
Vrije Universiteit Amsterdam

Bachelor Thesis

Benefits of data scalability and transfer
learning for relational graph data

(Machine learning - RGCN, scalability)

Author: Karim Anwar (2615855)

1st supervisor: Michael Cochez
daily supervisor: Michael Cochez
2nd reader: Daniel Daza

A thesis submitted in fulfillment of the requirements for
the VU Bachelor of Science degree in Computer Science

July 29, 2021



Abstract

The goal of this paper is to present a framework that tackles the issue
of data scalability for graph data. This framework is split into two parts,
the first part consists of data summarization which consist of making a
new graph by learning the connections done between node types which
decrease the amount of memory needed especially that GPUs, even now
that they are faster, are still, not match for CPUs when it comes to space
and the learning time needed for the model will decrease as well. In the
second part, transfer learning will be used to introduce the knowledge
of one model to another with the original datasets, the parameters of the
first model which will decrease the time needed to train, which will increase
overall speed gain in the learning process.

1 Introduction

The recent success of convolutional neural networks (CNN) and deep learning in many
domains is due to the rapidly developing computational resources (eg. GPU), and the
availability of big training data (eg. Knowledge Bases), and the effectiveness of deep
learning to extract latent representations. While deep learning effectively captures hidden
patterns from Euclidean data, there is an increasing number of applications where the data
is represented in the forms of graphs. From citation networks, which show how papers
are linked to each other, to medical fields with representations of interactions between
molecules which each represent a different graph. A new family of networks called graph
neural networks (GNN) comes into existence with how graph data became ubiquitous in
the Machine learning community. With the introduction of Graph Convolutional Networks
(GCN) [1] which is a form of generalization of GNNs, learning can not be simpler than
it is today. Knowledge Bases are growing at an explosive rate, and the same goes for the
number of missing relations between the data in them. Ontologies like RDF and OWL not
only have simplified the representation of these KBs, but they have also provided a common
framework so data can be exchanged between applications without loss of meaning. RDF
uses a format of triples which presents the relationship between two nodes, a subject,
an object, and a predicate that links them, to tackle this new data Relational Graph
Convolutional Network (RGCN) [2] had to be introduced which took into consideration
the information that resides on the edges (relationships) of the graph. This makes the
data richer, but also increases their complexity: the size of the data makes it difficult to
train on it, as it is not obvious to scale it without losing information because this is where
the biggest problem of graph data resides. This paper is organized as follows: In Section 2,
we provide the essential concepts that will be presented throughout the paper. In Section
3 we introduce the main methods used in the paper that address the topic of scalability
and in section 4 the ones of transfer learning. We provide our analysis and insights as well
as a brief discussion comparing our results to other papers in section 5, and the conclusion
in section 6.

2



2 Preliminaries

In this section, we will recall some key concepts, in this paper, we will consider a directed
and labeled multi-graph as G = (V, E ,R) with nodes (entities) vi ∈ V and labeled edges
(relations) (vi, r, vj) ∈ E , where r ∈ R is a relation type.

2.1 Relational graph convolutional networks

Introduced first as a GCN by Kipf and Welling [1] as a method to generalize graph data
analysis where a layer has the form:

h
(l+1)
i = σ

∑
j

1

cij
h
(l)
j W

(l)

 , (1)

where hi is the hidden state of node vi, where j indexes the neighboring nodes of vi,
multiplied by W a weight matrix. cij is a normalization constant for the edge (vi, vj)

which originates from using the symmetrically normalized adjacency matrix D−
1
2AD−

1
2

which then gets used as an extension for large scale relational data, which modifies the
forward pass equation:

h
(l+1)
i = σ

∑
r∈R

∑
j∈N r

i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i

 , (2)

where N r
i denotes the set of neighbor indices of node i under relation r ∈ R. Different

from regular GCNs, relation specific transformation gets introduced to take in count the
information on the graph edges. Intuitively, (2) accumulates transformed feature vectors
of neighboring nodes through a normalized sum.

2.2 Entity classification

Entity classification for graph data is an RGCN classifier where its layers (2), where it has
as a design choice a minimum of 2 layers, the classifier takes the node representations and
predicts the labels, the model is learned by minimizing the cross-entropy loss:

L = −
∑
i∈Y

K∑
k=1

tik lnh
(L)
ik , (3)

where Y is the set of node indices that have labels and h
(L)
ik is the k-th entry of the

network output for the i-th labeled node. tik denotes its respective ground-truth label of
the node.

