objective function of the solu-

tion. In some variants of local search heuristic, the current solution can be modified even

if evaluation signals a negative result. This is done in the hope for finding a much better

solution after a few steps in the solution search space. Local search algorithms are useful

(Russell and Norvig 2003) for solving pure optimization problems, in which we try to find
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the best state according to an objective function .

Local search can be better explained with the help of state-space landscape as shown in

the figure 15 from discussion in Russell and Norvig 2003. The location in the landscape

represents state of the solution and elevation represents value of heuristic cost function for

that state. If elevation is taken as the cost of solution then the goal is to find the absolute

lowest point i.e. global minimum. Otherwise if elevation corresponds to objective function

then the goal is to find the absolute highest point i.e. global maximum. In local search

algorithms we search this landscape to find the best possible solution. The state space may

contain locally optimal solutions and global optimal solution. A local optimum is a solution

that is optimal only in its surrounding neighborhood (i.e. none of the neighboring solutions

can improve it) while a global optimum is absolutely optimal through the whole state space

landscape.

Figure 15: A one-dimensional state-space for local search.

Given a current solution Sol the set of solutions that can be obtained by performing an oper-

ation op on Sol is called the neighborhood Nop(Sol) of Sol. The operation op is performed
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by applying a neighborhood operator hop(...,Sol) to the current solution. Such an operator

generally uses several parameters indicating which parts of the current solution will play a

role in influencing it. The size of the neighborhood Nop(Sol) of Sol depends on the differ-

ent parameters considered for hop(...,Sol). The neighboring solution of the current solution

is constructed and evaluated at each iteration in the local search. One of the neighboring

solutions is then selected as the new current solution. Note, that often more than one neigh-

borhood operator is used in local search.

Intensification and Diversification are important concepts in Local Search. Intensification

means that the search is concentrated in a specific area of the solution state space which

seems to be producing promising results (typically with the goal of ending up at a local op-

timum). Diversification means that the search is randomized to explore different parts of the

solution state space in order to make sure different areas are covered and the search does not

give the same local optimum for different runs. Intensification and Diversification measures

are commonly implemented in the evaluation and selection of neighboring solutions.

Different strategies of local search can be used to prune neighborhoods efficiently. The strat-

egy specifies the next search step to be taken. The selection of strategy to move to neighbor-

ing solution from the current solution is called pivoting rule (Yannakakis 1990). The widely

used pivoting rules are the First Improvement and Best Improvement strategies. The First

Improvement neighbor selection strategy reduces execution time by avoiding to evaluate all

neighbors. In this strategy the search evaluates the neighboring solutions while the construc-

tion of the neighborhood is in progress and as soon as a neighboring solution with a better

quality than the current solution is found, the search moves to it. The order in which neigh-

bor solutions are evaluated can have a vital impact on the efficiency of this search strategy.

We can use fixed ordering or random ordering for evaluating the neighboring solutions. For

fixed evaluation orderings, repeated runs starting from the same initial position will give the

same local optimum as a result. Random evaluation ordering many different local optimums

can be reached hence diversifying the search process and producing a chance of obtaining

the global optimum. In Best improvement the complete neighborhood is constructed and

evaluated. The solution improving the solution quality the most is selected as new current

solution. Best Improvement is also called greedy hill-climbing or discrete gradient descent.
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In a randomized evaluation, orderings of the Best improvement strategy out of the ω best

neighboring solutions is selected at random (ω being a parameter).

4.7.1 Adaptation to the CVRP

Local Search has been applied to Vehicle Routing Problems on a wide scale and has been

proven to be efficient especially on large-scale instances where exact methods are intractable.

In this section, examples of how the main steps for local search are handled for CVRP are

given.

1. Construction of the initial solution

The initial solution is populated using construction heuristics such as the ones pre-

sented in 4.6. In order to generate a number of initial solution for the same set of

customers, we can take some meaningful random steps. An example of random step

could be to penalize an arc in the current solution if the arc was present in earlier

formed solutions. It is important to decide at this stage that the initial solution should

be forced to be feasible according to our requirements or not. A feasible solution

should be for example build as many routes as the number of vehicles in the fleet, or

every route should satisfy the capacity constraints.

2. Solution evaluation

In case of feasible solution generally evaluation of the solution’s objective function

is done. In local search, where infeasible solutions are also stored to the graph, a

modified objective function is used for evaluation. An infeasible solution could for

example build more routes than the number of vehicles in the fleet, or some route

might cross the capacity threshold of the vehicle providing service to the route. The

modified objective function also captures the in-feasibility, as for example crossing the

capacity threshold of the vehicle in a route. The purpose of storing infeasible solution

is to make the solution feasible by restructuring the solution, later on if no feasible

solution was found directly. It is also possible to direct the search towards feasible

solutions by penalizing infeasible solutions (the higher the infeasibility the higher the

resulting objective value). Generally the violation of structural constraints such as the

number of visits to a customer or routes starting and ending at the depot is not allowed.

