
Combining Images and Tabular Data Using
Deep Learning for Classification Tasks

Nicole Van de Weijer⋆

Vrije Universiteit Amsterdam, The Netherlands
MSc. Artificial Intelligence

Abstract. Unstructured real-world data can take numerous forms and
typically includes both textual and visual material. This study examines
whether combining data from different modalities enhances the perfor-
mance of deep learning-based classification models. Clappform, a soft-
ware company, provided data consisting of tabular data and images of
real estate properties. For this task, two deep learning models were se-
lected: TabNet for the tabular data and EfficientNet for the images.
Contrary to expectations, the model that included both modalities did
not outperform the models that concentrated on a single modality. The
results suggest that more research is needed.

Keywords: Deep Learning · Convolutional Neural Networks · Binary
Classification · Multi-Modality.

⋆ Supervisors: Michael Cochez, Jeroen Schoonderbeek and Taewoon Kim,
Studentnumber: 2550019,
Email: n.d.vande.weijer@student.vu.nl

Table of Contents

1 Introduction . 4
2 Related Work . 5

2.1 Image Classification . 5
2.1.1 Image Classification in Real Estate . 6

2.2 Tabular Classification . 6
2.2.1 Tabular Classification in Real Estate 6

2.3 Combining Images and Tabular Data . 7
2.3.1 Combining Images and Tabular Data in Real Estate 7

3 Data Description and Preparation . 8
3.1 Data Description . 8
3.2 Data Exploration . 8

3.2.1 Images . 8
3.2.2 Feature Selection . 9
3.2.3 Missing Values . 10
3.2.4 Outliers . 10

3.3 Preprocessing . 11
3.3.1 Images . 11
3.3.2 Tabular data . 11

4 Methodology . 12
4.1 Train, Validation and Test Size . 12
4.2 Part 1: Convolutional Neural Networks (CNNs) 13

4.2.1 Room Type Classifier . 15
4.2.2 Maintenance Status Classifier . 15
4.2.3 Performance Metrics . 15

4.3 Part 2: TabNet . 16
4.4 Part 3: Combination . 16
4.5 Macro F1 . 17
4.6 Hyperparameter Tuning . 17

5 Results . 18
5.1 Results Image Classification . 18

5.1.1 Default . 18
5.1.2 Tuned . 20

5.2 Results Tabular Classification . 22
5.2.1 Default . 22
5.2.2 Tuned . 24

5.3 Results Combination . 26
5.3.1 Default . 26
5.3.2 Tuned . 27

6 Discussion . 29
6.1 Discussion of the Results . 29
6.2 Limitations . 32

Combining CNNs and Tabular Data Using Deep Learning 3

6.2.1 Dataset . 32
6.2.2 Computational Power . 32

7 Future Work . 32
8 Conclusion . 33
9 Acknowledgments . 33

4 Nicole Van de Weijer

1 Introduction

Although the world is full of multimodal data, we nevertheless process each
modality independently. Unstructured real-world data can take many forms, also
known as modalities, and frequently include visual and textual material. Over
the last decade, there has been a greater emphasis on merging data from several
modalities in order to improve machine learning-based classification models [22].

Multimodality is defined by Lahal et al. as a system seen by numerous sen-
sors. The goal of multimodality is to extract and combine significant data from
individual sensors, then utilise this combined feature to solve a problem. As a
result, the predicted output will be more representative and perform better than
the individual modalities [29].

Neural networks, one of the most well-known machine learning models, have
played an important role in recent years due to their capacity to train with high
accuracy. Deep learning has become a popular study topic in both academia
and industry, owing to its superior performance when compared to traditional
machine learning models [11]. Deep learning has been shown to be successful with
a single modality dataset, however, it still struggles with dealing with multimodal
data.

In this study, the performance of deep learning models with a single modal
dataset is compared to that of a deep learning model using multimodal data. This
research is carried out in collaboration with Clappform. Clappform is a software
firm that provides a cloud-based platform that allows advanced analytics through
the use of Artificial Intelligence (AI) and Machine Learning (ML) technologies
applied in various industries. Clappform’s major focus is on integrating such
technologies into its clients’ business processes and workflows. This study relied
on property data from the real estate industry.

Each property listing includes a number of images as well as a table of charac-
teristics. In this digital era, people do not want to waste time browsing through
property listings just to find something that does not match their demands.
Besides the location, number of bedrooms, and outdoor area, the maintenance
status of a property is considered important in most real estate transactions. The
maintenance status, however, is a variable that frequently exhibits a subjective
bias and is not exactly and objectively defined. Therefore, an attempt is made
to predict the maintenance status using the provided images and corresponding
tabular data.

To verify the maintenance status reported by real estate agents, computer
vision models can extract information from the images of the listing. Computer
vision models are created to translate visual input using features and contextual
data obtained during training [38]. In this study, a Convolutional Neural Network
(CNN) is used to represent a computer vision model [4]. This gets us to the
study’s first research question:

RQ1: Can a deep learning based computer vision model learn to classify the
maintenance status of real estate images?

Combining CNNs and Tabular Data Using Deep Learning 5

After the CNN model’s performance has been confirmed, Tabular Classifica-
tion is used to try to validate it. First, the data will be transformed into suitable
input for a tabular learning deep learning model. This model, like the previ-
ous one, is used to predict a property’s maintenance status. This gets us to the
study’s second research question:

RQ2: What is the performance of tabular deep learning on tabular real estate
data?

Finally, the combination of the computer vision model and the tabular deep
learning model is examined. This gets us to the third research question:

RQ3: How does the performance change when the models are combined?

The following will be covered in the next sections. First, related work will
be discussed. The data description and preparation will be discussed in the
third section. The methodology for this research will be detailed in the fourth
section, followed by the results of the experiments in the fifth section. Finally,
the conclusions and discussion are presented in the sixth and seventh section.

2 Related Work

Since there is such an abundance of data on the real estate markets and trans-
actions, artificial intelligence and machine learning may be quite useful in pro-
cessing and evaluating the data. The amount of research that has been done on
it confirms this, notably predicting property prices, which has received a lot of
attention. In the process, evolutionary algorithms, as well as numerous other ma-
chine learning algorithms, such as support vector machine (SVM) and random
forest (RF), as well as Neural Networks and Deep learning, are utilized, with
positive results [5,23,40]. Not only does research look into predicting property
prices, but it also delves into other areas. Generating textual descriptions for
floor plan images, for example. Goyal et al. [15] have been working on it, and
has used a transformer and a recurrent neural network to get it accomplished.
There are also a number of studies where images are used. Since we acquired
a dataset containing both images and tabular data, both will be used in this
study. This will be covered in further detail in the following sections.

2.1 Image Classification

The task of assigning a label or class to an entire image is known as image classi-
fication. The purpose is to predict a class, given an image. CNNs are commonly
employed for image-related tasks owing to the utilization of convolutional layers.
It considers spatial features (i.e., the location of the pixels and their neighbors),
which are critical for capturing valuable features for visual tasks. The discovery
that a CNN could be used to progressively extract higher-level representations
of the visual information was a breakthrough in creating models for image classi-
fication. Rather than preprocessing the data to extract features such as textures

6 Nicole Van de Weijer

and forms, a CNN uses the image’s raw pixel data as input and learns how to
extract these features and, in turn, infer what object they represent [12,32].

2.1.1 Image Classification in Real Estate Several previous studies on
related topics do not explicitly simulate property maintenance status, but do
show that images of a property can be used to estimate relevant characteristics.
You et al. are the first, to the best of our knowledge, to measure the influence of
visual material on real estate price estimation [42]. In their implementation, they
used GoogleNet [37], a CNN that is 22 layers deep. In terms of mean absolute
error and mean absolute percentage error, the experimental findings show that
the model outperforms numerous existing state-of-the-art baseline techniques.

Another study [27], focusing on the attractiveness of a property, used the
ResNet50 model [17]. The results clearly reveal that the CNN performed poorly
when used with their real-estate data. Pre-trained networks, which were em-
ployed for classification issues, yielded more promising outcomes. The ResNet152-
hybrid1365 [44] architecture was used for this, which was trained using ImageNet
[13] and Places365 [45] datasets. As a result, they proved the usefulness of image
features in modeling real-estate attractiveness.

Other research focuses entirely on estimating property prices using images
of the urban environment at both street and sky level, rather than images of a
property’s interior. The model is based on the standard CNN architecture, which
employs 3x3 filters that are evaluated on 4, 8, and 13 convolutional layers before
proceeding to a series of pooling layers. This research finds promising results in
forecasting property prices in London [30].

Furthermore, research is being conducted to provide predictions regarding
the building’s maintenance status using exterior images. Law et al.’s findings [26]
suggest that visually estimated building condition may be used as a proxy for
appraisers’ condition estimations. They created a multiscale patch-based pattern
extraction method and combined it with CNNs to predict building maintenance
status based on visual inputs.

2.2 Tabular Classification

The task of assigning a class to samples of structured or relational data is known
as tabular classification. It requires the use of a categorical column as the target.
Tree ensemble models (like Random Forest [10]) are frequently advised when
handling classification and regression tasks with tabular data. Several Deep
Learning (DL) models for tabular data, on the other hand, have lately been
presented, claiming to outperform them in various use cases [6]. Although DL
models and tree ensemble models have been compared quite often, no generally
superior method has been found [14].

2.2.1 Tabular Classification in Real Estate To the best of our knowledge,
no research has been done using tabular data to predict the maintenance status

Combining CNNs and Tabular Data Using Deep Learning 7

of a property. Other studies on real estate and tabular data, however, have been
conducted.