3 Graph scalability

In this section, we introduce the concept of querying and summarizing graphs used for the
experiment.

3



3.1 Graph summarization

Graph summarization denotes a series of application-specific algorithms designed to trans-
form graphs into more compact representations, while preserving structural patterns,
query answers, or specific property distributions [3]. Data summarization when applied
to the machine learning has a fine line between time performance and results accuracy,
having the data in RDF is a plus when we want to have the data summarized, a paper, like
”Summarizing Semantic Graphs: A Survey” [4] shows a collection of methods by different
researchers on RDF summarization, some specific papers like ”Simplifying RDF Data for
Graph-Based Machine Learning” [5] which shows remarkable performance when it comes
to RDF summarization and ”A Degeneracy Framework for Scalable Graph Autoencoders”
[6] which presents results for speed performance and accuracy performance using graph
auto-encoders and GCNs, but the paper that inspired our framework is ”Graph Summari-
sation of Web Data: Data-driven Generation of Structured Representations”[7] which
utilises SPARQL querying to obtain results via bi-simulation between other approaches,
where our framework uses the same querying method to summarize the data by node type
to get a summary on the node collection layer of the original data [8].

3.2 Type summarization

The Resource Description Framework (RDF) is a simple format of triples that is composed
of subjects, predicates, and objects, where each unique node from the collection of the
subjects and objects combined represents an actual node from the data graph. Using
SPARQL as querying language RDF schema can be filtered out to get from it the types of
the nodes, which these types then will become the main nodes of the summarized graph,
and what happens in the SPARQL code a query line is put in place to recognize the
types and from the extracted unique subject and object types a new graph is constructed
which keeps the relationships between the original nodes that become the relationship
between the ”Type” nodes of the new graph. Accordingly, the size of the original graph
will be greatly reduced depending on the diversity of the nodes types in it upon which
that diversity will determine the size of the new reduced graph.

4



Figure 1: An example of type summarization

Dataset AIFB MUTAG BGS AM

Original size(in MB) 5.95 10.2 209 755
Summarized size (in KB) 26 44.1 5.94 7.79
Reduction to (of original size) 0.00004% 0.00004% 0.0000003% 0.0000001%
Summarization time 3s 3s 2min5s 1min57s
Number of nodes 26 112 4 20
Number of edges 188 316 41 56

Table 1: Measured time for type summary and the new size of the dataset memory-wise,
and the number of nodes and edges in these new graphs.

4 Transfer learning

The basic idea of transfer learning is to use knowledge learned from a previous source
domain to improve the performance of the learned decision functions of the target domain
according to the definition in [9]. Transfer learning is really useful to reduce training time
and gain remarkable results from our model by using the best-trained parameters learned
from another model, a variety of pre-trained neural networks exist which were trained on
a vast amount of data. The ImageNet project for image classification, for example, is
one of these pre-trained models which has 14 million images that belong to more than
20,000 classes. All the parameters learned from the source model that was trained on a
prior time can be transferred to the target model to gain valuable time and resources, but
some criteria still have to be taken into consideration, the similarity of the datasets as
well as their size. The most common case of transfer learning of a new dataset is when

5



said dataset is smaller than the original and they are both similar so to avoid overfitting
when training the classifying layer is the only layer to be fine-tuned. Another form of
transfer learning is when the new dataset is larger than the one of the pre-trained model.
In this latter case, we would have more confidence in not overfitting and we could fine-tune
through the entire network.

Figure 2: Collection of public NN models, on a scale of the accuracy achieved upon conception,
with respect to the dataset size used for training

4.1 Inductive transfer learning

Inductive transfer learning is a form of transfer learning for where the target task is
different from the source task, regardless of whether the source and target domains are
identical or not [10]. Inductive learning can be categorized into two cases:

a. There is a lot of labeled data in the source domain. The inductive transfer learning
setting is analogous to the multitask learning environment in this scenario. Inductive
transfer learning, on the other hand, focuses solely on improving performance in
the target task by transferring knowledge from the source task, whereas multitask
learning tries to learn both the target and source tasks at the same time.

b. No labeled data in the source domain are available. In this case, the inductive
transfer learning setting is similar to the self-taught learning setting. In the self-
taught learning setting, the label spaces between the source and target domains
may be different, which implies the side information of the source domain cannot be
used directly. Thus, it’s similar to the inductive transfer learning setting where the
labeled data in the source domain are unavailable.