60



3. Construction of the neighborhood

There are two major catagories of VRP neighborhoods: Single-Route Improvements

and Multiroute Improvements, as mentioned in Laporte and Semet 2001 . As evident

from the name in Single-Route Improvements changes are made to one route at a

time. We make change by moving customers in the route sequence. In Multiroute

Improvements customers are exchanged and moved between two or more routes at a

time. The impact of Multiroute Improvements on the structure of the CVRP solution

is greater as compared to Single-Route Improvement.

Some of the major decisions taken while constructing the neighborhood are consider-

ation of infeasible solutions, computation of reduced neighborhood or full neighbor-

hood and the usage of some neighborhood operator. If it is allowed to use an infeasible

solution as an initial solution then the search procedure should be allowed to move to

infeasible neighboring solution. This decision is taken because it might be impossible

to find feasible solution in the neighbourhood of an initial infeasible solution. Another

possibility is to restrict the search from moving to an infeasible solution once we have

found a feasible solution. After finding a feasible solution we work towards improving

the quality of solution. The decision of constructing a neighborhood which may or

may not contain infeasible solutions is implemented by choosing parameters for the

corresponding neighborhood operator.

Computing the full neighborhood means considering the change by a neighborhood

operator in all possible parts of the current solution. To compute a reduced neigh-

borhood we save execution time by avoiding to evaluate all neighbors. This is done

by selecting a subset of part of current solution to be considered for being changed.

The construction of full neighborhood needs more computation time as compared to

reduced neighborhood but the results are also relatively more improved solutions.

Neighborhood operators makes a vital part of Local Search procedures. To compute

the neighborhood of the current solution, a neighborhood operator is selected from

a list of operators. Several well-known neighborhood operators for the CVRP are

presented below.
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(a) Relocate operator

The relocate operator ηreloc(i,r1, p,r2,Sol) (r1,r2 ∈ Sol) takes a customer i cur-

rently visited in r1(i ∈ r1.S), removes it from r1 and reinserts it at position p in

route r2(1≤ p≤ |r2.S|+1). The size of Nreloc(Sol) is determined by the different

routes, customers and positions considered for ηreloc.

Example: Let Sol = {r1,r2,r3,r4}with r1.σ = 〈va,vb,vc〉 and r2.σ = 〈vd,ve,v f 〉.

Then ηreloc(vb,r1,2,r2,Sol) results in the modified solution Sol
′
= {r′1,r

′
2,r3,r4}

with modified routes r
′
1.σ = 〈va,vc〉 and r

′
2.σ = 〈vd,vb,ve,v f 〉

(b) Swap operator

The swap operator ηswap(i,r1, j,r2,Sol) (r1,r2 ∈ Sol) takes two customers i and

j visited in different routes r1 and r2 (r1 6= r2, i ∈ r1.S , j ∈ r2.S) and exchanges

them. The size of Nswap(Sol) is determined by the different routes and customers

considered for ηswap.

Example: Let Sol = {r1,r2,r3,r4}with r1.σ = 〈va,vb,vc〉 and r2.σ = 〈vd,ve,v f 〉.

Then ηswap(vb,r1,vd,r2,Sol) results in the modified solution Sol
′
= {r′1,r

′
2,r3,r4}

with modified routes r
′
1.σ = 〈va,vd,vc〉 and r

′
2.σ = 〈vb,ve,v f 〉

(c) k-exchange operators

The k-exchange operator ηkex(r1,A1,A2,Sol) (r1 ∈ Sol and A1∩A2 = ∅) par-

titions a route r1 into k+ 1 segments by dropping all arcs in A1 from r1(A1 ⊆

∪ |r.S|j=0{(r[ j],r[ j+1])}) and reconnecting the resulting segments using the arcs in

A2 (A2 ⊆∪
|r.S+1|
j=0 { (δ

−
r[ j]∩∪

|r.S|+1
l=0 δ

+
r[l])} ). Note, that some of the route segments

may be reversed in the resulting route. The size of ηswap(Sol) is determined by

the different routes and arc sets considered for ηswap.

Example: Let r1.σ = 〈va,vb,vc,vd,ve〉, A1 = {(va,vb),(vd,ve)} and A2 = {(va,vd),(vb,ve)}.

Then η2ex(r1,A1,A2,Sol) results in the modified solution Sol
′
= {r′1,r2,r3,r4}

with modified route r
′
1.σ = 〈va,vd,vc,vb,ve〉.