As said before, multiple studies have been done on predicting property prices.
The number of articles and blogs written about the subject confirms this. This
has also only been studied using tabular data. Some academics concentrate on a
single model. A study used a Deep Neural Network to predict boarding property
rental prices [7]. Another study looks into using the RF approach to predict
property prices [1]. On the other hand, other researchers combine models to
get a better outcome. This has been addressed by Afonso et al.’s study. They
combined DL and Random Forest and discovered that the combined model gave
better outcomes than either model separately [2].

Aside from predicting property prices, researchers have looked at classifying
building types using tabular data. The building types were classified in two steps
throughout the classification procedure. The first challenge required classification
in order to distinguish between residential and non-residential buildings. The
second step included classifying properties (single-family homes, multi-family
homes, and apartments) among the projected residential buildings. These tasks
were completed using a Random Forest classifier. They came to the conclusion
that there was a need to improve the accuracy of property type prediction [9].

2.3 Combining Images and Tabular Data

The world presents us with data in a variety of formats. Models that combine
data from many modalities, on the surface, appear to outperform their unimodal
counterparts because more information can be used. Using tabular data along-
side image data in a multimodal approach to solving a task has lately received
attention and has the potential to generate more accurate predictions [8].

2.3.1 Combining Images and Tabular Data in Real Estate A recent
study in real estate valuation focuses on including image data alongside struc-
tured data in the modelling process. Using CNNs, a study assesses the prediction
performance of satellite images and structured data. The trained CNN model
outperforms the advanced baseline of a neural network trained on structured
data by 7% in MAE [28].

Zhao et al. investigated the use of deep learning on images of properties and
extreme Gradient Boosting (XGBoost) on sales records to estimate property
prices. Their research found that replacing the last output layer with XGBoost
improves the accuracy of property price predictions [43].

Another research looked into it from the standpoint of disaster aid. Oki et
al. established a system for estimating a building’s structure as well as the year
it was built. Again, a CNN was used to analyse exterior images, and a model
with sparse modelling (SpM) was utilised to analyse attributes from a property
database. According to the study, multimodal learning outperformed the CNN
on its own [31].

A study that is more relevant to our research topic developed a method for
determining the level of luxury in real estate images. To begin, DenseNet [21]

8 Nicole Van de Weijer

was used to train a classifier to identify images based on room type. Because
comparing rooms of the same type is expected to produce better results than
comparing rooms of different types. Crowdsourcing was then utilized to estimate
luxury levels. Another DenseNet was eventually trained to classify real estate
images based on the eight luxury level classifications provided through crowd-
sourcing. The metadata vector was then combined with the vector representing
the average luxury levels of the rooms in the property. The metadata vector
comprises all the information on home features such as offered price, size, and so
forth. They demonstrated that it gives a more accurate value calculation than
a method developed by Zillow, an American internet real-estate marketplace
company [33].

3 Data Description and Preparation

This chapter is divided into three sections that include information on the avail-
able data. The reader is introduced to the real estate data in the first section 3.1,
Data Description. Following that, part 3.2 discusses data exploration, followed
by section 3.3, which discusses the applicable pre-processing steps, including
making the data appropriate as input for the models.

3.1 Data Description

In the Netherlands, Pararius is a firm that provides an independent housing
platform that focuses on private rental properties. Properties may be manually
registered on the site by a variety of parties, including real estate agents and
individuals. When a registered rental property is rented out to a client, the
transaction data is saved. The dataset for this study is made up of all available
Pararius transactions that occurred between 2017 and 2021. Each property entry
also includes a link to the corresponding images.

3.2 Data Exploration

The data include 20,296 transactions consisting of 55 columns. The party that
registers the rental property on the housing platform offers property data, which
includes continuous, ordinal, categorical, and binary features. In the Appendix,
table 25 shows all the features present in the dataset, along with the feature
type and a brief description.

3.2.1 Images A column from the tabular data, listing photo urls, con-
tains a link to the images of the corresponding properties. The images were
taken and published on the Pararius platform by agencies or individuals. Due to
the URL’s occasional unavailability, not all images could be downloaded.

The images show a wide range of scenes. Images of bathrooms, dining rooms,
living rooms, and other rooms, as well as images of the outside and surroundings,
are included. Images of the surroundings may include a neighbouring park or
café. Floor plans have also been added to a number of properties.

Combining CNNs and Tabular Data Using Deep Learning 9

3.2.2 Feature Selection The features that are considered in this study are
listed in Table 1. The feature type and unique values have been added to the
table as additional information.

Table 1. The used features, including feature types, the number of unique values
(cardinality) and the possible values for ordinal and categorical features.

Feature Type Unique values Possible values

construction year continuous –
deposit amount continuous –
lat continuous –
listing price continuous –
listing price sqm continuous –
listing size (m2) continuous –
listing volume (m3) continuous –
lon continuous –
number of photos continuous –
service costs continuous –
balcony binary 2
furnished binary 2
garage binary 2
garden binary 2
monumental building binary 2
parking availability binary 2
protected townscape binary 2
shell binary 2
storage binary 2
upholstered binary 2
energy label ordinal 12 A+++++ – G
floor level ordinal 36 1 – 88
number of floors building ordinal 6 1 – 6
total bathrooms ordinal 5 1 – 5
total bedrooms ordinal 10 1 – 14
total rooms ordinal 12 1 – 16

acceptance category categorical 3
per date, immediately,
in consultation

building type binary 2 existing, newly

interior type categorical 4
upholstered, furnished,
upholstered or furnished,
shell

listing residential type categorical 2 apartment, house
maintenance status categorical 3 bad, excellent, good

parking type categorical 6
garage, paid, parking lot,
permit, public, unknown

In total, 32 columns were chosen and 23 were removed. Since the columns
containing latitude (lat) and longitude (lon) were chosen as features and al-

10 Nicole Van de Weijer

ready give information about the location, all nine columns that include address
information were removed. Furthermore, columns having more than 80% of their
values missing have been removed. Energy index, Min rent period and Max

rent period were those that satisfied this requirement. Three columns that in-
clude information about ID numbers are also deleted, since they are not relevant
for the analysis. Additionally, there are columns that offer information on the
dates when a property was accepted and published, but they are incorrect. The
data scientists at Clappform provided this information. A total of 6 columns of
this type have been removed. Moreover, the column source was removed because
it contained only one possible value (Pararius). Finally, the column containing
the download link of the images was removed, due to the fact that it is unrelated
to the maintenance status of the property.

3.2.3 Missing Values The dataset is sparse due to a high percentage of
missing values in various categorical and binary features. Since the dataset is
contributed by people, the process of filling in feature values when a property
is registered is not consistent. As a result, the meaning of a missing value may
be unclear. A missing value might indicate that there is insufficient information
about the feature or that the feature is not existent for a certain property.

Table 2. Percentage of missing values per feature

Feature % missing values Feature % missing values

balcony 38.94% garage 27.26%
construction year 10.25% listing volume m3 11.1%
deposit amount 9.98% number of floors building 4.71%
energy label 35.52% service costs 78.03%
floor level 25.79% storage 23.74%
garden 21.42% total bathrooms 18.5%

3.2.4 Outliers Outliers are caused by two events, according to [19]: measure-
ment errors and variability in the observed feature. Outliers are described as
”observations that differ so significantly from other observations that it raises
concerns that it was created by a separate mechanism” [16]. Outliers can also
have an effect on classification model prediction abilities [25]. Data outliers are
typically deleted for both of these reasons.

One method to eliminate the outliers is to seek the advice of professionals
with domain knowledge. Machine learning is another option [19]. Because both
Pararius and Clappform have data analytics professionals with domain knowl-
edge of the dataset, outliers are eliminated once threshold values are manually
adjusted based on their experience and advice. The size of the house and the
surroundings are mostly the focus. The eliminated number is reported in section
3.3. Due to confidentiality, the threshold values will not be disclosed.

Combining CNNs and Tabular Data Using Deep Learning 11

3.3 Preprocessing

The datasets for all three parts of the study must be cleaned up and made
consistent in order to appropriately compare the first and second parts and then
go on to the third part of the study. This section will discuss the preprocessing
steps.

3.3.1 Images Since the technique we intended to use requires images of the
same size, the images, which were originally of different sizes, have been con-
verted to the same size. The images were centrally cropped and then scaled to
the required size, to prevent stretching or compressing them. The chosen CNN,
which will be discussed later, requires a size of 380 for width and height.

Additionally, the pixel values of images are normalized with relation to the
image dataset’s mean and standard deviation. This can be helpful for transfer
learning and for getting consistent results.

After carefully reviewing several images, the decision was made to merge the
classes ’good’ and ’excellent’. The images of these classes were comparable, and
this would otherwise cause confusion for the model to distinguish between these
two classes. As a result, this task became a binary classification.

3.3.2 Tabular data The first step was to check for duplicates, but none
were found. Then, as was said in the preceding section, there are some property
entries with values that are not valid by the standards of the company. Based
on these business rules, 1076 properties are deleted. The property entries in the
data set without images are then filtered out. This implies that the download
links were no longer active, making it impossible to download the images of 4508
properties.