This then is used to apply an approach referred to as the feature-representation-transfer
approach an example of that is represented in the paper of Blitzer et al. [11]. The intuitive

6



idea behind this case is to learn a “good” feature representation for the target domain.
In this case, the knowledge used to transfer across domains is encoded into the learned
feature representation. With the new feature representation, the performance of the target
task is expected to improve significantly.

Figure 3: Comparison between Inductive learning and Inductive transfer learning

4.2 How transferable are the features?

If the target dataset is small and the number of parameters is large, fine-tuning may result
in overfitting, so the features are often left frozen. On the other hand, if the target dataset
is large or the number of parameters is small so that overfitting is not a problem, then
the base features can be fine-tuned to the new task to improve performance. Of course, if
the target dataset is very large, there would be little need to transfer because the lower-
level filters could just be learned from scratch on the target dataset. [12] Typically in
transfer learning, the source dataset is larger and similar to the original dataset which
prevents overfitting when trying to fine-tune through the full network. In other cases, the
source dataset is large and very different from the target dataset. Since the dataset is very
large, we may expect that we can afford to train a convolutional network from scratch.
In practice, though, it is often still beneficial to start with weights from a trained model.
We’d have enough data and confidence in this case to fine-tune the network as a whole.
However, for our problem the source dataset is small and different from the original, it is
likely best to only train a linear classifier. Since the dataset is very different, it may not be
optimal to train the classifier using the network’s top layer, which contains more dataset-
specific features. Instead, it might work better to train the classifier from activations
somewhere earlier in the network.

5 Empirical evaluation

In this section, we empirically evaluate our model combined with our framework with the
goal to perform better performance for the task of Entity Classification for Graph Data.

7



5.1 Experimental Setting

Datasets We evaluate our model on four datasets1 in RDF format: AIFB, MUTAG,
BGS, and AM. The AIFB dataset describes the AIFB research institute in terms of its staff,
research group, and publications. The dataset was first used to predict the affiliation (i.e.,
research group) for people in the dataset. The dataset contains 178 members of a research
group, however, the smallest group contains only 4 people, so this one is removed from
the dataset, leaving 4 classes. Moreover, we also fremove the employees relation, which
is the inverse of the affiliation relation from the dataset. The MUTAG dataset contains
information about complex molecules that are potentially carcinogenic, which is given by
the isMutagenic property. The BGS dataset was created by the British Geological Survey
and describes geological measurements in Great Britain. The dataset contains around 150
named rock units with a lithogenesis, from which we used the two largest classes. The AM
dataset contains information about artifacts in the Amsterdam Museum. Each artifact
in the dataset is linked to other artifacts and details about its production, material, and
content. It also has an artifact category, which serves as a prediction target. We have
drawn a stratified random sample of 1,000 instances from the complete dataset. We also
removed the material relation, since it highly correlates with the artifact category. And
for each of these datasets, we use their node-type summarized counterparts for transfer
tasks.

Dataset AIFB MUTAG BGS AM

Entities 8,285 23,644 333,845 1,666,764
Relations 45 23 103 133
Edges 29,043 74,227 916,199 5,988,321
Labeled 176 340 146 1,000
Classes 4 2 2 11

Table 2: Number of entities, relations, edges, and classes along with the number of labeled
entities for each of the datasets. Labeled denotes the subset of entities that have labels
and that are to be classified.

Task We consider the task of entity classification as briefly introduced in section 2
where the model acts as a classifier for the entities of the graph to find their corresponding
labels which are the node types. Implementing the steps from Schlichtkrull et al. [2]
with a split of 80/20 of the dataset without a validation set, we can directly extract
the hyperparameters from the paper and apply them to the model directly. We track
the training time (wall-clock time) of the training on the target datasets, then we apply
transfer learning to use the parameters of a pre-trained model which in this case, is a
model we train on our summarized source datasets.