(d) Cross operator

The cross operator ηcross(i,r1, j,r2,Sol) (r1,r2 ∈ Sol) exchanges the segments

starting with i and j and ending at the depot, in routes r1 and r2 (r1 6= r2, i ∈

r1.S, j ∈ r2.S). The size of Ncross(Sol) is determined by the different routes and
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customers considered for ηcross.

Example:Let r1.σ = 〈va,vb,vc〉 and r2.σ = 〈vd,ve,v f 〉. Then ηcross(vb,r1,vd,r2,Sol)

results in the modified solution Sol
′

with modified routes r
′
1.σ = 〈va,vd,ve,v f 〉

and r
′
2.σ = 〈vb,vc〉

4.8 Metaheuristics

Metaheuristic is a higher level heuristic used to select another heuristic that may provide

a better solution to an optimization problem. A metaheuristic refers to an iterative master

strategy that guides and modifies the operations of subordinate heuristics by combining intel-

ligently different concepts for exploring and exploiting the search space. It is useful specially

when we have very little or incomplete information or limited computational power to know

the global optimum solution to a problem in advance (Luke 2013). They are not problem spe-

cific algorithms, it is nonetheless necessary to do some fine-tuning of its intrinsic parameters

in order to adapt the technique to the given problem. They are usually non-deterministic in

nature. Metaheuristic is about optimizing the solution of a problem towards a better state by

avoiding to get stuck in local optima but it does not guarantee to find the globally optimum

solution. The advantage of metahueristic is the use of less computational power as compared

to other optimization problem.

Metaheuristic can be broadly catagorised into population based methods and local search

methods. Local Search Methods explore the neighborhood of a solution in subsequent iter-

ations. Methods based on local search include simulated annealing (see Gelatt and Vecchi

1983 and Nikolaev and Jacobson 2010), deterministic annealing (see Dueck 1993, Dueck

and Scheuer 1990 , and Li, Golden, and Wasil 2005), tabu search (see Glover 1986 and

Gendreau and Potvin 2010), iterated local search (see Baxter 1984 and Lourencco, Martin,

and Stutzle 2010), and variable neighborhood search (see Mladenovic and Hansen 1997).

Population-based heuristics evolve a population of solutions which may be combined to-

gether in the hope of generating better ones. This category includes ant colony optimization

(see Reimann, Doerner, and Hartl 2004), genetic algorithms (see Holland 1975 and Prins

2004), scatter search, and path relinking (see Glover 1977 and Resende et al. 2010).
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4.9 Ant Colony Optimization

Ant Colony Optimization (ACO) has been explained in great detail in Dorigo, Birattari, and

Stutzle 2006 . The food searching behavior of ant colonies has been intensively studied

and finds various applications in solving other real world problems. Ants communicate with

each other about the path leading to food or their colony with the help of pheromones. Ants

generate and emit these hormonal chemicals in order to relay a message to another member

of the colony. Ants produce different types pheromones, each with its own purpose. Ants

emit pheromones to attract mates, to signal danger to the colony and to give path directions

about a location. The pheromones that give path directions about a location are also known

as trail pheromones. This pheromone is emitted by ants when they return to colony with

food to attract other ants for following the path to food location. When choosing between

several paths the ants tend to take the path with highest pheromone presence. If the ants

have to chose from several long and short paths between the colony and food location , the

pheromone’s presence on the shorter path will increase more quickly because the time need

to traverse is less than the time required for longer path. This causes the ants to follow

shorter path and deposit even more pheromones, converging the majority of ants to follow

the shorter path.

In the above example, ants behave as intelligent agents and try to constructs solutions to

the problem being optimized. Ants starts building a solution from scratch and extend it in

several steps towards a full solution. At each step there is a probability for selecting from

different path options to further enhance the current solution into a new partial solution. The

way pheromones are deposited by ants and afterwards its evaporation provides the decision

making process to modify the current solution forming method. Each ant in the colony

continues to work until it has built a full solution or hit a dead end in enhancing the current

solution in a feasible way at any point. The solutions are often optimized using a local search.

In each iteration of ant colony optimization, an entire colony consisting of l ants is executed.

At the end of such an iteration, the current solution is possibly updated and pheromones are

deposited on the paths l, that ants took to build their solutions. This is applied in proportional

measure to the quality of the given solutions.

Ant Colony Optimization can be used to solve Vehicle Routing Problems due to similarity
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of find optimized set of paths in the problem graph. Like vehicles, ants select an arc in the

problem graph to add to current solution Solpar. After selecting an arc the ant will deposit

pheromones on the arc taken thus making it part of the constructed solution.