As a result of the prior preprocessing steps, 1016 duplicate properties were
discovered, despite the fact that the whole dataset was free of them initially.
The duplicate properties might be the result of properties being listed on the
platform a second time and eventually being rented out because the dataset was
spread out over such a lengthy period of time. We checked the address to see
whether it was the same property, and it was. Due to the removal of the column
with the publication date, these duplicates have appeared. Thus, these duplicate
properties were removed. The final numbers of the properties and images for each
class are shown in Table 3. The large dataset’s imbalance is discussed in more
detail in section 4.1.

Table 3. The amount of properties and images per class.

Bad Good Excellent Total

Properties 483 7,690 5,323 13,496
Images 2,868 87,867 69,209 159,944

12 Nicole Van de Weijer

4 Methodology

In order to answer the research questions presented in the introduction, this
research is divided into three parts , as shown in Figure 1. The first part focuses
on the images and the CNN. The second part concentrates on the corresponding
tabular data. The final part elaborates on the combination of images and tabular
data.

All three parts make use of deep learning: a CNN, a version of EfficientNet
[39], in the first and TabNet [6] in the second and third . In the third part,
a new feature is added to the initial table. The new feature contains part 1’s
predictions.

When optimizing these classification models, cross-entropy is used as the loss
function. To reduce the cross entropy loss, gradient-based optimization is being
done. The number of epochs used to train the models is 20. The number of epochs
used in studies for an image and tabular classifier led to the selection of this value.
It was decided on a number between the two. Instead of the most recent epoch,
the best weights from the best epoch (during validation) are automatically kept.

First part

Third partSecond part

Input

Images

Train CNN for
predicting

maintenance
status

Prediction of
maintenance

status

Output

Tabular
data

Input

Prediction of
maintenance

status

Create new
feature and add

to dataset

Use pretrained
model to predict

room type

Preprocess data

Train TabNet
for predicting
maintenance

status

Output

Train TabNet
for predicting
maintenance

status

Fig. 1. Pipeline of this research.

4.1 Train, Validation and Test Size

A json file containing all properties is created, and for each property, the features
with associated values and paths to the images are listed. The sets are drawn at
random from the total data set, with a proportion of 80%, 10%, and 10% set for
the training, validation, and test sets, respectively. The model is trained using
the training set. The validation set is used to validate the model’s performance
during training, and a test set is needed to measure the models’ performance.

A train set of 10796 properties, a validation set of 1350 properties, and a test
set of 1350 properties result from the splits. This can be seen in Table 4. This
table also clearly shows that there is a large imbalance in the classes.

Combining CNNs and Tabular Data Using Deep Learning 13

Table 4. An overview of the unbalanced sets, including the number of properties and
the number of images. The amount of properties and images per class are also indicated.

Train Validation Test

Properties 10,796 1,350 1,350

Bad 407 31 45
Good 10,389 1,319 1,305

Images 127,993 16,349 15,602

Bad 2,451 185 232
Good 125,542 16,164 15,370

The train and validation sets are balanced during training to guarantee that
both classes are treated equally. It is balanced in terms of the number of real
estate properties. Since there are different numbers of images for each real estate
property, there are not an equal amount of images for each class. The test set
remains unbalanced. Table 5 exhibits the new sets.

Table 5. An overview of the balanced sets, including the number of properties and the
number of images. The amount of properties and images per class are also indicated.

Train Validation Test

Properties 814 62 1,350

Bad 407 31 45
Good 407 31 1,305

Images 7,297 502 15,602

Bad 2,451 185 232
Good 4,846 317 15,370

4.2 Part 1: Convolutional Neural Networks (CNNs)

This section is about the computer vision part. This part was completed using
Convolutional Neural Networks. First, a classifier, a CNN, is used to predict the
room type. Taewoon Kim, one of my supervisors, created the room type classifier,
which is accessible on GitHub 1. Section 4.2.1 offers further information. This

1 Taewoon Kim. (2022). tae898/room-classification: v0.2 (v0.2). Zenodo.
https://doi.org/10.5281/zenodo.6338716

14 Nicole Van de Weijer

classifier is used to exclude some images depending on the type of room, and
then a maintenance status classifier, also a CNN, is made using the remaining
images.

Both classifiers use a EfficientNet model. EfficientNets, a family of models,
was introduced by Google AI and compared to existing CNNs using an image
dataset called ImageNet [13]. EfficientNet models generally outperform the exist-
ing CNNs in terms of accuracy and efficiency, while requiring fewer parameters.
They are also evaluated on eight commonly used transfer learning datasets to see
if it performed well on additional datasets. In 5 of the 8 datasets, EfficientNets
achieved state-of-the-art accuracy [39].

Tan and Le [39]investigated the effects of scaling the models’ various di-
mensions. While increasing individual dimensions enhances model performance,
they discovered that balancing all network dimensions—width, depth, and res-
olution—against available resources boosts overall performance the most. This
uniform scaling of these dimensions is also called the compound scaling approach.

Table 6, from [39], shows the structure of EfficientNet-B0 as described by
Tan and Le. The basic building component of EfficientNet-B0 is mobile inverted
bottleneck MBConv [35,39], with squeeze-and-excitation optimization [20]. Be-
ginning with the baseline EfficientNetB0 and employing the compound scaling
approach, the network may be scaled up to many bigger and superior forms. The
number of parameters increases as we move from EfficientNet-B0 to EfficientNet-
B7. The EfficientNet models that were used in this research are mentioned in
sections 4.2.1 and 4.2.2.

Table 6. EfficientNet-B0 baseline network – Each row describes a stage i with L̂i

layers, with input resolution ⟨Ĥi, Ŵi⟩ and output channels Ĉi.

Stage
i

Operator

F̂i

Resolution

Ĥi x Ŵi

#Channels

Ĉi

#Layers

L̂i

1 Conv3x3 224 x 224 32 1
2 MBConv1, k3x3 112 x 112 16 1
3 MBConv6, k3x3 112 x 112 24 2
4 MBConv6, k5x5 56 x 56 40 2
5 MBConv6, k3x3 28 x 28 80 3
6 MBConv6, k5x5 14 x 14 112 3
7 MBConv6, k5x5 14 x 14 192 4
8 MBConv6, k3x3 7 x 7 320 1
9 Conv1x1 & Pooling & FC 7 x 7 1280 1

Note. From EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks., by Tan, M. & Le, Q., 2019, Proceedings of the 36th International

Conference on Machine Learning, PMLR 97:6105-6114 [39].

Also, both EfficientNet models use a pretrained model, trained on ImageNet
[13]. ImageNet contains 1000 classes, so the pre-trained model has been trained
to work on a lot of different things. The usage of a pretrained model was chosen,

Combining CNNs and Tabular Data Using Deep Learning 15

because Hendrycks et al. [18] claim pre-training can improve model robustness
and uncertainty. In addition to these advantages, it may also provide faster model
training.

4.2.1 Room Type Classifier Each property entry in the dataset includes a
link to images of the property and its surroundings. In order to properly evaluate
the property’s maintenance status, it was decided to filter out particular room
types. The following scenes are included if the model’s confidence score was equal
to or more than 80%: bathrooms, kitchens, and living rooms. These room types
were selected because they have distinctive features, and it was believed that
doing so would make it easier to predict the maintenance status.

The model was trained using images of bathrooms, bedrooms, living rooms,
kitchens, dining rooms, exteriors, and interiors. It is a fine-tuned EfficientNet-B3
using pytorch-lightning.

4.2.2 Maintenance Status Classifier After filtering the images, developing
the maintenance status classifier was the next step. The images used to train the
model include images of properties in a particular maintenance status, among
the images of bathrooms, kitchens and living rooms. It is not feasible to claim
with certainty that just these types of images were included in the set, because
the room type classifier can also misclassify them.

This classifier also uses pytorch lightning with a pretrained EfficientNet
model. A number of Efficientnets were tested on given data, but the more pa-
rameters the model contained, the more frequently the program crashed since
the service we used (Google Colab Pro) did not have enough RAM. Because of
an additional restricted runtime of up to 24 hours and a GPU limit of 12 GB,
EfficientNetB4 was eventually chosen. This problem prevented us from experi-
menting with the batch size, thus we decided on a batch size of 32.

4.2.3 Performance Metrics The goal is to predict the maintenance status of
the property, but in the training phase, several images per property are used. The
used CNN predicts on the basis of an image instead of a property. As a result, to
predict the maintenance status of a property, two alternative metrics have been
developed, called Property Maintenance Status (PMS) Average and Mode. After
evaluating the results generated by the model with default hyperparameters
using both metrics, the metric with the highest score on the validation set is
chosen to continue working with. This model’s architecture is saved after the
epoch with the best performance.

1. PMS Average
The PMS average metric operates on a per-class basis. Every real estate
property has several images, and each image has associated probabilities for
each class. The probabilities are averaged per class, after which the class
with the highest probability is chosen.

16 Nicole Van de Weijer

2. PMS Mode
The PMSMode metric operates image by image. Here again, every real estate
property has several images, and each image has associated probabilities for
each class. It now approaches each image separately rather than tackling
it per class. It determines which class has the highest probability for each
image and selects that one. The most often mentioned class within the entire
collection of chosen classes is then determined, and that class is selected.

In both cases, the macro F1 is then calculated by comparing this to the target
value. In section 4.5, this score is explained in more detail. In addition to the
F1, a confusion matrix and the training loss of the best performing metric is
included in the results section.

4.3 Part 2: TabNet

TabNet, a deep learning model for tabular learning [6], is used to predict the
maintenance status of a property using tabular data. This tabular classifier was
chosen because it outperforms other neural network and decision tree variations
on numerous tabular datasets and produces interpretable feature attributions as
well as insights into overall model behavior [6].