1https://github.com/rusty1s/pytorch geometric/blob/master/torch geometric/datasets/entities.py

8



AIFB MUTAG BGS AM

Test accuracy 94.02 70.58 81.46 OOM
Training time 16s 11s 5min53s OOM

Table 3: Training time on the original graphs and the test accuracy results.

Model The original model has been based on the experiments done in the RGCN mod-
eling paper [2], the RGCN is a basic two-layer classification networking (2). The model
is trained on 50 epochs, and the training accuracy is averaged for 10 runs. The model2 is
built using Python, with the usage of Pytorch and Pytorch Geometric libraries to utilize
the GPU provided from the Python 3 Google Compute Engine backend which has, as
specifications, 12.69GB of memory. The training and evaluation were done in the Google
COLAB3 environment. The summarization of the graph was done using Java code run
over an Intel Core i7 QuadCore CPU. All data summarized was reshaped by padding the
tensor manually to have the same shape as the layer we need to fine-tune for the transfer
learning.

Figure 4: Similar to image classification with transfer learning the tensor is is zero padded to be
fitted in the new model

5.2 Results

As presented before, the training results are in comparison to what other frameworks
achieved. In table 3 is the information that will be used as the base of comparison from
the summarized versions of the graphs and table 4 are the results we got from the transfer
learning.

2https://github.com/Karim-Anwar/thesis/
3https://colab.research.google.com/

9



AIFB MUTAG BGS AM

Saved Model from
Summarized Graph (source data)

Test Accuracy 1.6% 36.89% 64.66% 41.14%
Training Time 5s 2s 8s 12s

Model with Transfer
Learning

Test Accuracy 48.50% 66.08% 65.37% OOM
Training Time 13s 9s 3min58s OOM

Table 4: Training time on the summarized graphs and the test accuracy for the model used
for transferring the weights (top half) and the results of the target model after transferring
the weights (bottom half).

We observe a few interesting things about our results in table 4 when we compare them
with the ones from table 3, we first notice slight to no improvement for the time to train
both our model to transfer and our original with that model for the smaller datasets,
which were the ones with the largest summarized counter parts (AIFB, MUTAG). For
the dataset BGS, the transfer learning had the opposite effect, where the summary was
smaller and more general, had a decrease in the training time from 5 minutes 53 seconds
to 3 minutes 58 seconds. While for AM, the training on the target model still went Out
Of Memory, but something we noticed is that training on the summarized was possible.
None of the three successful models had progress for test accuracy but the datasets from
the original lowest had a higher test accuracy compared to the AIFB dataset model.
A couple of elements can be observed, first, the model with greater reduction of the
datasets for the transfer have improved in training time as well as they had the highest
test accuracy, so we can believe that with a better summarization method we could have
still had an improvement in time and maybe as well an improvement in the test accuracy.

5.3 Discussion

Multiple reasons can explain the results achieved in the Empirical Evaluation, partially
it has to do with method used for the graph summarization, other forms of data summa-
rizations like in the paper ”A Degeneracy Framework for Scalable Graph Autoencoders”
[6] which presents a framework that trains a dense subset of the nodes instead of using
the entire graph with Graph (Variational) Auto-encoder, could have been used to get bet-
ter performance. Even if the model uses GCN instead of RGCN, the results are a great
comparison point, especially when it comes to the results on large graphs. Another reason
would be how we did the transfer learning, specially the way we reshaped our data to fit
the target model, another approach was to use a conversion tensor to fit the weight tensor
from the source model to the target model. For that encouragement for future work will
be to find better ways to apply graph summarization and transfer learning together in
an optimal way, since this thesis shows us that there is possibility to get better results in
performance and memory usage in doing so.

6 Conclusion

The issue with graph data is their size and complexity. When relational graph convolution
networks and graph autoencoders were introduced to machine learning community, they
showed real promise on the improvements that can be done or learned from graph data,

10



but, the same old problem of scalability still resides. With the introduction of frameworks-
like the one presented in this paper-of a combination of graph summarization by node type
or frameworks like bi-simulation and graph degeneracy summarization started solving the
size complexity with regards to retaining information from the original graph data, which
would improve greatly the time and memory consumption for these big machine learning
models, this opens up a whole new level of efficiency in processing large graphs and guide
future researches towards improving them.