4.9.1 Adaptation to the CVRP

Ant Colony Optimization has been used to solve various kind of CVRP variants as discussed

in Reimann, Stummer, and Doerner 2002 , Gambardella, Taillard, and Agazzi 1999 and

Fuellerer et al. 2010. We discuss basic ant colony optimization where the ants used a simple

insertion heuristic. When adapting an Ant Colony Optimization approach to a particular

problem the following design choices need to be taken:

• Contructing the solution

To construct the solution each ant executes the construction heuristic as discussed in

4.6. An ant starts at the depot and then at each step selects the next vertex to move

to. Hence an ant can construct one route at a time. At each step it will either choose

a destination vertex from unchosen vertexes or move back to the depot. If at any step

the ant chooses to move back to depot, the current route is closed and in the next step a

new route is started. With the construction heuristic the ant can build more routes than

the available vehicles. If the number of routes is greater than available vehicles, we

can either consider it a failed solution or post optimize the solution to make it feasible.

Local search can be used for post optimization.

• Selecting the next step

The ant chooses a new destination vertex at each step, which is analogous to to choos-

ing an arc to add to its path. The ant choses next arc randomly but its selection is still

biased towards arcs with a higher pheromone deposit. Let Solcur be the current set of

closed routes, rcur the current open route and vcur the vertex the ant last added to its

path. Ex(Solcur ∪ rcur) is the set of vertexes that can be feasibly used to extend rcur.

Ex(Solcur∪rcur) is then defined as { j∈V \Vis(Solcur∪rcur) | demand(rcur+q j≤Q)},

where Vis(R) = ∪r∈R{r.S} is the set of vertexes already visited in the routes in R. The

probability associated with visiting vertex j next is then given by
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pvcur j =


τ α

vcur j.η
β

vcur j

∑ s∈Ex(Solcur∪rcur)τ
α
vcurs.η

β
vcurs

i f j ∈ Ex(Solcur∪ rcur)

0 otherwise
(4.1)

where τvcur jcorresponds to the pheromone deposit on arc (vcur, j) and ηvcur jto heuristic

information. This information can be for example the inverse of the distance associated

with arc (vcur, j), i.e. τvcur j =
1

cvcur j
. .

• Post-optimizing the solution

The solution built by an ant is commonly post-optimized using a Local Search ap-

proach as seen in 4.7.

• Updating the pheromone deposit

After finishing one complete iteration of the ant colony optimization, the pheromone

deposit on the graph is updated. In order to save the system from converging too

quickly the pheromone quantity on every arc in the problem graph is evaporated.

Then the solutions produced by all ants during this iteration are used to update the

pheromone deposit on the arcs of the problem graph. The pheromone deposit on arc

(i, j) is updated according the following formula:

τi j = p.τi j +∑
l
k=1σ k

i j.

where p(0 ≤ p ≤ 1) is called the trail persistence and corresponds to the fraction of

the current pheromone quantity τi j that remains on (i, j); where σ k
i j corresponds to the

quantity of pheromones deposed by ant k. This latter quantity is 0 if arc (i, j) doesn’t

appear in the solution constructed by ant k and else depends on to the total cost of the

solution.
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5 Combining Vehicle Routing And Bin Packing

In this chapter, we combine the vehicle routing and three dimensional bin packing problem.

In order to do that, the three dimensional capacitated vehicle routing problem is introduced

first. The experimental setup is described for combining vehicle routing and bin packing.

Finally, the results after solving the problem is discussed.

5.1 Introduction

The packing and delivery of goods to different customer locations are two important trans-

portation logistics operations. Its effective execution saves the operational cost of the dis-

tribution and manufacturing companies plus also satisfies the needs of a vast variety of cus-

tomers to whom the goods need to be delivered. Packing and transportation of goods can

be quite interdependent for companies working in the field of logistics distribution. For

example, there is little advantage in making optimal route from a combination of different

customer locations while the demands of the respective customers can not be fully loaded in

a vehicle assigned to the route. It would be uneconomical to use multiple vehicles for a route

while we can use a single one, if we pack the goods in an efficient way.

5.2 Combining Vehicle Routing And Bin Packing

The consideration of capacity limits of vehicles in a vehicle routing problem is generally

called Capacitated Vehicle Routing Problem (CVRP). The CVRP is about delivering service

to a set of customers with associated demands using a given set of vehicles. Each vehicle is

considered to have limited capacity. All vehicles start and end their journey at the depot. The

goal is to divide the customers into as less routes as possible hence minimizing the distance.

It should be kept in focus that the truck capacity for a route does not exceed the threshold

limit of the truck. The majority of vehicle routing problem consider the capacity constraint

as a threshold of weight carried by a vehicle.

Two dimensional capacitated vehicle routing problem (2LCVRP) generalizes the CVRP, in
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which an item is only represented by one positive integer, representing weight or volume.