At each decision step, the model employs sequential attention to choose a
subset of significant features to process, resulting in improved learning since
learning capacity is allocated to the most useful features. The feature selection
is instance-based, which means that it can differ for each row of the training
dataset.

Global interpretability is one of TabNet’s advantages. The importance of each
feature to the trained model across the whole dataset is quantified by global in-
terpretability. The importance of the individual features adds up to 1. In this
manner, it is simple to determine which feature had the most impact. This is
displayed for each model in the results section. Since TabNet does not allow
missing values, it was decided to impute the missing values in this study. This
was done because there was not a property entry without missing values. The
imputation method used is Multiple Imputation by Chained Equations (MICE)
[36]. It uses random forests in an iterative way to try to estimate the best predic-
tion for each missing value in a dataset by looking at data from other columns.
Furthermore, all the features noted in Table 1 are included, and the categorical
features are one hot encoded.

The macro F1 and confusion matrix are once again used to measure perfor-
mance. The results also include the training loss of the model. The batch size
selected for the training is 1024, which is the default value.

4.4 Part 3: Combination

By including a new feature to the part 2’s dataset, the combination of images
and tabular data is created. The new feature contains the probability that the

Combining CNNs and Tabular Data Using Deep Learning 17

property belongs to class ’good’. It was decided not to add a 0, a bad maintenance
status, or a 1, a good maintenance status, since this would provide less certainty.

The dataset with the new feature is then fed into TabNet as input.
The macro F1 and confusion matrix are once again used to measure perfor-

mance. The results also include the training loss of the model. Also, the batch
size selected for this is 1024, which is the default value.

4.5 Macro F1

By calculating the harmonic mean of a classifier’s precision and recall, the F1

integrates both into a single statistic. Comparing the effectiveness of two clas-
sifiers is its main purpose. Assume classifiers A and B have greater recall and
precision, respectively. The F1 for both classifiers in this situation may be used
to assess which one yields superior results. The F1 of a classification model is
calculated as follows:

F1 =
2(P ∗R)

P +R

where P is the precision and R the recall. A generalization of the F1 called
the Fbeta-score includes a beta configuration parameter. The default beta value
is 1.0, which is the same as the F1. In the calculation of the score, a smaller
beta value, such as 0.5, gives more weight to precision and less weight to recall,
whereas a larger beta value, such as 2.0, gives less weight to precision and more
weight to recall [34]. In this study, beta is set to 1, because recall and precision are
of equal importance. False negatives are just as essential here as false positives.

By first calculating the F1 for each class and then average them, macro F1-
averaging is carried out. This is done because there is a large imbalance in the
dataset’s classes. This metric ignores class imbalances and treats all classes as
equal. Each class receives the same weighting under macro F1. It is low for
models that only excel in popular classes while failing miserably at uncommon
ones. The best result is a macro F1 of 1, while the poorest value is 0. The macro
F1 is defined as the mean of class-wise F1:

Macro F1 =
1

N

N∑
i=0

F1i

where i is the class index and N the number of classes.

4.6 Hyperparameter Tuning

The tuning or optimization of hyperparameters is critical to the prediction ac-
curacy of machine learning algorithms. Hyperparameter tuning is referred to
choosing a set of optimal hyperparameters for a learning algorithm. The rela-
tionship between machine learning algorithm performance and hyperparameters
is unclear, but in practice, it is necessary to continuously adjust hyperparame-
ters and train a number of models with different combinations of values, then

18 Nicole Van de Weijer

compare model performance to select the best model. As a result, tuning hyper-
parameters becomes a critical issue in a machine learning problems [41].

An automatic search approach, the Bayesian optimization algorithm, was
chosen for this research because it outperforms other global optimization algo-
rithms, according to experiments published in another work [24]. By iteratively
creating a probabilistic model of the function mapping from hyperparameter val-
ues to the objective function, Bayesian optimization methods search for global
optimization. To create a posterior distribution over the objective function, the
probabilistic model captures ideas about the function’s behavior. The posterior
distribution is then utilized to create an acquisition function that selects the
next point with the highest chance of improvement [41].

Optuna [3], which uses a Bayesian optimization algorithm by default, is a
hyperparameter optimization software framework and is implemented to perform
hyperparameter optimization in this study. Each model has the learning rate
tuned within a range of 1e-5 and 1e-1. This is completed after 50 trials. This
number was arbitrarily chosen. The learning rate determines the step size at
each iteration while moving toward a minimum of a loss function. The optimizer
that is used in both models is AdamW with a default learning rate of 0.001.

Because of limitations in computational capacity, the model trained on im-
ages (part 1) uses a subsample of the data. First, the dataset is balanced, and
then 20% of the properties are included. The other model uses the entire dataset.

5 Results

In this section, the results of the deep learning models are described. This is done
separately for image classification, tabular classification and combination models
in subsections 5.1, 5.2, and 5.3 respectively. Each model has also been fine-tuned,
and therefore there is a subsection for the default model and a subsection for
the tuned model, each providing the findings.

5.1 Results Image Classification

5.1.1 Default The validation sets were evaluated using the two metrics. The
macro F1s of the two metrics were not very different, as shown in Figure 2. But
since the PMS average produced some higher macro F1s than the PMS mode,
the PMS average was chosen.

The train and validation macro F1s for 20 epochs are displayed in Figures 3
and 4. Both graphs demonstrate how well the training is progressing and that the
model is learning. However, the model appears to perform poorly when evaluated
on the validation set.

Combining CNNs and Tabular Data Using Deep Learning 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.40

0.45

0.50

0.55

0.60

0.65

0.70

M
ac

ro
 F

1-
sc

or
es

Validation - mode
Validation - average

Fig. 2. The validation set was evaluated every epoch using the PMS mode and PMS
average.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

M
ac

ro
 F

1-
sc

or
es

Training
Validation

Fig. 3. Train and validation macro F1s
evaluated by PMS average (default
learning rate)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.5

0.6

0.7

0.8

0.9

M
ac

ro
 F

1-
sc

or
es

Training
Validation

Fig. 4. Train and validation macro F1s
evaluated by PMS mode (default learn-
ing rate)

The train loss in Figure 5 is decreasing, but it is also going up and down
nearing the end. Also, it appears like the line is still decreasing. Note that steps,
not epochs, are shown in this picture. The number of batches has an impact on
the steps.

20 Nicole Van de Weijer

Fig. 5. Train loss (default learning rate)

Table 7 demonstrates that the model predicts that the attributes of class
’bad’ belong almost as much to class ’bad’ as they do to class ’good’. Table 8
shows that many more properties are predicted to be in the ’bad’ class than are
actually present.

Table 7. Confusion matrix for the val-
idation set (default learning rate)

Predicted

Bad Good

A
ct

u
a
l

Bad 17 14

Good 6 25

Table 8. Confusion matrix for the test
set (tuned learning rate)

Predicted

Bad Good

A
ct

u
a
l

Bad 26 19

Good 234 1071

5.1.2 Tuned In order to perform better than the model with the default
learning rate, the learning rate is optimized. Optuna found that trial 27, which
resulted in the model’s best macro F1 of 0.693 and learning rate of 0.0005, was
the best trial after 50 trials, as shown in table 9.

The optimized learning rate is less than the 0.001 default learning rate. A
lower learning rate could enable the model to learn a better set of weights. The
aim is for the model to perform well on both the training and validation sets.

Table 9. Tuning EfficientNet with Optuna: the best trial information.

Best trial information

Number of finished trials 50
Best trial 27
Best macro F1 0.693
Best learning rate 0.0005

Combining CNNs and Tabular Data Using Deep Learning 21

The training progressed nicely, just like with the default model, as evidenced
by the increasing line in Figure 6. However, the model is assessed once again
using a validation set, and again it appears to perform poorly even though the
learning rate is optimized. The epoch with the best macro F1 on the validation
set after 20 epochs, with a score of 0.6418, is epoch 5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

M
ac

ro
 F

1-
sc

or
es

Training
Validation

Fig. 6. Train and validation Macro F1s evaluated by the average metric (tuned learning
rate)

The train loss of the model with the tuned learning rate (see Figure 7) is
comparable with the loss of the model with the default learning rate. The line
is, however, moving up and down less sharply; this may be related to a lower
learning rate. A lower learning rate could enable the model to learn a better set
of weights.

Fig. 7. Train loss (tuned learning rate)

22 Nicole Van de Weijer

The confusion matrices presented in Tables 10 and 11 are similar to the
confusion matrices of the model with the default learning rate. Table 10 demon-
strates that the model predicts that the properties of class ’bad’ belong almost
as much to class ’bad’ as they do to class ’good’ and Table 11 shows that many
more properties are predicted to be in the ’bad’ class than are actually present.

Table 10. Confusion matrix for the
validation set (tuned learning rate)

Predicted

Bad Good

A
ct

u
a
l

Bad 16 15

Good 6 25

Table 11. Confusion matrix for the
test set (tuned learning rate)

Predicted

Bad Good

A
ct

u
a
l

Bad 31 14

Good 251 1054

Table 12 demonstrates that no model performed better than the other. There
is not much of a difference between the macro F1s of the models.

Table 12. The mean and standard deviation (SD) of five runs of the models with the
default and tuned learning rate on the validation and test set.