Acknowledgments

I would like to thank Mr. Micheal Cochez for the generous time that was given to comment
and discuss this paper, I would also like to thank the students that were working alongside
me under Mr. M.Cochez, as well as Mr. Mohamed Shahawy a good friend for their input.
And special thanks to my cat Luna who kept me going, and helped me avoid a nervous
breakdown.

References

[1] Thomas N Kipf and Max Welling. “Semi-Supervised Classification with Graph Con-
volutional Networks”. In: arXiv preprint arXiv:1609.02907 (2016).

[2] Michael Schlichtkrull et al. “Modeling Relational Data with Graph Convolutional
Networks”. In: arXiv preprint arXiv:1703.06103 (2017).

[3] Angela Bonifati, Stefania Dumbrava, and Haridimos Kondylakis. “Graph Summa-
rization”. In: CoRR abs/2004.14794 (2020). arXiv: 2004.14794. url: https://
arxiv.org/abs/2004.14794.

[4] Šejla Čebirić et al. “Summarizing semantic graphs: a survey”. In: The VLDB Journal
28.3 (June 2019), pp. 295–327. issn: 0949-877X. doi: 10.1007/s00778-018-0528-3.
url: https://doi.org/10.1007/s00778-018-0528-3.

[5] P. Bloem, A. Wibisono, and G.K.D de Vries. “Simplifying RDF Data for Graph-
Based Machine Learning.” English. In: KNOW@ LOD. 2014.

[6] Guillaume Salha et al. A Degeneracy Framework for Scalable Graph Autoencoders.
2019. arXiv: 1902.08813 [cs.LG].

[7] Stéphane Campinas. “Graph summarisation of web data: data-driven generation of
structured representations”. English. In: 2016, pp. 35–66. url: https://aran.

library.nuigalway.ie/bitstream/handle/10379/6495/thesis.pdf?sequence=

3&isAllowed=y.

[8] S. Campinas et al. “Introducing RDF Graph Summary with Application to Assisted
SPARQL Formulation”. In: 2012 23rd International Workshop on Database and
Expert Systems Applications. 2012, pp. 261–266.

[9] Fuzhen Zhuang et al. A Comprehensive Survey on Transfer Learning. 2019. arXiv:
1911.02685 [cs.LG].

[10] Sinno Jialin Pan and Qiang Yang. “A Survey on Transfer Learning”. In: IEEE
Transactions on Knowledge and Data Engineering 22 (2010), pp. 1345–1359.

11

https://arxiv.org/abs/2004.14794
https://arxiv.org/abs/2004.14794
https://arxiv.org/abs/2004.14794
https://doi.org/10.1007/s00778-018-0528-3
https://doi.org/10.1007/s00778-018-0528-3
https://arxiv.org/abs/1902.08813
https://aran.library.nuigalway.ie/bitstream/handle/10379/6495/thesis.pdf?sequence=3&isAllowed=y
https://aran.library.nuigalway.ie/bitstream/handle/10379/6495/thesis.pdf?sequence=3&isAllowed=y
https://aran.library.nuigalway.ie/bitstream/handle/10379/6495/thesis.pdf?sequence=3&isAllowed=y
https://arxiv.org/abs/1911.02685


[11] John Blitzer, Mark Dredze, and Fernando Pereira. “Biographies, Bollywood, Boom-
boxes and Blenders: Domain Adaptation for Sentiment Classification”. In: Pro-
ceedings of the 45th Annual Meeting of the Association of Computational Linguis-
tics. Prague, Czech Republic: Association for Computational Linguistics, June 2007,
pp. 440–447. url: https://www.aclweb.org/anthology/P07-1056.

[12] Jason Yosinski et al. How transferable are features in deep neural networks? 2014.
arXiv: 1411.1792 [cs.LG].

12

https://www.aclweb.org/anthology/P07-1056
https://arxiv.org/abs/1411.1792

	Introduction
	Preliminaries
	Relational graph convolutional networks
	Entity classification

	Graph scalability
	Graph summarization
	Type summarization

	Transfer learning
	Inductive transfer learning
	How transferable are the features?

	Empirical evaluation
	Experimental Setting
	Results
	Discussion

	Conclusion