In 2LCVRP, the shape of items and vehicles is considered in two dimensions i.e. width and

height. The 2LCVRP plays an important role in real world logistics where the shape of

the product is considered. The items to be packed are distinctly rectangular which cannot

be stacked on top of each other due to fragility, weight or large dimensions. 2LCVRP is

useful in real life scenarios like transporting large kitchen appliances such as refrigerators or

catering equipment like food trolleys.

The capacitated vehicle routing problem with three-dimensional loading constraints (3LCVRP)

is a combination of vehicle routing and three dimensional (width,height,depth) bin packing

problem. This problem was introduced by Gendreau et al. 2006b for considering loading of

rectangular boxes in a fleet of vehicles while optimizing routes. The objective is to minimize

the traveling costs while providing a feasible loading for each vehicle. Each item in 3LCVRP

is considered as a cuboid with weight. In general, a cuboid is an object with dimension as

width, height and depth. It has six rectangular faces. The vehicle volume capacity is ex-

pressed as 3D loading space. The 3LCVRP is a challenging optimization problem because

both vehicle routing and 3D bin packing are hard to solve practically. Gendreau et al. 2006b

states the 3LCVRP problem to be NP-hard.

In this thesis the focus is on solving a variant of 3LCVRP, which is a Heterogeneous Fleet

of Pick Up and Delivery Problem with Time Windows and three-dimensional loading con-

straints (3L-HFCVRPTW). In 3L-HFCVRPTW the solution ensures that item can be picked

up and delivered to clients in a specific time range while the packing is feasible for the 3D

loading space of the vehicle. All the vehicles are not identical in size. The pick up of an item

should always come first than its delivery. This problem is defined in 5.4 section.

5.3 Related Work

In the three-dimensional capacitated vehicle routing problem, the three dimensions of the

vehicle are taken into account and the customer’s demand also consists of three dimensional

items. This problem was first addressed by Gendreau et al. 2006b. They modeled sequence-

based loading, stacking and vertical stability constraints. The vertical orientation of the items
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in vehicles was fixed. A set of test instances was introduced, which can be used by other re-

searchers for bench-marking the performance of different heuristic and meta-heuristic solu-

tions. The test instances are available on the link http://or.dei.unibo.it/. There

are 27 test instances with varying number of customers,vehicles and items. The maximum

number of customers, items and vehicles is 100, 198 and 26 respectively. The graphs, cus-

tomers demand, and vehicle weight capacity are taken from 27 Euclidean CVRP instances

(see Toth and Vigo 2001) for a detailed description of CVRP test bed instances). The arc

costs are determined as the Euclidean distances between coordinates of customers. The ve-

hicle loading volume has dimensions W = 25, H = 30, and L = 60. For each customer the

number of required items is randomly generated according to a uniform distribution between

1 and 3. Each item dimension is randomly generated according to a uniform distribution in

the interval between 20% and 60% of the corresponding vehicle dimension. The minimum

supporting area is set equal to 0.75.

This paragraph discuss other research articles that solved the problem discussed in Gendreau

et al. 2006b and tested their approach on the test bed provided with it along with some new

test instances. In Fuellerer et al. 2010 , the problem was solved using Ant Colony Opti-

mization. The vehicle routing and bin packing problem is solved by combining two different

heuristic information measures. This showed improvement of 6.43% over Tabu Search Gen-

dreau et al. 2006b. In Tarantilis, Zachariadis, and Kiranoudis 2009 , a hybrid of guided local

search(GLS) and tabu search(TS) is used to solve the three-dimensional capacitated vehi-

cle routing problem.This showed improvement of 3.13% over Tabu Search Gendreau et al.

2006b. In Ruan et al. 2013 honey bee optimization is used to solve the problem.It improved

the quality of solution on average 7% over Tabu Search Gendreau et al. 2006b and improved

in certain instances from previous results of guided tabu search (GLS) Tarantilis, Zachari-

adis, and Kiranoudis 2009 and ant colony optimization (ACO) Fuellerer et al. 2010 solutions.

In Miao et al. 2012 , a hybrid approach is introduced, which combines Genetic Algorithm for

vehicle routing problem and Tabu Search for three dimension loading. This hybrid genetic

algorithm obtain new best solutions for several instances. Ren, Tian, and Sawaragi 2011

proposed a hierarchical method to solve the problem. In the subordinated module, a branch

and bound method is applied to the modified 3L-CVRP in which the loading constraints are

relaxed and replaced by a volume-ratio constraint. In the next step, a container loading algo-
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rithm essentially a tree search method is used to check whether the items for the generated

routes can be loaded into the vehicles. This process is repeated and volume ratio is varied

until all items are feasibly loaded. It also improved previous best results for certain cases in

the test bed.