Default Tuned

Validation macro F1 .6763 ± .0252 .6392 ± .0167
Per class macro F1: bad .6288 ± .0260 .5741 ± .0239
Per class macro F1: good .7239 ± .0239 .7042 ± .0239
Test macro F1 .5398 ± .0239 .5410 ± .0239
Per class macro F1: bad .1755 ± .0239 .1770 ± .0239
Per class macro F1: good .9040 ± .0239 .9051 ± .0239

5.2 Results Tabular Classification

5.2.1 Default As illustrated in Figure 8, the model appears to have chosen a
random choice during training and validation, since the macro F1 is around 0.5.
The epoch with the best macro F1 on the validation set after 20 epochs, with a
score of 0.62816, is epoch 11.

The deposit amount, latitude, and construction year are the features that are
shown to be the most relevant in Figure 9’s evaluation of feature importance.
As described in section 4.3, most relevant means that the model uses sequential
attention to select which model features to reason from at each step in the model.

Combining CNNs and Tabular Data Using Deep Learning 23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.40

0.45

0.50

0.55

0.60
M

ac
ro

 F
1-

sc
or

es
Training
Validation

Fig. 8. Train and validation Macro F1s
(default learning rate)

0.0 0.1 0.2 0.3 0.4
deposit_amount

lat
construction_year

building_type
furnished

energy_label
listing_price_sqm

listing_residential_type_house
upholstered

lon
shell

number_of_photos
total_bathrooms

listing_volume_m3
acceptance_category_in consultation

interior_type_shell
garden

acceptance_category_immediately
total_bedrooms

parking_availability

Fig. 9. Relative feature importance
(default learning rate)

The loss is calculated on training, and as seen in Figure 10, the line is de-
creasing and becoming more static as more epochs pass.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Lo
ss

Train loss

Fig. 10. Train loss (default learning rate)

Tables 13 and 14 demonstrate that while the properties in class ’good’ are
more frequently predicted correctly, the properties in class ’bad’ are misclassified
more often.

24 Nicole Van de Weijer

Predicted

Bad Good

A
ct

u
a
l

Bad 12 19

Good 6 25

Table 13. Confusion matrix for the
validation set (default learning rate)

Predicted

Bad Good

A
ct

u
a
l

Bad 7 38

Good 349 956

Table 14. Confusion matrix for the
test set (default learning rate)

5.2.2 Tuned After 50 trials, Optuna determined that trial 45 was the best
trial when the model obtained the best macro F1 of 0.694 and a learning rate of
0.0037 as shown in table 15.

Table 15. Tuning TabNet with Optuna: the best trial information.

Best trial information

Number of finished trials 50
Best trial 45
Best macro F1 0.694
Best learning rate 0.0037

The tuned learning rate model appears to make random predictions, just like
the default model. However, the increasing lines from epoch 11 demonstrate that
the model is getting better at learning. The epoch with the best macro F1 on
the validation set after 20 epochs, with a score of 0.52622, is epoch 19.

The construction year, listing residential type apartment, and energy label
are the features that are shown to be the most relevant in Figure 12’s evaluation
of feature importance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

M
ac

ro
 F

1-
sc

or
es

Training
Validation

Fig. 11. Train and validation Macro
F1s (tuned learning rate)

0.0 0.1 0.2 0.3 0.4 0.5
construction_year

listing_residential_type_apartment
energy_label
listing_price

number_of_photos
lon

total_bathrooms
floor_level

listing_price_sqm
acceptance_category_in consultation

interior_type_shell
acceptance_category_immediately

interior_type_furnished
total_rooms
upholstered

number_of_floors_building
total_bedrooms

listing_volume_m3
balcony

building_type

Fig. 12. Relative feature importance
(tuned learning rate)

Combining CNNs and Tabular Data Using Deep Learning 25

The train loss in Figure 13 is going more up and down than the training
loss in Figure 10. The increased learning rate could be the cause of this. Also,
it appears like the line is still decreasing. This indicates that the model is still
learning.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

0.75

0.80

0.85

0.90

0.95

1.00

Lo
ss

Train loss

Fig. 13. Train loss (tuned learning rate)

Table 16 demonstrates that while the model performs better when predicting
properties of class ’bad’, it more often misclassifies properties of class ’good’.
Table 17 shows that the model misclassifies more than half of the properties of
class ’good’ to the class ’bad’. Compared to the model with the default learning
rate, shown in Table 14, this model predicted the properties of the label ’good’
more frequently wrong. Also, the model predicts the properties, labeled as ’bad’,
as often as ’good’, although Table 14 shows that ’bad’ properties are more often
forecasted as ’good’.

Predicted

Bad Good

A
ct

u
a
l

Bad 21 10

Good 14 17

Table 16. Confusion matrix for the
validation set (tuned learning rate)

Predicted

Bad Good

A
ct

u
a
l

Bad 24 21

Good 826 479

Table 17. Confusion matrix for the
test set (tuned learning rate)

As shown in table 18, the model with the default learning rate outperformed
the model with the tuned learning rate in terms of the validation and test set’s
mean macro F1.

26 Nicole Van de Weijer

Table 18. The mean and standard deviation (SD) of five runs of the models with the
default and tuned learning rate on the validation and test set.

Default Tuned

Validation macro F1 .5960 ± .0472 .5300 ± .0587
Per class macro F1: bad .5813 ± .1007 .5411 ± .1591
Per class macro F1: good .6120 ± .0690 .5189 ± .1224
Test macro F1 .3940 ± .0976 .3140 ± .1341
Per class macro F1: bad .0733 ± .0187 .0589 ± .0122
Per class macro F1: good .7166 ± .1783 .5701 ± .2734

5.3 Results Combination

5.3.1 Default As illustrated in Figure 14, the model appears to have chosen
a random choice during training and validation, since the macro F1 is around
0.5. The epoch with the best macro F1 on the validation set after 20 epochs,
with a score of 0.55889, is epoch 2.

The listing price, construction year, and listing volume (m3) are the features
that are shown to be the most relevant in Figure 15’s evaluation of feature
importance. Notably absent from the list of the top 20 features is the new feature
that contains the probability score that it would be class 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

M
ac

ro
 F

1-
sc

or
es

Training
Validation

Fig. 14. Train and validation macro
F1s (default learning rate)

0.00 0.05 0.10 0.15 0.20 0.25
listing_price

construction_year
listing_volume_m3

number_of_floors_building
lat

upholstered
storage

total_bedrooms
balcony

total_rooms
listing_price_sqm

interior_type_furnished
listing_size_m2

lon
monumental building

interior_type_shell
interior_type_upholstered

service_costs
energy_label

floor_level

Fig. 15. Relative feature importance
(default learning rate)

The train loss, as seen in Figure 16, is decreasing over time. Although it is
doing so more slowly, it appears that the loss may even fall more after 20 epochs.

Combining CNNs and Tabular Data Using Deep Learning 27

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

0.65

0.70

0.75

0.80

0.85

Lo
ss

Train loss

Fig. 16. Train loss (default learning rate)

Tables 19 and 20 show that the properties, labeled as ’bad’ are more of-
ten predicted belonging to class ’good’. The properties, labeled as ’good’, are
predicted correctly more frequently than not.

Predicted

Bad Good

A
ct

u
a
l

Bad 7 24

Good 3 28

Table 19. Confusion matrix for the
validation set (default learning rate)

Predicted

Bad Good

A
ct

u
a
l

Bad 14 31

Good 353 952

Table 20. Confusion matrix for the
test set (default learning rate)

5.3.2 Tuned Optuna selected trial 12 as the best trial after 50 trials when
the model achieved the best macro F1 of 0.645 with a learning rate of 0.0058.

Table 21. Tuning TabNet with Optuna: the best trial information.

Best trial information

Number of finished trials 50
Best trial 12
Best macro F1 0.645
Best learning rate 0.0058

Since the macro F1 is close to 0.5, as shown in Figure 17, it appears that
the model made a random selection throughout training and validation. With a
score of 0.55889, epoch 6 has the highest macro F1 on the validation set after 20

28 Nicole Van de Weijer

epochs. Given that both the training and validation curves are increasing as of
the 14th epoch, it seems that this model is starting to learn. The default learning
rate model does not exhibit this behavior.

The listing price per square meter has received the majority of the model’s
attention (see Figure 18). This feature in particular has played an important
role to the majority of the predictions due to the tuned learning rate. It is worth
noting once more that the additional feature did nothing to assist the model.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epochs

0.35

0.40

0.45

0.50

0.55

M
ac

ro
 F

1-
sc

or
es

Training
Validation

Fig. 17. Train and validation macro
F1s (tuned learning rate)

0.0 0.2 0.4 0.6 0.8
listing_price_sqm

shell
listing_size_m2
total_bedrooms

lat
listing_volume_m3

floor_level
construction_year

listing_residential_type_house
garden

upholstered
monumental building

service_costs
protected townscape

number_of_photos
listing_price

parking_availability
interior_type_furnished

total_bathrooms
energy_label

Fig. 18. Relative feature importance
(tuned learning rate)

The loss does not seem to have entirely stagnated, as shown in Figure 19. It
is possible that it decreases more after 20 epochs. The loss is going up and down
more in this case than it did in the model with the default learning rate (Figure
16), which may be connected to the higher learning rate.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

Lo
ss

Train loss

Fig. 19. Train loss (tuned learning rate)

Combining CNNs and Tabular Data Using Deep Learning 29

Tables 22 and 23 show similar outcomes as Tables 19 and 20. The proper-
ties, labeled as ’bad’ are more often predicted belonging to class ’good’. The
properties, labeled as ’good’, are predicted correctly more frequently than not.