In this paragraph we discuss research articles published on vehicle routing involving pick

up and delivery(VRPPD) with multiple vehicles and loading constraints. Cherkesly, De-

saulniers, and Laporte 2015 proposes an exact solution. It presents a formulation for VRPPD

with time windows and last in first out(LIFO) constraints. It develops three branch-price-

and-cut algorithms to solve the problem exactly for instances with maximum 75 requests.

Fagerholt et al. 2013 proposes a formulation for the VRPPD with time windows, complete-

shipment constraints and connectivity constraints. It uses this approach to solve real-life ship

routing and scheduling problem that arises in tramp shipping. Tramp shipping refers to the

trade practice of ships and boats which does not have a fixed schedule or published ports of

call. They trade on the spot market with no fixed schedule or itinerary. A tabu search (TS)

heuristic is proposed to solve the problem. In Cheang et al. 2012 , a solution is proposed

to multiple vehicle pickup and delivery problem with LIFO loading and distance constraints

(MTSPPD-LD). It devise a two stage approach for solving the problem. In the first stage,

number of vehicles is minimized using simulated annealing and ejection pool. The second

stage minimizes the total travel distance using variable neighborhood search and probabilis-

tic tabu search. In Malapert et al. 2008 , a framework is proposed to solve two dimensional

VRPPD with multiple vehicles and sequence-based loading. It develops a constraint pro-

gramming loading model based on a scheduling approach. The article highlights that most

packing techniques use reduction procedures which are not compatible with sequence-based

loading. In Männel and Bortfeldt 2016 , a solution is proposed for VRPPD with three di-

mensional loading problem and homogeneous fleet. The routing procedure modifies a well-

known large neighborhood search for the 1D-PDP Ropke and Pisinger 2006. A tree search

heuristic is responsible for loading the boxes in vehicles.
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5.4 Problem Definition

The problem is defined on a graph G= (V,E) representing the road network. Let E be a set of

undirected edges (i, j) that connects all node pairs (0≤ i , j≤ 2n , i 6= j). The set of vertexes

V = {0,1, . . . ,n,n+ 1, . . . ,2n} represents the all vertexes, i.e. pickup and delivery points

including the depot locations at 0. Each edge ei j ∈ E between vi and v j has an associated

routing cost ci j and the travel costs is symmetric i.e. ci j = c ji (0≤ i , j≤ 2n , i 6= j). We have

got n customer requests each consisting of a pickup point i, a delivery point n+1 and a set

Ii of goods that are to be transported from i to n+ i (i = 1, . . . ,n). Set Ii includes mi cuboid

pieces and each Iik has length lik , the width wik and the height hik (i = 1, . . . ,n,k = 1, . . . ,mi).

Every customer has a time window [ai,bi] where ai corresponds to the beginning and bi to

the end of the time window. It is assumed that ai ≥ 0 and bi > 0. The depot has a time

window [a0,b0] and each vehicle must leave the depot at instant a0 = 0 that corresponds to

the beginning of the depot time window and arrived before instant b0 > 0 that corresponds to

the end of depot time window. A fleet of T different types of vehicles is located at the depot

and each type of vehicle t(t = 1, . . . ,T ) has a weight capacity Dt , fixed cost Ft ,unit travel

cost Vt and 3D rectangular loading space of length Lt , width Wt and height Ht . Each vehicle

has an opening at the rear door that is as large as the Wt x Ht plane.

A valid route is a sequence of four of more nodes starting and ending at a depot. There might

be a single hub in the route to which items are delivered. A customer should only appear

once in the route sequence. The total cost of the route is the sum of all comprising edges. A

solution to 3L-HFCVRPTW is a set of v feasible routes such that each customer is visited

exactly once and a valid packing plan is provided for the route. Solution cost is calculated

by total distance and driving time costs, ferry costs, penalties for being late, hub handling

costs and penalties if vehicles are driving outside their dedicated areas. We are visiting hubs

because we can change package from one vehicle to another.

5.5 The Hybrid Algorithm

In the sequel, we describe a hybrid algorithm for the 3L-HFCVRPTW consisting of two sep-

arate procedures for routing and packing. The routing procedure is developed by professor
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Olli Braysy of Myopt Consulting Oy. Boxes are loaded into vehicles by using a variation of

Largest Area Fit First (Gürbüz et al. 2009).

5.5.1 Routing Algorithm

The routing part of the 3L-HFCVRPTW is addressed by ejection chain based route reduction.