Predicted

Bad Good

A
ct

u
a
l

Bad 15 16

Good 9 22

Table 22. Confusion matrix for the
validation set (tuned learning rate)

Predicted

Bad Good

A
ct

u
a
l

Bad 13 32

Good 321 984

Table 23. Confusion matrix for the
test set (tuned learning rate)

Table 24 demonstrates that no model performed better than the other. There
is not much of a difference, and the best model depends on the situation.

Table 24. The mean and standard deviation (SD) of five runs of the models with the
default and tuned learning rate on the validation and test set.

Default Tuned

Validation macro F1 .5480 ± .0383 .5740 ± .0546
Per class macro F1: bad .4783 ± .0473 .5819 ± .1098
Per class macro F1: good .6157 ± .0892 .5675 ± .1300
Test macro F1 .4100 ± .0574 .3900 ± .0809
Per class macro F1: bad .0624 ± .0709 .0709 ± .0104
Per class macro F1: good .7613 ± .1198 .7112 ± .1674

6 Discussion

This section is divided into the following sections. The discussion of the results
of the three parts are described at the beginning. An explanation of the study’s
limitations and issues that were encountered is then given. Finally, several ideas
for future research are given.

6.1 Discussion of the Results

When looking at section 5.1, Figures 3,4 and 6, it can be concluded that the
model overfits to the training set by memorizing the noise and fitting too closely
to it, which makes it less able to generalize to new data. The validation is not
following the training curve, which is moving in the direction of 100. Also, as
shown in Table 12, the model predicts properties labelled as ’good’ fairly well,
but properties labelled as ’bad’ very poorly. The confusion matrices, Tables 7, 8,

30 Nicole Van de Weijer

10 and 11, show this as well. It is noticeable that the model frequently interprets
images with a ’bad’ label as images with a ’good’ label. Since the train and
validation sets are balanced to ensure that the classes are treated equally, you
would not expect this behavior.

This might be caused by a number of factors, including the non-equal distri-
butions of images by class. The properties are balanced, but the images are not.
There are far more images with the label ’good’ than there are with the label
’bad’. The large variety of images can also make it difficult for the model to cor-
rectly predict images that were not observed during training. Additionally, the
lighting in each image may differ, or possibly a better camera is used at a differ-
ent property. Another reason could be that real estate agents have mislabelled
the images. After all, real estate agents themselves have labelled the images, so
it is subjective: a property can be considered ’good’ or ’bad’ by different people.
This could also be reflected in the dataset used. Moreover, the model with the
tuned learning rate did not produce noticeably better results.

Figures 20, 21 and 22 display some examples of properties. Figure 20 shows
three images of a property labelled as ’good’. The model correctly predicted in
this case the label ’good’ with a probability of 93.19 percent. Figure 21 also
includes three images, and they are labelled as ’bad’. The model is 81.22 percent
confident that it is a property with a bad maintenance status. It is also accurately
predicted this time. However, Figure 22 displays a collection of images that have
been labelled as ’bad’, despite the model classifying them as ’good’ with an
86.46 percent likelihood. This is a good illustration of the mentioned factors.
The model could be confused because the labels are subjective, the lighting is
varied in the images, and the images do not really differ that much from one
another.

Fig. 20. A few images of a property from the class good (1)

Combining CNNs and Tabular Data Using Deep Learning 31

Fig. 21. A few images of a property from the class bad (0)

Fig. 22. A few images of a property from the class bad (0)

The predictions of the model of the second part in section 5.2 with the
default learning rate and the tuned learning rate seems to be random, as may be
inferred from Figures 8 and 11 and Table 18. There is a potential that there is
no relationship between the features and classes. These figures also demonstrate
how poorly the training is progressing. The macro F1 vary between 0.5 and even
less than that. But it is likely that if the model with the tuned learning rate
ran for a longer duration (more epochs), it would perform better. Since it is
on the rise from epoch 18 and the best macro F1 occurs during epoch 19. It is
possible that because the tuned learning rate is higher than the default learning
rate (0.001), the maximum macro F1 cannot be achieved. This is also seen in
the train loss in Figure 13: the training loss appears to be decreasing.

The relative importances of the features are not markedly different (see Fig-
ures 9 and 12), but it is worth noting that the top two features of the model
with the default learning rate do not even appear in the top 20 of the model
with the tuned learning rate. It is possible that if all the features are used, some
of them cause confusion and thus the model cannot predict well.

The model with the default learning rate appears to predict the label ’good’
more frequently in the confusion matrices (Tables 13 and 14), but the model
with the tuned learning rate predicts the label ’bad’ more frequently (Tables 16
and 17). This could occur as a result of the model’s random decision.

The model’s performance in the third part, see section 5.3, was expected to be
better than the models’ individual performances in parts 1 and 2. The addition
of model 1’s output as a new feature to model 3’s input raised the probability
that model 3 would be influenced and consider this feature relevant. Figures 15
and 18 show that, contrary to predictions, neither of the models—with either a

32 Nicole Van de Weijer

default or tuned learning rate—focused on it. It does not rank among the top
20 features for either model. This could be because the hyperparameters were
set incorrectly. If these are changed, the model may adapt to the data and begin
focusing more on the new feature.

The macro F1s are roughly 0.5, as seen in Figures 14, 17 and Table 24. This
indicates that a random prediction is made. Nevertheless, the line of training
increases starting at epoch 14 in figure 17. It is possible that performance could
improve if the model had to train for more epochs. Similar to part 2, it is probable
that the maximum macro F1 cannot be achieved in this case because the tuned
learning rate is higher than the default learning rate. Also, similar to part 2,
the training loss looks to be decreasing further (see Figure 19). But this does
not only hold for the model with the tuned learning rate. The same is true for
the model with the default learning rate (see Figure 19). However, there is a
trend toward class ’good’ predictions being made more frequently: the Tables
19, 20, 22 and 23 show that both models predict the properties as ’good’ more
frequently than ’bad’. More understanding could be gained by running more
than 20 epochs.

6.2 Limitations

6.2.1 Dataset There are some limitations to the dataset. The data is created
by people. As a result, the data’s quality may be questionable. Data flaws discov-
ered included, for example, values for the feature ’floor level’ that exceeded the
value for the feature ’number of floors building’. The same problem was discov-
ered with the features ’total bedrooms’ and ’total rooms’. Furthermore, the data
contained a substantial portion of missing values in several features. This could
also be due to incorrect human entry. An imputation procedure was employed,
however it is possible that it was frequently inaccurate. The data collection pro-
cess could be improved to obtain a higher quality dataset. For example, the data
providing parties could be given explicit descriptions of each feature, or there
could be predetermined answers from which the real estate agent could choose.

6.2.2 Computational Power Since the laptop used is a 2020 model Mac-
book Pro, GPU is not supported. Because of this, local CNN training with
images was not an option. To resolve this issue, I was able to use Google Colab
Pro, however I was restricted to a runtime of up to 24 hours and a GPU limit
of 12GB. This prevented me from conducting a number of experiments, such
as adjusting more hyperparameters than simply the learning rate or testing out
different EfficientNet versions with a variety of parameters.

7 Future Work

The knowledge introduced in this paper can be expanded upon in a number of
different ways. The first part, which focuses on the images, can be approached
in a variety of ways. Performance metrics may be more thoroughly tested. Other

Combining CNNs and Tabular Data Using Deep Learning 33

approaches could be developed, such as saving probabilities from the image of
the worst maintenance state rather than the mode and average.

Furhermore, the images could be analyzed using the equipment in the room.
The equipment in the images could be labeled and determined whether it is in a
good or bad maintenance status. By doing this, rather than relying entirely on
the features that a model extracted from an image, you have more control over
how a room is labeled as ’good’ or ’bad’. This approach, however, requires more
work than the approach used in this study.

Another approach would be to develop a classifier for each type of room, such
as one for kitchens and bathrooms separately. This way, the model concentrates
on a specific kind of room and its features. As mentioned in the Computational
Power section, there could also be experiments with different versions of Effi-
cientNet.

In the second part, which focuses on the tabular data, feature engineering
can be performed to see if it yields a better result.

In the final part, which is a combination of the first two parts, future work can
focus on a multi input model. In this case, both modalities are fed simultaneously
into the model.

Finally, future research could concentrate on fine-tuning more hyperparam-
eters for all models. All parts can benefit from hyperparameter tuning.

8 Conclusion

In this research, deep learning models for classification tasks were the main focus.
Images and tabular data were both used as inputs to the models. The outcomes
of our work using EfficientNet and TabNet were shown. The results of these
models alone and in combination were compared, and tuned models were also
added to see if they improved performance. Although the model trained using
images appears to learn well, it performs poorly when tested on the validation
and test sets. However, it performs better than the model that was trained on
tabular data. Contrary to expectations, the combined model did not perform
any better than the individual models, and the models with the tuned learning
rate are not a valuable addition in terms of enhanced performance. The results
indicate that this needs to be investigated further.

9 Acknowledgments

I would like to thank Taewoon Kim for his supervision, help, and creation of
the room type classifier throughout the writing of this thesis. I would also like
to thank Michael Cochez for his additional supervision. This research, however,
would not have been possible without Clappform. Therefore, I would like to
thank Clappform for providing me with the opportunity and resources to com-
plete this research. Thereby, I would like to thank Clappform’s data analytics,
product development, and business development teams, as well as my external

34 Nicole Van de Weijer

supervisor, Jeroen Schoonderbeek, for his constant supervision throughout the
internship.

Combining CNNs and Tabular Data Using Deep Learning 35

References

1. Adetunji, A.B., Akande, O.N., Ajala, F.A., Oyewo, O., Akande, Y.F.,
Oluwadara, G.: House Price Prediction Using Random Forest Ma-
chine Learning Technique. Procedia Computer Science 199, 806–813
(2022). https://doi.org/https://doi.org/10.1016/j.procs.2022.01.100, https:
//www.sciencedirect.com/science/article/pii/S1877050922001016, the 8th Inter-
national Conference on Information Technology and Quantitative Management
(ITQM 2020 & 2021): Developing Global Digital Economy after COVID-19

2. Afonso, B., Melo, L., Dihanster, W., Sousa, S., Berton, L.: Housing Prices Pre-
diction with a Deep Learning and Random Forest Ensemble. In: XVI Encon-
tro Nacional de Inteligência Artificial e Computacional. pp. 389–400 (01 2020).
https://doi.org/10.5753/eniac.2019.9300

3. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A Next-Generation
Hyperparameter Optimization Framework. In: Proceedings of the 25rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(2019)

4. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a Convolutional Neu-
ral Network. In: 2017 International Conference on Engineering and Technology
(ICET). pp. 1–6 (2017). https://doi.org/10.1109/ICEngTechnol.2017.8308186

5. Angrick, S., Bals, B., Hastrich, N., Kleissl, M., Schmidt, J., Doskoc, V., Katz-
mann, M., Molitor, L., Friedrich, T.: Towards Explainable Real Estate Valuation
via Evolutionary Algorithms. CoRR abs/2110.05116 (2021), https://arxiv.org/
abs/2110.05116

6. Arik, S.O., Pfister, T.: Tabnet: Attentive Interpretable Tabular Learning. Pro-
ceedings of the AAAI Conference on Artificial Intelligence 35(8), 6679–6687 (May
2021), https://ojs.aaai.org/index.php/AAAI/article/view/16826

7. Aziz, M.A., Nurrahim, F., Susanto, P.E., Windiatmoko, Y.: Boarding House Rent-
ing Price Prediction Using Deep Neural Network Regression on Mobile Apps. CoRR
abs/2101.02033 (2021), https://arxiv.org/abs/2101.02033

8. Baltrusaitis, T., Ahuja, C., Morency, L.P.: Multimodal Machine Learning:
A Survey and Taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41(2),
423–443 (feb 2019). https://doi.org/10.1109/TPAMI.2018.2798607, https://doi.
org/10.1109/TPAMI.2018.2798607

9. Bandam, A., Busari, E., Syranidou, C., Linssen, J., Stolten, D.: Classification of
Building Types in Germany: A Data-Driven Modeling Approach. Data 7(4) (2022).
https://doi.org/10.3390/data7040045, https://www.mdpi.com/2306-5729/7/4/45

10. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001).
https://doi.org/10.1023/A:1010933404324, http://dx.doi.org/10.1023/A%
3A1010933404324

11. Chen, M.Y., Chiang, H.S., Lughofer, E., Egrioglu, E.: Deep Learning: Emerging
Trends, Applications and Research Challenges. Soft Computing 24, 1–4 (04 2020).
https://doi.org/10.1007/s00500-020-04939-z

12. Cireşan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flex-
ible, High Performance Convolutional Neural Networks for Image Classification.
In: Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence - Volume Volume Two. p. 1237–1242. IJCAI’11, AAAI Press (2011)

13. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Ima-
genet: A Large-Scale Hierarchical Image Database. In: 2009 IEEE confer-
ence on computer vision and pattern recognition. pp. 248–255. Ieee (2009).
https://doi.org/10.1109/CVPR.2009.5206848

https://doi.org/https://doi.org/10.1016/j.procs.2022.01.100
https://www.sciencedirect.com/science/article/pii/S1877050922001016
https://www.sciencedirect.com/science/article/pii/S1877050922001016
https://doi.org/10.5753/eniac.2019.9300
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://arxiv.org/abs/2110.05116
https://arxiv.org/abs/2110.05116
https://ojs.aaai.org/index.php/AAAI/article/view/16826
https://arxiv.org/abs/2101.02033
https://doi.org/10.1109/TPAMI.2018.2798607
https://doi.org/10.1109/TPAMI.2018.2798607
https://doi.org/10.1109/TPAMI.2018.2798607
https://doi.org/10.3390/data7040045
https://www.mdpi.com/2306-5729/7/4/45
https://doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A%3A1010933404324
http://dx.doi.org/10.1023/A%3A1010933404324
https://doi.org/10.1007/s00500-020-04939-z
https://doi.org/10.1109/CVPR.2009.5206848

36 Nicole Van de Weijer

14. Gorishniy, Y., Rubachev, I., Khrulkov, V., Babenko, A.: Revisiting Deep Learning
Models for Tabular Data. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.,
Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems. vol. 34,
pp. 18932–18943. Curran Associates, Inc. (2021), https://proceedings.neurips.cc/
paper/2021/file/9d86d83f925f2149e9edb0ac3b49229c-Paper.pdf

15. Goyal, S., Chattopadhyay, C., Bhatnagar, G.: Knowledge Driven Description
Synthesis for Floor Plan Interpretation. CoRR abs/2103.08298 (2021), https:
//arxiv.org/abs/2103.08298

16. Hawkins, D.: Identification of Outliers. Monographs on applied prob-
ability and statistics, Chapman and Hall, London [u.a.] (1980), http:
//gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=
ppn+02435757X&sourceid=fbw bibsonomy

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp.
770–778 (June 2016). https://doi.org/10.1109/CVPR.2016.90

18. Hendrycks, D., Lee, K., Mazeika, M.: Using Pre-Training Can Improve Model Ro-
bustness and Uncertainty. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceed-
ings of the 36th International Conference on Machine Learning. Proceedings of
Machine Learning Research, vol. 97, pp. 2712–2721. PMLR (09–15 Jun 2019),
https://proceedings.mlr.press/v97/hendrycks19a.html

19. Hoogendoorn, M., Funk, B.: Machine Learning for the Quantified Self: On the Art
of Learning from Sensory Data. Springer (2017)

20. Hu, J., Shen, L., Sun, G.: Squeeze-and-Excitation Networks. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 7132–7141 (2018).
https://doi.org/10.1109/CVPR.2018.00745

21. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely
Connected Convolutional Networks. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 2261–2269 (2017).
https://doi.org/10.1109/CVPR.2017.243

22. Iv, W.C.S., Kapoor, R., Ghosh, P.: Multimodal Classification: Current Land-
scape, Taxonomy and Future Directions. ACM Comput. Surv. (jun 2022).
https://doi.org/10.1145/3543848, https://doi.org/10.1145/3543848, just Accepted

23. Jha, S.B., Babiceanu, R.F., Pandey, V., Jha, R.K.: Housing Market Prediction
Problem Using Different Machine Learning Algorithms: A Case Study. CoRR
abs/2006.10092 (2020), https://arxiv.org/abs/2006.10092

24. Jones, D.: A Taxonomy of Global Optimization Methods Based on
Response Surfaces. J. of Global Optimization 21, 345–383 (12 2001).
https://doi.org/10.1023/A:1012771025575

25. Kalisch, M., Michalak, M., Sikora, M., Wróbel, L., Przysta lka, P.: Influence of
Outliers Introduction on Predictive Models Quality. In: BDAS. vol. 613, pp. 79–93
(04 2016). https://doi.org/10.1007/978-3-319-34099-9 5

26. Koch, D., Despotovic, M., Sakeena, M., Döller, M., Zeppelzauer, M.: Vi-
sual Estimation of Building Condition with Patch-Level ConvNets. In: Pro-
ceedings of the 2018 ACM Workshop on Multimedia for Real Estate Tech.
p. 12–17. RETech’18, Association for Computing Machinery, New York, NY,
USA (2018). https://doi.org/10.1145/3210499.3210526, https://doi.org/10.1145/
3210499.3210526

27. Kostic, Z., Jevremovic, A.: What Image Features Boost Housing Mar-
ket Predictions? IEEE Transactions on Multimedia PP, 1–1 (01 2020).
https://doi.org/10.1109/TMM.2020.2966890

https://proceedings.neurips.cc/paper/2021/file/9d86d83f925f2149e9edb0ac3b49229c-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/9d86d83f925f2149e9edb0ac3b49229c-Paper.pdf
https://arxiv.org/abs/2103.08298
https://arxiv.org/abs/2103.08298
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+02435757X&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+02435757X&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+02435757X&sourceid=fbw_bibsonomy
https://doi.org/10.1109/CVPR.2016.90
https://proceedings.mlr.press/v97/hendrycks19a.html
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1145/3543848
https://doi.org/10.1145/3543848
https://arxiv.org/abs/2006.10092
https://doi.org/10.1023/A:1012771025575
https://doi.org/10.1007/978-3-319-34099-9_5
https://doi.org/10.1145/3210499.3210526
https://doi.org/10.1145/3210499.3210526
https://doi.org/10.1145/3210499.3210526
https://doi.org/10.1109/TMM.2020.2966890

Combining CNNs and Tabular Data Using Deep Learning 37

28. Kucklick, J.P., Müller, O.: Location, Location, Location: Satellite Image-Based
Real-Estate Appraisal. ArXiv abs/2006.11406 (2020)