It is a kind of construction heuristics see 4.6. A constructive heuristic starts solving a problem

from scratch. In the process of constructing routes the goal is to keep the distance of the

solution as small as possible in case we are minimizing the total distance. Route construction

heuristic work towards solution of the problem by inserting customers one at a time into

partial routes until a feasible solution is obtained. Routes that do not contain any customer

are deleted from the solution. This heuristic continues merging routes until no more merging

is possible. After the initial solution is created, the optimization part starts executing until

a time limit is reached or if no further improvement is possible. We are checking for every

feasible route that the packing is feasible.

We always accept any move penalties that results in a better solution than the current one.

If we don’t find any moves with out penalties, we accept the first move that improves the

objective function, or the best move found when none improves over the current solution.

The chosen move is executed and recorded in a list which contains all the previously executed

moves.

The types of moves between two routes r0 and r1 that are considered are:

• Shift move: insert customer i ∈ r0 at a specific position in r1 and remove it from r0.

• Swap move: given i ∈ r0 and j ∈ r1 swap i with j or it can move customers in one

swap. A small segment of pickups and corresponding deliveries or small segment of

deliveries and their corresponding pick ups.

• Intra-swap move: swap two customers in a route i, j ∈ r0.

The moves happen in the following order. First, we evaluate all shift moves possible for

all pairs of different routes. Then we evaluate all swap moves, trying all possible insertion

points. For a particular type of move all routes are iterated in random order. Intra-swap

moves are done selectively: we randomly evaluate swap moves. If we are in feasible mode
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and already have a feasible neighbor at any point, we skip all subsequent moves that do not

lead to a better solution. Construction heuristics gradually builds a feasible solution while

tracking the current cost of the solution but they do not contain an improvement phase by

itself (Laporte and Semet 2001). For improvement, an ejection chain based local search is

employed to choose the best feasible solution amongst all the feasible solutions.

5.5.2 Packing Algorithm

For a given route, a valid packing plan for 3D loading space of vehicle comprises one or

more placements and the following conditions hold: Each box lies completely within the 3D

loading space of the vehicle; Any two boxes placed in a vehicle do not overlap with each

other; the total weight of all boxes in a packing plan must not exceed a maximum weight

limit of the vehicle.

The 3D packing algorithm used is variation of Largest Area Fit First (LAFF) minimizing

height (Gürbüz et al. 2009). It uses a heuristics that places the boxes with the largest surface

area first by minimizing the height from the bottom of the container. If shape of an item is

not cuboid then the bounding box of that item is considered e.g. cylinders. The width, depth

and height of the container is fixed as per specification of the vehicle available. A vehicle

can have two containers for packing items i.e. a hauler and trailer.

After determining the values of height, width and depth of the container, the given boxes

are packed using two placement techniques. The first placement method places a box in the

container to start a new packing layer and set a specific height for layer. In this method,

the boxes with largest surface area are sorted in descending order. The selected boxes are

searched to find a box that has minimum height. Then, box with minimum height is placed

in the container while keeping its largest surface parallel to bottom of container. The second

placement method allocates space for the remaining boxes to be placed in the same layer

while not crossing the height of layer. In this method the boxes with largest volume are

placed first in the empty spaces around the box placed in first placement method. When no

more boxes can be placed in the current layer using second placement method, a new layer

is started using the first placement method.
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If we find a feasible solution, we proceed to the route optimization stage for the selected

customers. Otherwise we remake our selection of customers for a new route.

5.6 Experiments

5.6.1 Experimental Setup

The program is coded in java. The coded program is run on a computer with following

configuration: Intel Core i5 2.30 GHz 8 GB Ram.

FIRST DATASET: The first dataset was created from a file with a set of Pick up and Delivery

(PDP) customer that was provided for testing and integration by the company accompanied

by other files for vehicles, ferries, terminals and distance matrix. The dimensions of width,

height and length of objects in the PDP were erroneous for some customers i.e. they were

bigger than respective dimension of vehicles. There were other errors such as the volume

was not matching the product of width, height and length. To remove this error, the volume

was regenerated from dimensions present. Another group of customer had volume given but

the dimension were not known, in this case, the dimensions were inferred from the volume

by taking a cube root and then clipping the respective dimension as per the minimum value

of that dimension for containers and add to another dimension of the object. In this pro-

cess, if the volume can not be broken down into length, width or height without surpassing a

minimum capacity of that dimension in the vehicles present, then that dimension was manu-

ally corrected and the volume regenerated from the new dimensions. The minimum length,

width, height in vehicles present was 13.6 unit, 2.45 unit, 2.65 unit.

Type 1 corrections are where cube root of volume was calculated for customers whose length,

width and height dimensions are missing and upper limit of 2.4 unit was maintained on

width and 2.6 unit was maintained on height . The clipped value is adjusted in length =

volume / (width * height).