29. Lahat, D., Adali, T., Jutten, C.: Multimodal Data Fusion: An Overview of
Methods, Challenges and Prospects. Proceedings of the IEEE 103(9), 1449–
1477 (Aug 2015). https://doi.org/10.1109/JPROC.2015.2460697, https://hal.
archives-ouvertes.fr/hal-01179853

30. Law, S., Paige, B., Russell, C.: Take a Look Around: Using Street View and Satellite
Images to Estimate House Prices. ACM Trans. Intell. Syst. Technol. 10(5), 54:1–
54:19 (2019). https://doi.org/10.1145/3342240, https://doi.org/10.1145/3342240

31. Oki, T., Ogawa, Y.: Model for Estimation of Building Structure and
Built Year Using Building Facade Images and Attributes Obtained from a
Real Estate Database, pp. 549–573. Springer International Publishing, Cham
(2021). https://doi.org/10.1007/978-3-030-76059-5 27, https://doi.org/10.1007/
978-3-030-76059-5 27

32. O’Shea, K., Nash, R.: An Introduction to Convolutional Neural Networks (2015).
https://doi.org/10.48550/ARXIV.1511.08458, https://arxiv.org/abs/1511.08458

33. Poursaeed, O., Matera, T., Belongie, S.: Vision-Based Real Estate Price
Estimation. Machine Vision and Applications 29(4), 667–676 (Apr 2018).
https://doi.org/10.1007/s00138-018-0922-2, http://dx.doi.org/10.1007/
s00138-018-0922-2

34. Rijsbergen, C.J.V.: Information Retrieval. Butterworth-Heinemann, 2nd edn.
(1979)

35. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: Inverted Resid-
uals and Linear Bottlenecks: Mobile Networks for Classification, Detection and
Segmentation. CoRR abs/1801.04381 (2018), http://arxiv.org/abs/1801.04381

36. Shah, A.D., Bartlett, J.W., Carpenter, J., Nicholas, O., Hemingway, H.: Compar-
ison of Random Forest and Parametric Imputation Models for Imputing Missing
Data Using MICE: A CALIBER Study. American Journal of Epidemiology 179(6),
764–774 (01 2014). https://doi.org/10.1093/aje/kwt312, https://doi.org/10.1093/
aje/kwt312

37. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going Deeper with Convolutions. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1–9 (2015).
https://doi.org/10.1109/CVPR.2015.7298594

38. Szeliski, R.: Computer Vision - Algorithms and Applications. Texts in Computer
Science, Springer (2011)

39. Tan, M., Le, Q.: EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th
International Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 97, pp. 6105–6114. PMLR (09–15 Jun 2019), https://proceedings.
mlr.press/v97/tan19a.html

40. Wang, Z., Wang, Y., Wu, S.: House Price Valuation Model Based on Geographically
Neural Network Weighted Regression: The Case Study of Shenzhen, China (2022).
https://doi.org/10.48550/ARXIV.2202.04358, https://arxiv.org/abs/2202.04358

41. Wu, J., Chen, X.Y., Zhang, H., Xiong, L.D., Lei, H., Deng, S.H.: Hyper-
parameter Optimization for Machine Learning Models Based on Bayesian
Optimization. Journal of Electronic Science and Technology 17(1), 26–
40 (2019). https://doi.org/https://doi.org/10.11989/JEST.1674-862X.80904120,
https://www.sciencedirect.com/science/article/pii/S1674862X19300047

https://doi.org/10.1109/JPROC.2015.2460697
https://hal.archives-ouvertes.fr/hal-01179853
https://hal.archives-ouvertes.fr/hal-01179853
https://doi.org/10.1145/3342240
https://doi.org/10.1145/3342240
https://doi.org/10.1007/978-3-030-76059-5_27
https://doi.org/10.1007/978-3-030-76059-5_27
https://doi.org/10.1007/978-3-030-76059-5_27
https://doi.org/10.48550/ARXIV.1511.08458
https://arxiv.org/abs/1511.08458
https://doi.org/10.1007/s00138-018-0922-2
http://dx.doi.org/10.1007/s00138-018-0922-2
http://dx.doi.org/10.1007/s00138-018-0922-2
http://arxiv.org/abs/1801.04381
https://doi.org/10.1093/aje/kwt312
https://doi.org/10.1093/aje/kwt312
https://doi.org/10.1093/aje/kwt312
https://doi.org/10.1109/CVPR.2015.7298594
https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.mlr.press/v97/tan19a.html
https://doi.org/10.48550/ARXIV.2202.04358
https://arxiv.org/abs/2202.04358
https://doi.org/https://doi.org/10.11989/JEST.1674-862X.80904120
https://www.sciencedirect.com/science/article/pii/S1674862X19300047

38 Nicole Van de Weijer

42. You, Q., Pang, R., Cao, L., Luo, J.: Image-Based Appraisal of Real
Estate Properties. IEEE Transactions on Multimedia 19(12), 2751–2759
(Dec 2017). https://doi.org/10.1109/tmm.2017.2710804, http://dx.doi.org/10.
1109/TMM.2017.2710804

43. Zhao, Y., Chetty, G., Tran, D.: Deep Learning with XGBoost for Real Estate
Appraisal. In: 2019 IEEE Symposium Series on Computational Intelligence (SSCI).
pp. 1396–1401 (2019). https://doi.org/10.1109/SSCI44817.2019.9002790

44. Zhou, B., Khosla, A., Lapedriza, A., Torralba, A., Oliva, A.: Places: An Im-
age Database for Deep Scene Understanding. Journal of Vision 17 (10 2016).
https://doi.org/10.1167/17.10.296

45. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places:
A 10 Million Image Database for Scene Recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence 40(6), 1452–1464 (2018).
https://doi.org/10.1109/TPAMI.2017.2723009

https://doi.org/10.1109/tmm.2017.2710804
http://dx.doi.org/10.1109/TMM.2017.2710804
http://dx.doi.org/10.1109/TMM.2017.2710804
https://doi.org/10.1109/SSCI44817.2019.9002790
https://doi.org/10.1167/17.10.296
https://doi.org/10.1109/TPAMI.2017.2723009

Combining CNNs and Tabular Data Using Deep Learning 39

Appendices

Appendix A: All features in the dataset

4
0

N
ic

o
le

V
a
n

d
e

W
ei

je
r

Table 25. The features present in the dataset, including feature types and a brief description.
Feature Type Description

construction year continuous The year the property was built
deposit amount continuous The deposit amount associated with the listed property
energy index continuous The energy index
lat continuous The latitude of the property
listing price continuous The rental price per month for the listed property
listing price sqm continuous The rental price per square meter for the listed property
listing size (m2) continuous The size of the property in square meters
listing volume (m3) continuous The volume of the property in cubic meters
lon continuous The longitude of the property
number of photos continuous The number of photos of the property
publication year continuous The year the listing was published
publication date continuous When the apartment is rented
published on continuous When the apartment is listed on the platform
service costs continuous The service costs associated with the listed property
balcony binary Indicator whether a balcony is present
furnished binary Indicator whether the property is furnished
garage binary Indicator whether a garage is present
garden binary Indicator whether a garden is present
monumental building binary Indicator whether the property is a monumental building
parking availability binary Indicator whether there is parking availability
protected townscape binary Indicator whether the property is part of a protected townscape
publication published binary Indicator whether the publication is published
shell binary Indicater whether the property is delivered shell or not
storage binary Indicator whether a storage is present
upholstered binary Indicator whether the property is upholstered
energy label ordinal The energy label
floor level ordinal The floor level at which the property is located
max rent period ordinal The maximum rent period of the property
min rent periode ordinal The minimum rent period of the property
number of floors building ordinal The total number of floors of the building in which the property is located
total bathrooms ordinal Total number of bathrooms in the listed property
total bedrooms ordinal Total number of bedrooms in the listed property
total rooms ordinal Total number of rooms in the listed property, excluding bathroom and toilet
acceptance category categorical The type of acceptance
acceptance date categorical The date of acceptance of the property
available since categorical The date that the property is available since
building type categorical Indicator whether the property is new or existing
city categorical The city in which the property is located
district name categorical The district in which the property is located
interior type categorical The interior type of the property
listing city name categorical The city in which the property is located
listing photo urls categorical The photo urls of the listing
listing postal code categorical The postal code in which the property is located
listing residential type categorical Indicator whether it is a house or apartment
listing street name categorical The street in which the property is located on
maintenance status categorical The maintenance status
municipal name 2020 categorical The municipal in which the property is located
neighbourhood name categorical The neighbourhood in which the property is located
parking type categorical The type of parking availability
postal code categorical The postal code in which the property is located
source categorical The source of the listing

	Introduction
	Related Work
	Image Classification
	Image Classification in Real Estate

	Tabular Classification
	Tabular Classification in Real Estate

	Combining Images and Tabular Data
	Combining Images and Tabular Data in Real Estate

	Data Description and Preparation
	Data Description
	Data Exploration
	Images
	Feature Selection
	Missing Values
	Outliers

	Preprocessing
	Images
	Tabular data

	Methodology
	Train, Validation and Test Size
	Part 1: Convolutional Neural Networks (CNNs)
	Room Type Classifier
	Maintenance Status Classifier
	Performance Metrics

	Part 2: TabNet
	Part 3: Combination
	Macro F1
	Hyperparameter Tuning

	Results
	Results Image Classification
	Default
	Tuned

	Results Tabular Classification
	Default
	Tuned

	Results Combination
	Default
	Tuned

	Discussion
	Discussion of the Results
	Limitations
	Dataset
	Computational Power

	Future Work
	Conclusion
	Acknowledgments