Type 2 corrections are cube root of volume was calculated for customers whose length,

width and height dimensions are missing and upper limit of 2.3 unit was maintained on

width and 2.4 unit was maintained on height . The clipped value is adjusted in length =
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volume/(width*height)

SECOND DATASET: The Second dataset was created from a file with a set of PDP customer

data that was provided for testing and integration by the company accompanied by other files

for vehicles, ferries, terminals and distance matrix. In this the dimensions are randomly gen-

erated on the basis minimum dimension of vehicles present, which was 13.6 unit, 2.45 unit,

2.65 unit of length, width, height respectively. The length, width and height for customer

objects was generated in the range [0.40,13.60], width [0.40,2.45], height [0.40,2.65] re-

spectively. The volume is calculated as the product of the three dimensions.

5.6.2 Result with respect to time consumption

The processing time (seconds) consumption of integrating the 3D bin packing with vehicle

routing pickup and delivery with time windows can be seen in tables 1 and 2. The same

experiment was ran three times. The reported time intervals are obtained by taking average

over three runs and then rounding to the nearest second. It can be easily seen that the packing

algorithm integrated with routing algorithm does not incur a huge time consumption penalty

to solving the packing problem together with the routing problem.

First Dataset:

File Customers Vehicles Running Time Running Time

With Packing

Type1 138 11 28 53

Type2 138 11 24 26

Table 1: Result of vehicle routing with packing as compared to without packing

Second Dataset:
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File Customers Vehicles Running Time Running Time

With Packing

Random1 138 11 22 62

Random2 138 11 27 42

Random3 138 11 22 33

Random4 138 11 19 27

Random5 138 11 22 49

Random6 138 11 20 29

Random7 138 11 17 35

Random8 138 11 20 19

Random9 138 11 22 29

Random10 138 11 19 16

Table 2: Result of vehicle routing with packing as compared to without packing

5.6.3 Result with respect to route formation

The routing solutions of integrating the 3D bin packing with vehicle routing pickup and

delivery with time windows can be seen in tables 3 and 4.The same experiment was ran three

times. The reported virtual vehicles and unassigned orders are obtained by taking average

over three runs and then rounding to the nearest number. In our solution, the concept of

virtual vehicle is used. An order is assigned to a virtual vehicle if it cant to be accommodated

in the real vehicles available for the vehicle routing solution. An order assigned to a virtual

vehicle is in essence an unassigned order in the real world. The trend can be seen that the

introduction of approximate 3D bin packing increases the number of virtual vehicles and

unassigned order in most of the cases. This shows that approximate 3D bin packing gives us

more realistic solution which can be implemented on ground saving our time, resources and

manual labour.

First Dataset:
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Earlier in the work I understood that these difference were expected to be much larger. No comments seem to be around on why that is not the case.



File Customers Vehicles Virtual

Vehicles

Packing

Virtual

Vehicles

Without

Packing

Order

Unas-

signed

Packing

Order

Unas-

signed

Without

Packing

Type1 138 11 53 40 88 62

Type2 138 11 60 40 98 62

Table 3: Result of vehicle routing with packing as compared to without packing

Second Dataset:
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Bad alignment coud have been done better.


More experimental evaluation should have been included in order to make clearer conclusions. Currently, we are only getting at a feasibility result, and not one in which extensive conclusions can be drawn in comparison with other methods. For a complete evaluation, a system this complex would have benefted from experiments similar to ablation studies used in machine laerning.



File Customers Vehicles Virtual

Vehicles

Packing

Virtual

Vehicles

Without

Packing

Order

Unas-

signed

Packing

Order

Unas-

signed

Without

Packing

Random1 138 11 48 41 62 70

Random2 138 11 42 37 68 60

Random3 138 11 51 34 82 58

Random4 138 11 49 43 81 76

Random5 138 11 41 47 65 72

Random6 138 11 43 38 69 62

Random7 138 11 48 46 74 66

Random8 138 11 59 50 82 80

Random9 138 11 51 43 78 68

Random10 138 11 51 43 83 66

Table 4: Result of vehicle routing with packing as compared to without packing
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6 Conclusion

We have integrated a 3D bin packing algorithm which is variant of Largest Area Fit First(LAFF)

minimizing height with a variant of 3LCVRP, which is a Heterogeneous Fleet of Pick Up

and Delivery Problem with Time Windows and three-dimensional loading constraints (3L-

HFCVRPTW). The focus was to introduce a close to real world 3D packing solution for

vehicles fulfilling orders on the routes. In our case, the high speed of the 3D bin packing

algorithm is vital because the vehicle routing optimization itself is a processing heavy task

specially when the number of customers increases. We have chosen speed over accuracy as

we are using rectangular bounding boxes for any item to be packed. The result of this is

more feasible filling of vehicles under human supervision.
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